OPERATION, MAINTENANCE, AND CAM

OPERATION AND MAINTENANCE

Operation

RTO Overview

VOC and HAP laden process gas is pulled into the inlet manifold of the oxidizer via a system fan. Flow control valves then direct this gas into energy recovery chambers where it is preheated. The process gas and contaminants are progressively heated in the ceramic media beds as they move toward the combustion chamber.

Once oxidized in the combustion chamber, the hot purified air releases thermal energy as it passes through the media bed in the outlet flow direction. The outlet bed is heated and the gas is cooled so that the outlet gas temperature is only slightly higher than the process inlet temperature. Valves alternate the airflow direction into the media beds to maximize energy recovery within the oxidizer. The high energy recovery within these oxidizers reduces the auxiliary fuel requirement and saves operating cost.

Start-Up/Shut down: Follow PR-MT019 Start Up and Shut Down Regenerative Thermal Oxidizer

Carbon Concentrator Overview

Process air, containing VOCs, is drawn from the production areas by the process fan. The process fan injects the process exhaust into the bottom section of the adsorber. After entering the inlet section plenum, the gas flows upward through the inlet gas diffuser section. The inlet gas diffuser consists of an upper and lower sieve tray through which the process air is directed, and by which it is forced to be evenly distributed prior to flowing into the adsorption tray section.

Process air next flows upward through the tray section. The 6 trays in this section are made from perforated stainless-steel plate. They are oriented horizontally, in a parallel and level manner. Each tray has a downcomer section on one end, which allows carbon to flow from one tray to the next. These downcomers are located at opposite ends of the trays from those above or below. The downcomer is critical, since it is undesirable to have BAC passing directly from tray to tray via the main perforated plate area.

As the air is passing upward through the tray section, fresh BAC is being continuously delivered to the top tray. The design of the tray section is such that the gas velocity through the holes in the tray is high enough to suspend the beads of carbon in the air above the tray. At the design adsorber process gas flow rate, the beads will form a fluid bed, which will be approximately 1 inch deep. T this airflow rate, there should be no higher elevation of carbon particles, and minimal carbon "leakage" from tray to tray.

As the air flows upward through the 6 trays, the intimate contact with the carbon beads results in the transfer of VOC from the air to the beads. The design provides counter current removal for optimized efficiency. That is, as the air moves upward from tray to tray, the VOCs become more difficult to collect (mass transfer favors higher VOC content

in the air). However, the air contacts cleaner carbon at each successive tray level, and therefore collection efficiency is maintained.

The carbon moves from one end of he tray to the other by displacement. As the carbon enters the top tray from the return pipe, or the lower trays via the downcomers, it displaces carbon already on the tray. In this way, each carbon bead travels the entire length of all trays, optimizing residence time and adsorber effectiveness

The fully "saturate" beads fall through the downcomer on the bottom tray enter the adsorber collection hopper. From here, they flow to the carbon transfer nozzle, and are conveyed to the top of the desorber. This nozzle is adjustable so that the carbon transfer rate can be controlled. The carbon in the desorber forms a fluidized bed, similar to that of the adsorber. As the carbon flows through 6 sieve trays of the desorber, it is heated and stripped using hot gas from the RTO. As the VOCs are desorbed, the hot carrier gas constantly purges them upward and out of the top of the desorber. As the BAC passes downward in the heated section, it becomes increasingly "cleaner". At the same time, the carrier air to which it is exposed is increasingly fresher. This allows continuous mass transfer from BAC to carrier gas.

As the carrier gas with highly concentrated VOCs exits the top of the heated tubes, it is conveyed via the desorbate outlet pipe to the RTO. The regenerated BAC exits the bottom of the heated section, flows into the bottom cone, and then out to the airlift nozzle. The nozzle conveys the carbon back to the top of the adsorber for reuse. The nozzle is adjustable so that the rate of carbon flow through the desorber can be properly set for each particular application, or to accommodate production rate changes.

Carbon Concentrator Start-Up/Shut Down: Follow PR-MT022 Start Up and Shut Down Fluid Bed Concentrator

Maintenance

Schedule: Follow FO-MT001 Maintenance PM Tracking

RTO: RC-MT023;

Carbon Concentrator: RC-MR032; RC-MT033

RTO and Concentrator: RC-MT059; RC-MT060; RC-MT034

CAM PLAN

Background

1. Description

A plastic parts (except business machine plastic parts) and metal parts (clear coatings and extreme performance coatings) coating line consisting of holding devices for up to 6 applicators per booth, 7 dry filter spray booths, 6 mask washers, 1 prime bake oven, 1 base coat oven (infrared), 1 main bake-off oven (zone 1 and 2), 1 carbon adsorber unit, 1 regenerative thermal oxidizer,

and application equipment with 6 robotic applicators / reciprocators, or equivalent technology.

2. Applicable Regulation, Emission Limit, Monitoring Requirements a. Application Regulation

i. Permit Number: MI-ROP-N0802-2015

Pollutant	Limit	Time	Equipment	Monitoring/	Underlying
		Period/ Operating Scenario		Testing Method	Applicable Requirements
1. VOC	1,668 pounds ²	Per calendar day for EU- LN3 and EU- LN2&3 combined	7 dry filter spray booths with 6 robotic applicators/reciprocators or equivalent technology per booth, 6 mask washers, 1 prime bake oven, 1 infrared basecoat oven, and 1 main bake-off oven with 2-zones. or Combined equipment from EU-LN2 and EU-LN3 operated as a single partially controlled coating line.	SC VI.13.	R 336.1205, R 336.1224, R 336.1225
2. VOC	137.7 tons ²	Per 12-month rolling time period as determined at the end of each calendar month for EU- LN3 and EU- LN2&3 combined	7 dry filter spray booths with 6 robotic applicators/reciprocators or equivalent technology per booth, 6 mask washers, 1 prime bake oven, 1 infrared basecoat oven, and 1 main bake-off oven with 2-zones or Combined equipment from EU-LN2 and EU-LN3 operated as a single partially controlled coating line.	SC VI.13.	R 336.1205, R 336.1224, R 336.1225, R 336.1702(d), 40 CFR 52.21 Subparts (j) & (x)

b. Emission Limits

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
3. VOC and Acetone	157.7 tons ²	Per calendar day per 12- month rolling time period as determined at the end of each calendar month for EU- LN3 and EU- LN2&3 combined	7 dry filter spray booths with 6 robotic applicators/reciprocators or equivalent technology per booth, 6 mask washers, 1 prime bake oven, 1 infrared basecoat oven, and 1 main bake-off oven with 2-zones.	SC VI.13.	R 336.1205, R 336.1224, R 336.1225, R 336.1702(d), 40 CFR 52.21
 VOC – coating of metal parts using clear coatings 	4.3 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1205, R 336.1225, R 336.1702(a)
5. VOC – coating of metals parts using extreme performance coatings	3.5 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1205, R 336.1225, R 336.1702(a)
6. VOC – Solvent based adhesion promoter(s)	5.88 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, EU-LN4, and EU-LN2&3	SC VI.13	R 336.1702(a), 40 CFR 52.21
7. VOC – High bake coatings for both interior and exterior parts in the Prime- Flexible Coating Category3,4	4.5 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)

Pollutant	Limit	Time	Equipment	Monitoring/	Underlying
		Period/ Operating Scenario		Testing Method	Applicable Requirements
8. VOC – High bake coatings for both interior and exterior parts in the Prime-Non Flexible Coating Category 3,4	3.5 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
9. VOC – High bake coatings for both interior and exterior parts in the Topcoat- Basecoat Coating Category3,4	4.3 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
10. VOC – High bake coatings for both interior and exterior parts in the Topcoat- Clearcoat Coating Category3,4	4.0 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
 11. VOC – High bake coatings for both interior and exterior parts in the Topcoat- Non- Basecoat/Clearcoat Coating Category3,4 	4.3 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
12. VOC – Air dried coatings for exterior parts in the Prime- Coating Category 3,5	4.8 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
13. VOC – Air dried coatings for exterior parts in the Topcoat- Basecoat Coating Category 3,5	5.0 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
14. VOC – Air dried coatings for exterior parts in the Topcoat- Clearcoat Coating Category 3,5	4.5 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
15. VOC – Air dried coatings for exterior parts in the Topcoat- Non- Basecoat/Clearcoat Coating Category 3,5	5.0 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
16. VOC – Air dried coatings for interior parts 3,5	5.0 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)
17. VOC – Touch-up and repair 5	5.2 pounds per gallon of coating, minus water, as applied2	Calculated on a volume weighted, calendar day average per coating line	As described in EU-LN1, EU-LN2, EU-LN3, and EU- LN2&3	SC VI.13	R 336.1702(d)

³For red and black coatings, the emission limitation shall be determined by multiplying the appropriate limit by 1.15.

⁴When Method 24 is used to determine the volatile organic compound content of a coating, the applicable emission limitation shall be determined by adding 0.5 to the appropriate limit.

⁵When Method 24 is used to determine the volatile organic compound content of a coating, the applicable emission limitation shall be determined by adding 0.1 to the appropriate limit.

- c. Monitoring Requirements
 - i. RTO combustion chamber outlet temperature
 - ii. RTO pressure drop
 - iii. Carbon Concentrator desorption gas inlet temperature
 - iv. Carbon Concentrator pressure drop
- 3. Control Device
 - a. RTO

- i. Destruction 93.9%
- b. Carbon Concentrator
 - i. Capture 81.6%
 - ii. Control 95%
- c. Uncontrolled Emissions 27.21%
- d. The Line 3 base coat and clear coat booths are control by the fluidized bed Carbon Concentrator and the RTO. The Carbon Concentrator uses adsorbtion to collect VOCs from the large volume (low VOC concentration) exhaust stream and then transfer the VOCs to a smaller volume (higher concentration) air stream via desorption. The concentrated VOCs are then destroyed by the RTO.
- 4. Unit is subject to CAM due to the emission unit be being a large pollutantspecific emission unit.

Monitoring Approach

Monitored	Indicator	Indicator Range	Bypass System Detection
Device			
RTO Temperature	RTO combustion temperature is measured with one thermocouple in the combustion chamber. The temperature is monitored continuously and recorded at equally spaced intervals at least once every 15 minutes.	The RTO temperature shall be a minimum of 1471 F.	For each control device in operation during production (e.g., coating of parts), the permittee shall conduct bypass monitoring for each bypass line such that the valve or closure method cannot be opened without
RTO Pressure Drop	RTO pressure drop is measured with one transducer in the burner chamber. The pressure drop is monitored continuously and recorded at equally spaced intervals at least once every 15 minutes.	The RTO pressure drop shall be a minimum of >3.46 inwc	creating an alarm condition for which a record shall be made. Records of the bypass line(s) that was open and the length of time the bypass was open shall be kept on file.
Concentrator Temperature	Concentrator desorption gas inlet temperature is measured with one thermocouple. The temperature is monitored continuously and recorded at equally spaced intervals at least once every 15 minutes.	The Concentrator desorption gas inlet temperature shall be above the temperature from the most recent acceptable performance test minus 15 F. The temperature of the most recent test was 440 F.	
Concentrator Pressure Drop	Concentrator pressure drop is measured with one transducer in the adsorption chamber. The pressure drop is monitored continuously and recorded at equally spaced intervals at least once every 15 minutes.	The Concentrator pressure drop shall be a minimum of 0.97 inwc	

Performance Criteria

Monitored	Data	QA/QC	Monitoring	Data Collection	Excursion
Device	Representati	Practices and	Frequency	Procedures	Determination
	veness	Criteria		and Averaging	
RTO	There is one	Validation of the	Continuous	Temperature is	A temperature or
Temperature	thermocoupl	thermocouple	and	collected via	pressure excursion
-	e located in	accuracy or	recorded at	PLC and stored	occurs when the 3-
	the	recalibration	equally	on MS Access	hour average falls
	combustion	occurs once	spaced	database	below the applicable
	chamber.	every 12	intervals at	where a 3-hour	indicator range.
		months.	least every	average is	
			15 minutes.	generated.	A monitoring
RTO	There is one	Validation of the	Continuous	Temperature is	excursion occurs
Pressure	transducer	transducer	and	collected via	when the equipment
Drop	located in	accuracy or	recorded at	PLC and stored	monitoring the
	the burner	recalibration	equally	on MS Access	temperature or
	chamber	occurs once	spaced	database	pressure fail to record
		every 12	intervals at	where a 3-hour	the temperature or
		months.	least every	average is	pressure.
0	These is an		15 minutes.	generated.	A monitoring
Concentrator	There is on	Validation of the	Continuous	Temperature is	A monitoring excursion may also
Temperature	thermocoupl	thermocouple	and	collected via	occur if the equipment
	e located at the inlet of	accuracy or recalibration	recorded at	PLC and stored on MS Access	used to monitor the
	the	occurs once	equally spaced	database	temperature or
	desorption	every 12	intervals at	where a 3-hour	pressure is not
	gas chamber	months.	least every	average is	properly implemented
	gas chamber	montino.	15 minutes.	generated.	or maintained.
Concentrator	There is one	Validation of the	Continuous	Temperature is	
Pressure	transducer	transducer	and	collected via	Upon confirming an
Drop	located in	accuracy or	recorded at	PLC and stored	excursion, the site will
- 1-	the	recalibration	equally	on MS Access	follow the
	adsorption	occurs once	spaced	database	requirements of
	chamber.	every 12	intervals at	where a 3-hour	General Conditions 21
		months.	least every	average is	and 22.
			15 minutes.	generated.	

Justification

The Carbon Concentrator inlet desorption gas temperature and the RTO combustion chamber temperature were selected because they are indicative of the VOC removal occurring in the concentrator and the destruction within the RTO. Both are widely accepted methods of monitoring. If the combustion chamber temperature decreases significantly, then complete combustion may not occur, reducing the destruction efficiency. If the inlet desorption temperature decreases significantly, then proper VOC removal cannot occur, reducing removal efficiency. Temperature monitoring is specifically required in EU-LN3 SC III.

The Carbon Concentrator pressure drop and the RTO pressure drop were selected because they are indicative of the VOC removal occurring in the concentrator and the

destruction within the RTO. Both are widely accepted methods of monitoring. If the pressure drop of the RTO decreases significantly, then complete combustion may not occur due to a lack of VOC rich air, reducing the destruction efficiency. If the concentrator pressure drop decreases significantly, then proper VOC removal cannot occur due to a lack of VOC rich air, reducing removal efficiency. Pressure Drop monitoring is specifically required in EU-LN3 SC III.

The rational for the selection of the indicator ranges were determined based on achieving the best removal / destruction efficiency that occurred during the most recent performance test.

The last RTO VOC destruction Efficiency testing was performed December 7, 2017. The RTO destruction efficiency was 93.85%. The last Carbon Concentrator VOC removal test occurred December 6, 2017. The Concentrator removal efficiency was 95.01%. The last Carbon Concentrator Capture Efficiency was performed on June 21, 2016. The Concentrator capture efficiency was 81.57%.