From: Carolann Knapp
To: DEQ-ROP

Cc: Nixon, Shane (DEQ); Rogers, William (DEQ); Steve Niehaus

Subject: N5831 Section 1-ROP Renewal Application

Date: Wednesday, November 14, 2018 3:05:08 PM

Attachments: <u>image001.png</u>

Wild CO2 Renewal App Sub 111418.pdf PTE Calculations Wild CO2 Plt.pdf

A-001 MAP Revised.pdf A-001 CAM Revised.pdf

N5831 Current Permit Workup for 2019 Renewal.doc

Hello,

On behalf of Breitburn Operating L.P., we are submitting the ROP renewal application for our Wilderness CO2-Hayes 29, Section 1 in an electronic format with hard copies to follow by mail to Mr. Nixon. Attached you will find the ROP Application Form, ROP Mark-up, PTE Calculations, PM-MAP, and the CAM plan. We hope you find this package administratively complete, should you not, feel free to contact me.

Sincerely,

Carolann Knapp

EH&S Rep

Maverick Natural Resources, LLC

(Parent of Breitburn Operating L.P.)

1165 Elkview Blvd.

Gaylord, MI 49735

Ph# 989-731-9369

Email: Carolann.knapp@mavresources.com

www.mavresources.com

""Live simply, love generously, care deeply, speak kindly, leave the rest to God." Ronald Reagan

Effective immediately, my email address has changed. Please update your address book accordingly.

Breitburn Operating L.P. (a wholly owned subsidiary of Maverick Resources, LLC) 1165 Elkview Drive Gaylord, MI 49735

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

November 14, 2018

Mr. Shane Nixon, MDEQ AQD-Cadillac District Supervisor 120 W. Chapin St. Cadillac, MI 49601-2158

Re:

#MI-ROP-N5831-2014b

Wilderness CO2/Hayes 29 Plant (Section 1)

On behalf of Breitburn Operating L.P., we are submitting the ROP Renewal package for the Wilderness CO2/Hayes 29, Section 1. Breitburn would like to request that EUENGINE5 be omitted from the ROP permit as you will see in our ROP markup. EUENGINE5 has been permanently decommissioned since 2014.

Enclosed in the renewal package is the ROP Markup, ROP Application, Potential-to-Emit Calculation, PMMAP, CAM Plans, and Y2017 MAERS Report.

We hope you will find this application complete, should you need anything else please feel free to contact me.

Sincerely,
Warland Krapp

Carolann Knapp

EH&S Rep

Cc: Mr. Bill Rogers, MDEQ AQD

Michigan Department of Environmental Quality - Air Quality Division

RENEWABLE OPERATING PERMIT RENEWAL APPLICATION FORM

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Refer to instructions for additional information to complete the Renewable Operating Permit Renewal Application Form.

GENERAL INSTRUCTIONS

This application form should be submitted as part of an administratively complete application package for renewal of a Renewable Operating Permit (ROP). This application form consists of nine parts. Parts A – H must be completed for all applications and must also be completed for each section of a sectioned ROP. Answer all questions in all parts of the form unless directed otherwise. Detailed instructions for this application form can be found at http://michigan.gov/air (select the Permits Tab, "Renewable Operating Permits (ROP)/Title V", then "ROP Forms & Templates").

PART A: GENERAL INFORMATION

Enter information about the source, owner, contact person and the responsible official.

SRN N5831	SIC Code	NAICS Code 211130	Existing ROP Number		Section Nu Section 1	mber (if applicable)
Source Name Breitburn Op	erating L.P Wild	erness CO2-Hayes	29 Central Product	ion Facility		
Street Address 10875 Geror	nimo Trail	1				
		State MI				
	ange (if address not a N R04W SW1/4	vailable)		-		
Source Descript The facility is prior to pipeli	a natural gas pro	cessing facility that	t treats natural gas t	o remove carbon	dioxide and c	ompress the gas
Check he on the ma	ere if any of the ab arked-up copy of y	ove information is over existing ROP.	different than what a	ppears in the exis	sting ROP. Ide	entify any changes
OWNER INF	ORMATION	-				
Owner Name Breitburn Op	erating L.P.				Section Nu Section 1	mber (if applicable)
P.O. Box 125 1165 Elkview		source address)			,	
City Gaylord		State MI	ZIP Code 49735	County Otsego		Country
-						

DEQ Environmental Assistance Center Phone: 800-662-9278 1 of 12

SRN: N5831

Section Number (if applicable): 1

PART A: GENERAL INFORMATION (continued)

At least one contact and responsible official must be identified. Additional contacts and responsible officials may be included if necessary.

CONTACT INFORMATION						
			Title EH&S Rep			
Mailing address (□ check if same as source a 1165 Elkview Drive	eddress)	'	-			
City Gaylord	State MI	ZIP Code 49735		County Otsego	Country	
Phone number 989-732-0020		E-mail add Carolan		mavresources.co	m	
Contact 2 Name (optional) Steve Niehaus			Title Regional	EH&S Manager		
Mailing address (☐ check if same as source a 1165 Elkview drive	ddress)				2	
City Gaylord	State MI	ZIP Code 49735	е	County Otsego	Country	
Phone number 989-732-0020			E-mail address Steve.niehaus@mavresources.com			
RESPONSIBLE OFFICIAL INFORM	ATION					
Responsible Official 1 Name Michael Fairbanks			Title Operation	ns Manager		
Mailing address (□ check if same as source a PO. Box 1256	ddress)		4			
City Gaylord	State MI	ZIP Code 49735	е	County Otsego	Country County	
Phone number 989-732-0020			E-mail address Michael.Fairbanks@mavresources.com			
Responsible Official 2 Name (optional)			Title			
Mailing address (check if same as source a	ddress)					
City	State	ZIP Code	9	County	Country	
Phone number		E-mail ad	ddress			
Check here if an Al-001 Form is	attached to	o provide ı	more infor	mation for Part A.	Enter Al-001 Form ID:	

SRN: N5831	Section Number (if applicable): 1

PART B: APPLICATION SUBMITTAL and CERTIFICATION by Responsible Official

Identify the items that are included as part of your administratively complete application in the checklist below. For your application to be complete, it must include information necessary to evaluate the source and to determine all applicable requirements. Answer the compliance statements as they pertain to all the applicable requirements to which the source is subject. The source's Responsible Official must sign and date this form.

Listing of ROP Application Contents. Check the box	for the items included with your application.		
Completed ROP Renewal Application Form (and any Al-001 Forms) (required)	Compliance Plan/Schedule of Compliance		
Mark-up copy of existing ROP using official version from the AQD website (required)	Stack information ■ Stack information		
Copies of all Permit(s) to Install that have not been incorporated into existing ROP (required)	Acid Rain Permit Initial/Renewal Application		
HAP/Criteria Pollutant Potential to Emit Calculations	Cross State Air Pollution Rule (CSAPR) Information		
MAERS Forms (to report emissions not previously submitted)	Confidential Information		
Copies of all Consent Order/Consent Judgments that have not been incorporated into existing ROP	Paper copy of all documentation provided (required)		
Compliance Assurance Monitoring (CAM) Plan	⊠ Electronic documents provided (optional)		
Other Plans (e.g. Malfunction Abatement, Fugitive Dust, Operation and Maintenance, etc.)	Other, explain:		
Compliance Statement			
This source is in compliance with <u>all</u> of its applicable requestisting ROP, Permits to Install that have not yet been incapplicable requirements not currently contained in the exist	orporated into that ROP, and other		
This source will continue to be in compliance with all of its contained in the existing ROP, Permits to Install that have and other applicable requirements not currently contained	not yet been incorporated into that ROP. Was The		
This source will meet in a timely manner applicable requirements that become effective during the permit term.			
The method(s) used to determine compliance for each applicable requirement is/are the method(s) specified in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and all other applicable requirements not currently contained in the existing ROP.			
If any of the above are checked No, identify the emission of number(s) or applicable requirement for which the source ROP renewal on an Al-001 Form. Provide a compliance p	unit(s) or flexible group(s) affected and the specific condition is or will be out of compliance at the time of issuance of the plan and schedule of compliance on an Al-001 Form.		
Name and Title of the Responsible Official (Print or Ty	pe)		
Michael Fairbanks, Operations Manager			
As a Responsible Official, I certify that, based on in the statements and information in this application a	formation and belief formed after reasonable inquiry, re true, accurate, and complete.		
Mtt	11/13/18		
Signature of Responsible Official	Signature of Responsible Official Date		

SRN: N5831

Section Number (if applicable): 1

PART C: SOURCE REQUIREMENT INFORMATION

Answer the questions below for specific requirements or programs to which the source may be subject.

C1.	Actual emissions and associated data from <u>all</u> emission units with applicable requirements (including those identified in the existing ROP, Permits to Install and other equipment that have not yet been incorporated into the ROP) are required to be reported in MAERS. Are there any emissions and associated data that have <u>not</u> been reported in MAERS for the most recent emissions reporting year? If Yes, identify the emission unit(s) that was/were not reported in MAERS on an Al-001 Form. Applicable MAERS form(s) for unreported emission units must be included with this application.	☐ Yes	⊠ No
C2.	Is this source subject to the federal regulations on ozone-depleting substances? (40 CFR Part 82)	☐ Yes	⊠ No
C3.	Is this source subject to the federal Chemical Accident Prevention Provisions? (Section 112(r) of the Clean Air Act Amendments, 40 CFR Part 68)	☐ Yes	⊠ No
	If Yes, a Risk Management Plan (RMP) and periodic updates must be submitted to the USEPA. Has an updated RMP been submitted to the USEPA?	☐ Yes	☐ No
C4.	Does the source belong to one of the source categories that require quantification of fugitive emissions?	Yes	⊠ No
	If Yes, identify the category on an Al-001 Form and include the fugitive emissions in the PTE calculations for the source. See ROP Renewal Application instructions.		
C5.	Does this stationary source have the potential to emit (PTE) of 100 tons per year or more of any criteria pollutant (PM-10, PM 2.5, VOC, NOx, SO ₂ , CO, lead)?	⊠ Yes	☐ No
	If Yes, include potential emission calculations for each identified pollutant on an Al-001 Form.		
C6.	Does this stationary source emit any hazardous air pollutants (HAPs) regulated by the federal Clean Air Act, Section 112?	⊠ Yes	□No
-	If Yes, include potential and actual emission calculations for HAPs on an Al-001 Form. Fugitive emissions must be included in HAP calculations.		
C7.	Are any emission units subject to the Cross State Air Pollution Rule (CSAPR)? If Yes, identify the specific emission unit(s) subject to CSAPR on an AI-001 Form.	☐ Yes	⊠ No
C8.	Are any emission units subject to the federal Acid Rain Program? If Yes, identify the specific emission unit(s) subject to the Federal Acid Rain Program on an Al-001 Form.	☐ Yes	⊠ No
	Is an Acid Rain Permit Renewal Application included with this application?	Yes	□No
C9.	Are any emission units identified in the existing ROP subject to compliance assurance monitoring (CAM)?		□No
	If Yes, identify the specific emission unit(s) subject to CAM on an AI-001 Form. If a CAM plan has not been previously submitted to the MDEQ, one must be included with the ROP renewal application on an AI-001 Form.		
	Is a CAM plan included with this application?	⊠ Yes	No
C10.	Does the source have any plans such as a malfunction abatement plan, fugitive dust plan, operation/maintenance plan, or any other monitoring plan that is referenced in an existing ROP, Permit to Install requirement, or any other applicable requirement?	⊠ Yes	□ No
	If Yes, then a copy must be submitted as part of the ROP renewal application.		
C11.	Are there any specific requirements that the source proposes to be identified in the ROP as non-applicable?	Yes	⊠ No
	If Yes, then a description of the requirement and justification must be submitted as part of the ROP renewal application on an Al-001 Form.		
	Check here if an Al-001 Form is attached to provide more information for Part C. Enter Al-001 For	m ID: Al-	

SRN: N5831

Section Number (if applicable): 1

PART D: PERMIT TO INSTALL (PTI) EXEMPT EMISSION UNIT INFORMATION

Review all emission units at the source and answer the question below.

D1. Does the source have any emission units that do not appear in the existing ROP but are required to be listed in the ROP application under R 336.1212(4) (Rule 212(4)) of the Michigan Air Pollution Control Rules? If Yes, identify the emission units in the table below.				
If No, go to Part I	If No, go to Part E.			
Note: Emission units must be captured in e exempt Storage Tank	that are subject to process specific emission lime either Part G or H of this application form. Identi ks).	nitations or standards, ev ical emission units may b	en if identified in Rule 212, be grouped (e.g. PTI	
Emission Unit ID	Emission Unit Description	Rule 201 Exemption Rule Citation [e.g. Rule 282(2)(b)(i)]	Rule 212(4) Citation [e.g. Rule 212(4)(c)]	
EUHEATERS	Nine Misc. process heaters, each having a max heat input of <50 mmbtu/hr	282(2)(b)(i)	212(4)(b)	
EUTANKS	Storage of sweet crude or sweet condensate in 4 vessels each less than 40,000 gallons	284(e)	212(4)(c)	
Comments:				
oomments.				
☐ Check here if an	Al-001 Form is attached to provide more inform	nation for Part D. Enter A	l-001 Form ID: Al-	

DEQ Environmental Assistance Center Phone: 800-662-9278

SRN: N5831	Section Number (if applicable): 1

PART E: EXISTING ROP INFORMATION

Review all emission units and applicable requirements (including any source wide requirements) in the $\underline{\text{existing}}$ ROP and answer the questions below as they pertain to $\underline{\text{all}}$ emission units and $\underline{\text{all}}$ applicable requirements in the existing ROP.

E1	. Does the source propose to make any additions, changes or deletions to terms, conditions and underlying applicable requirements as they appear in the existing ROP?	⊠ Yes	□No
	If Yes, identify changes and additions on Part F, Part G and/or Part H.	Δ .σσ	
E2	For each emission unit(s) identified in the existing ROP, <u>all</u> stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were <u>not</u> reported in the most recent MAERS reporting year? If Yes, identity the stack(s) that was/were not reported on applicable MAERS form(s).	☐ Yes	⊠ No
E3	Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI?	☐ Yes	⊠ No
	If Yes, complete Part F with the appropriate information.		_
	. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an AI-001 Form.	⊠ Yes	☐ No
	mments: EUENGINE5 dismantled November 2014.		
	Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 For	m ID: Al-	

SRN: N5831

Section Number (if applicable): 1

PART F: PERMIT TO INSTALL (PTI) INFORMATION

Review all emission units and applicable requirements at the source and answer the following questions as they pertain to <u>all</u> emission units with PTIs. Any PTI(s) identified below must be attached to the application.

F1. Has the source been incorpora If No, go to Pa	ated into the existing	where the applicable requirements from the PTI have not ROP? If Yes, complete the following table.	☐ Yes ⊠ No	
Permit to Install Number	Emission Units/Flexible Group ID(s)	Description (Include Process Equipment, Control Devices and Monitoring Devices)	Date Emission Unit was Installed/ Modified/ Reconstructed	
emission unital affected in the	s in the existing ROI	ange, add, or delete terms/conditions to established P? If Yes, identify the emission unit(s) or flexible group(s) by or on an AI-001 Form and identify all changes, additions, xisting ROP.	☐ Yes ☐ No	
the ROP? If You	es, submit the PTIs	entify new emission units that need to be incorporated into as part of the ROP renewal application on an Al-001 Form, s) or flexible group(s) in the mark-up of the existing ROP.	☐ Yes ☐ No	
F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were <u>not</u> reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s).				
or control device	es in the PTIs listed	tive changes to any of the emission unit names, descriptions above for any emission units not already incorporated into nges on an AI-001 Form.	☐ Yes ☐ No	
Comments:				
Check here if	an Al-001 Form is a	ttached to provide more information for Part F. Enter Al-001 F	Form ID: Al-	

SRN: N5831

Section Number (if applicable): 1

PART G: EMISSION UNITS MEETING THE CRITERIA OF RULES 281(2)(h), 285(2)(r)(iv), 287(2)(c), OR 290

Review all emission units and applicable requirements at the source and answer the following questions.

G1. Does the source have a the existing ROP and w	ny new and/or existing emission units which do <u>not</u> already appear in nich meet the criteria of Rules 281(2)(h), 285(2)(r)(iv), 287(2)(c), or 290.		
	sion units in the table below. If No, go to Part H.	☐ Yes ⊠ No	
Note: If several emissio of each and an installation	n units were installed under the same rule above, provide a description on/modification/reconstruction date for each.		
Origin of Applicable Requirements	Emission Unit Description – Provide Emission Unit ID and a description of Process Equipment, Control Devices and Monitoring Devices	Date Emission Unit was Installed/ Modified/ Reconstructed	
Rule 281(2)(h) or 285(2)(r)(iv) cleaning operation			
Rule 287(2)(c) surface coating line			
Rule 290 process with limited emissions			
Comments:			
Check here if an Al-001	Form is attached to provide more information for Part G. Enter Al-001 F	Form ID: Al-	

DEQ Environmental Assistance Center Phone: 800-662-9278

SRN: N5831 Section Number (if applicable): 1

PART H: REQUIREMENTS FOR ADDITION OR CHANGE

Complete this part of the application form for all proposed additions, changes or deletions to the existing ROP. This includes state or federal regulations that the source is subject to and that must be incorporated into the ROP or other proposed changes to the existing ROP. **Do not include additions or changes that have already been identified in Parts F or G of this application form.** If additional space is needed copy and complete an additional Part H.

Complete a separate Part H for each emission unit with proposed additions and/or changes.

H1.	Are there changes that need to be incorporated into the ROP that have not been identified in Parts F and G? If Yes, answer the questions below.	⊠ Yes	□ No
H2.	Are there any proposed administrative changes to any of the existing emission unit names, descriptions or control devices in the ROP? If Yes, describe the changes in questions H8 – H16 below and in the affected Emission Unit Table(s) in the mark-up of the ROP.	Yes	⊠ No
H3.	Does the source propose to add a new emission unit or flexible group to the ROP not previously identified in Parts F or G? If Yes, identify and describe the emission unit name, process description, control device(s), monitoring device(s) and applicable requirements in questions H8 – H16 below and in a new Emission Unit Table in the mark-up of the ROP. See instructions on how to incorporate a new emission unit/flexible group into the ROP.	Yes	⊠ No
H4.	Does the source propose to add new state or federal regulations to the existing ROP?	☐ Yes	⊠ No
	If Yes, on an Al-001 Form, identify each emission unit/flexible group that the new regulation applies to and identify <u>each</u> state or federal regulation that should be added. Also, describe the new requirements in questions H8 – H16 below and add the specific requirements to existing emission units/flexible groups in the mark-up of the ROP, create a new Emission Unit/Flexible Group Table, or add an AQD template table for the specific state or federal requirement.		
	Has a Consent Order/Consent Judgment (CO/CJ) been issued where the requirements were not incorporated into the existing ROP? If Yes, list the CO/CJ number(s) below and add or change the conditions and underlying applicable requirements in the appropriate Emission Unit/Flexible Group Tables in the mark-up of the ROP.	Yes	⊠ No
	Does the source propose to add, change and/or delete source-wide requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	☐ No
Req the	uest to change FGWAUKENGINES to FGWAUKENGINE, as we are requesting to omit one of the to source.	wo engine	es at
H7.	Are you proposing to streamline any requirements? If Yes, identify the streamlined and subsumed requirements and the EU ID, and provide a justification for streamlining the applicable requirement below.	Yes	⊠ No

DEQ Environmental Assistance Center Phone: 800-662-9278

SRN: N5831	Section Number (if applicable): 1
------------	-----------------------------------

PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

H8. Does the source propose to add, change and/or delete emission limit requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.			
Request to delete EUENGINE5 emission limits, as this source has been decommissioned.			
H10. Does the source propose to add, change and/or delete material limit requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No	
H11. Does the source propose to add, change and/or delete process/operational restriction requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	□ No	
Request to change FGWAUKENGINES to FGWAUKENGINE, as we are request one of the two sources	s to be on	nitted.	
H12. Does the source propose to add, change and/or delete design/equipment parameter requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No	
H13. Does the source propose to add, change and/or delete testing/sampling requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	□ No	
V (1) Request to delete testing conditions for EUENGINE5, as this source is decommissioned.			
H14. Does the source propose to add, change and/or delete monitoring/recordkeeping requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	□ No	
Request to change the source name from FGWUAKENGINES to FGWAUKENGINE			
H15. Does the source propose to add, change and/or delete reporting requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	□ No	
Request to change the source name from FGWUAKENGINES to FGWAUKENGINE			

SRN:	N5831	

Section Number (if applicable): 1

PART H: REQUIREMENTS FOR ADDITION OR CHANGE - (continued)

H16. Does the source propose to add, change and/or delete stack/vent restrictions ? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	⊠ Yes	□ No
Request to delete SVENGINE5, as engine has been dismantled.		
H17. Does the source propose to add, change and/or delete any other requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
H18. Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If Yes, identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
Check here if an Al-001 Form is attached to provide more information for Part H. Enter Al-001 For	rm ID: Al-	

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

EFFECTIVE DATE: August 4, 2014

REVISION DATES: April 21, 2015, June 5, 2017

ISSUED TO:

Breitburn Operating, LP – Wilderness CO2 CPF and Linn Operating, LLC – Hayes 29 CPF

State Registration Number (SRN): N5831

LOCATED AT:

10875 Geronimo Trail, Gaylord, Otsego County, Michigan 49735

RENEWABLE OPERATING PERMIT

Permit Number: MI-ROP-N5831-2014b

Expiration Date: August 4, 2019

Administratively Complete ROP Renewal Application Due Between: February 4, 2018 and February 4, 2019

This Renewable Operating Permit (ROP) is issued in accordance with and subject to Section 5506(3) of Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451). Pursuant to Michigan Air Pollution Control Rule 210(1), this ROP constitutes the permittee's authority to operate the stationary source identified above in accordance with the general conditions, special conditions and attachments contained herein. Operation of the stationary source and all emission units listed in the permit are subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

SOURCE-WIDE PERMIT TO INSTALL

Permit Number: MI-PTI-N5831-2014b

This Permit to Install (PTI) is issued in accordance with and subject to Section 5505(5) of Act 451. Pursuant to Michigan Air Pollution Control Rule 214a, the terms and conditions herein, identified by the underlying applicable requirement citation of Rule 201(1)(a), constitute a federally enforceable PTI. The PTI terms and conditions do not expire and remain in effect unless the criteria of Rule 201(6) are met. Operation of all emission units identified in the PTI is subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

Michigan Department of Environmental Quality

Shane Nixon, Cadillac District Supervisor

TABLE OF CONTENTS

AUTHORITY AND ENFORCEABILITY	4
SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF	5
A. GENERAL CONDITIONS	6
Permit Enforceability	6
General Provisions.	
Equipment & Design Emission Limits	
Testing/Sampling	
Monitoring/Recordkeeping	7
Certification & Reporting	
Permit Shield	
Reopenings	
Renewals	. 10
Stratospheric Ozone Protection	. 10
Risk Management Plan Emission Trading	
Permit To Install (PTI)	
B. SOURCE-WIDE CONDITIONS	. 13
C. EMISSION UNIT CONDITIONS	
EMISSION UNIT SUMMARY TABLE	. 16
D. FLEXIBLE GROUP CONDITIONS	. 17
FLEXIBLE GROUP SUMMARY TABLE	. 17
FGCATENGINES	. 18
FGWAUKENGINES	
FGRURALSIRICEMACT E. NON-APPLICABLE REQUIREMENTS	
APPENDICES	
Appendix 1. Abbreviations and Acronyms	
Appendix 2. Schedule of Compliance	
Appendix 4. Recordkeeping	
Appendix 5. Testing Procedures	. 32
Appendix 6. Permits to Install	. 32
Appendix 7. Emission Calculations Appendix 8. Reporting	
SECTION 2 – LINN Operating, LLC - Hayes 29 CPF	
A. GENERAL CONDITIONS	
Permit Enforceability	. 35
General Provisions	. 35
Equipment & Design	. 36

Emission Limits	36
Testing/Sampling	36
Monitoring/Recordkeeping 3	37
Certification & Reporting	
Permit Shield	38
Revisions	39
Reopenings	39
Renewals 3	39
Stratospheric Ozone Protection	40
Risk Management Plan	
Emission Trading	40
Permit To Install (PTI)	40
B. SOURCE-WIDE CONDITIONS4	1 2
C. EMISSION UNIT CONDITIONS4	45
EMISSION UNIT SUMMARY TABLE	15
EUGLYCOLDEHYDRATOR	
EUENGINEH29	
EUMACTZZZZ 5	-
D. FLEXIBLE GROUP CONDITIONS	
E. NON-APPLICABLE REQUIREMENTS5	57
APPENDICES5	58
Appendix 1. Abbreviations and Acronyms	58
Appendix 2. Schedule of Compliance	
Appendix 3. Monitoring Requirements	
Appendix 4. Recordkeeping	59
Appendix 5. Testing Procedures	
Appendix 6. Permits to Install	59
Appendix 7. Emission Calculations	59
Appendix 8. Reporting6	30

AUTHORITY AND ENFORCEABILITY

For the purpose of this permit, the **permittee** is defined as any person who owns or operates an emission unit at a stationary source for which this permit has been issued. The **department** is defined in Rule 104(d) as the Director of the Michigan Department of Environmental Quality (MDEQ) or his or her designee.

The permittee shall comply with all specific details in the permit terms and conditions and the cited underlying applicable requirements. All terms and conditions in this ROP are both federally enforceable and state enforceable unless otherwise footnoted. Certain terms and conditions are applicable to most stationary sources for which an ROP has been issued. These general conditions are included in Part A of this ROP. Other terms and conditions may apply to a specific emission unit, several emission units which are represented as a flexible group, or the entire stationary source which is represented as a Source-Wide group. Special conditions are identified in Parts B, C, D and/or the appendices.

In accordance with Rule 213(2)(a), all underlying applicable requirements are identified for each ROP term or condition. All terms and conditions that are included in a PTI, are streamlined, subsumed and/or are state-only enforceable will be noted as such.

In accordance with Section 5507 of Act 451, the permittee has included in the ROP application a compliance certification, a schedule of compliance, and a compliance plan. For applicable requirements with which the source is in compliance, the source will continue to comply with these requirements. For applicable requirements with which the source is not in compliance, the source will comply with the detailed schedule of compliance requirements that are incorporated as an appendix in this ROP. Furthermore, for any applicable requirements effective after the date of issuance of this ROP, the stationary source will meet the requirements on a timely basis, unless the underlying applicable requirement requires a more detailed schedule of compliance.

Issuance of this permit does not obviate the necessity of obtaining such permits or approvals from other units of government as required by law.

SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- 1. The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.
- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))

A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a
part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any
other condition or part of this ROP. (R 336.1213(1)(f))

- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹
 (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property. (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.

- d. The analytical techniques or methods used.
- e. The results of the analyses.
- f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
 - Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
 - b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be

certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.

- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - d. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:
 - a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
 - b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
 - c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
 - d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
 - e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))

29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
 - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
 - d. If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.

37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR Part 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR Part 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ. 2 (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months,

the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI. ² (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	СО	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.2 (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.2 (R 336.1213(3)(b)(ii))

 The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R336.1205(3), R 336.213(3))

- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R336.1205(3), R 336.213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required in SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements	
NA	NA	NA	NA	

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINE1	Remote 1,085 hp Caterpillar 3516 LE (low emission) reciprocating internal combustion engine (RICE)	11/01/92	FGCATENGINES
EUENGINE2	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE3	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE4	Remote 1,150 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and air to fuel ratio control (AFRC)		
EUENGINE5	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	11/01/92	FGWAUKENGINES
EUENGINE6	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and AFRC	11/01/92	FGWAUKENGINES

Commented [CK1]: REQUEST THAT EUENGINE5 BE REMOVED FROM ROP.

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

FLEXIBLE GROUP SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Flexible Group ID	Flexible Group Description	Associated Emission Unit IDs
FGCATENGINES	Remote Caterpillar 3516 LE (low emission) reciprocating internal combustion engines (RICE)	EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4,
FGWAUKENGINES	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE controlled by 3-way catalytic converters, subject to 40 CFR Part 64 Compliance Assurance Monitoring (CAM) requirements	EUENGINE5 and EUENGINE6
FGRURALSIRICEMACT	Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675	EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, and EUENGINE6

Commented [CK2]: REQUEST TO REMOVE EUENGE5

Formatted: Strikethrough

FGCATENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Four remote Caterpillar 3516 LE (low emission) RICE

Emission Units: EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst (EUENGINE2, EUENGINE3, and EUENGINE4)

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
1.	СО	20.8 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
2.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
3.	СО	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
4.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
5.	со	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
6.	NOx	24.4 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)
7.	СО	4.2 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate FGCATENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with an oxidation catalyst, to
 monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate
 temperature range defining the proper operation of the oxidation catalyst is identified in the MAP.
 (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple in accordance with the manufacturer's recommendations for any engine with an oxidation catalyst. (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from each engine in FGCATENGINES, by testing at owners expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R336.2003, R336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGCATENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on any engine with an oxidation catalyst in FGCATENGINES, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on any engine with an oxidation catalyst in FGCATENGINES, on a daily basis. (R 336.1213(3)(a)(iii))
- The permittee shall maintain a log of all maintenance activities conducted according to the PM/MAP. The
 permittee shall keep this log on file at a location approved by the district supervisor and make it available upon
 request.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGCATENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

Page 20 of 60

- The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- 7. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.2 (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements	
1. SVENGINE1	16¹	37.5 ¹	R 336.1225	
2. SVENGINE2	16¹	37.5 ¹	R 336.1225	
3. SVENGINE3	16¹	37.5 ¹	R 336.1225	
4. SVENGINE4	16¹	37.5 ¹	R 336.1225	

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGWAUKENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Two remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE

Emission Unit: <u>EUENGINE5 and EUENGINE6</u>

Commented [CK3]: Change to (1)One

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

POLLUTION CONTROL EQUIPMENT:

3-way catalytic converters

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
		calendar month		00 VI.11	
2. CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
3. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)
4. CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall only burn sweet natural gas in FGWAUKENGINES.2 (R 336.1205(3))
- 2. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))

Formatted: Strikethrough

Page 22 of 60

- 3. The permittee shall not operate FGWAUKENGINES—unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- 4. The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 5. The permittee shall utilize a differential pressure gauge or manometer for any engine with a catalytic converter, to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with a catalytic converter, to
 monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate
 temperature range defining the proper operation of the catalytic converter is identified in the MAP.
 (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (40 CFR 64.3(b)(2)(a), (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- The permittee shall verify NOx and CO emissions from EUENGINE5, by testing at owner's expense, within 90 days of start-up, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)
- The permittee shall verify NOx and CO emissions from EUENGINE6, by testing at owner's expense, within nine
 months of issuance of this permit, and thereafter within every five years, in accordance with Department
 requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGWAUKENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

2. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i)) The permittee shall monitor and record the differential pressure gauge or monometer on <u>EUENGINE5 and</u> Formatted: Strikethrough EUENGINE6, on a monthly basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(i)) An excursion for NOx and CO shall be a differential pressure gauge or manometer reading of 1.5 inches of water over or under the differential pressure under normal operating conditions identified in the MAP, which is determined when the catalytic converter is installed. (40 CFR 64.6(c)(2), R 336.1213(3)(a)(i)) 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i)) The permittee shall monitor and record the inlet temperature and outlet temperature on <u>EUENGINE5 and</u> Formatted: Strikethrough EUENGINE6, on a daily basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(iii)) An excursion for NOx and CO shall be a temperature gauge or thermocouple reading less than 900°F at the inlet of the catalytic converter, or greater than 1250°F at the outlet of the catalytic converter, or the outlet temperature from the catalytic converter is less than the inlet temperature.2 (40 CFR 64.6(c)(2)) The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.2 (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911) The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGWAUKENGINES Formatted: Strikethrough is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a)) 10. The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGWAUKENGINES. The permittee shall keep all records on file at a location approved by the AQD District Formatted: Strikethrough Supervisor and make them available upon request.2 (R 336.1205(3), R 336.1213(3)) 11. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGWAUKENGINES. The permittee shall keep all Formatted: Strikethrough records on file at a location approved by the AQD District Supervisor and make them available upon request.2 (R 336.1205(3), R 336.1213(3)) 12. If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, Formatted: Strikethrough the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3)) 13. Upon detecting an excursion or exceedance of the differential pressure, the permittee shall check sample lines,

14. Upon detecting an excursion or exceedance of the temperature, the permittee shall check loading on the engine, check for a faulty gauge or thermocouple, and check for proper operation of the ignition system.

(40 CFR 64.7(d))

check RPM verses differential pressure and compare the reading to previous month's readings, remove the catalyst and replace gaskets, as necessary. Should the differential pressure still indicate an excursion (greater than 1.5 times the normal differential pressure), the catalyst shall be removed and washed or replaced.

Should the above check be performed and the temperatures are still outside the specified ranges, the engine shall be shut down. (40 CFR 64.7(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. Each semiannual report of monitoring and deviations shall include summary information on the number, duration and cause of excursions and/or exceedances and the corrective actions taken. If there were no excursions or exceedances in the reporting period, then this report shall include a statement that there were no excursions and/or exceedances. (40 CFR 64.9(a)(2)(i))
- 5. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 6. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches) Minimum He Above Grou (feet)		Underlying Applicable Requirements
1. SVENGINE5	16¹	40 ¹	R 336.1225
2. SVENGINE6	16 ¹	40 ¹	R 336.1225

Formatted: Strikethrough

Formatted: Strikethrough

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all applicable requirements of 40 CFR Part 64. (40 CFR Part 64)

- **Footnotes:**¹ This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

 ² This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGRURALSIRICEMACT FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675.

Compliance date is October 19, 2013

Emission Unit: EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, <u>EUENGINE5</u>, EUENGINE6

Formatted: Strikethrough

POLLUTION CONTROL EQUIPMENT:

NΑ

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Fauinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall be in compliance with the emission limitations, operating limitations and other requirements of Subpart ZZZZ of Part 63 at all times after the promulgated compliance date in Subpart ZZZZ of Part 63. (40 CFR 63.6605(a))
- 2. The permittee shall operate and maintain any affected RICE, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. (40 CFR 63.6605(b))
- 3. The permittee shall comply with the following requirements, for each 4SLB and 4SRB remote stationary RICE with a site rating greater than 500 brake HP, by the applicable compliance date. (40 CFR 63.6603(a) and Table 2d)
 - a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first, except as allowed in SC III.4.

 Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.

- Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace
 as necessary.
- 4. The permittee may utilize an oil analysis program in order to extend the specified oil change requirement in 40 CFR 63.6603 and as listed in SC III.3. The oil analysis program must be performed at the same frequency as oil changes are required. The analysis program must analyze the parameters and keep records as required in Part 63.6625(j) for SI engines. (40 CFR 63.6625(j))

IV. DESIGN/EQUIPMENT PARAMETER(S)

- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d of Subpart ZZZZ, apply.
 (40 CFR 63.6625(h))
- 2. The permittee shall operate and maintain the stationary RICE according to the manufacturer's emission-related written instructions or develop you own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air-pollution control practice for minimizing emissions. (40 CFR 63.6640(a), Table 6)

V. TESTING/SAMPLING

1. If using the oil analysis program for SI Engine(s), the permittee shall test for Total Acid Number, viscosity and percent water content. (40 CFR 63.6625(j))

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- By the compliance date, and every 12 months thereafter, the permittee must evaluate the status of their existing stationary SI RICE and document that the SI RICE meets the definition of remote stationary RICE in 40 CFR 63.6675. 40 CFR 63.6675 defines Remote stationary RICE as stationary RICE meeting any of the following criteria:
 - a. Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.
 - b. Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (b)(i) and (ii) of this definition.
 - A pipeline segment with 10 or fewer buildings intended for human occupancy within 220 yards (200
 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline.
 Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
 - ii. The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12 month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
 - iii. For purposes of this paragraph (b), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 m) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

- c. Stationary RICE that are not located on gas pipelines and that have or fewer buildings intended for human occupancy within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans. (40 CFR 63.6603(f), 63.6675)
- 2. The permittee shall keep records of the initial and annual evaluation of the status of the engine required by SC VI.1. (40 CFR 63.6603(f))
- 3. If the evaluation of the status of the engine required by SC VI.1 indicates that the stationary RICE no longer meets the definition of remote stationary RICE in SC VI.1(a) through (c) and 40 CFR 63.6675, the permittee shall comply with all of the applicable requirements in 40 CFR Part 63, Subpart ZZZZ for existing nonemergency SI 4SLB and/or 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within one year of the evaluation. (40 CFR 63.6603(f))
- The permittee shall keep records as required in SC IV.2 to show continuous compliance with each emission or operating limit that applies. (40 CFR 63.6655(d), 63.6660)
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the permittee operated and maintained the stationary RICE and after-treatment control device (if any) according to the permittee's maintenance plan. (40 CFR 63.6655(e), 63.6660)
- 6. The permittee shall maintain, at a minimum, the following records by the compliance date:
 - a. A copy of each notification and report that is submitted to comply with 40 CFR Part 63, Subpart ZZZZ and the documentation supporting each notification and report. (40 CFR 63.6655(a)(1))
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(2))
 - Records of all required maintenance performed on the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(4))
 - d. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation. (40 CFR 63.6655(a)(5))

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

VIII. STACK/VENT RESTRICTION(S)

NΑ

IX. OTHER REQUIREMENT(S)

The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous
Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ as they apply to FGRURALSIRICEMACT. The permittee may choose an alternative compliance method not listed in FGRURALSIRICEMACT by complying with all applicable provisions required by Subpart ZZZZ for the
compliance option chosen. (40 CFR 70.6(9), 40 CFR 63.9(j), 40 CFR Part 63, Subparts A and ZZZZ)

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that no non-applicable requirements have been identified for incorporation into the permit shield provision set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii).

APPENDICES

Appendix 1. Abbreviations and Acronyms

The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

AQD	Air Quality Division	MM	Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	Best Available Control Technology	MW	Megawatts
вти	British Thermal Unit	NA	Not Applicable
°C	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
СО	Carbon Monoxide	NSR	New Source Review
сом	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H ₂ S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter	-	
	policators the pressure measured at the gun air con		and 10 pounds per equere inch gours (pais)

^{*}For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

This source is subject to the compliance assurance monitoring (CAM) program under 40 CFR 64.4(a). The CAM plan for this source is addressed in the malfunction abatement plan (MAP) required in Section D, SC III.1.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	200900188	Added oxidation catalyst as control on EUENGINE2, EUENGINE3, and EUEGINE4 (was left out on original ROP)	EUENGINE2, EUENGINE3 and EUENGINE4

The following ROP amendments or modifications were issued after the effective date of ROP No. MI-ROP-N5831-2014.

Permit to Install Number	ROP Revision Application Number/Issuance Date	Description of Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	201500014/ April 21, 2015	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	EUENGINE5

Commented [CK4]: Request to remove from ROP

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in FGCATENGINES, FGWAUKENGINES, and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by an equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

Each engine included in FGCATENGINES and FGWAUKENGINES: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for each engine included in FGCATENGINES and FGWAUKENGINES, including engine(s) from engine change-out(s), and during the hours operated without a catalyst. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

SECTION 2 – LINN Operating, LLC - Hayes 29 CPF

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- 1. The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.

- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))
- A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a
 part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any
 other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹
 (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property. (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))

15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.
 - d. The analytical techniques or methods used.
 - e. The results of the analyses.
 - f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))

- a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
- b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.
- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - e. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:

- a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
- b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
- c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
- d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
- e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))
- 29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
 - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
 d. If the department determines that the ROP must be revised to ensure compliance with the applicable
 - If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

- 36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F
- 37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)

- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ. ² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months, the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI. ² (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

I	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	СО	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Fallinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.2 (R 336.1213(3)(b)(ii))

 The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R 336.1205(3), R 336.213(3))

- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.213(3))
- 3. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINEH29	Remote 1,085 hp Caterpillar G3516TALE (lean burn) reciprocating internal combustion engine (RICE) with oxidation catalyst	8/20/13	NA
EUGLYCOLDEHYDRATOR	Glycol dehydrator which removes water along with trace hydrocarbons from the gas stream. The water and hydrocarbons are controlled by a condenser.	11/01/92	NA
EUMACTZZZZ	Remote existing non-emergency spark ignition (SI) 4-stroke lean burn (4SLB) RICE (EUENGINEH29) Caterpillar 3516TALE (low emission) rated 1,085 hp located at an area source	08/20/13	NA

EUGLYCOLDEHYDRATOR EMISSION UNIT CONDITIONS

DESCRIPTION:

Glycol dehydrator system which removes water along with trace hydrocarbons from the gas stream.

Flexible Group ID: NA

POLLUTION CONTROL EQUIPMENT:

Condenser

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Fallinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

NA

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- If EUGLYCOLDEHYDRATOR meets the exception criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the actual flow rate of natural gas shall be determined using either of the procedures below:
 - a. The permittee shall install and operate a monitoring instrument that directly measures natural gas flow rate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The permittee shall convert annual natural gas flow rate to a daily average by dividing the annual flow rate by the number of days per year the glycol dehydration unit processed natural gas. (40 CFR 63.772(b)(1)(i))

- The permittee shall document, to the AQD District Supervisor's satisfaction, the actual annual average natural gas flow rate to the glycol dehydration unit is less than 85,000 cubic meters per day. (40 CFR 63.772(b)(1)(ii))
- As an alternative, if EUGLYCOLDEHYDRATOR meets the exemption criteria in 40 CFR 63.764(e)(1)(ii) for
 glycol dehydrators with actual average benzene emissions less than 0.90 megagram (0.99 ton) per year, the
 emissions shall be determined either uncontrolled, or with federally enforceable controls in place and using
 either of the procedures below:
 - a. The permittee shall determine actual average benzene emissions using the model GRI-GLYCalc[™], Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalc[™] Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit, and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1). (40 CFR 63.772(b)(2)(i))
 - b. The permittee shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement using the methods in 40 CFR 63.772(a)(1)(i) or (ii), or an alternative method according to 40 CFR 63.7(f). Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated by year. This result shall be converted to megagrams per year. (40 CFR 63.772(b)(2)(ii))
- 3. If EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the permittee shall keep records of the actual annual average natural gas throughput (in terms natural gas flow rate to the glycol dehydration unit per day) as determined in accordance with SC VI.1. The permittee shall keep records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(i))
- 4. As an alternative to SC VI.1, if EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40CFR 63.764(e)(1)(ii) for glycol dehydrators with the actual average benzene emissions less than 0.90 megagram per year, the permittee shall keep records of the actual average benzene emissions (in terms of benzene emissions per year) as determined in accordance with SC VI.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(ii))

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be
 postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year.
 (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
-----------------	--	--	---------------------------------------

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

The permittee shall comply with all provisions of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart HH, as they apply to EUGLYCOLDEHYDRATOR. (40 CFR Part 63, Subpart HH)

<u>Footnotes:</u> ¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

EUENGINEH29 EMISSION UNIT CONDITIONS

DESCRIPTION:

One remote 1,085 hp Caterpillar G3516TALE (lean burn) RICE

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)
2.	со	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate EUENGINEH29 unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.

Page 49 of 60

e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

 The permittee shall verify NOx and CO emissions from EUENGINEH29, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in EUENGINEH29 on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINEH29, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINEH29, on a daily basis. (R 336.1213(3)(a)(iii))
- 4. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device, monthly and 12-month rolling time period records of the hours of EUENGINEH29 is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))

- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 6. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVENGINEH29	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes:
¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

EUMACTZZZZ EUMACTZZZZ CONDITIONS

DESCRIPTION:

An existing remote, non-emergency spark ignition (SI) four stroke lean burn (4SLB), natural gas-fired reciprocating internal combustion compressor engine (RICE) with a site-rating of 1,085 horsepower at an area source

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. (40 CFR 63.6625 (e), 40 CFR 63.6605 (a)(b))
- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in 40 CFR Part 63, Supbart ZZZZ Table 2d apply. (40 CFR 63.6625 (h))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NΑ

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

- Except for monitor malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall monitor continuously at all times that the stationary RICE is operating. (40 CFR 63.6635 (a)(b))
- The Permittee shall not use data recorded during monitoring malfunctions, associated repairs, and required
 quality assurance or control activities in data averages and calculations used to report emission or operating
 levels; however shall use all the valid data collected during all other periods. (40 CFR 63.663(c))
- The Permittee shall keep maintain the following records, which shall be made available to the Administrator upon request: (40 CFR 63.6655(a)(b)(d)(e))
 - a. A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that was submitted, according to the requirement in 40 CFR 63.10(b)(2)(xiv).
 - Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 - c. Records of applicable performance tests and performance evaluations as required in §63.10(b)(2)(viii).
 - d. Records of all required maintenance performed on the air pollution control and monitoring equipment.
 - e. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- 4. The permittee shall keep the records required in 40 CFR Part 63, Subpart ZZZZ Table 6 of this subpart to show continuous compliance with each applicable emission or operating limitation that applies.
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to the Malfunction Abatement Plan for EUENGINEH29 subject to management practices as shown in 40 CFR Part 63, Subpart ZZZZ, Table 2d to this subpart.

VII. REPORTING

 The Permittee shall report each instance in which the requirements in 40 CFR Part 63, Subpart ZZZZ Table 8 were not met. (40 CFR 63.6640(e))

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVMACTZZZZ	16 ¹	40¹	R 336.1225

IX. OTHER REQUIREMENT(S)

- 1. The permittee shall evaluate the status of their stationary RICE every 12 months. (40 CFR 63.6603(a))
- The permittee shall keep records of the initial and annual evaluation of the status of the engine. If the
 evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in
 40 CFR 63.6675, Subpart ZZZZ, the owner or operator must comply with all of the requirements that are not
 remote stationary RICE within 1 year of the evaluation. (40 CFR 63.6603(f))

- 3. The permittee shall within 1 year of the evaluation comply with 40 CFR 63.6640 if the remote stationary RICE is reconstructed or rebuilt. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a). (40 CFR 63.6640(d))
- The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ, for Stationary Reciprocating Internal Combustion Engines. (40 CFR Part 63, Subparts A and ZZZZ)

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that the requirements identified in the table below are not applicable to the specified emission unit(s) and/or flexible group(s). This determination is incorporated into the permit shield provisions set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii). If the permittee makes a change that affects the basis of the non-applicability determination, the permit shield established as a result of that non-applicability decision is no longer valid for that emission unit or flexible group.

Emission Unit/Flexible Group ID	Non-Applicable Requirement	Justification
EUENGINEH29	40 CFR Part 60, Subpart JJJJ	The Caterpillar 3516TALE RICE was manufactured prior to January 1, 2008, but installed at its current location on August 20, 2013, therefore 40 CFR Part 60, Subpart JJJJ is not applicable.

APPENDICES

Appendix 1. Abbreviations and Acronyms

The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

acfm Actual cubic feet per minute BACT Best Available Control Technology MW Megawatts BTU British Thermal Unit C Degrees Celsius NAAQS National Ambient Air Quality Standards CAA Federal Clean Air Act NESHAP National Emission Standard for Hazardous Air Pollutants CAM Compliance Assurance Monitoring NMOC Non-methane Organic Compounds CEM Continuous Emission Monitoring NOX Oxides of Nitrogen CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter EPA United States Environmental Protection Agency EU Emission Unit MW Megawatts MW Megawatts MW Megawatts MW Megawatts MW Megawatts MW Megawatts MSA Not Applicable NAEQ National Ambient Air Quality Standard or Hazardous Air Pollutants NAEQ National Emission Standard or Hazardous Air Pollutants NSPS New Source Performance Standards NSPS New Source Review PM Particulate Matter PM-10 Particulate Matter less than 10 microns in diameter Pound per hour PATIS per million PATIS per million by volume PH Parts per million by weight
BTU British Thermal Unit NA Not Applicable C Degrees Celsius NAAQS National Ambient Air Quality Standards CAA Federal Clean Air Act NESHAP National Emission Standard for Hazardous Air Pollutants CAM Compliance Assurance Monitoring NMOC Non-methane Organic Compounds CEM Continuous Emission Monitoring NOx Oxides of Nitrogen CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
°C Degrees Celsius NAAQS National Ambient Air Quality Standards CAA Federal Clean Air Act NESHAP National Emission Standard for Hazardous Air Pollutants CAM Compliance Assurance Monitoring NMOC Non-methane Organic Compounds CEM Continuous Emission Monitoring NOX Oxides of Nitrogen CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
CAA Federal Clean Air Act CAM Compliance Assurance Monitoring CEM Continuous Emission Monitoring CFR Code of Federal Regulations CO Carbon Monoxide COM Continuous Opacity Monitoring More Monitoring More Monitoring NOX Oxides of Nitrogen Nore New Source Performance Standards Nore New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality More Monoxide Dry standard cubic foot ph Pound per hour dscm Dry standard cubic meter EPA United States Environmental Protection Agency PM-10 Particulate Matter less than 10 microns in diameter ppm Parts per million Parts per million by volume
CAM Compliance Assurance Monitoring NMOC Non-methane Organic Compounds CEM Continuous Emission Monitoring NOx Oxides of Nitrogen CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
CEM Continuous Emission Monitoring NOx Oxides of Nitrogen CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
CFR Code of Federal Regulations NSPS New Source Performance Standards CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
CO Carbon Monoxide NSR New Source Review COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
COM Continuous Opacity Monitoring PM Particulate Matter department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
department Michigan Department of Environmental Quality PM-10 Particulate Matter less than 10 microns in diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
diameter dscf Dry standard cubic foot pph Pound per hour dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
dscm Dry standard cubic meter ppm Parts per million EPA United States Environmental Protection Agency ppmv Parts per million by volume
EPA United States Environmental Protection Agency ppmv Parts per million by volume
FII
11 3 3 3
°F Degrees Fahrenheit PS Performance Specification
FG Flexible Group PSD Prevention of Significant Deterioration
GACS Gallon of Applied Coating Solids psia Pounds per square inch absolute
GC General Condition psig Pounds per square inch gauge
gr Grains PeTE Permanent Total Enclosure
HAP Hazardous Air Pollutant PTI Permit to Install
Hg Mercury RACT Reasonable Available Control Technology
hr Hour ROP Renewable Operating Permit
HP Horsepower SC Special Condition
H₂S Hydrogen Sulfide scf Standard cubic feet
HVLP High Volume Low Pressure * sec Seconds
ID Identification (Number) SCR Selective Catalytic Reduction
IRSL Initial Risk Screening Level SO ₂ Sulfur Dioxide
ITSL Initial Threshold Screening Level SRN State Registration Number
LAER Lowest Achievable Emission Rate TAC Toxic Air Contaminant
lb Pound Temp Temperature
m Meter THC Total Hydrocarbons
MACT Maximum Achievable Control Technology tpy Tons per year
MAERS Michigan Air Emissions Reporting System μg Microgram
MAP Malfunction Abatement Plan VE Visible Emissions
MDEQ Michigan Department of Environmental Quality VOC Volatile Organic Compounds
mg Milligram yr Year
mm Millimeter

^{*}For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

Specific monitoring requirement procedures, methods or specifications are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	NA	NA	NA

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in EUENGINEH29 and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

EUENGINEH29: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for EUENGINEH29, including an engine from an engine change-out. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

ROP No: MI-ROP-N5831-2014b Expiration Date: August 4, 2019 PTI No: MI-PTI-N5831-2014b

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

RENEWABLE OPERATING PERMIT APPLICATION Al-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

	SRN: 5831	Section Number (if applicab	le): 1
Additional Information ID AI-CAM			
Additional Information			
2. Is This Information Confidential?		☐ Yes ⊠ N	lo
Attached is a Complaince Assurance Monitoring Appli	cability summary for	EUENGINE6.	
			(
ts.			
		9	,
		•	
			en en
		Page	of

DEQ Environmental Assistance Center Phone: 800-662-9278

Compliance Assurance Monitoring (CAM) Plan Breitburn Operating Company, L.P. Wilderness/Hayes 29 Facility **EUENGINE6**

I. BACKGROUND

Emission Units

Description:

Waukesha L 7042 GSI compressor engine, rated at 1,478 hp, and equipped with a

3-way catalyst to control emissions of nitrogen oxides (NO_x), carbon monoxide

(CO), and volatile organic compounds (VOCs).

Identification: EUENGINE6

Facility:

Breitburn Operating Company, L.P. (Breitburn) – Wilderness/Hayes 29 Facility

Section 29, T29N, R4W

Hayes Township, Otsego County, Michigan

Applicable Regulation, Emission Limit, Monitoring Requirements

MI-ROP-N5831-014b FGWAUKENGINES FLEXIBLE GROUP CONIDITONS. I, lists the applicable regulations as R336.1205(3), R336.1225, R336.1702(a), and R336.1910.

Emission Limits:

EUENGINE6

NO_x: 24.6 tons/year CO: 41.1 tons/year

Control Technology

A 3-way catalyst is used to control NO_x, CO, and VOC emissions from the Waukesha compressor engine. The pre-control device potential emissions of NO_x and CO are greater than 100 tons per year for the Waukesha engine, which makes this unit subject to the CAM requirements. However, the pre-control device potential VOC emissions from the unit are less than 100 tpy.

MONITORING APPROACH H.

Pressure drop across the 3-way catalyst, and inlet and outlet temperatures are all monitored. These parameters represent the most important parameters for proper operation of the catalytic converter. The compliance assurance monitoring approach is summarized in Table 1.

Table 1

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Excursion Indicator	Remedial Action
Catalyst	2" WC Change in ΔP @ normal operating conditions	Gauge or manometer	Monthly	Varies by engine. Recorded in database	2.5 times the ΔP @ normal operating conditions	Check sample lines, check rpm verses ΔP and compare to previous months readings, remove catalyst and replace gaskets as necessary; if still 1.5 times the normal range then catalyst would be removed and washed. Also see Table 2 of the approved PM/MAP
Catalyst	Inlet and Outlet temperatures	Thermocouple	Daily	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature.	Differential temperature greater than 150°F above normal (not to exceed 1350°F)	Check loading on engine, check for faulty gauge or temperature probe, and check for proper operation of the ignition system Automatic engine shutdown Also see Table 2 of the approved PM/MAP

Appendix A, attached to this CAM Plan, describes the inlet and outlet catalyst temperature data that will be recorded on a daily basis.

No in-situ continuous emission monitoring systems are employed to measure actual emissions from this engine.

Quality assurance and quality control will include following the approved preventative maintenance/malfunction abatement plan (PM/MAP) developed for the engine and catalytic converter. The PM/MAP for this facility requires periodic replacement of various components within specified times. Manufacturer recommendations will be followed to ensure proper operation of the engine and control device.

III. JUSTIFICATION

The Monitoring Approach described above was determined during extensive communication between the MDEQ-AQD, the control equipment vendor, and the oil and gas industry regarding proper compliance assurance monitoring of the catalytic converter. It was determined that the pressure drop across the catalyst bed, and the inlet and outlet temperatures are critical parameters necessary to measure catalytic converter performance. The parameter ranges listed in Table 1 are used to determine that the catalytic converter is being operated and maintained to achieve the targeted control efficiencies for NO_x and CO, and therefore provide the compliance assurance required. A high pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 degrees F to 1350 degrees F. The PM/MAP requires certain actions to be taken in the event that there would be a monitored parameter outside of the values indicated in the above table.

Regarding the oxygen sensor for the AFRC, Breitburn has determined that the oxygen sensor is difficult to predict for any range that would define an excursion point. The same sensor can vary considerably depending on the engine's RPM, loading, and other factors, and for this reason it is not practical, nor value added, to identify any range that would identify excursion point(s). The PM/MAP for the facility's engines successfully addresses the requirements for proper operation of the AFRC, and associated oxygen sensor, for this engine. For this reason, it is not practical to identify an excursion level for the AFRC's oxygen sensor. Even if the oxygen sensor experiences difficulties, monitoring the catalytic converter using the pressure differential and temperatures as indicators are more important as monitoring parameters.

Therefore, Breitburn has determined that sufficient monitoring is being performed to satisfy the requirement pursuant to the CAM regulations and requirements, 40 CFR Part 64.

Appendix A

Breitburn Operating Company, L.P. Exhaust Emissions Field Report

Fuel Analysis - BTU/cu-ft 0

ENGINE EMISSIONS ANALYSIS

Customer:	BreitBurn	Engine CID:	0
Location:	0	Engine RPM:	0
Unit:	0	BMEP Calc:	#DIV/0!
Serial Number:	0	Amb Temp F:	0
Engine Model:	0	Date of Test:	01/00/00
		Engine Timing:	0

DATA OBSERVED ENGINE CONVERTER NOx Observed - PPM 0 NOx Observed - PPM CO Observed - PPM 0 CO Observed - PPM 0 O2 Observed - % 0.0 Engine Horsepower 0 Fuel Used - cu-ft/hr 0

	CALCULATED RES	SULTS	
	g/BHP-Hr	lbs/hr	TP\
ENGINE NOx	#DIV/0!	0.00	0.00
ENGINE CO	#DIV/0!	0.00	0.00
CONVERTER NOx	#DIV/0!	0.00	0.00
CONVERTER CO	#DIV/0!	0.00	0.00

NOx CONVERSION	CO CONVERSION	RATIO:	NO	/	NO2	
#DIV/0!	#DIV/0!	#DIV	//0!	1	#DIV/0!	

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

		Ib	/hr g/BHP-Hr
PRE	NOx Lbs/Hr =	0.00	* #DIV/0!
PRE	CO Lbs/Hr =	0.00	#DIV/0!
POST	NOx Lbs/Hr =	0.00	" #DIV/0!
POST	CO Lbs/Hr =	0.00	* #DIV/0!
	BMEP =	#DIV/0!	

DATA INPUT AREA		
Customer:	BreitBurn	
Location:		
Unit:		
Engine Serial Number:	12 5 20 5	
Engine Model:		
Engine CID:		
Engine RPM:		
Ambient Temp - deg F:		
Test Date - m/d/yr		
Engine NO Observed - PPM:		
Engine NO2 Observed - PPM:		
Engine CO Observed - PPM:		
Exhaust O2 Observed - %:	100000000000000000000000000000000000000	
Engine Horsepower:	31.7	
Fuel Flow - cu-ft/hr	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fuel Analysis - BTU/cu-ft		
Converter NO Observed - PPM:		
Converter NO2 Observed - PPM:		
Converter CO Observed - PPM:		
Engine Timing:		

Permit Limits	
NOX; 90%	CO; 80%
Catalyst temps	i;
ln;	
Out;	
Diff; 0	
Catalyst pressur	re;
ln;	
Out;	
Diff; 0	
Exhaust Flow	
02 Target	
Catalyst Model	

Catalyst Model:

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

		SRN: 58	331	Section Nu	ımber (if applicabl	e): 1
Additional Information ID AI-MAP						
Additional Information	T-					19
2. Is This Information Confidential?				☐ Yes ⊠ N	0	
Revised PM MAP to reflect the omission of EUI	ENGINE5					
						1
					ÿ	
		*				
	14	~			Page	of

DEQ Environmental Assistance Center Phone: 800-662-9278

Preventative Maintenance and Malfunction Abatement Plan

BreitBurn Operating, LP

Facility: Wilderness CO2pf SRN: N5831

Revised to remove EUENGINE5 from ROP 6/27/18 Revised July 31, 2013

Submission date: August 20, 2012 Revised to reflect company names change Effective Date 11/1/2007

PM/MAP Content Checklist		Whe	ere included
Reference Appendices C,D, and E.		Page	Section or Table
1	Contact Person		Cover Letter
	ENGINES		
2	Engine Identification: Include the engine make/model and type of engine (i.e. rich or lean burn). Identify engines with add on control and AFRC. If add on control is present, identify type of control.		Appendix A & Appendix C
3	Engine Operating Variables To Be Monitored. Include a copy of the normal engine maintenance log.	4	Table 1 & Appendix B
4	Corrective procedures or operational changes that will be taken in the event of a malfunction.	2, 6	Table 2, Appendix D & Appendix E
5	Major parts replacement inventory for engines.	2	
	Add On Controls		
6	Catalytic Converter & Oxidation Catalyst operating variables to be monitored. Include the method and frequency of monitoring these variables; provide the normal operating range of these variables.	4-5	Table 1
7	Corrective actions to be taken in event of malfunction of the catalytic converter.	6	Table 2
8	AFRC O ₂ Sensor replacement schedule or operating variables to be monitored	5	Table 1
9	Corrective actions to be taken in event of malfunction of the AFRC	6	Table 2
10	Emission testing utilizing portable analyzer	5	Table 1
11	Scheduled maintenance of control equipment	4-5	Table 1
12	Major parts replacement inventory for add on control.	2	
13	Identify supervisory personnel responsible for overseeing inspection, maintenance and repair of add on controls.	6	Table 2
14	Recordkeeping and retention of records.	2-3	
15	Updates of PM/MAP as necessary.	3	

TABLE OF CONTENTS

		Page No.
1.0	INTRODUCTION	1
2.0	ENGINES AND CATALYTIC CONTROL UNITS	1
3.0	RECORDKEEPING	2
4.0	UPDATES	3

APPENDICES

Appendix A – List of Facility S	pecific Equipment	Covered by	this PM/MAP
---------------------------------	-------------------	------------	-------------

Appendix B – Engine Field Report Form

Appendix C – Compressor Specification Sheet

Appendix D – Maintenance Record (Revised 11/2008) Appendix E – Portable Analyzer Record

1.0 INTRODUCTION

BreitBurn Operating, LP (BreitBurn) operates numerous natural gas central processing facilities (CPFs) in Michigan. The CPFs receive gas from natural gas wells and dehydrate (if necessary) and compress the gas prior to pipeline transport. All of these CPFs have natural gas fired internal combustion engines. BreitBurn uses both rich burn and lean burn engines. Some of the rich burn engines are equipped with 3-way catalytic control systems. Generally there is no add-on control for BreitBurn lean burn engines. However, a few of BreitBurn's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of BreitBurn's facilities. The cover page and the specific engine, catalyst and AFRC information shown in Appendix A will be unique to each facility.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Three-way catalytic converters, used on rich-burn engines, provide an overall control efficiency of 90 percent for NO_x, 80 percent for CO and 50 percent for VOCs. Some of BreitBurn's rich burn engines operate with an air to fuel ratio controller (AFRC), others do not. Oxidation catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPs) and TACs emissions. Appendix A identifies the BreitBurn-operated engine(s) that are equipped with add-on control devices. This information is stored and updated on a BreitBurn database or spreadsheet. Appendix B also lists the operating variables of the engines.

2.2 Operation of Catalytic Converters

For both 3-way and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed, where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

The preventative maintenance of the engines is primarily done to keep the engine operating properly and to extend its useful life. Any major malfunction of the engine will lead to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions, and will initiate an engine shutdown if necessary. In the event of a shutdown, a third party mechanic is called out to repair the engine and a record of the event is made.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperature. If the oxygen content is too high for a 3-way catalytic converter, the NO_x reduction reaction will not yield the desired 90 percent decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level drops too low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation. A high pressure drop may be an indication of plugging of the catalyst, and a very

low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 deg. F to 1350 deg. F.

2.4 Catalyst Inspections and Maintenance

In order to reduce the chance of fouling problems with either 3-way and oxidation catalysts, if an engine is new or major maintenance is performed, the engine may run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter a maximum of 200 hours per year. Records will be maintained of the engine hours of operation without the catalyst insert installed. All catalysts will be equipped with pre- and post-catalyst temperature sensors. All engines equipped with catalysts will automatically shut down in the event that the sensors indicate that the post-catalyst temperature exceeds 1350 degrees F. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a mechanic will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance. The preventative maintenance schedule for BreitBurn engines and catalysts is included as Table 1. A log of all inspections and maintenance work will be maintained in a BreitBurn database or spreadsheet. A schedule is maintained for each engine and its add-on control devices.

2.5 Spare Parts

Spare washed catalyst elements and engine parts will be maintained in a third party warehouse for use when a catalyst has been removed for maintenance. Each spare insert will be washed in accordance with the Table 2 schedule. Catalyst insert kits, oxygen sensors for air fuel ratio controllers, and extra temperature probes, stepper motor as well as a harness will be supplied by a third party.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are maintained and updated on BreitBurn's data server in a database or in spreadsheet form.

BreitBurn will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the MDEQ.

4.0 UPDATES

If BreitBurn experiences a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the AQD District Supervisor for review and approval.

	e 1 – BreitBurn Engine and Catalysts Preven	Equipment	
Item	Activity	Status	Frequency
Engine	Mini Service	Off line	Every 60-90 days
	✓ Check and adjust valves	-	
	✓ Check engine compression		
	✓ Check timing		5
	✓ Check fuel pressure		
	✓ Check air filter		
	✓ Change pre air filter		-
	✓Check all kill devices		
	✓Inspect hoses and belts		
	✓ Inspect spark plugs	0.001:	
Engine	Major Service	Off line	Approximately ever
	✓ Perform mini service as listed above, and		2,160 hours of
	✓ Change motor oil and filter, as necessary, by		engine operation, or
	sampling oil every 30 days, and submitting for		if oil analysis
	an oil analysis	0.001;	indicates need.
Engine	Swing/overhaul	Off line	Approximately ever 75,000 hours of
	✓ Replace existing engine with new/refurbished		engine operation, or
	engine.		as needed.
	W/I workshift and in a installed on major		as needed.
	When new/rebuilt engine is installed or major		
	maintenance is performed, the unit will be run	,	0
	without the catalyst, if applicable, for up to 100 hours per event. This prevents the catalyst from		
	becoming damaged due to lubricants left in the		
	engine and gives the valves and piston rings		
	time to seat and seal.		
Catalyst	Check differential pressure across catalyst.	On line	Monthly
Catalysi	Check differential pressure across eathlyst.		
	Establish baseline ΔP each time a new or		
	cleaned CC insert is installed at normal		
	operating conditions (rpm's). Check monthly. If		
	greater than baseline ΔP by 2" WC @80-		
	100percent max rpm, then inspect catalyst and		
	take actions based on findings.		
Catalyst	Check inlet and outlet temperatures across	On line	Daily
	catalyst.		
	If the pre-catalyst temperature is less than		
	750°F, or other minimum temperature		
	established through testing, a mechanic will be		
	called out to investigate.		
	If the post-catalyst temperature exceeds		*
	1350°F, the engine will be shut down.		
	F If the ΔT across CC is negative, mechanic	2	
	will evaluate cause and determine a resolution,		
	based on history and degree of change. May		I .

Item	Activity	Equipment Status	Frequency
	establish engine specific ΔT through testing. Must document conclusions, and actions.	8	
Catalyst	The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming or blowing clean the catalyst face and clearing fouling and built-up ash. If the catalyst does not respond to the annual vacuum or blowing treatment, the catalyst will be removed, shipped to the manufacturer, and washed. A "washed swing" catalyst insert shall be used until a new or refurbished catalyst is installed.	Off line	Every 12 -18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown.
	The used catalyst will not be returned to service unless it can be rejuvenated.		4
	Replace the gaskets (typically at the same time the catalyst is washed or serviced).	2	
Catalyst	Remove catalyst insert and wash in chemical solution to remove surface contamination. **Replace with clean or fresh "swing" insert	Off line	Every 18-24 months of operation.
Catalyst	during cleaning process. Replace catalyst insert.	Off line	If not functioning properly after vendor cleaning, or in lieu or vendor cleaning.
AFRC	Replace oxygen sensor.	On or off line	After 90-110 days of operation or if AFRC unit or lifetime senso indicates need.
Emission Reduction Testing	For CO and NO _x . BreitBurn will do one of the following: a) inlet and outlet testing and estimate destruction efficiency; b) outlet testing and check for gm/hp-hr compared to levels used for permitting; or c) outlet testing and use the uncontrolled vendor data to establish a destruction efficiency.	On line	Whenever new or refurbished catalyst inserted. Typically every 12-18 months when insert is serviced. Also as needed to identify alternate operating conditions.
Portable Emission Analyzer	Maintenance and calibration.	On or off line	As required by mfg' manuals.

Table 2 - BreitBurn Operating Variables and Remedial Actions

Thermocouple	Catalyst	Catalyst	AFRC Oxygen Sensor	Device Description
Temperature	Inlet and Outlet temperatures	2.5" WC Change in ΔP @ normal operating conditions	Oxygen content of exhaust gases	Operating Variable
Temperature readouts. Check with independent thermocouple.	Thermocouple	Gauge or manometer	Gauge or digital reading	Monitoring Method
As needed	Daily	Monthly	Monthly	Frequency
0 to 1400 °F	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature	Established with installation of new or cleaned CC insert that a 2.5" WC Change in ΔP @ normal operating conditions. Varies by engine. Recorded in database	0-1 percent O ₂	Normal Operating Range
Inspect thermocouple. Clean, recheck, or replace if not functioning.	Engine will automatically shut down at 1350 degrees F. For 3-way catalysts: If outlet temperature is less than inlet temperature, a mechanic will investigate and make appropriate repairs.	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary.	Re-synchronize the engine and the AFRC. If O ₂ level does not come into line, replace oxygen sensor within 5 days and readjust engine.	Corrective Procedure or Operational Change in the Event of a Malfunction
Third Party Mechanic	^t Third Party Mechanic	Third Party Mechanic	Third Party Mechanic	Responsible Supervisor

Wilderness CO2 Equipment Information Appendix A

Facility	PTI	SRN	AQD ID	BB Unit Number	BB Unit Type of Number Control	AFRC (yes/no)	Baseline DP	Engine	Engine Model	Rich or Lean Burn
WILDERNESS CO2	86-05A	86-05A N5831	EUENGINE6 CO2 - 1 CC	CO2 - 1	22	YES	2.3	Waukesha	Waukesha L-7042 GSI	RB
WILDERNESS CO2	- 86-05A	N5831	EUENGINE1	831 NA	NA	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE2	356 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE3	885 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE4	907 OC	00	YES	NA	Caterpillar	3516	LB

EUENGINE6 BASELINE DP CHANGE (HISTORICAL)

3/3/2014

SHUT IN 11/10/14 **EUENGINES**

8/8/2014

2/6/2015 VACCUMIMED & INSPECTED

2.5 2/9/2015 7/27/2015 3/29/2016 Tested & DP is the same (3.0), no revision sent

10/30/2017

6/27/2018 Remove EUENGINE5 from MAP

Appendix B

Location:

BreitBurn Operating L.P.Preventative Maintenance and Malfunction Abatement Plan
Field Report

	ı
	ı
m	
m	
ŭ	
ŭ	
eg C	
S Year	
o year	
n & Yea	
ın & Yea	
ntn & Yea	
ntn & Yea	
onto & yea	
ontn & Yea	
lontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	

			Exhaust Temp																				
			Mech Initial													,							
			Level																				
			Temp																				
			Press																				
			Disch Temp																				
		-	#3 int Temp																				
Ì		-	#2 int Temp																				
	S.N.:	- 1-	#1 int Temp																				
	Comp. Model & S.N.:	-	Disch Press							der ween						,					Ì		
nent:	Comp.		#3 int Press							-													
Equipment:		ssor	t s			-																	
u T		Compressor	#1 int Press																				
		- 1	Suct																				
			Water		3																		
			Water																				
Location:		1	Level																				
_			Temp																				
	S.N.:	Engine:	Oil																				
	lodel & S	Ш	RPM																				
Unit #:	Engine Model & S.N.:	_	Date:	~	2	က	4	Ŋ	9	7	00	တ	10	-	12	13	14	5	16	17	18	19	20

Field Report Continued on Other Side

Appendix B

BreitBurn Operating Company, LP/Terra Energy, Ltd. Preventative Maintenance and Malfunction Abatement Plan

						·	V				
Exhaust Temp											
Mech											
Oil Level		7									
Oil	,										
Oil Press											
Disch Temp								/			
#3 int Temp											
#2 int Temp											
#1 int Temp											
Disch Press											
#3 int Press											
#2 int Press											
#1 int Press											
Suct											
Water						4					
Water Temp											
Oil Level											
Oil Temp											
Oil											
RPM											
Date:	21	22	23	24	25	26	27	28	29	30	31

	-	
Ξ		
-	•	
٧,	,	
_		
11	n	
U	0	
g	2	
O.L	2	
O.I	5	
SIL	5	
SILIC	2	
STILL	2 20	
STILL ST	200	
A LICE	200	
HOLLING	2000	

Appendix C

BreitBurn Operating Company, L.P.

Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

Facility// Init #					Packager:			Year Built:		
Facility/Unit #:					ackayer.			Teal Dull.		
			100452		Engine					123674721
Manufacturer:				Model:				Serial Number	er:	
Horsepower:				RPM:				Spec/Arrange	ement:	
Ignition/Make?				Starter/Make	?:	11525		Governor/Ma	ike?:	
Low Emission	(LE)?			AFRC/Make-	Model?			Catalytic Cor	verter-Make/N	lodel?
Stack Height:				Exhaust Dian	neter:					
		10 Hg 12			Compressor					
Manufacturer:				Model:				Serial Number	er:	
Throws:				Stages:				Stroke:	8	
RPM:				Horsepower:				Rod Load Ra	ating:	
					Cylinders					
Stage/Cyl#	Во	ore	Class	MAWP		Number	VVP/P	Plug/Plain	VVI	P S/N
										ti
£										
									0	
					Cooler					
Manufacturer:				Model:	000,01			Serial Number	er:	
Sec	tion	MA	WP	Number	of Tubes	Numbe	er of Rows	Lou	vers?	Year
EJ	W									
TA	\W									
IC			0							
IC										
IC										
	C									

Appendix C

BreitBurn Operating Company, L.P.

Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

	Pressur	e Vessels-Scrubber, Pulsa	ntiion & Fuel Bottles		
		National Board			Year
Stage / Type *	MAWP	Number	Serial Number	Diameter/Length	Built
,					
16					
1		A			
		*			
	OD Custing Bulgation	DP=Discharg	a Bulgation	FB=Fuel Bottle	
*S=Scrubber	SP=Suction Pulsation	Panel Board	e ruisation	B-1 del Bottle	N. A. Salan
Manufacturer:	Model:		Serial Numb	er/Part Number:	
Tachometer:	Annuciator:		Division II?		
		Comments			
	2				
e 15					
Printed Name:	Signature:		Date:		

			North Ame	rica Operations	Services		-	Ticket Number
Archrock.			Genera	al Service	Ticket			
Employee Name:				,	W.O. Number:			WE RELEASE
Employee ID:					W.O. Type:			March 1
Unit Number:					Business Unit:			PART AL
Date:					Asset Group:			
Customer Name:			96 15 15			Engine		Compressor
Lease Name:	(A1)	NIa			Make			
vice Billable to Customer? (Y	/N)	No			Model Serial Number			
			E		Hour Meter	bio Pres		
e Clock				71				
Activity Start Time		Note: Select Asset Group	Customer Downt	ime Code				Hrs Down
Activity Finish Time	12:00 AM	first, then				The state		
ect Time		Exterran or Customer	Exterran Downtin	ne Code				Hrs Down
Work (hours)	-	Downtime Code and Event	A REY BEY	GWI.		Janah H		
Travel (hours)		Activity No.	Event - Code Des	scription		,		Worked Hrs or
		967				USITETA	14.97 (1.6	Blowdown Even
Standby (hours)		1						
Total Miles Traveled		2						
Weather Condition	Marie Park	3				That Hell		
Total Direct Hours	0.00	4	The Williams					
Others Operation	ns Activities	Activity No.	Description					Worked Hr
(MOB, I	DEMOB, etc)	1		M. Dines				
		2						
irect Time								AB
Description/Code	Hours	Explanation of	f Work Performed	i				Spell
		(Enter your c	omments here.)		Media 1235	Spirit	The large	
	1 1 2 - 6 7 7							
Total Indirect Hours	0.00							
	0.00							
al Hours								
	0.00							
al Hours								
al Hours	Hours							
al Hours Description Total Meal Hours	Hours 0.00		Warehouse	Otv	Part Number	Desc	ription	Warehous
al Hours Description Total Meal Hours Qty Part Number	Hours		Warehouse	Qty	Part Number	Desc	ription	Warehous
Description Total Meal Hours Qty Part Number	Hours 0.00		Warehouse	0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0	Hours 0.00		Warehouse	0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0	Hours 0.00		Warehouse	0 0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0 0	Hours 0.00		Warehouse	0 0 0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0	Hours 0.00		Warehouse	0 0	Part Number	Desc	ription	Warehouse
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0	0.00 Descrip	otion		0 0 0 0		Desc	ription Per Night =	Warehous \$
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0 0 Days at	Hours 0.00		\$ - Customer acknowl	0 0 0 0 0 0	Nights at	\$ -	Per Night =	\$ h labor charges
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0	0.00 Descrip	Per Diem =	\$ - Customer acknowl Exterran's Publishe	0 0 0 0 0 0 0 0 edges and agreed Rate Sheet un	Nights at	\$ -	Per Night =	\$ h labor charges
Total Meal Hours Oty Part Number O O O Days at Is Job Complete? (Y/N)	0.00 Descrip	Per Diem =	\$ - Customer acknowl Exterran's Publishe	0 0 0 0 0 0	Nights at	\$ -	Per Night =	\$ h labor charges

BREITBURN OPERATING LP APPENDIX E EMISSIONS TESTING EXAMPLE

ENGINE EMISSIONS ANALYSIS

Customer:	BreitBurn	Engine CID:	0	
Location:	0	Engine RPM:	0	
Unit:	0	BMEP Calc:	#DIV/0!	
Serial Number:	0	Amb Temp F:	0	
Engine Model:	0	Date of Test:	01/00/00	
		Engine Timing:	0	

		DATA	OBSERVED		
ENGINE			CONVERTER	₹	
NOx Observed - PPM	0		NOx Observed - PPM	0	
CO Observed - PPM	0		CO Observed - PPM	0	
O2 Observed - %	0.0				
Engine Horsepower	0				
Fuel Used - cu-ft/hr	0				
Fuel Analysis - BTU/cu-ft	0				1

	CALCULATED R	ESULTS	
	g/BHP-Hr	lbs/hr	TPY
ENGINE NOX	#DIV/0!	0.00	0.00
ENGINE CO	#DIV/0!	0.00	0.00
CONVERTER NOX	#DIV/0!	0.00	0.00
CONVERTER CO	#DIV/0!	0.00	0.00

NOx CONVERSION	CO CONVERSION	RATIO:	NO	/	NO2
#DIV/0!	#DIV/0!	#DI\	V/0!	/	#DIV/0!

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

SU
ficatio
Specif
ed RICE
Fired
Gas
Vatura

Engine Parameter	Parameter		Parameter Value			
	Units	EUENGINEI	EUENGINE2	EUENGINE3	EUENGINE4	EUENGINE6
Breitburn ID		831	856	885	406	C02-1
Engine Make		Caterpillar	Caterpillar	Caterpillar	Caterpillar	Waukesha
Engine Model		3516 TALE	3516 TALE	3516 TALE	3516 TALE	L 7042 GSI
Engine Serial No.		3RC00254	4EK01389	4EK01593	4EK00222	362289
Type of Fuel		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Rated Engine Power at 100% Load	dhd	1,085	1,085	1,085	1,150	1,478
Design Heat Input Rating, LHV	MM Btu/hour	8.08	8.08	8.08	8.53	11.56
Design Heat Input Rating, HHV	MM Btu/hour	8.89	8.89	8.89	9.39	12.72
Fuel Heating Value, LHV	Btu/scf	927	927	927	927	927
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	8,717	8,717	8,717	9,202	12,471
Control Technologies	NA	Lean Burn	Lean Burn	Lean Burn	Lean Burn	3-way Catalyst
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfm, wet	5,956	5,956	5,956	6,200	6,567
Exhuast Gas Flowrate	scfm, 68F	2,415	2,415	2,415	2,524	2,188
Exhaust Gas Temperature	F	842	842	842	837	1,125
Stack Inner Diameter	inches	12	12	12	12	12
Stack Area	ft2	0.79	0.79	0.79	0.79	0.79
Stack Discharge Velocity	feet/second	126.39	126.39	126.39	131.57	139.35
Stack Height Above Ground Level	feet	16	16	16	16	2.4

Natural Gas Fired Heaters Specifications

Boiler/Process	Parameter	Parameter Value	lue			
Heater Specifications	Units	EULINEHEATERS	EUSTAGEIHEATERS	EUHEATERP1-S2	EUHEATERP2-S2	EUHEATERUOP
Type of Fuel	NA	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Number of Units	NA	2	3	2	0	2
Design Heat Input Rating, HHV	MM Btu/hr	1.50	1.00	0.50	0.50	0.50
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	1,471	086	490	490	490
Control Technologies	NA	None	None	None	None	None
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfin	771	392	196	961	961
Exhuast Gas Flowrate	scfm, 68°F	323	215	108	108	108
Exhaust Gas Temperature	°F	800	500	500	200	500
Stack Inner Diameter	inches	16	12	00	12	8
Stack Area	$\hat{\mathbf{H}}^2$	1.40	0.79	0.35	0.79	0.35
Stack Discharge Velocity	feet/second	9.21	8.31	9.35	4.16	9.35
Stack Height Above Ground Level	feet	24	24	24	24	24

The sofm flow rates for the boilers/process heaters assume 750 lbs air/MM Btu heat input at zero percent excess air, 20% excess air at actual conditions, and that the fuel flow rate is directly additive to the combustion by-products.

Wilderness CO₂ Plant - Criteria Emissions

Table B-1a. Caterpillar 3516 TALE (1,085 HP) Emission Factors and Short Term Emission Rates

	Uncontrolled	Controlled			Per Unit
Pollutant	Emission	Emission	Emission	Emission	Emission Rate 3
	Factor 1	Factor	ractor units	ractor basis	(lb/hr)
NOx	2.00	NA	g/bhp-hr	Vendor Data	4.78
CO	1.80	NA	g/bhp-hr	Vendor Data	4.31
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.089
SO_2	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.23E-03
VOC	0.48	NA	g/bhp-hr	Vendor Data	1.15

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM

Btu/hr - HHV basis).

able B-1b. Caterp	Table B-1b. Caterpillar 3516 TALE (1,085 HP) Short Term and Long Term Emission Rates	85 HP) Short Term a	nd Long Term Emiss	sion Rates
Pollutant	Per Unit Emission Estimates	on Estimates	Total Emission Estimates (3 Units)	timates (3 Units)
	(lb/hr) 1	(tpy) ²	(lb/hr) 1	(tpy) ²
NOx	4.78	20.95	14.35	62.86
00	4.31	18.86	12.92	56.58
PM ₁₀ Total	0.00	0.39	0.27	1.17
SO_2	5.23E-03	2.29E-02	1.57E-02	6.87E-02
NOC	1.15	5.03	3.44	15.09

The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Wilderness CO₂ Plant - Criteria Emissions

Per Unit Emission Rate ³ (Ib/hr)	5.07	3.98	0.09	5.52E-03	7.45
Emissi (1)	3	.3)	5.5	
Emission Rates Emission Factor Basis	Vendor Data	Vendor Data	AP-42, T 3.2-2	AP-42, T 3.2-2	Vendor Data
ors and Short Term Emission Factor Units	g/bhp-hr	g/bhp-hr	lb/MM Btu	lb/MM Btu	g/bhp-hr
3516 TALE (1,150 HP) Emission Factors and Short Term Emission Rates Uncontrolled Emission Emission Emission Factor Units Factor Basi	NA	NA	NA	NA	NA
lar 3516 TALE (1,15) Uncontrolled Emission Factor 1	2.00	1.57	9.99E-03	5.88E-04	2.94
Table B-2a. Caterpillar Pollutant	NOx	00	PM ₁₀ Total	SO ₂	VOC

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

Table B-2b. Caterpillar 3516 TALE (1,150 HP) Short Term and Long Term Emission Rates

31	Table 5-20. Catel plual 5510 LADE (1,150 III) 5001 LYIIII and Eong LYIIII Emission maces	o min) Smort reim a	ma come i come como	STORY TARGES
	Per Unit Emission Estimates	n Estimates	Total Emission Estimates (1 Unit)	timates (1 Unit)
	(Ib/hr) 1	(tpy) ²	(lb/hr) 1	(tpy) ²
	5.07	22.21	5.07	22.21
	3.98	17.43	3.98	17.43
	0.09	0.41	0.09	0.41
	5.52E-03	2.42E-02	5.52E-03	2.42E-02
	7.45	32.65	7.45	32.65

The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Wilderness CO₂ Plant - Criteria Emissions

Rates
Emission
t Term
nd Shor
actors a
nission F
GSI E
1 L 7042
Waukesh
Table B-3a. W.
Table

	Uncontrolled	Controlled		T was in a second	Per Unit
Pollutant	Emission Factor ¹	Emission Factor ^{1, 2}	Factor Units	Emission Factor Basis	Emission Rate ³ (1b/hr)
NOx	13.00	1.30	g/bhp-hr	Vendor Data	4.24
00	12.00	2.40	g/bhp-hr	Vendor Data	7.82
PM ₁₀ Total	1.94E-02	1.94E-02	lb/MM Btu	AP-42, T 3.2-3	0.25
SO_2	5.88E-04	5.88E-04	lb/MM Btu	AP-42, T 3.2-3	7.48E-03
VOC	0.35	0.18	g/bhp-hr	Vendor Data	0.57

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

Table B-3b. Waukesha L 7042 GSI Short Term and Long Term Emission Rates

Pollutant	Per Unit Emission Estimates	on Estimates	Total Emission Estimates (1 Unit)	timates (1 Unit)
	(lb/hr) 1	(tpy) ²	(Ib/hr) 1	(tpy) ²
NOx	4.24	18.55	4.24	18.55
CO	7.82	34.25	7.82	34.25
PM ₁₀ Total	0.25	1.08	0.25	1.08
SO_2	7.48E-03	3.28E-02	7.48E-03	3.28E-02
NOC	0.57	2.50	0.57	2.50

The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² The controlled emission factors are based upon catalytic converter removal efficiencies (by weight) of 90% for NOx, 80% for CO and 50% for VOCs.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Table B-6a. Natural Gas Fired Boilers/Process Heaters Emission Factors and Short Term Emission Rates

	Statement of the last of the l	The same of the sa				
Pollutant	Emission	Emission	Emission	Per Unit Emission Rates 1 (lb/hr)	Rates 1 (lb/hr)	
	Factor	Factor Units	Factor Basis	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr
NOx	100.0	lb/MM scf	AP-42, T 1.4-1	0.15	0.10	0.05
00	84.0	lb/MM scf	AP-42, T 1.4-1	0.12	0.08	0.04
PM ₁₀ Total	7.6	lb/MM scf	AP-42, T 1.4-2	1.12E-02	7.45E-03	3.73E-03
SO_2	9.0	lb/MM scf	AP-42, T 1.4-2	8.82E-04	5.88E-04	2.94E-04
VOC	5.5	lb/MM scf	AP-42, T 1.4-2	8.09E-03	5.39E-03	2.70E-03
Lead	5.00E-04	lb/MM scf	AP-42, T 1.4-2	7.35E-07	4.90E-07	2.45E-07

The per unit emission rates have been determined based upon a natural gas heating value of 1,020 Btu/scf.

Natural Gas Fired Boilers - Short Term and Long Term Emission Rates

Pollutant	Annual Emission Ra	nnual Emission Rates Per Unit (tpy) 1		Totals for All Units (9 Units)	its (9 Units) ²
	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr	(lb/hr)	(tpy)
NO_x	0.64	0.43	0.21	0.88	3.86
00	0.54	0.36	0.18	0.74	3.25
PM ₁₀ Total	0.05	0.03	0.02	0.07	0.29
SO_2	3.86E-03	2.58E-03	1.29E-03	0.01	0.02
VOC	0.04	0.02	0.01	0.05	0.21
Lead	3.22E-06	2.15E-06	1.07E-06	4.41E-06	1.93E-05

Annual emission rates are based upon continuous operation at rated capacity.

Potential Facility Short Term & Annual Emission Rates - Wilderness CO2 Plant

Pollutant	All RICE Engines		All Process Heaters		Storage Vessel	All Equipment	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy) See E&P Run	(lb/hr)	(tpy)
NOx	23.66	103.63	0.88	3.86		24.54	107.49
00	24.72	108.26	0.74	3.25		25.46	111.51
PM ₁₀ Total	0.61	2.66	0.07	0.29		19.0	2.95
SO_2	0.03	0.13	0.01	0.02		0.03	0.15
NOC	11.47	50.23	0.05	0.21	0.53	11.52	50.97
Lead			4.41E-06	1.93E-05		4.41E-06	1.93E-05
Max. Single HAP (Toluene)						0.00	0.00
Aggregate HAPs	0.51	2.23	0.02	0.07		0.52	2.30

² The total emission rates are based upon three (3) 1.5 MM Btu/hr units, three (3) 1.0 MM Btu/hr units, and three (3) 0.5 MM Btu/hr

Quicksilver Resources Incorporated Analysis of Engine Controls Needed to Be a Minor Source of HAP

Uncontrolled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516 (1150 HP)	(1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	Registry	Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	(5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
HAP Totals		2.31	10.12	0.82	3.57	0.16	69.0	3.28	14.39

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (1 Controlled 1085 HP Unit)

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516 (1150 HP)	(1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant		Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	(5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	20-00-0	1.50	6.55	0.63	2.78	0.08	0.36	2.21	89.6
HAP Totals		2.01	8.81	0.82	3.57	0.16	69.0	2.99	13.08

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (2 Controlled 1085 HP Units)

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516	CAT 3516 (1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	Registry	Registry Emission Rates (3 Units)	3 Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	(5 Units)
	Number	(Ib/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.20	5.24	0.63	2.78	80.0	0.36	1.91	8.37
HAP Totals		1.71	7.50	0.82	3.57	0.16	69.0	2.69	11.77

Controlled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines (3 Controlled 1085 HP Units)

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516 (1150 HP)	(1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	Registry	Registry Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	(5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(1b/hr)	(tpy)
Formaldehyde	50-00-0	0.90	3.93	0.63	2.78	80.0	0.36	1971	7.06
HAP Totals		1.41	6.19	0.82	3.57	0.16	69'0	2.39	10.46

HAP Emission Factors and Emission Rates for Natural Gas Fired RICE

	CAS	Engine 9. F-	ission Factor ¹	(lb/MMD++)
Hazardous				1
Air Pollutant	Registry	2-Stroke	4-Stroke	4-Stroke
	Number	Lean-Burn	Lean-Burn	Rich-Burn
1,1,2,2-Tetrachloroethane	79-34-5	6.63E-05	4.00E-05	2.53E-05
1,1,2-Trichloroethane	79-00-5	2.57E-05	3.18E-05	1.53E-05
1,1,-Dichloroethane	75-34-3	3.91E-05	2.36E-05	1.13E-05
1,2,3-Trimethylbenzene	526-73-8	3.54E-05	2.30E-05	
1,2,4-Trimethylbenzene	95-36-3	1.11E-04	1.43E-05	
1,2-Dichloroethane	107-06-2	4.22E-05	2.36E-05	1.13E-05
1,2-Dichloropropane	78-87-5	4.46E-05	2.69E-05	1.13E-05
1,3,5-Trimethylbenzene	108-67-8	1.80E-05	3.38E-05	
1,3-Butadiene	106-99-0	8.20E-04	2.67E-04	6.63E-04
1,3-Dichloropropene	542-75-6	4.38E-05	2.64E-05	1.27E-05
2,2,4-Trimethylpentane	540-84-1	8.46E-04	2.50E-04	
2-Methylnaphthalene	91-57-6	2.14E-05	3.32E-05	
Acenaphthene	83-32-9	1.33E-06	1.25E-06	T
Acenaphthylene	208-96-8	3.17E-06	5.53E-06	
Acetaldehyde	75-07-0	7.76E-03	8.36E-03	2.79E-03
Acrolein	107-02-8	7.78E-03	5.14E-03	2.63E-03
Anthracene	120-12-7	7.18E-07	J.14E-03	2.03E-03
	56-55-3	3.36E-07		
Benz(a)anthracene			4.40E.04	1.500.03
Benzene	71-43-2	1.94E-03	4.40E-04	1.58E-03
Benzo(a)pyrene	50-32-8	5.68E-09		
Benzo(b)fluoranthene	205-99-2	8.51E-09	1.66E-07	
Benzo(e)pyrene	192-97-2	2.34E-08	4.15E-07	
Benzo(g,h,i)perylene	191-24-2	2.48E-08	4.14E-07	
Benzo(k)fluroanthene	205-82-3	4.26E-09		
Biphenyl	92-52-4	3.95E-06	2.12E-04	
Butane	106-97-8	4.75E-03	5.41E-04	
Butyr/Isobutyraldehyde	23-72-8/78-84-	4.37E-04	1.01E-04	
Carbon Tetrachloride	56-23-5	6.07E-05	3.67E-05	1.77E-05
Chlorobenzene	108-90-7	4.44E-05	3.04E-05	1.29E-05
Chloroethane	75-00-3	-	1.87E-06	
Chloroform	67-66-3	4.71E-05	2.85E-05	1.37E-05
Chrysene	218-01-9	6.72E-07	6.93E-07	
Cyclohexane		3.08E-04		
Cyclopentane	287-92-3	9.47E-05	2.27E-04	
Ethane	74-84-0	7.09E-02	1.05E-01	7.04E-02
Ethylbenzene	100-41-4	1.08E-04	3.97E-05	2,48E-05
Ethylene Dibromide	106-93-4	7.34E-05	4.43E-05	2.13E-05
Fluoranthene	206-44-0	3.61E-07	1.11E-06	2.13E-03
Fluorene	86-73-7	1.69E-06	5.67E-06	
Formaldehyde	50-00-0	5.52E-02	5.07E-00 5.28E-02	2.05E-02
maldehyde (Wauk 7042 GSI) 3	50-00-0			5.00E-02
Formaldehyde (CAT 3516) 4	50-00-0		2.50E-01	
Indeno(1,2,3-c,d)pyrene	193-39-5	9.93E-09		
Isobutane		3.75E-03		
Methanol	67-56-1	2.48E-03	2.50E-03	3.06E-03
Methylcyclohexane	108-87-2	3.38E-04	1.23E-03	
Methylene Chloride	75-09-2	1.47E-04	2.00E-05	4.12E-05
n-Hexane	110-54-3	4.45E-04	1.11E-03	
n-Nonane	111-84-2	3.08E-05	1.10E-04	
n-Octane	111-65-9	7.44E-05	3.51E-04	
n-Pentane	109-66-0	1.53E-03	2.60E-03	
	91-20-3			9.71E-05
Naphthalene		9.63E-05	7.44E-05	
PAH	85-01-8	1.34E-04	2.69E-05	1.41E-04
Perylene	198-55-0	4.47E-09	104E05	
Phenanthrene	85-01-8	3.53E-06	1.04E-05	
Phenol	108-95-2	4.21E-05	2.40E-05	
Propane	74-98-6	2.87E-02	4.19E-02	
	129-00-0	5.84E-07	1.36E-06	
Pyrene			2.245.05	1 10E 05
	100-42-5	5.48E-05	2.36E-05	1.19E-05
Pyrene		5.48E-05	2.36E-05 2.48E-06	
Pyrene Styrene	100-42-5	5.48E-05 9.63E-04		5.58E-04
Pyrene Styrene Tetrachloroethane	100-42-5 630-20-6		2.48E-06	
Pyrene Styrene Tetrachloroethane Toluene	100-42-5 630-20-6 108-88-3	9.63E-04	2.48E-06 4.08E-04	5.58E-04

The HAP emission factors are based upon the Trace Organic Compound emissions factors of AP-42 Chapter 3.2. Specifically, the emission factors represent 2-stroke lean-burn, 4-stroke lean-burn, and 4-stroke rich-burn natural gas fired reciprocating engines, and the factors are taken from the AP-42 document (7/00 revision), Tables 3.2-1, 3.2-2, and 3.2-3, respectively.

² The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

³ This is a vendor (Waukesha) supplied emission factor; the unit of the factor is g/bhp-hr.

⁴ This is a vendor (Caterpillar) supplied emission factor for the lean burn 3516 engines; the unit of the factor is g/bhp-hr.

Engine Make Engine Model Rated Output Per RICE Rated Heat Input Per RICE Natural Gas Heating Value Number of RICE Annual Operation Per RICE Catalytic Converter Generic HAP Removal Eff. RICE Engine Configuration

	Waukesha	Caterpillar	Caterpillar
	L 7042 GSI	3516 TALE	3516 TALE
	1478	1150	1085
	12.72	9.39	8.89
	1,020	1,020	1,020
	1	1	3
	8,760	8,760	8,760
	Yes	No	No
	50%	0%	0%
_	3	2	2

sepower A Btu/hour (HHV basis) /scf ırs/year tless y weight

2-stroke lean-burn, 2 = 4-stroke lean-burn, and 3 =

4-stroke rich-burn

Hazardous Air Pollutant/	CAS Registry	CAT 3516 (108	ALL CONTROL OF THE PARTY OF THE	CAT 3516 (115		Waukesha L70		Total Pot	
Toxic Air Contaminant 1	Number	Emission Rate		Emission Rate		Emission Rate		Emission Rat	_
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
1,1,2,2-Tetrachloroethane	79-34-5	1.07E-03	4.67E-03	3.75E-04	1.64E-03	1.61E-04	7.05E-04	1.60E-03	7.02E-0
1,1,2-Trichloroethane	79-00-5	8.48E-04	3.72E-03	2.98E-04	1.31E-03	9.73E-05	4.26E-04	1.24E-03	5.45E-0
1,1,-Dichloroethane	75-34-3	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-0
1,2,3-Trimethylbenzene	526-73-8	6.14E-04	2.69E-03	2.16E-04	9.46E-04			8.29E-04	3.63E-0
1,2,4-Trimethylbenzene	95-36-3	3.81E-04	1.67E-03	1.34E-04	5.88E-04			5.16E-04	2.26E-0
1,2-Dichloroethane	107-06-2	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-0
1,2-Dichloropropane	78-87-5	7.18E-04	3.14E-03	2.52E-04	1.11E-03	7.19E-05	3.15E-04	1.04E-03	4.56E-6
1,3,5-Trimethylbenzene	108-67-8	9.02E-04	3.95E-03	3.17E-04	1.39E-03			1.22E-03	5.34E-0
1,3-Butadiene	106-99-0	7.12E-03	3.12E-02	2.51E-03	1.10E-02	4.22E-03	1.85E-02	1.38E-02	6.06E-0
1,3-Dichloropropene	542-75-6	7.04E-04	3.08E-03	2.48E-04	1.09E-03	8.08E-05	3.54E-04	1.03E-03	4.52E-0
2,2,4-Trimethylpentane	540-84-1	6.67E-03	2.92E-02	2.35E-03	1.03E-02			9.02E-03	3.95E-0
2-Methylnaphthalene	91-57-6	8.86E-04	3.88E-03	3.12E-04	1.36E-03			1.20E-03	5.24E-0
Acenaphthene	83-32-9	3.33E-05	1.46E-04	1.17E-05	5.14E-05			4.51E-05	1.97E-0
Acenaphthylene	208-96-8	1.48E-04	6.46E-04	5.19E-05	2.27E-04			1.99E-04	8.73E-0
Acetaldehyde	75-07-0	2.23E-01	9.77E-01	7.85E-02	3.44E-01	1.77E-02	7.77E-02	3.19E-01	1.40E+0
Acrolein	107-02-8	1.37E-01	6.01E-01	4.82E-02	2.11E-01	1.67E-02	7.33E-02	2.02E-01	8.85E-0
Anthracene	120-12-7								
Benz(a)anthracene	56-55-3	1 100 00	6148.00	4 100 00	1015.00	1.000.00	1.107.02	2 500 00	1
Benzene	71-43-2	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.59E-02	1.14E-0
Benzo(a)pyrene	50-32-8	1.125.05	1015.05	1.505.00	6 00F 06			5.000.07	0.707.0
Benzo(b)fluoranthene	205-99-2	4.43E-06	1.94E-05	1.56E-06	6.82E-06			5.99E-06	2.62E-0
Benzo(e)pyrene	192-97-2	1.11E-05	4.85E-05	3.90E-06	1.71E-05			1.50E-05	6.55E-0
Benzo(g,h,i)perylene	191-24-2	1.10E-05	4.84E-05	3.89E-06	1.70E-05			1.49E-05	6.54E-0
Benzo(k)fluroanthene	205-82-3 92-52-4	5.66E-03	2.48E-02	1.99E-03	8.72E-03			7.64E-03	3.35E-0
Biphenyl	106-97-8	1.44E-02		5.08E-03	2.22E-02			1.95E-02	8.54E-0
Butane		1.44E-02	6.32E-02	3.00E-03	4.22E-02			1.93E-02	0.34E-U
Butyr/Isobutyraldehyde	123-72-8/ 78-84-2	2.69E-03	1.18E-02	9.48E-04	4.15E-03			3.64E-03	1.60E-0
Carbon Tetrachloride	56-23-5	9.79E-04	4.29E-03	3,44E-04	1.51E-03	1.13E-04	4.93E-04	1.44E-03	6.29E-0
Chlorobenzene	108-90-7	8.11E-04	3.55E-03	2.85E-04	1.25E-03	8.20E-05	3.59E-04	1.18E-03	5.16E-0
Chloroethane	75-00-3	4.99E-05	2.18E-04	1.76E-05	7.69E-05	01202.00	0.000	6.74E-05	2.95E-0
Chloroform	67-66-3	7,60E-04	3.33E-03	2.68E-04	1.17E-03	8.71E-05	3.82E-04	1.11E-03	4.88E-0
Chrysene	218-01-9	1.85E-05	8.10E-05	6.50E-06	2.85E-05			2.50E-05	1.09E-0
Cyclohexane									
Cyclopentane	287-92-3	6.06E-03	2.65E-02	2.13E-03	9.33E-03			8.19E-03	3.59E-0
Ethane	74-84-0	2.80E+00	1.23E+01	9.86E-01	4.32E+00	4.48E-01	1.96E+00	4.23E+00	1.85E+0
Ethylbenzene	100-41-4	1.06E-03	4.64E-03	3.73E-04	1.63E-03	1.58E-04	6.91E-04	1.59E-03	6.96E-0
Ethylene Dibromide	106-93-4	1.18E-03	5.18E-03	4.16E-04	1.82E-03	1.35E-04	5.93E-04	1.73E-03	7.59E-0
Fluoranthene	206-44-0	2.96E-05	1.30E-04	1.04E-05	4.56E-05			4.00E-05	1.75E-0
Fluorene	86-73-7	1.51E-04	6.62E-04	5.32E-05	2.33E-04			2.04E-04	8.96E-0
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
Indeno(1,2,3-c,d)pyrene	193-39-5								
Isobutane					140				
Methanol	67-56-1	6.67E-02	2.92E-01	2.35E-02	1.03E-01	1.95E-02	8.52E-02	1.10E-01	4.80E-0
Methylcyclohexane	108-87-2	3.28E-02	1.44E-01	1.15E-02	5.06E-02			4.44E-02	1.94E-0
Methylene Chloride	75-09-2	5.33E-04	2.34E-03	1.88E-04	8.22E-04	2.62E-04	1.15E-03	9.83E-04	4.31E-0
n-Hexane	110-54-3	2.96E-02	1.30E-01	1.04E-02	4.56E-02			4.00E-02	1.75E-0
n-Nonane	111-84-2	2.93E-03	1.29E-02	1.03E-03	4.52E-03			3.97E-03	1.74E-0
n-Octane	111-65-9	9.36E-03	4,10E-02	3.29E-03	1.44E-02			1.27E-02	5.54E-0
n-Pentane	109-66-0	6.94E-02	3.04E-01	2.44E-02	1.07E-01			9.38E-02	4.11E-0
Naphthalene	91-20-3	1.98E-03	8.69E-03	6.98E-04	3.06E-03	6.18E-04	2.70E-03	3.30E-03	1.45E-0
PAH	85-01-8	7.18E-04	3.14E-03	2.52E-04	1.11E-03	8.97E-04	3.93E-03	1.87E-03	8.18E-0
Perylene	198-55-0								and the same
Phenanthrene	85-01-8	2.77E-04	1.22E-03	9.76E-05	4.28E-04			3.75E-04	1.64E-0
Phenol	108-95-2	6.40E-04	2.80E-03	2.25E-04	9.87E-04			8.65E-04	3.79E-0
Propane	74-98-6	1.12E+00	4.90E+00	3.93E-01	1.72E+00		and an interest	1.51E+00	6.62E+6
Pyrene	129-00-0	3.63E-05	1.59E-04	1.28E-05	5.59E-05			4.90E-05	2.15E-0
Styrene	100-42-5	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.57E-05	3.32E-04	9.27E-04	4.06E-0
Tetrachloroethane	630-20-6	6.62E-05	2.90E-04	2.33E-05	1.02E-04			8.94E-05	3.92E-0
Toluene	108-88-3	1.09E-02	4.77E-02	3.83E-03	1.68E-02	3.55E-03	1.55E-02	1.83E-02	8.00E-0
Vinyl Chloride	75-01-4	3.97E-04	1.74E-03	1.40E-04	6.13E-04	4.57E-05	2.00E-04	5.83E-04	2.55E-0
Xylene	1330-20-7	4.91E-03	2.15E-02	1.73E-03	7.56E-03	1.24E-03	5.43E-03	7.88E-03	3.45E-0
HAP Totals		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

² The lb/hr emission rates are for multiple similar units and based upon the maximum rated capacity of the engines, on a higher heating value basis.

³ Annual emission rates are based upon continuous operation at rated capacity.

Summary of Potential Natural Gas-Fired Heater HAP Emissions

Wilderness CO₂ - HAP Emission Estimates from Natural Gas Fired Heaters

Rated Heat Input Per Boiler	8.00	MM Btu/hour
Natural Gas Heating Value	1,020	Btu/scf
Annual Operation Per Boiler	8,760	hours/year

Natural Gas Fired Boiler (Heater) HAP Emission Factors¹ and Emission Rates

Hazardous	CAS	Emission	Potential	Potential
Air Pollutant	Registry	Factor 1	Emission Rate	Emission Rate
Air Foliutarit	Number	(lb/MM scf)	(lb/hour)	(tons/year)
2-Methylnaphthalene	91-57-6	2.40E-05	1.88E-07	8.24E-07
3-Methylchloroanthrene	56-49-5	1.80E-06	1.41E-08	6.18E-08
12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.25E-07	5.50E-07
Acenaphthene	83-32-9	1.80E-06	1.41E-08	6.18E-08
Acenaphthylene	203-96-8	1.80E-06	1.41E-08	6.18E-08
Anthracene	120-12-7	2.40E-06	1.88E-08	8.24E-08
Benz(a)anthracene	56-55-3	1.80E-06	1.41E-08	6.18E-08
Benzene	71-43-2	2.10E-03	1.65E-05	7.21E-05
Benzo(a)pyrene	50-32-8	1.20E-06	9.41E-09	4.12E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.41E-08	6.18E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	9.41E-09	4.12E-08
Benzo(k)fluroanthene	205-82-3	1.80E-06	1.41E-08	6.18E-08
Butane	106-97-8	2.10E+00	1.65E-02	7.21E-02
Chrysene	218-01-9	1.80E-06	1.41E-08	6.18E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	9.41E-09	4.12E-08
Dichlorobenzene	25321-22-6	1.20E-03	9.41E-06	4.12E-05
Ethane	74-84-0	3.10E+00	2.43E-02	1.06E-01
Fluoranthene	206-44-0	3.00E-06	2.35E-08	1.03E-07
Fluorene	86-73-7	2.80E-06	2.20E-08	9.62E-08
Formaldehyde	50-00-0	7.50E-02	5.88E-04	2.58E-03
Hexane	110-54-3	1.80E+00	1.41E-02	6.18E-02
Indeno(1,2,3-c,d)pyrene	193-39-5	1.80E-06	1.41E-08	6.18E-08
Naphthalene	91-20-3	6.10E-04	4.78E-06	2.10E-05
Pentane	109-66-0	2.60E+00	2.04E-02	8.93E-02
Phenanthrene	85-01-8	1.70E-05	1.33E-07	5.84E-07
Propane	74-98-6	1.60E+00	1.25E-02	5.50E-02
Pyrene	129-00-0	5.00E-06	3.92E-08	1.72E-07
Toluene	108-88-3	3.40E-03	2.67E-05	1.17E-04
				BILLIAN STATES
Arsenic	7440-38-2	2.00E-04	1.57E-06	6.87E-06
Barium	7440-39-3	4.40E-03	3.45E-05	1.51E-04
Beryllium	7440-41-7	1.20E-05	9.41E-08	4.12E-07
Cadmium	7440-43-9	1.10E-03	8.63E-06	3.78E-05
Chromium	16065-83-1	1.40E-03	1.10E-05	4.81E-05
Cobalt	7440-48-4	8.40E-05	6.59E-07	2.89E-06
Copper	7440-50-8	8.50E-04	6.67E-06	2.92E-05
Lead	7439-92-1	5.00E-04	3.92E-06	1.72E-05
Manganese	7439-96-5	3.80E-04	2.98E-06	1.31E-05
Mercury	7439-90-5	2.60E-04	2.04E-06	8.93E-06
Molybdenum	7439-98-7	1.10E-03	8.63E-06	3.78E-05
Nickel	7440-02-0	2.10E-03	1.65E-05	7.21E-05
Selenium	7782-49-2	2.40E-05	1.88E-07	8.24E-07
Vanadium	7440-62-2	2.40E-03 2.30E-03	1.80E-05	7.90E-05
Zinc	7440-66-6	2.30E-03 2.90E-02	2.27E-04	9.96E-04
ZIIIC	7440-00-0	1.888	0.015	0.065

¹ The boiler HAP emission factors are based upon the AP-42 document (7/98 revision). Specifically, the organic emission factors are from Table 1.4-3, while the metallic emission factors are from Table 1.4-4.

File: Wilderness_CO2_ Hayes 29 Emissions Calcs Tab: Gas Combust HAPs

E&P Tanks - Partitioning Calculations for Flashing and W&S VOC Emissions Hayes 29 PTE Calculation - Tanks

No. Component	(lb/lbmol) Mo	Mole % Mole	Mole %	Mole %	Mole %	Mole % Alone % Alone %	Mole %	Majoht %	Woight %
1 H2S	34.8	0	0	0	0	0	0	Acigiit 70	NACIBILITY OF
2 02	32	0	0	0	0	0	0		
3 CO2	44.01	0.023	0.0068	0	0.5318	0.0001	0.4171	0.5613	0.0001
4 N2	28.01	0.042	0.0016	0	1.3153	0.0001	1.0317	0.8835	0.0000
5 C1	16.04	0.371	0.0521	0	10.4096	0.0001	8.165	4.0041	0.0000
6 62	30.07	1.853	0.9722	0	29.5803	0.0001	23.2019	21.3304	0.0000
7 (3	44.1	4.981	4.1005	0	32.7002	0	25.649	34.5822	
8 i-C4	58.12	2.598	2.4344	0	7.7475	0	6920.9	10.7982	
9 n-C4	58.12	5.018	4.8506	1.2058	10.2876	26.9759	13.8861	14.3385	21.7002
10 i-C5	72.15	4.61	4.6373	3.4343	3.7504	31.5364	9.742	6.4890	31.4928
11 n-C5	72.15	3.741	3.7884	3.189	2.2484	21.8852	6.4828	3.8902	21.8549
12 C6	84	2.77	2.8419	3.025	0.5071	6.5264	1.8051	1.0215	7.5878
13 Benzene	78.11	0.45	0.4624	0.5055	9090.0	0.7986	0.2197	0.1135	0.8634
14 Toluene	92.14	1.823	1.8788	2.1645	0.0675	0.9727	0.2627	0.1491	1.2405
15 E-Benzene	106.17	0.688	0.7096	0.8288	0.0083	0.1256	0.0336	0.0211	0.1846
16 Xylenes	106.17	2.134	2.2011	2.5735	0.0219	0.3385	0.0901	0.0558	0.4974
17 n-C6	86.18	2.657	2.7264	2.9084	0.4733	6.1972	1.7075	0.9782	7.3920
18 224Trimethylp	114.23	0.021	0.0216	0.0245	0.0014	0.0194	0.0053	0.0038	0.0307
19 Pseudo Comp1	111.19	25.5793	26.3828	30.8224	0.2865	4.582	1.2127	0.7639	7.0515
20 Pseudo Comp2	172.7	16.727	17.2583	20.2975	0.0023	0.0417	0.0108	0.0095	0.0997
21 Pseudo Comp3	252.37	11.2636	11.6214	13.6692	0	0.0001	0	1	0.0003
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0	0	0		1
23 Pseudo Comp5	551.71	4.8586	5.013	5.8963	0	0	0		1
Totals:		100 00	100 00	100 00	100 00	100 00	100 00	00 00	100 00

						Total
	LP Oil	Flash oil		Sales oil Flash Gas	W&S gas	Emission
MW (lb/lbmol):	162.79	166.64	185.19	41.7	72.25	48.28
Stream Mole Ratio:	1	0.9692	0.9607	0.0308	0.0085	0.0393
Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61	1.9
Total Emission (ton):				0.729	0.347	1.076
Heating Value (BTU/scf):				2348.9	3960.01	2696.31
Gas Gravity (Gas/Air):				1.44	2.49	1.67
Bubble Pt. @100F (psia):	44.95	21.6	2.36			
RVP @100F (psia):	136.62	98.9	15.52			
Spec. Gravity @100F:	0.85	0.85	0.87			

W&S Gas 100.00

Flash Gas 73.21 0.53

VOC Weight % = VOC tpy =

HAYES 29 PTE

```
************************
    Project Setup Information
*******************
Project File : S:\MICHIGAN\Air Quality\E&P Tank Runs\HAYES 29.ept3
Flowsheet Selection : Oil Tank with Separator
Calculation Method : AD42
Calculation Method
                        : AP42
Control ETTICIENCY : 0.00%

Known Separator Stream : Low Pressure Oil
Entering Air Composition : No

Component Group
Component Group
                         : HAYES 29 - WILD CO2 TANK
: HAYES 29 TANK
Filed Name
Well Name
Permit Number
                         : N5831
Date
                         : 2018.10.18
**********************
    Data Input
*******************
                               : 30.00 Actual Conditions,
: 75.0
: 0.89 Per operator.
Separator Pressure (psia)
Separator Temperature (F)
C10+ SG
C10+ MW(lb/lbmol)
                                : 260.00
-- Low Pressure Oil
                       Mole% Wt%
     Component
No.
                          0.0000 0.0000
     H2S
1
2
                            0.0000
                                   0.0000
     02
3
     CO2
                            0.0230
                                    0.0062
4
                            0.0420
                                    0.0072
     N2
5
                            0.3710
     C1
                                    0.0363
6
     C2
                           1.8530
                                    0.3395
     C3
7
                           4.9810
                                    1.3383
                                    0.9200
8
                           2.5980
     i-C4
     n-C4
9
                           5.0180
                                    1.7769
10
     i-C5
                           4.6100
                                    2.0265
                           3.7410
11
     n-C5
                                    1.6445
12
                           2.7700
                                    1.4541
     C6
                           8.0450
13
                                    4.9114
     C7
                           7.7830
                                    5.4168
14
     C8
                           5.2050
45.1870
15
     C9
                                    4.0681
                                   71.5815
0.2142
16
     C10+
17
                            0.4500
     Benzene
                           1.8230
                                    1.0233
18
     Toluene
19
                           0.6880
                                    0.4450
     E-Benzene
                           2.1340
                                    1.3804
20
     Xylenes
                           2.6570
                                    1.3951
21
     n-C6
22
     224Trimethylp
                           0.0210
                                    0.0146
-- Sales Oil
Production Rate (bbl/day) : 2.00
Days of Annual Operation : 365
```

Page 1

```
HAYES 29 PTE
API Gravity : 46.00 Reid Vapor Pressure (psia) : 7.70 Bulk Temperature : 80.0
-- Tank and Shell Data
Diameter (ft) : 21.00
Shell Height (ft) : 16.00
Cone Roof Slope : 0.06
Average Liquid Height (ft) : 8.00
Vent Pressure Range (psia) : 0.06
Solar Absorbance : 0.54
Page 1----- E&P TANK
-- Meteorological Data
City : Homer, AK
Min Ambient Temperature (F) : 29.5
Max Ambient Temperature (F) : 43.6
Total Solar Insolation (F) : 831.00
Ambient Pressure (psia) : 14.70
Ambient Temperature (F) : 70.0
**************************
     Calculation Results
-- Emission Summary
______
               Uncontrolled
                    ton
                 0.0450
 Total HAPs
 Total HC
                    1.0660
 VOCs, C2+
VOCs, C3+
                    1.0370
                    0.8810
 C02
                    0.0040
                    0.0290
 CH4
Uncontrolled Recovery Information:
Vapor(mscfd): 0.0463
HC Vapor(mscfd): 0.0456
CO2(mscfd): 0.0000
CH4(mscfd):
                    0.0000
GOR(SCF/STB):
                    23.1450
-- Emission Composition
                       Uncontrolled
  NoComponent
                         ton
                        0.0000
   1 H2S
                        0.0000
   2 02
   3 CO2
                        0.0040
   4 N2
                        0.0060
   5 C1
                        0.0290
   6 C2
                        0.1560
   7 C3
                        0.2520
                        0.0790
   8 i-C4
```

Page 2

0.1800

9 n-c4

HAYES 29 PTE

10 i-c5	0.1570
11 n-C5	0.1040
12 C6	0.0340
13 Benzene	0.0040
14 Toluene	0.0050
15 E-Benzene	0.0010
16 Xylenes	0.0020
17 n-C6	0.0330
18 224Trimethylp	0.0000
19 Pseudo Comp1	0.0300
20 Pseudo Comp2	0.0000
21 Pseudo Comp3	0.0000
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.0760

-- Stream Data

NoCompone	ent MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	w&s
	tal Emission lb/l	bmol mole %	mole %	mole %	mole %	mole
% mole 1 H2S	34 80	0.0000	0.0000	0.0000	0.0000	
% 1 H2S 0.0000 2 02 0.0000	32.00	0.0000	0.0000	0.0000	0.0000	
0.0000 3 CO2	0.0000 32.00 0.0000 44.01 0.4171 28.01	0.0230	0.0068	0.0000	0.5318	
0.0001 4 N2	0.4171 28.01	0.0420	0.0016	0.0000	1.3153	
0.0001 5 C1	1.0317 16.04	0.3710	0.0521	0.0000	10.4096	
0.0001 6 C2	8.1650 30.07	1.8530	0.9722	0.0000	29.5803	
).0001 Page 2	23.2019	0.0420			E&P T	ANK
7 (2	44 10	4 0910				
0.0000 8 i-c4	25.6490 58.12 6.0769	2.5980	2.4344	0.0000	7.7475	
9 n-C4	58 17	5.0180				
26.9759 10 i-c5 31.5364	13.8861 72.15	4.6100	4.6373	3.4343	3.7504	
31.5364 11 n-C5	9.7420 72.15	3.7410	3.7884	3.1890	2.2484	
11 n-c5 21.8852 12 C6		2.7700	2.8419	3.0250	0.5071	
5.5264 13 Benzer	1.8051 ne 78.11		0.4624	0.5055	0.0606	
0.7986 14 Toluer	0.2197 ne 92.14	1.8230	1.8788	2.1645	0.0675	
).9727 15 E-Benz	0.2627	7 0.6880	0.7096	0.8288	0.0083	
0.1256 16 XVlene	0.0336			2.5735		
0.3385 17 n-C6 5. 1972	0.0901 86.18	2.6570				
5.1972 18 224Tr	1.7075 imethvlp 114.2	3 0.0210				
0.0194	0.0053 Compl 111.1			30.8224		
4.5820	1.2127		2			

Page 3

	HAYES	29 PTF			
20 Pseudo Comp2 172.70	16.7270	17.2583	20.2975	0.0023	
0.0417	11.2636	11.6214	13.6692	0.0000	
0.0001 0.0000 22 Pseudo Comp4 350.06	7.7914	8.0389	9.4554	0.0000	
0.0000 0.0000 23 Pseudo Comp5 551.71 0.0000 0.0000	4.8586	5.0130	5.8963	0.0000	
ou mula puissian	LP 0il	Flash Oil	Sales Oil	Flash Gas	w&s
Gas Total Emission MW (lb/lbmol):	162.79	166.64	185.19	41.70	72.25
48.28 Stream Mole Ratio:	1.0000	0.9692	0.9607	0.0308	
0.0085 0.0393 Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61
1.90 Total Emission (ton):				0.729	0.347
1.076 Heating Value (BTU/scf):				2348.90	
3960.01 2696.31 Gas Gravity (Gas/Air):				1.44	2.49
1.67 Bubble Pt. @100F (psia):	44.95	21.60	2.36		
RVP @100F (psia):	136.62	98.90	15.52		
Spec. Gravity @100F:	0.85	0.85	0.87		

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30 NIAGRAI

Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank

Cylinder No: 004780

Analyzed:

11/13/2015 11:56:29

Sampled By:

GL

Sample Of: Sample Date: Liquid Spot

11/05/2015

Sample Conditions: 28 psig, @ 65 °F

Method:

GPA 2103M

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.042	28.013	0.007	0.807	0.007	
Methane	0.371	16.043	0.035	0.300	0.094	
Carbon Dioxide	0.023	44.010	0.006	0.817	0.006	
Ethane	1.853	30.069	0.328	0.356	0.741	
Propane	4.981	44.096	1.293	0.507	2.050	
Iso-Butane	2.598	58.122	0.889	0.563	1.269	
n-Butane	5.018	58.122	1.717	0.584	2.363	
Iso-Pentane	4.610	72.149	1.958	0.625	2.518	
n-Pentane	3.741	72.149	1.589	0.631	2.025	
i-Hexanes	2.770	85.181	1.389	0.667	1.675	
n-Hexane	2.657	86.175	1.348	0.664	1.632	
2,2,4-Trimethylpentane	0.021	114.231	0.014	0.697	0.016	
Benzene	0.450	78.114	0.207	0.885	0.188	
Heptanes	8.045	96.207	4.557	0.709	5.168	
Toluene	1.823	92.141	0.989	0.872	0.911	
Octanes	7.783	110.485	5.062	0.728	5.592	
Ethylbenzene _	0.688	106.167	0.430	0.872	0.396	
Xylenes	2.134	106.167	1.334	0.872	1.229	
Nonanes	5.205	127.121	3.895	0.740	4.233	
Decanes Plus	45.187	274.224	72.953	0.864	67.887	
	100.000		100.000		100.000	
Physical Properties			Γotal	C10+		
Specific Gravity at 60°F		0.	8039	0.8638		
API Gravity at 60°F		44	1.526	32.311		
Molecular Weight		169	9.858	274.224		
Pounds per Gallon (in Vacu	um)	6	5.702	7.202		
Pounds per Gallon (in Air)		6	6.695	7.194		
Cu. Ft. Vapor per Gallon @	14.73 psia	14	1.938	9.943		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30

Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank

Cylinder No: 004780

Sampled By:

GL

Liquid

Spot

Sample Of: Sample Date:

11/05/2015

Sample Conditions: 28 psig, @ 65 °F

Analytical Data

Test	Method	Result	Units	Detection Limit		Analysis Date
Shrinkage Factor	Proprietary	0.9848			SM	11/16/2015
Flash Factor	Proprietary	17.6105	Cu.Ft./STBbl.		SM	11/16/2015
Color Visual	Proprietary	Straw			SM	11/16/2015
API Gravity @ 60° F	ASTM D-4052	42.76	0		MM	11/19/2015

SU
ficatio
Specif
ed RICE
Fired
Gas
Vatura

Engine Parameter	Parameter		Parameter Value			
	Units	EUENGINEI	EUENGINE2	EUENGINE3	EUENGINE4	EUENGINE6
Breitburn ID		831	856	885	406	C02-1
Engine Make		Caterpillar	Caterpillar	Caterpillar	Caterpillar	Waukesha
Engine Model		3516 TALE	3516 TALE	3516 TALE	3516 TALE	L 7042 GSI
Engine Serial No.		3RC00254	4EK01389	4EK01593	4EK00222	362289
Type of Fuel		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Rated Engine Power at 100% Load	dhd	1,085	1,085	1,085	1,150	1,478
Design Heat Input Rating, LHV	MM Btu/hour	8.08	8.08	8.08	8.53	11.56
Design Heat Input Rating, HHV	MM Btu/hour	8.89	8.89	8.89	9.39	12.72
Fuel Heating Value, LHV	Btu/scf	927	927	927	927	927
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	8,717	8,717	8,717	9,202	12,471
Control Technologies	NA	Lean Burn	Lean Burn	Lean Burn	Lean Burn	3-way Catalyst
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfm, wet	5,956	5,956	5,956	6,200	6,567
Exhuast Gas Flowrate	scfm, 68F	2,415	2,415	2,415	2,524	2,188
Exhaust Gas Temperature	F	842	842	842	837	1,125
Stack Inner Diameter	inches	12	12	12	12	12
Stack Area	ft2	0.79	0.79	0.79	0.79	0.79
Stack Discharge Velocity	feet/second	126.39	126.39	126.39	131.57	139.35
Stack Height Above Ground Level	feet	16	16	16	16	2.4

Natural Gas Fired Heaters Specifications

Boiler/Process	Parameter	Parameter Value	lue			
Heater Specifications	Units	EULINEHEATERS	EUSTAGEIHEATERS	EUHEATERP1-S2	EUHEATERP2-S2	EUHEATERUOP
Type of Fuel	NA	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Number of Units	NA	2	3	2	0	2
Design Heat Input Rating, HHV	MM Btu/hr	1.50	1.00	0.50	0.50	0.50
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	1,471	086	490	490	490
Control Technologies	NA	None	None	None	None	None
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfin	771	392	196	961	961
Exhuast Gas Flowrate	scfm, 68°F	323	215	108	108	108
Exhaust Gas Temperature	°F	800	500	500	200	500
Stack Inner Diameter	inches	16	12	00	12	8
Stack Area	$\hat{\mathbf{H}}^2$	1.40	0.79	0.35	0.79	0.35
Stack Discharge Velocity	feet/second	9.21	8.31	9.35	4.16	9.35
Stack Height Above Ground Level	feet	24	24	24	24	24

The sofm flow rates for the boilers/process heaters assume 750 lbs air/MM Btu heat input at zero percent excess air, 20% excess air at actual conditions, and that the fuel flow rate is directly additive to the combustion by-products.

Table B-1a. Caterpillar 3516 TALE (1,085 HP) Emission Factors and Short Term Emission Rates

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO_x	2.00	NA	g/bhp-hr	Vendor Data	4.78
СО	1.80	NA	g/bhp-hr	Vendor Data	4.31
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.089
SO_2	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.23E-03
VOC	0.48	NA	g/bhp-hr	Vendor Data	1.15

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

Table B-1b. Caterpillar 3516 TALE (1,085 HP) Short Term and Long Term Emission Rates

Pollutant	Per Unit Emission	on Estimates	Total Emission Est	Total Emission Estimates (3 Units)		
	(lb/hr) 1	(tpy) ²	(lb/hr) 1	(tpy) ²		
NO _x	4.78	20.95	14.35	62.86		
CO	4.31	18.86	12.92	56.58		
PM ₁₀ Total	0.09	0.39	0.27	1.17		
SO ₂	5.23E-03	2.29E-02	1.57E-02	6.87E-02		
VOC	1.15	5.03	3.44	15.09		

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Table B-2a. Caterpillar 3516 TALE (1,150 HP) Emission Factors and Short Term Emission Rates

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO _x	2.00	NA	g/bhp-hr	Vendor Data	5.07
CO	1.57	NA	g/bhp-hr	Vendor Data	3.98
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.09
SO ₂	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.52E-03
VOC	2.94	NA	g/bhp-hr	Vendor Data	7.45

¹ All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

Table B-2b. Caterpillar 3516 TALE (1,150 HP) Short Term and Long Term Emission Rates

Pollutant	Per Unit Emission	on Estimates	Total Emission Estimates (1 Unit)		
	(lb/hr) 1	(tpy) ²	(lb/hr) 1	(tpy) ²	
NO _x	5.07	22,21	5.07	22.21	
CO	3.98	17.43	3.98	17.43	
PM ₁₀ Total	0.09	0.41	0.09	0.41	
SO_2	5.52E-03	2.42E-02	5.52E-03	2.42E-02	
VOC	7.45	32.65	7.45	32.65	

The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Table B-3a. Waukesha L 7042 GSI Emission Factors and Short Term Emission Rates

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor ^{1, 2}	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO_x	13.00	1.30	g/bhp-hr	Vendor Data	4.24
CO	12.00	2.40	g/bhp-hr	Vendor Data	7.82
PM ₁₀ Total	1.94E-02	1.94E-02	lb/MM Btu	AP-42, T 3.2-3	0.25
SO ₂	5.88E-04	5.88E-04	lb/MM Btu	AP-42, T 3.2-3	7.48E-03
VOC	0.35	0.18	g/bhp-hr	Vendor Data	0.57

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

Table B-3b. Waukesha L 7042 GSI Short Term and Long Term Emission Rates

Pollutant	Per Unit Emissi	on Estimates	Total Emission Est	Total Emission Estimates (1 Unit)		
	(lb/hr) 1	(tpy) ²	(lb/hr) 1	(tpy) ²		
NO_x	4.24	18.55	4.24	18.55		
СО	7.82	34.25	7.82	34.25		
PM ₁₀ Total	0.25	1.08	0.25	1.08		
SO_2	7.48E-03	3.28E-02	7.48E-03	3.28E-02		
VOC	0.57	2.50	0.57	2.50		

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² The controlled emission factors are based upon catalytic converter removal efficiencies (by weight) of 90% for NOx, 80% for CO and 50% for VOCs.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Table B-6a. Natural Gas Fired Boilers/Process Heaters Emission Factors and Short Term Emission Rates

Pollutant	Emission	Emission	Emission	Per Unit Emission	Rates 1 (lb/hr)	
	Factor	Factor Units	Factor Basis	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr
NO _x	100.0	lb/MM scf	AP-42, T 1.4-1	0.15	0.10	0.05
CO	84.0	lb/MM scf	AP-42, T 1.4-1	0.12	0.08	0.04
PM ₁₀ Total	7.6	lb/MM scf	AP-42, T 1.4-2	1.12E-02	7.45E-03	3.73E-03
SO ₂	0.6	lb/MM scf	AP-42, T 1.4-2	8.82E-04	5.88E-04	2.94E-04
VOC	5.5	lb/MM scf	AP-42, T 1.4-2	8.09E-03	5.39E-03	2.70E-03
Lead	5.00E-04	lb/MM scf	AP-42, T 1.4-2	7.35E-07	4.90E-07	2.45E-07

¹ The per unit emission rates have been determined based upon a natural gas heating value of 1,020 Btu/scf.

Natural Gas Fired Boilers - Short Term and Long Term Emission Rates

Pollutant	Annual Emission Ra	ates Per Unit (tpy) 1	Totals for All Units (9 Units) 2		
	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr	(lb/hr)	(tpy)
NO_x	0.64	0.43	0.21	0.88	3.86
CO	0.54	0.36	0.18	0.74	3.25
PM ₁₀ Total	0.05	0.03	0.02	0.07	0.29
SO_2	3.86E-03	2.58E-03	1.29E-03	0.01	0.02
VOC	0.04	0.02	0.01	0.05	0.21
Lead	3.22E-06	2.15E-06	1.07E-06	4.41E-06	1.93E-05

Annual emission rates are based upon continuous operation at rated capacity.

Potential Facility Short Term & Annual Emission Rates - Wilderness CO2 Plant

Pollutant	All RICE Engines		All Process Heaters		Storage Vessel	All Equipment	
The state of the s	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy) See E&P Run	(lb/hr)	(tpy)
NO_x	23.66	103.63	0.88	3.86		24.54	107.49
CO	24.72	108.26	0.74	3.25		25.46	111.51
PM ₁₀ Total	0.61	2.66	0.07	0.29		0.67	2.95
SO_2	0.03	0.13	0.01	0.02		0.03	0.15
VOC	11.47	50.23	0.05	0.21	0.53	11.52	50.97
Lead			4.41E-06	1.93E-05		4.41E-06	1.93E-05
Max. Single HAP (Toluene)						0.00	0.00
Aggregate HAPs	0.51	2.23	0.02	0.07		0.52	2.30

² The total emission rates are based upon three (3) 1.5 MM Btu/hr units, three (3) 1.0 MM Btu/hr units, and three (3) 0.5 MM Btu/hr units.

Quicksilver Resources Incorporated Analysis of Engine Controls Needed to Be a Minor Source of HAP

Uncontrolled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines

Hazardous Air Pollutant CAS Registr Numbe	CAS			CAT 3510	CAT 3516 (1150 HP) Emission Rates (1 Unit)		Waukesha L7042GSI Emission Rates (1 Units)		Total Potential	
	Registry			Emission Rates (Emission Rates (5 Units)	
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99	
HAP Totals		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39	

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (1 Controlled 1085 HP Unit)

Hazardous Air Pollutant Reg	CAS	istry Emission Rates (3 Units)		CAT 3510	CAT 3516 (1150 HP)		Waukesha L7042GSI		Total Potential	
	Registry			Emission Rates (1 Unit)		Emission Rates (1 Units)		Emission Rates (5 Units)		
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	1.50	6.55	0.63	2.78	0.08	0.36	2.21	9.68	
HAP Totals		2.01	8.81	0.82	3.57	0.16	0.69	2.99	13,08	

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (2 Controlled 1085 HP Units)

Hazardous Air Pollutant Reg	CAS	CAT 3516 (1085 HP)		CAT 351	CAT 3516 (1150 HP) Emission Rates (1 Unit)		L7042GS1	Total Potential	
	Registry	Emission Rates (ission Rates (3 Units)				Emission Rates (1 Units)		Emission Rates (5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.20	5.24	0.63	2.78	0.08	0,36	1.91	8.37
HAP Totals		1.71	7.50	0.82	3.57	0.16	0.69	2.69	11.77

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (3 Controlled 1085 HP Units)

Hazardous Air Pollutant Re	CAS	CAT 3516 (1085 HP)		CAT 351	CAT 3516 (1150 HP)		Waukesha L7042GSI		Total Potential	
	Registry	Emission Rates (3	Units)	Emission Rates (1 Unit)		Emission Rates (1 Units)		Emission Rates (5 Units)		
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	0.90	3.93	0.63	2.78	0.08	0.36	1.61	7.06	
HAP Totals		1.41	6.19	0.82	3.57	0.16	0.69	2.39	10.46	

HAP Emission Factors and Emission Rates for Natural Gas Fired RICE

	CAS	Engine 9. F-	ission Factor ¹	(lb/MMD++)
Hazardous				1
Air Pollutant	Registry	2-Stroke	4-Stroke	4-Stroke
	Number	Lean-Burn	Lean-Burn	Rich-Burn
1,1,2,2-Tetrachloroethane	79-34-5	6.63E-05	4.00E-05	2.53E-05
1,1,2-Trichloroethane	79-00-5	2.57E-05	3.18E-05	1.53E-05
1,1,-Dichloroethane	75-34-3	3.91E-05	2.36E-05	1.13E-05
1,2,3-Trimethylbenzene	526-73-8	3.54E-05	2.30E-05	
1,2,4-Trimethylbenzene	95-36-3	1.11E-04	1.43E-05	
1,2-Dichloroethane	107-06-2	4.22E-05	2.36E-05	1.13E-05
1,2-Dichloropropane	78-87-5	4.46E-05	2.69E-05	1.13E-05
1,3,5-Trimethylbenzene	108-67-8	1.80E-05	3.38E-05	
1,3-Butadiene	106-99-0	8.20E-04	2.67E-04	6.63E-04
1,3-Dichloropropene	542-75-6	4.38E-05	2.64E-05	1.27E-05
2,2,4-Trimethylpentane	540-84-1	8.46E-04	2.50E-04	
2-Methylnaphthalene	91-57-6	2.14E-05	3.32E-05	
Acenaphthene	83-32-9	1.33E-06	1.25E-06	T
Acenaphthylene	208-96-8	3.17E-06	5.53E-06	
Acetaldehyde	75-07-0	7.76E-03	8.36E-03	2.79E-03
Acrolein	107-02-8	7.78E-03	5.14E-03	2.63E-03
Anthracene	120-12-7	7.18E-07	J.14E-03	2.03E-03
	56-55-3	3.36E-07		
Benz(a)anthracene			4.40E.04	1.500.03
Benzene	71-43-2	1.94E-03	4.40E-04	1.58E-03
Benzo(a)pyrene	50-32-8	5.68E-09		
Benzo(b)fluoranthene	205-99-2	8.51E-09	1.66E-07	
Benzo(e)pyrene	192-97-2	2.34E-08	4.15E-07	
Benzo(g,h,i)perylene	191-24-2	2.48E-08	4.14E-07	
Benzo(k)fluroanthene	205-82-3	4.26E-09		
Biphenyl	92-52-4	3.95E-06	2.12E-04	
Butane	106-97-8	4.75E-03	5.41E-04	
Butyr/Isobutyraldehyde	23-72-8/78-84-	4.37E-04	1.01E-04	
Carbon Tetrachloride	56-23-5	6.07E-05	3.67E-05	1.77E-05
Chlorobenzene	108-90-7	4.44E-05	3.04E-05	1.29E-05
Chloroethane	75-00-3	-	1.87E-06	
Chloroform	67-66-3	4.71E-05	2.85E-05	1.37E-05
Chrysene	218-01-9	6.72E-07	6.93E-07	
Cvclohexane		3.08E-04		
Cyclopentane	287-92-3	9.47E-05	2.27E-04	
Ethane	74-84-0	7.09E-02	1.05E-01	7.04E-02
Ethylbenzene	100-41-4	1.08E-04	3.97E-05	2,48E-05
Ethylene Dibromide	106-93-4	7.34E-05	4.43E-05	2.13E-05
Fluoranthene	206-44-0	3.61E-07	1.11E-06	2.13E-03
Fluorene	86-73-7	1.69E-06	5.67E-06	
Formaldehyde	50-00-0	5.52E-02	5.07E-00 5.28E-02	2.05E-02
maldehyde (Wauk 7042 GSI) 3	50-00-0			5.00E-02
Formaldehyde (CAT 3516) 4	50-00-0		2.50E-01	
Indeno(1,2,3-c,d)pyrene	193-39-5	9.93E-09		
Isobutane		3.75E-03		
Methanol	67-56-1	2.48E-03	2.50E-03	3.06E-03
Methylcyclohexane	108-87-2	3.38E-04	1.23E-03	
Methylene Chloride	75-09-2	1.47E-04	2.00E-05	4.12E-05
n-Hexane	110-54-3	4.45E-04	1.11E-03	
n-Nonane	111-84-2	3.08E-05	1.10E-04	
n-Octane	111-65-9	7.44E-05	3.51E-04	
n-Pentane	109-66-0	1.53E-03	2.60E-03	
	91-20-3			9.71E-05
Naphthalene		9.63E-05	7.44E-05	
PAH	85-01-8	1.34E-04	2.69E-05	1.41E-04
Perylene	198-55-0	4.47E-09	104E05	
Phenanthrene	85-01-8	3.53E-06	1.04E-05	
Phenol	108-95-2	4.21E-05	2.40E-05	
Propane	74-98-6	2.87E-02	4.19E-02	
	129-00-0	5.84E-07	1.36E-06	
Pyrene			2.245.05	1 10E 05
	100-42-5	5.48E-05	2.36E-05	1.19E-05
Pyrene		5.48E-05	2.36E-05 2.48E-06	
Pyrene Styrene	100-42-5	5.48E-05 9.63E-04		5.58E-04
Pyrene Styrene Tetrachloroethane	100-42-5 630-20-6		2.48E-06	
Pyrene Styrene Tetrachloroethane Toluene	100-42-5 630-20-6 108-88-3	9.63E-04	2.48E-06 4.08E-04	5.58E-04

The HAP emission factors are based upon the Trace Organic Compound emissions factors of AP-42 Chapter 3.2. Specifically, the emission factors represent 2-stroke lean-burn, 4-stroke lean-burn, and 4-stroke rich-burn natural gas fired reciprocating engines, and the factors are taken from the AP-42 document (7/00 revision), Tables 3.2-1, 3.2-2, and 3.2-3, respectively.

² The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

³ This is a vendor (Waukesha) supplied emission factor; the unit of the factor is g/bhp-hr.

⁴ This is a vendor (Caterpillar) supplied emission factor for the lean burn 3516 engines; the unit of the factor is g/bhp-hr.

Engine Make Engine Model Rated Output Per RICE Rated Heat Input Per RICE Natural Gas Heating Value Number of RICE Annual Operation Per RICE Catalytic Converter Generic HAP Removal Eff. RICE Engine Configuration

	Waukesha	Caterpillar	Caterpillar
	L 7042 GSI	3516 TALE	3516 TALE
	1478	1150	1085
	12.72	9.39	8.89
	1,020	1,020	1,020
	1	1	3
	8,760	8,760	8,760
	Yes	No	No
	50%	0%	0%
_	3	2	2

sepower A Btu/hour (HHV basis) /scf ırs/year tless y weight

2-stroke lean-burn, 2 = 4-stroke lean-burn, and 3 =

4-stroke rich-burn

Hazardous Air Pollutant/	CAS Registry	CAT 3516 (1085 HP) Emission Rates ^{2, 3} (3 Units)		CAT 3516 (115		Waukesha L7042GSI Emission Rates ^{2, 3} (3 Units)		Total Potential Emission Rates (6 Un	
Toxic Air Contaminant 1	Number			Emission Rate					_
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
1,1,2,2-Tetrachloroethane	79-34-5	1.07E-03	4.67E-03	3.75E-04	1.64E-03	1.61E-04	7.05E-04	1.60E-03	7.02E-0
1,1,2-Trichloroethane	79-00-5	8.48E-04	3.72E-03	2.98E-04	1.31E-03	9.73E-05	4.26E-04	1.24E-03	5.45E-0
1,1,-Dichloroethane	75-34-3	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-0
1,2,3-Trimethylbenzene	526-73-8	6.14E-04	2.69E-03	2.16E-04	9.46E-04			8.29E-04	3.63E-0
1,2,4-Trimethylbenzene	95-36-3	3.81E-04	1.67E-03	1.34E-04	5.88E-04			5.16E-04	2.26E-0
1,2-Dichloroethane	107-06-2	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-0
1,2-Dichloropropane	78-87-5	7.18E-04	3.14E-03	2.52E-04	1.11E-03	7.19E-05	3.15E-04	1.04E-03	4.56E-0
1,3,5-Trimethylbenzene	108-67-8	9.02E-04	3.95E-03	3.17E-04	1.39E-03			1.22E-03	5.34E-0
1,3-Butadiene	106-99-0	7.12E-03	3.12E-02	2.51E-03	1.10E-02	4.22E-03	1.85E-02	1.38E-02	6.06E-0
1,3-Dichloropropene	542-75-6	7.04E-04	3.08E-03	2.48E-04	1.09E-03	8.08E-05	3.54E-04	1.03E-03	4.52E-0
2,2,4-Trimethylpentane	540-84-1	6.67E-03	2.92E-02	2.35E-03	1.03E-02			9.02E-03	3.95E-0
2-Methylnaphthalene	91-57-6	8.86E-04	3.88E-03	3.12E-04	1.36E-03			1.20E-03	5.24E-0
Acenaphthene	83-32-9	3.33E-05	1.46E-04	1.17E-05	5.14E-05			4.51E-05	1.97E-0
Acenaphthylene	208-96-8	1.48E-04	6.46E-04	5.19E-05	2.27E-04			1.99E-04	8.73E-0
Acetaldehyde	75-07-0	2.23E-01	9.77E-01	7.85E-02	3.44E-01	1.77E-02	7.77E-02	3.19E-01	1.40E+0
Acrolein	107-02-8	1.37E-01	6.01E-01	4.82E-02	2.11E-01	1.67E-02	7.33E-02	2.02E-01	8.85E-0
Anthracene	120-12-7								
Benz(a)anthracene	56-55-3	1 100 00	6148.00	4 100 00	1015.00	1.000.00	1.107.02	2 500 00	1
Benzene	71-43-2	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.59E-02	1.14E-0
Benzo(a)pyrene	50-32-8	1.125.05	1015.05	1.505.00	6 00F 06			5.000.07	0.707.0
Benzo(b)fluoranthene	205-99-2	4.43E-06	1.94E-05	1.56E-06	6.82E-06			5.99E-06	2.62E-0
Benzo(e)pyrene	192-97-2	1.11E-05	4.85E-05	3.90E-06	1.71E-05			1.50E-05	6.55E-0
Benzo(g,h,i)perylene	191-24-2	1.10E-05	4.84E-05	3.89E-06	1.70E-05			1.49E-05	6.54E-0
Benzo(k)fluroanthene	205-82-3 92-52-4	5.66E-03	2.48E-02	1.99E-03	8.72E-03			7.64E-03	3.35E-0
Biphenyl	106-97-8	1.44E-02		5.08E-03	2.22E-02			1.95E-02	8.54E-0
Butane		1.44E-02	6.32E-02	3.00E-03	4.22E-02			1.93E-02	0.34E-U
Butyr/Isobutyraldehyde	123-72-8/ 78-84-2	2.69E-03	1.18E-02	9.48E-04	4.15E-03			3.64E-03	1.60E-0
Carbon Tetrachloride	56-23-5	9.79E-04	4.29E-03	3,44E-04	1.51E-03	1.13E-04	4.93E-04	1.44E-03	6.29E-0
Chlorobenzene	108-90-7	8.11E-04	3.55E-03	2.85E-04	1.25E-03	8.20E-05	3.59E-04	1.18E-03	5.16E-0
Chloroethane	75-00-3	4.99E-05	2.18E-04	1.76E-05	7.69E-05	0.202.02	0.000	6.74E-05	2.95E-0
Chloroform	67-66-3	7,60E-04	3.33E-03	2.68E-04	1.17E-03	8.71E-05	3.82E-04	1.11E-03	4.88E-0
Chrysene	218-01-9	1.85E-05	8.10E-05	6.50E-06	2.85E-05			2.50E-05	1.09E-0
Cyclohexane									
Cyclopentane	287-92-3	6.06E-03	2.65E-02	2.13E-03	9.33E-03			8.19E-03	3.59E-0
Ethane	74-84-0	2.80E+00	1.23E+01	9.86E-01	4.32E+00	4.48E-01	1.96E+00	4.23E+00	1.85E+0
Ethylbenzene	100-41-4	1.06E-03	4.64E-03	3.73E-04	1.63E-03	1.58E-04	6.91E-04	1.59E-03	6.96E-0
Ethylene Dibromide	106-93-4	1.18E-03	5.18E-03	4.16E-04	1.82E-03	1.35E-04	5.93E-04	1.73E-03	7.59E-0
Fluoranthene	206-44-0	2.96E-05	1.30E-04	1.04E-05	4.56E-05			4.00E-05	1.75E-0
Fluorene	86-73-7	1.51E-04	6.62E-04	5.32E-05	2.33E-04			2.04E-04	8.96E-0
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
Indeno(1,2,3-c,d)pyrene	193-39-5								
Isobutane					140				
Methanol	67-56-1	6.67E-02	2.92E-01	2.35E-02	1.03E-01	1.95E-02	8.52E-02	1.10E-01	4.80E-0
Methylcyclohexane	108-87-2	3.28E-02	1.44E-01	1.15E-02	5.06E-02			4.44E-02	1.94E-0
Methylene Chloride	75-09-2	5.33E-04	2.34E-03	1.88E-04	8.22E-04	2.62E-04	1.15E-03	9.83E-04	4.31E-0
n-Hexane	110-54-3	2.96E-02	1.30E-01	1.04E-02	4.56E-02			4.00E-02	1.75E-0
n-Nonane	111-84-2	2.93E-03	1.29E-02	1.03E-03	4.52E-03			3.97E-03	1.74E-0
n-Octane	111-65-9	9.36E-03	4,10E-02	3.29E-03	1.44E-02			1.27E-02	5.54E-0
n-Pentane	109-66-0	6.94E-02	3.04E-01	2.44E-02	1.07E-01			9.38E-02	4.11E-0
Naphthalene	91-20-3	1.98E-03	8.69E-03	6.98E-04	3.06E-03	6.18E-04	2.70E-03	3.30E-03	1.45E-0
PAH	85-01-8	7.18E-04	3.14E-03	2.52E-04	1.11E-03	8.97E-04	3.93E-03	1.87E-03	8.18E-0
Perylene	198-55-0								and the same
Phenanthrene	85-01-8	2.77E-04	1.22E-03	9.76E-05	4.28E-04			3.75E-04	1.64E-0
Phenol	108-95-2	6.40E-04	2.80E-03	2.25E-04	9.87E-04			8.65E-04	3.79E-0
Propane	74-98-6	1.12E+00	4.90E+00	3.93E-01	1.72E+00		and an interest	1.51E+00	6.62E+6
Pyrene	129-00-0	3.63E-05	1.59E-04	1.28E-05	5.59E-05			4.90E-05	2.15E-0
Styrene	100-42-5	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.57E-05	3.32E-04	9.27E-04	4.06E-0
Tetrachloroethane	630-20-6	6.62E-05	2.90E-04	2.33E-05	1.02E-04			8.94E-05	3.92E-0
Toluene	108-88-3	1.09E-02	4.77E-02	3.83E-03	1.68E-02	3.55E-03	1.55E-02	1.83E-02	8.00E-0
Vinyl Chloride	75-01-4	3.97E-04	1.74E-03	1.40E-04	6.13E-04	4.57E-05	2.00E-04	5.83E-04	2.55E-0
Xylene	1330-20-7	4.91E-03	2.15E-02	1.73E-03	7.56E-03	1.24E-03	5.43E-03	7.88E-03	3.45E-0
HAP Totals		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

² The lb/hr emission rates are for multiple similar units and based upon the maximum rated capacity of the engines, on a higher heating value basis.

³ Annual emission rates are based upon continuous operation at rated capacity.

Summary of Potential Natural Gas-Fired Heater HAP Emissions

Wilderness CO₂ - HAP Emission Estimates from Natural Gas Fired Heaters

Rated Heat Input Per Boiler	8.00	MM Btu/hour
Natural Gas Heating Value	1,020	Btu/scf
Annual Operation Per Boiler	8,760	hours/year

Natural Gas Fired Boiler (Heater) HAP Emission Factors¹ and Emission Rates

Hazardous	CAS	Emission	Potential	Potential
Air Pollutant	Registry	Factor 1	Emission Rate	Emission Rate
Air Foliutant	Number	(lb/MM scf)	(lb/hour)	(tons/year)
2-Methylnaphthalene	91-57-6	2.40E-05	1.88E-07	8.24E-07
3-Methylchloroanthrene	56-49-5	1.80E-06	1.41E-08	6.18E-08
12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.25E-07	5.50E-07
Acenaphthene	83-32-9	1.80E-06	1.41E-08	6.18E-08
Acenaphthylene	203-96-8	1.80E-06	1.41E-08	6.18E-08
Anthracene	120-12-7	2.40E-06	1.88E-08	8.24E-08
Benz(a)anthracene	56-55-3	1.80E-06	1.41E-08	6.18E-08
Benzene	71-43-2	2.10E-03	1.65E-05	7.21E-05
Benzo(a)pyrene	50-32-8	1.20E-06	9.41E-09	4.12E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.41E-08	6.18E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	9.41E-09	4.12E-08
Benzo(k)fluroanthene	205-82-3	1.80E-06	1.41E-08	6.18E-08
Butane	106-97-8	2.10E+00	1.65E-02	7.21E-02
Chrysene	218-01-9	1.80E-06	1.41E-08	6.18E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	9.41E-09	4.12E-08
Dichlorobenzene	25321-22-6	1.20E-03	9.41E-06	4.12E-05
Ethane	74-84-0	3.10E+00	2.43E-02	1.06E-01
Fluoranthene	206-44-0	3.00E-06	2.35E-08	1.03E-07
Fluorene	86-73-7	2.80E-06	2.20E-08	9.62E-08
Formaldehyde	50-00-0	7.50E-02	5.88E-04	2.58E-03
Hexane	110-54-3	1.80E+00	1.41E-02	6.18E-02
Indeno(1,2,3-c,d)pyrene	193-39-5	1.80E-06	1.41E-08	6.18E-08
Naphthalene	91-20-3	6.10E-04	4.78E-06	2.10E-05
Pentane	109-66-0	2.60E+00	2.04E-02	8.93E-02
Phenanthrene	85-01-8	1.70E-05	1.33E-07	5.84E-07
Propane	74-98-6	1.60E+00	1.25E-02	5.50E-02
Pyrene	129-00-0	5.00E-06	3.92E-08	1.72E-07
Toluene	108-88-3	3.40E-03	2.67E-05	1.17E-04
Arsenic	7440-38-2	2.00E-04	1.57E-06	6.87E-06
Barium	7440-39-3	4.40E-03	3.45E-05	1.51E-04
Beryllium	7440-41-7	1.20E-05	9.41E-08	4.12E-07
Cadmium	7440-43-9	1.10E-03	8.63E-06	3.78E-05
Chromium	16065-83-1	1.40E-03	1.10E-05	4.81E-05
Cobalt	7440-48-4	8.40E-05	6.59E-07	2.89E-06
Copper	7440-50-8	8.50E-04	6.67E-06	2.92E-05
Lead	7439-92-1	5.00E-04	3.92E-06	1.72E-05
Manganese	7439-96-5	3.80E-04	2.98E-06	1.31E-05
Mercury	7439-97-6	2.60E-04	2.04E-06	8.93E-06
Molybdenum	7439-98-7	1.10E-03	8.63E-06	3.78E-05
Nickel	7440-02-0	2.10E-03	1.65E-05	7.21E-05
Selenium	7782-49-2	2.40E-05	1.88E-07	8.24E-07
Vanadium	7440-62-2	2.30E-03	1.80E-05	7.90E-05
Zinc	7440-66-6	2.90E-02	2.27E-04	9.96E-04
Total HAP Emissions		1.888	0.015	0.065

¹ The boiler HAP emission factors are based upon the AP-42 document (7/98 revision). Specifically, the organic emission factors are from Table 1.4-3, while the metallic emission factors are from Table 1.4-4.

File: Wilderness_CO2_ Hayes 29 Emissions Calcs Tab: Gas Combust HAPs

E&P Tanks - Partitioning Calculations for Flashing and W&S VOC Emissions Hayes 29 PTE Calculation - Tanks

No. Component	(lb/lbmol)	Mole % Mole	Mole %	Mole %	Mole %	Mole % alom % alom	Mole %	Majoht %	Woight %
1 H2S	34.8	0	0	0	0	0	0	Weight 70	NACIBILITY OF THE PARTY OF THE
2 02	32	0	0	0	0	0	0	1	
3 CO2	44.01	0.023	0.0068	0	0.5318	0.0001	0.4171	0.5613	0.0001
4 N2	28.01	0.042	0.0016	0	1.3153	0.0001	1.0317	0.8835	0.0000
5 C1	16.04	0.371	0.0521	0	10.4096	0.0001	8.165	4.0041	0.0000
6 62	30.07	1.853	0.9722	0	29.5803	0.0001	23.2019	21.3304	0.0000
7 3	44.1	4.981	4.1005	0	32.7002	0	25.649	34.5822	1
8 i-c4	58.12	2.598	2.4344	0	7.7475	0	6920.9	10.7982	
9 n-C4	58.12	5.018	4.8506	1.2058	10.2876	26.9759	13.8861	14.3385	21.7002
10 i-C5	72.15	4.61	4.6373	3.4343	3.7504	31.5364	9.742	6.4890	31.4928
11 n-C5	72.15	3.741	3.7884	3.189	2.2484	21.8852	6.4828	3.8902	21.8549
12 C6	84	2.77	2.8419	3.025	0.5071	6.5264	1.8051	1.0215	7.5878
13 Benzene	78.11	0.45	0.4624	0.5055	9090.0	0.7986	0.2197	0,1135	0.8634
14 Toluene	92.14	1.823	1.8788	2.1645	0.0675	0.9727	0.2627	0.1491	1.2405
15 E-Benzene	106.17	0.688	0.7096	0.8288	0.0083	0.1256	0.0336	0.0211	0.1846
16 Xylenes	106.17	2.134	2.2011	2.5735	0.0219	0.3385	0.0901	0.0558	0.4974
17 n-C6	86.18	2.657	2.7264	2.9084	0.4733	6.1972	1.7075	0.9782	7.3920
18 224Trimethylp	114.23	0.021	0.0216	0.0245	0.0014	0.0194	0.0053	0.0038	0.0307
19 Pseudo Comp1	111.19	25.5793	26.3828	30.8224	0.2865	4.582	1.2127	0.7639	7.0515
20 Pseudo Comp2	172.7	16.727	17.2583	20.2975	0.0023	0.0417	0.0108	0.0095	0.0997
21 Pseudo Comp3	252.37	11.2636	11.6214	13.6692	0	0.0001	0	t	0.0003
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0	0	0		
23 Pseudo Comp5	551.71	4.8586	5.013	5.8963	0	0	0		1
Totals:		100 00	100 00	100 00	100 00	100 00	100 00	99 99	100 00

						Total
	LP Oil	Flash oil		Sales oil Flash Gas	W&S gas	Emission
MW (lb/lbmol):	162.79	166.64	185.19	41.7	72.25	48.28
Stream Mole Ratio:	1	0.9692	0.9607	0.0308	0.0085	0.0393
Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61	1.9
Total Emission (ton):				0.729	0.347	1.076
Heating Value (BTU/scf):				2348.9	3960.01	2696.31
Gas Gravity (Gas/Air):				1.44	2.49	1.67
Bubble Pt. @100F (psia):	44.95	21.6	2.36			
RVP @100F (psia):	136.62	98.9	15.52			
Spec. Gravity @100F:	0.85	0.85	0.87			

W&S Gas 100.00

Flash Gas 73.21 0.53

VOC Weight % = VOC tpy =

HAYES 29 PTE

```
***********************
    Project Setup Information
*******************
Project File : S:\MICHIGAN\Air Quality\E&P Tank Runs\HAYES 29.ept3
Flowsheet Selection : Oil Tank with Separator
Calculation Method : AD42
Calculation Method
                        : AP42
Control ETTICIENCY : 0.00%

Known Separator Stream : Low Pressure Oil
Entering Air Composition : No

Component Group
Component Group
                        : HAYES 29 - WILD CO2 TANK
: HAYES 29 TANK
Filed Name
Well Name
Permit Number
                         : N5831
Date
                         : 2018.10.18
**********************
    Data Input
******************
                               : 30.00 Actual Conditions,
: 75.0
: 0.89 Per operator.
Separator Pressure (psia)
Separator Temperature (F)
C10+ SG
C10+ MW(lb/lbmol)
                                : 260.00
-- Low Pressure Oil
                       Mole% Wt%
     Component
No.
                          0.0000 0.0000
     H2S
1
2
                            0.0000
                                   0.0000
     02
3
     CO2
                            0.0230
                                    0.0062
4
                            0.0420
                                    0.0072
     N2
5
                            0.3710
     C1
                                    0.0363
6
     C2
                           1.8530
                                    0.3395
     C3
7
                           4.9810
                                    1.3383
                                    0.9200
8
                           2.5980
     i-C4
     n-C4
9
                           5.0180
                                    1.7769
10
     i-C5
                           4.6100
                                    2.0265
                           3.7410
11
     n-C5
                                    1.6445
12
                           2.7700
                                    1.4541
     C6
                           8.0450
13
                                    4.9114
     C7
                           7.7830
                                    5.4168
14
     C8
                           5.2050
45.1870
15
     C9
                                    4.0681
                                   71.5815
0.2142
16
     C10+
17
                            0.4500
     Benzene
                           1.8230
                                    1.0233
18
     Toluene
19
                           0.6880
                                    0.4450
     E-Benzene
                           2.1340
                                    1.3804
20
     Xylenes
                           2.6570
                                    1.3951
21
     n-C6
22
     224Trimethylp
                           0.0210
                                    0.0146
-- Sales Oil
Production Rate (bbl/day) : 2.00
Days of Annual Operation : 365
```

Page 1

```
HAYES 29 PTE
API Gravity : 46.00 Reid Vapor Pressure (psia) : 7.70 Bulk Temperature : 80.0
-- Tank and Shell Data
Diameter (ft) : 21.00
Shell Height (ft) : 16.00
Cone Roof Slope : 0.06
Average Liquid Height (ft) : 8.00
Vent Pressure Range (psia) : 0.06
Solar Absorbance : 0.54
Page 1----- E&P TANK
-- Meteorological Data
City : Homer, AK
Min Ambient Temperature (F) : 29.5
Max Ambient Temperature (F) : 43.6
Total Solar Insolation (F) : 831.00
Ambient Pressure (psia) : 14.70
Ambient Temperature (F) : 70.0
**************************
     Calculation Results
-- Emission Summary
______
               Uncontrolled
                    ton
                 0.0450
 Total HAPs
 Total HC
                    1.0660
 VOCs, C2+
VOCs, C3+
                    1.0370
                    0.8810
 C02
                    0.0040
                    0.0290
 CH4
Uncontrolled Recovery Information:
Vapor(mscfd): 0.0463
HC Vapor(mscfd): 0.0456
CO2(mscfd): 0.0000
CH4(mscfd):
                    0.0000
GOR(SCF/STB):
                    23.1450
-- Emission Composition
                       Uncontrolled
  NoComponent
                         ton
                        0.0000
   1 H2S
                        0.0000
   2 02
   3 CO2
                        0.0040
   4 N2
                        0.0060
   5 C1
                        0.0290
   6 C2
                        0.1560
   7 C3
                        0.2520
                        0.0790
   8 i-C4
```

Page 2

0.1800

9 n-c4

HAYES 29 PTE

10 i-c5	0.1570
11 n-C5	0.1040
12 C6	0.0340
13 Benzene	0.0040
14 Toluene	0.0050
15 E-Benzene	0.0010
16 Xylenes	0.0020
17 n-C6	0.0330
18 224Trimethylp	0.0000
19 Pseudo Comp1	0.0300
20 Pseudo Comp2	0.0000
21 Pseudo Comp3	0.0000
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.0760

-- Stream Data

NoCompone	ent MW	LP Oil	Flash Oil	Sales Oil	Flash Gas	w&s
	tal Emission lb/l	bmol mole %	mole %	mole %	mole %	mole
% mole 1 H2S	34 80	0.0000	0.0000	0.0000	0.0000	
% 1 H2S 0.0000 2 02 0.0000	32.00	0.0000	0.0000	0.0000	0.0000	
0.0000 3 CO2	0.0000 32.00 0.0000 44.01 0.4171 28.01	0.0230	0.0068	0.0000	0.5318	
0.0001 4 N2	0.4171 28.01	0.0420	0.0016	0.0000	1.3153	
0.0001 5 C1	1.0317 16.04	0.3710	0.0521	0.0000	10.4096	
0.0001 6 C2	8.1650 30.07	1.8530	0.9722	0.0000	29.5803	
).0001 Page 2	23.2019	0.0420			E&P T	ANK
7 (2	44 10	4 0910				
0.0000 8 i-c4	25.6490 58.12 6.0769	2.5980	2.4344	0.0000	7.7475	
9 n-C4	58 17	5.0180				
26.9759 10 i-c5 31.5364	13.8861 72.15	4.6100	4.6373	3.4343	3.7504	
31.5364 11 n-C5	9.7420 72.15	3.7410	3.7884	3.1890	2.2484	
11 n-c5 21.8852 12 C6		2.7700	2.8419	3.0250	0.5071	
5.5264 13 Benzer	1.8051 ne 78.11		0.4624	0.5055	0.0606	
0.7986 14 Toluer	0.2197 ne 92.14	1.8230	1.8788	2.1645	0.0675	
).9727 15 E-Benz	0.2627	7 0.6880	0.7096	0.8288	0.0083	
0.1256 16 XVlene	0.0336			2.5735		
0.3385 17 n-C6 5. 1972	0.0901 86.18	2.6570				
5.1972 18 224Tr	1.7075 imethvlp 114.2	3 0.0210				
0.0194	0.0053 Compl 111.1			30.8224		
4.5820	1.2127		2			

Page 3

	HAVES	29 PTE			
20 Pseudo Comp2 172.70	16.7270	17.2583	20.2975	0.0023	
0.0417	11.2636	11.6214	13.6692	0.0000	
0.0001 0.0000 22 Pseudo Comp4 350.06	7.7914	8.0389	9.4554	0.0000	
0.0000 0.0000 23 Pseudo Comp5 551.71 0.0000 0.0000	4.8586	5.0130	5.8963	0.0000	
a	LP Oil	Flash Oil	Sales Oil	Flash Gas	w&s
Gas Total Emission MW (lb/lbmol):	162.79	166.64	185.19	41.70	72.25
48.28 Stream Mole Ratio:	1.0000	0.9692	0.9607	0.0308	
0.0085 0.0393 Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61
1.90 Total Emission (ton):				0.729	0.347
1.076 Heating Value (BTU/scf):				2348.90	
3960.01 2696.31 Gas Gravity (Gas/Air):				1.44	2.49
1.67 Bubble Pt. @100F (psia):	44.95	21.60	2.36		
RVP @100F (psia):	136.62	98.90	15.52		
Spec. Gravity @100F:	0.85	0.85	0.87		

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30 NIAGRAI

Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank

Cylinder No: 004780

Analyzed:

11/13/2015 11:56:29

Sampled By:

GL

Sample Of: Sample Date: Liquid Spot

11/05/2015

Sample Conditions: 28 psig, @ 65 °F

Method:

GPA 2103M

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.042	28.013	0.007	0.807	0.007	
Methane	0.371	16.043	0.035	0.300	0.094	
Carbon Dioxide	0.023	44.010	0.006	0.817	0.006	
Ethane	1.853	30.069	0.328	0.356	0.741	
Propane	4.981	44.096	1.293	0.507	2.050	
Iso-Butane	2.598	58.122	0.889	0.563	1.269	
n-Butane	5.018	58.122	1.717	0.584	2.363	
Iso-Pentane	4.610	72.149	1.958	0.625	2.518	
n-Pentane	3.741	72.149	1.589	0.631	2.025	
i-Hexanes	2.770	85.181	1.389	0.667	1.675	
n-Hexane	2.657	86.175	1.348	0.664	1.632	
2,2,4-Trimethylpentane	0.021	114.231	0.014	0.697	0.016	
Benzene	0.450	78.114	0.207	0.885	0.188	
Heptanes	8.045	96.207	4.557	0.709	5.168	
Toluene	1.823	92.141	0.989	0.872	0.911	
Octanes	7.783	110.485	5.062	0.728	5.592	
Ethylbenzene _	0.688	106.167	0.430	0.872	0.396	
Xylenes	2.134	106.167	1.334	0.872	1.229	
Nonanes	5.205	127.121	3.895	0.740	4.233	
Decanes Plus	45.187	274.224	72.953	0.864	67.887	
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F		0.	8039	0.8638		
API Gravity at 60°F		44	1.526	32.311		
Molecular Weight		169	9.858	274.224		
Pounds per Gallon (in Vacuu	ım)	6	3.702	7.202		
Pounds per Gallon (in Air)		6	3.695	7.194		
Cu. Ft. Vapor per Gallon @	14.73 psia	14	1.938	9.943		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30

Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank

Cylinder No: 004780

Sampled By:

GL

Liquid

Spot

Sample Of: Sample Date:

11/05/2015

Sample Conditions: 28 psig, @ 65 °F

Analytical Data

Test	Method	Result	Units	Detection Limit		Analysis Date
Shrinkage Factor	Proprietary	0.9848			SM	11/16/2015
Flash Factor	Proprietary	17.6105	Cu.Ft./STBbl.		SM	11/16/2015
Color Visual	Proprietary	Straw			SM	11/16/2015
API Gravity @ 60° F	ASTM D-4052	42.76	0		MM	11/19/2015

RENEWABLE OPERATING PERMIT APPLICATION Al-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

	SRN: 5831	Section Number (if applicab	le): 1
Additional Information ID Al-CAM			
Additional Information			
2. Is This Information Confidential?		☐ Yes ⊠ N	lo
Attached is a Complaince Assurance Monitoring Appli	cability summary for	EUENGINE6.	
			(
ts.			
		9	,
		•	
			en en
		Page	of

DEQ Environmental Assistance Center Phone: 800-662-9278

Compliance Assurance Monitoring (CAM) Plan Breitburn Operating Company, L.P. Wilderness/Hayes 29 Facility **EUENGINE6**

I. BACKGROUND

Emission Units

Description:

Waukesha L 7042 GSI compressor engine, rated at 1,478 hp, and equipped with a

3-way catalyst to control emissions of nitrogen oxides (NO_x), carbon monoxide

(CO), and volatile organic compounds (VOCs).

Identification: EUENGINE6

Facility:

Breitburn Operating Company, L.P. (Breitburn) – Wilderness/Hayes 29 Facility

Section 29, T29N, R4W

Hayes Township, Otsego County, Michigan

Applicable Regulation, Emission Limit, Monitoring Requirements

MI-ROP-N5831-014b FGWAUKENGINES FLEXIBLE GROUP CONIDITONS. I, lists the applicable regulations as R336.1205(3), R336.1225, R336.1702(a), and R336.1910.

Emission Limits:

EUENGINE6

NO_x: 24.6 tons/year CO: 41.1 tons/year

Control Technology

A 3-way catalyst is used to control NO_x, CO, and VOC emissions from the Waukesha compressor engine. The pre-control device potential emissions of NO_x and CO are greater than 100 tons per year for the Waukesha engine, which makes this unit subject to the CAM requirements. However, the pre-control device potential VOC emissions from the unit are less than 100 tpy.

MONITORING APPROACH H.

Pressure drop across the 3-way catalyst, and inlet and outlet temperatures are all monitored. These parameters represent the most important parameters for proper operation of the catalytic converter. The compliance assurance monitoring approach is summarized in Table 1.

Table 1

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Excursion Indicator	Remedial Action
Catalyst	2" WC Change in ΔP @ normal operating conditions	Gauge or manometer	Monthly	Varies by engine. Recorded in database	2.5 times the ΔP @ normal operating conditions	Check sample lines, check rpm verses ΔP and compare to previous months readings, remove catalyst and replace gaskets as necessary; if still 1.5 times the normal range then catalyst would be removed and washed. Also see Table 2 of the approved PM/MAP
Catalyst	Inlet and Outlet temperatures	Thermocouple	Daily	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature.	Differential temperature greater than 150°F above normal (not to exceed 1350°F)	Check loading on engine, check for faulty gauge or temperature probe, and check for proper operation of the ignition system Automatic engine shutdown Also see Table 2 of the approved PM/MAP

Appendix A, attached to this CAM Plan, describes the inlet and outlet catalyst temperature data that will be recorded on a daily basis.

No in-situ continuous emission monitoring systems are employed to measure actual emissions from this engine.

Quality assurance and quality control will include following the approved preventative maintenance/malfunction abatement plan (PM/MAP) developed for the engine and catalytic converter. The PM/MAP for this facility requires periodic replacement of various components within specified times. Manufacturer recommendations will be followed to ensure proper operation of the engine and control device.

III. JUSTIFICATION

The Monitoring Approach described above was determined during extensive communication between the MDEQ-AQD, the control equipment vendor, and the oil and gas industry regarding proper compliance assurance monitoring of the catalytic converter. It was determined that the pressure drop across the catalyst bed, and the inlet and outlet temperatures are critical parameters necessary to measure catalytic converter performance. The parameter ranges listed in Table 1 are used to determine that the catalytic converter is being operated and maintained to achieve the targeted control efficiencies for NO_x and CO, and therefore provide the compliance assurance required. A high pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 degrees F to 1350 degrees F. The PM/MAP requires certain actions to be taken in the event that there would be a monitored parameter outside of the values indicated in the above table.

Regarding the oxygen sensor for the AFRC, Breitburn has determined that the oxygen sensor is difficult to predict for any range that would define an excursion point. The same sensor can vary considerably depending on the engine's RPM, loading, and other factors, and for this reason it is not practical, nor value added, to identify any range that would identify excursion point(s). The PM/MAP for the facility's engines successfully addresses the requirements for proper operation of the AFRC, and associated oxygen sensor, for this engine. For this reason, it is not practical to identify an excursion level for the AFRC's oxygen sensor. Even if the oxygen sensor experiences difficulties, monitoring the catalytic converter using the pressure differential and temperatures as indicators are more important as monitoring parameters.

Therefore, Breitburn has determined that sufficient monitoring is being performed to satisfy the requirement pursuant to the CAM regulations and requirements, 40 CFR Part 64.

Appendix A

Breitburn Operating Company, L.P. **Exhaust Emissions Field Report**

ENGINE EMISSIONS ANALYSIS

ustomer:	BreitBurn	Engine CID:	0
ocation:	0	Engine RPM:	0
Unit:	0	BMEP Calc:	#DIV/0i
Serial Number:	0	Amb Temp F:	0
ngine Model:	0	Date of Test:	01/00/00
		Engine Timing:	0

	DA	DATA OBSERVED	
ENGINE		CONVERTER	RTER
NOx Observed - PPM	0	NOx Observed - PPM	0 1
CO Observed - PPM	0	CO Observed - PPM	0
O2 Observed - %	0.0		
Engine Horsepower	0		
Fuel Used - cu-ft/hr	0		
Fuel Analysis - BTU/cu-ft0	ft0		

	CALCULATED RESULTS	ULIS	
	g/BHP-Hr	lbs/hr	ТРҮ
ENGINE NOX	#DIV/0i	0.00	0.00
ENGINE CO	#DIV/0I	0.00	0.00
NVERTER NOX	#DIV/0i	0.00	0.00
CONVERTER CO	#DIV/0!	0.00	00.00

NO _X CONVERSION	CO CONVERSION	RATIO: NO	NO /	NO2
#DIV/0i	i0/AIG#	IIQ#	/ i0/\\Id#	#DIV/0i
Calculated results are derived from a series of emissions readings from the identified engine at the	erived from a series of e	missions readii	ngs from the ide	ntified engine at the
conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined	nstrument reads NO an	NO2 separate	ly with NOx base	ed on the combined
total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no	Concentrations in P	PMv are given a	at the observed	02 levels with no
correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven	Engine loading is confil	med using WPI	proprietary soft	tware and / or driven
equipment loading. Test instrument is spanned with known gas concentrations before each series of	it instrument is spanned	with known ga	as concentration	s before each series of
tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type.	w data is attached. Test	instrument is a	an electro-chem	ical cell type.
Method of calculation is per EPA Method 19 based on fuel usage and analysis.	per EPA Method 19 bas	ed on fuel usag	e and analysis.	

	#DIV/0i	BMEP =	
io/AIG#		CO Lbs/Hr =	POST
#DIV/0!		NOx Lbs/Hr =	POST
io/AIG#	00.00	CO Lbs/Hr =	PRE
#DIV/0i	0.00	NOx Lbs/Hr =	PRE
lb/hr g/BHP-H			

Customer:	BreitBurn
Location:	
Unit:	
Engine Serial Number:	
Engine Model:	
Engine CID:	
Engine RPM:	
Ambient Temp - deg F:	
Test Date - m/d/yr	
Engine NO Observed - PPM:	
Engine NO2 Observed - PPM:	
Engine CO Observed - PPM:	
Exhaust O2 Observed - %:	
Engine Horsepower:	
Fuel Flow - cu-ft/hr	
Fuel Analysis - BTU/cu-ft	
Converter NO Observed - PPM:	
Converter NO2 Observed - PPM:	
Converter CO Observed - PPM:	
Enaine Timina:	

CO; 80%									
NOX; 90%	Catalyst temps;	in;	Ont;	Diff, 0	Catalyst pressure;	in;	Out;	Diff; 0	Exhaust Flow

		-
		4
		1
		5
		7
		1
		÷
		4
		3
		١

02 Target

0
ਰ
2
2
1/84
23
ပ္ပ

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

		SRN: 58	331	Section Nu	ımber (if applicabl	e): 1
Additional Information ID AI-MAP						
Additional Information	T-					19
2. Is This Information Confidential?				H	☐ Yes ⊠ N	0
Revised PM MAP to reflect the omission of EUI	ENGINE5					
					ÿ	
		*				
	14	~			Page	of

DEQ Environmental Assistance Center Phone: 800-662-9278

Preventative Maintenance and Malfunction Abatement Plan

BreitBurn Operating, LP

Facility: Wilderness CO2pf SRN: N5831

Revised to remove EUENGINE5 from ROP 6/27/18 Revised July 31, 2013

Submission date: August 20, 2012 Revised to reflect company names change Effective Date 11/1/2007

	PM/MAP Content Checklist	Where included	
	Reference Appendices C,D, and E.	Page	Section or Table
1	Contact Person		Cover Letter
	ENGINES		
2	Engine Identification: Include the engine make/model and type of engine (i.e. rich or lean burn). Identify engines with add on control and AFRC. If add on control is present, identify type of control.		Appendix A & Appendix C
3	Engine Operating Variables To Be Monitored. Include a copy of the normal engine maintenance log.	4	Table 1 & Appendix B
4	Corrective procedures or operational changes that will be taken in the event of a malfunction.	2, 6	Table 2, Appendix D & Appendix E
5	Major parts replacement inventory for engines.	2	
	Add On Controls		
6	Catalytic Converter & Oxidation Catalyst operating variables to be monitored. Include the method and frequency of monitoring these variables; provide the normal operating range of these variables.	4-5	Table 1
7	Corrective actions to be taken in event of malfunction of the catalytic converter.	6	Table 2
8	AFRC O ₂ Sensor replacement schedule or operating variables to be monitored	5	Table 1
9	Corrective actions to be taken in event of malfunction of the AFRC	6	Table 2
10	Emission testing utilizing portable analyzer	5	Table 1
11	Scheduled maintenance of control equipment	4-5	Table 1
12	Major parts replacement inventory for add on control.	2	
13	Identify supervisory personnel responsible for overseeing inspection, maintenance and repair of add on controls.	6	Table 2
14	Recordkeeping and retention of records.	2-3	
15	Updates of PM/MAP as necessary.	3	

TABLE OF CONTENTS

		Page No.
1.0	INTRODUCTION	1
2.0	ENGINES AND CATALYTIC CONTROL UNITS	1
3.0	RECORDKEEPING	2
4.0	UPDATES	3

APPENDICES

Appendix A – List of Facility S	pecific Equipment	Covered by	this PM/MAP
---------------------------------	-------------------	------------	-------------

Appendix B – Engine Field Report Form

Appendix C – Compressor Specification Sheet

Appendix D – Maintenance Record (Revised 11/2008) Appendix E – Portable Analyzer Record

1.0 INTRODUCTION

BreitBurn Operating, LP (BreitBurn) operates numerous natural gas central processing facilities (CPFs) in Michigan. The CPFs receive gas from natural gas wells and dehydrate (if necessary) and compress the gas prior to pipeline transport. All of these CPFs have natural gas fired internal combustion engines. BreitBurn uses both rich burn and lean burn engines. Some of the rich burn engines are equipped with 3-way catalytic control systems. Generally there is no add-on control for BreitBurn lean burn engines. However, a few of BreitBurn's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of BreitBurn's facilities. The cover page and the specific engine, catalyst and AFRC information shown in Appendix A will be unique to each facility.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Three-way catalytic converters, used on rich-burn engines, provide an overall control efficiency of 90 percent for NO_x, 80 percent for CO and 50 percent for VOCs. Some of BreitBurn's rich burn engines operate with an air to fuel ratio controller (AFRC), others do not. Oxidation catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPs) and TACs emissions. Appendix A identifies the BreitBurn-operated engine(s) that are equipped with add-on control devices. This information is stored and updated on a BreitBurn database or spreadsheet. Appendix B also lists the operating variables of the engines.

2.2 Operation of Catalytic Converters

For both 3-way and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed, where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

The preventative maintenance of the engines is primarily done to keep the engine operating properly and to extend its useful life. Any major malfunction of the engine will lead to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions, and will initiate an engine shutdown if necessary. In the event of a shutdown, a third party mechanic is called out to repair the engine and a record of the event is made.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperature. If the oxygen content is too high for a 3-way catalytic converter, the NO_x reduction reaction will not yield the desired 90 percent decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level drops too low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation. A high pressure drop may be an indication of plugging of the catalyst, and a very

low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 deg. F to 1350 deg. F.

2.4 Catalyst Inspections and Maintenance

In order to reduce the chance of fouling problems with either 3-way and oxidation catalysts, if an engine is new or major maintenance is performed, the engine may run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter a maximum of 200 hours per year. Records will be maintained of the engine hours of operation without the catalyst insert installed. All catalysts will be equipped with pre- and post-catalyst temperature sensors. All engines equipped with catalysts will automatically shut down in the event that the sensors indicate that the post-catalyst temperature exceeds 1350 degrees F. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a mechanic will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance. The preventative maintenance schedule for BreitBurn engines and catalysts is included as Table 1. A log of all inspections and maintenance work will be maintained in a BreitBurn database or spreadsheet. A schedule is maintained for each engine and its add-on control devices.

2.5 Spare Parts

Spare washed catalyst elements and engine parts will be maintained in a third party warehouse for use when a catalyst has been removed for maintenance. Each spare insert will be washed in accordance with the Table 2 schedule. Catalyst insert kits, oxygen sensors for air fuel ratio controllers, and extra temperature probes, stepper motor as well as a harness will be supplied by a third party.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are maintained and updated on BreitBurn's data server in a database or in spreadsheet form.

BreitBurn will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the MDEQ.

4.0 UPDATES

If BreitBurn experiences a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the AQD District Supervisor for review and approval.

	e 1 – BreitBurn Engine and Catalysts Preven	Equipment	
Item	Activity	Status	Frequency
Engine	Mini Service	Off line	Every 60-90 days
	✓ Check and adjust valves	-	
	✓ Check engine compression		
	✓ Check timing		
	✓Check fuel pressure		
	✓Check air filter		
	✓ Change pre air filter		_
	✓ Check all kill devices		
	✓ Inspect hoses and belts		
	✓ Inspect spark plugs	Off line	A negovienotoly over
Engine	Major Service	Off fine	Approximately ever 2,160 hours of
	✓ Perform mini service as listed above, and		engine operation, or
	✓ Change motor oil and filter, as necessary, by		if oil analysis
	sampling oil every 30 days, and submitting for		indicates need.
	an oil analysis	Off line	Approximately ever
Engine	Swing/overhaul	On me	75,000 hours of
	✓ Replace existing engine with new/refurbished		engine operation, or
	engine.		as needed.
	When never behight angine is installed or major		as needed.
	When new/rebuilt engine is installed or major maintenance is performed, the unit will be run		
	without the catalyst, if applicable, for up to 100		0
	hours per event. This prevents the catalyst from		
	becoming damaged due to lubricants left in the		
	engine and gives the valves and piston rings		
	time to seat and seal.		
Catalyst	Check differential pressure across catalyst.	On line	Monthly
•			
	Establish baseline ΔP each time a new or		
	cleaned CC insert is installed at normal		
	operating conditions (rpm's). Check monthly. If		
	greater than baseline ΔP by 2" WC @80-		
	100percent max rpm, then inspect catalyst and		
G . 1 .	take actions based on findings.	On line	Daily
Catalyst	Check inlet and outlet temperatures across	On time	Dally
	catalyst.		
	Fig. 16 If the pre-catalyst temperature is less than		
	750°F, or other minimum temperature		
	established through testing, a mechanic will be		
	called out to investigate.		
	Fif the post-catalyst temperature exceeds		
	1350°F, the engine will be shut down.		
	F If the ΔT across CC is negative, mechanic will evaluate cause and determine a resolution,	4	
	based on history and degree of change. May		

Item	Activity	Equipment Status	Frequency
	establish engine specific ΔT through testing. Must document conclusions, and actions.	8	
Catalyst	The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming or blowing clean the catalyst face and clearing fouling and built-up ash. If the catalyst does not respond to the annual vacuum or blowing treatment, the catalyst will be removed, shipped to the manufacturer, and washed. A "washed swing" catalyst insert shall be used until a new or refurbished catalyst is installed.	Off line	Every 12 -18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown.
	The used catalyst will not be returned to service unless it can be rejuvenated.		4
	Replace the gaskets (typically at the same time the catalyst is washed or serviced).		
Catalyst	Remove catalyst insert and wash in chemical solution to remove surface contamination. **Replace with clean or fresh "swing" insert	Off line	Every 18-24 months of operation.
Catalyst	during cleaning process. Replace catalyst insert.	Off line	If not functioning properly after vendor cleaning, or in lieu or vendor cleaning.
AFRC	Replace oxygen sensor.	On or off line	After 90-110 days of operation or if AFRC unit or lifetime senso indicates need.
Emission Reduction Testing	For CO and NO _x . BreitBurn will do one of the following: a) inlet and outlet testing and estimate destruction efficiency; b) outlet testing and check for gm/hp-hr compared to levels used for permitting; or c) outlet testing and use the uncontrolled vendor data to establish a destruction efficiency.	On line	Whenever new or refurbished catalyst inserted. Typically every 12-18 months when insert is serviced. Also as needed to identify alternate operating conditions
Portable Emission Analyzer	Maintenance and calibration.	On or off line	As required by mfg' manuals.

Table 2 - BreitBurn Operating Variables and Remedial Actions

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Corrective Procedure or Operational Change in the Event of a Malfunction	Responsible
AFRC Oxygen Sensor	Oxygen content of exhaust gases	Gauge or digital reading	Monthly	0-1 percent O ₂	Re-synchronize the engine and the AFRC. If O ₂ level does not come into line, replace oxygen sensor within 5 days and readjust engine.	Third Party Mechanic
Catalyst	2.5" WC Change in ΔP $\widehat{\mathscr{Q}}$ normal operating conditions	Gauge or manometer	Monthly	Established with installation of new or cleaned CC insert that a 2.5" WC Change in △P @ normal operating conditions. Varies by engine. Recorded in database	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary.	Third Party Mechanic
Catalyst	Inlet and Outlet temperatures	Thermocouple	Daily	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature	Engine will automatically shut down at 1350 degrees F. For 3-way catalysts: If outlet temperature is less than inlet temperature, a mechanic will investigate and make appropriate repairs.	Third Party Mechanic
Thermocouple	Temperature	Temperature readouts. Check with independent thermocouple.	As needed	0 to 1400 °F	Inspect thermocouple. Clean, recheck, or replace if Third Party Mechanic not functioning.	Third Party Mechanic

Wilderness CO2 Equipment Information Appendix A

Facility	PTI	SRN	AQD ID	BB Unit Number	BB Unit Type of Number Control	AFRC (yes/no)	Baseline DP	Engine	Engine Model	Rich or Lean Burn
WILDERNESS CO2	86-05A	86-05A N5831	EUENGINE6 CO2 - 1 CC	CO2 - 1	22	YES	2.3	Waukesha	Waukesha L-7042 GSI	RB
WILDERNESS CO2	- 86-05A	N5831	EUENGINE1	831 NA	NA	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE2	356 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE3	885 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE4	907 OC	00	YES	NA	Caterpillar	3516	LB

EUENGINE6 BASELINE DP CHANGE (HISTORICAL)

3/3/2014

SHUT IN 11/10/14 **EUENGINES**

8/8/2014

2/6/2015 VACCUMIMED & INSPECTED

2.5 2/9/2015 7/27/2015 3/29/2016 Tested & DP is the same (3.0), no revision sent

10/30/2017

6/27/2018 Remove EUENGINE5 from MAP

Appendix B

Location:

BreitBurn Operating L.P.Preventative Maintenance and Malfunction Abatement Plan
Field Report

	ı
m	
m	
ŭ	
ŭ	
eg C	
S Year	
og Yea	
n & Yea	
ın & Yea	
ntn & Yea	
ntn & Yea	
onto & yea	
ontn & Yea	
lontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	
Viontn & Yea	

			Exhaust Temp																				
			Mech Initial													,							
			Level																				
			Temp																				
			Press																				
			Disch Temp																				
		-	#3 int Temp																				
Ì		-	#2 int Temp																				
	S.N.:	- 1-	#1 int Temp																	/			
	Comp. Model & S.N.:	-	Disch Press							der ween						,					Ì		
nent:	Comp.		#3 int Press							-													
Equipment:		ssor	t s			-																	
u T		Compressor	#1 int Press																				
		- 1	Suct																				
			Water		3																		
			Water																				
Location:		1	Level																				
_			Temp																				
	S.N.:	Engine:	Oil																				
	lodel & S	Ш	RPM																				
Unit #:	Engine Model & S.N.:	_	Date:	~	2	က	4	Ŋ	9	7	00	တ	10	-	12	13	14	5	16	17	18	19	20

Field Report Continued on Other Side

Appendix B

BreitBurn Operating Company, LP/Terra Energy, Ltd. Preventative Maintenance and Malfunction Abatement Plan

						·	V				
Exhaust Temp											
Mech											
Oil Level		7									
Oil	,										
Oil Press											
Disch Temp								/			
#3 int Temp											
#2 int Temp											
#1 int Temp											
Disch Press											
#3 int Press											
#2 int Press											
#1 int Press											
Suct											
Water						4					
Water Temp											
Oil Level											
Oil Temp											
Oil											
RPM											
Date:	21	22	23	24	25	26	27	28	29	30	31

	-	
Ξ		
-	•	
٧,	,	
_		
11	n	
U	0	
g	2	
O.L	2	
O.I	5	
SIL	5	
SILIC	2	
STILL	2 20	
STILL ST	200	
A LICE	200	
HOLLING	2000	

Appendix C

BreitBurn Operating Company, L.P. Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

Facility/Unit #:				a 1	Packager:			Year Built:		
					Facility	3.00				O.S. P. L. P. S.
Manufacturer:				Model:	Engine			Serial Number	er:	
Horsepower:				RPM:				Spec/Arrange	ement:	
Ignition/Make?	?:			Starter/Make	?:			Governor/Ma	ke?:	
Low Emission	(LE)?			AFRC/Make-	Model?			Catalytic Cor	verter-Make/M	odel?
Stack Height:				Exhaust Dian	neter:					
					Compressor					MINNESE
Manufacturer:		S. P. Chan		Model:				Serial Number	er:	
Throws:				Stages:				Stroke:	s)	
RPM:				Horsepower:				Rod Load Ra	iting:	
					Culturalana					
Stage/Cyl#	I Bo	ore	Class	MAWP	Cylinders Serial N	lumber	T VVP/P	lug/Plain	T VVF	S/N
otagor oy iii			0.000							
1	0.									
	-									to.
6								,		
									4	
Manufacturer:			T. Marie S.	Model:	Cooler	11/1/11/05		Serial Number	er	W. Control of
IVIATIUIACIUIEI.				Wiodoi.						
Sec	ction	M/	WP	Number	of Tubes	Numbe	er of Rows	Lou	vers?	Year
EJ	JW									
TA	٨W									
	C-1		6							
	5-2		-							
)-3									
	v.C									

Appendix C

BreitBurn Operating Company, L.P.

Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

	Pressur	e Vessels-Scrubber, Pulsa	ntiion & Fuel Bottles		
		National Board			Year
Stage / Type *	MAWP	Number	Serial Number	Diameter/Length	Built
,					
16					
1		A. A			
		*			
	OD Custing Bulgation	DP=Discharg	a Bulgation	FB=Fuel Bottle	
*S=Scrubber	SP=Suction Pulsation	Panel Board	e ruisation	B-1 del Bottle	N. A. Salan
Manufacturer:	Model:		Serial Numb	er/Part Number:	
Tachometer:	Annuciator:		Division II?		
		Comments			
	2				
e 15					
Printed Name:	Signature:		Date:		

			North Ame	rica Operations	Services		-	Ticket Number
Archrock.			Genera	al Service	Ticket			
Employee Name:				,	W.O. Number:			WEIGHT ROLES
Employee ID:			A		W.O. Type:			March 1
Unit Number:					Business Unit:			PART AS
Date:					Asset Group:			
Customer Name:			96 15 15			Engine		Compressor
Lease Name:	(A1)	NIa			Make			
vice Billable to Customer? (Y	/N)	No			Model Serial Number			
			E		Hour Meter	bio Pres		
e Clock				71				
Activity Start Time		Note: Select Asset Group	Customer Downt	ime Code				Hrs Down
Activity Finish Time	12:00 AM	first, then				The state		
ect Time		Exterran or Customer	Exterran Downtin	ne Code				Hrs Down
Work (hours)	-	Downtime Code and Event	A REY BEY	GWI.		Janah H		
Travel (hours)		Activity No.	Event - Code Des	scription		,		Worked Hrs or
		967				USITETA	14.97 (1.6	Blowdown Even
Standby (hours)		1						
Total Miles Traveled		2						
Weather Condition	Marie Park	3				That Hell		
Total Direct Hours	0.00	4	The Williams					
Others Operation	ns Activities	Activity No.	Description					Worked Hr
(MOB, I	DEMOB, etc)	1						
		2						
irect Time								AB
Description/Code	Hours	Explanation of	f Work Performed	i				Spell
		(Enter your c	omments here.)		Media 1235	Spirit	The large	
	1 1 2 - 6 7 7							
Total Indirect Hours	0.00							
	0.00							
al Hours								
	0.00							
al Hours								
al Hours	Hours							
al Hours Description Total Meal Hours	Hours 0.00		Warehouse	Otv	Part Number	Desc	ription	Warehous
al Hours Description Total Meal Hours Qty Part Number	Hours		Warehouse	Qty	Part Number	Desc	ription	Warehous
Description Total Meal Hours Qty Part Number	Hours 0.00		Warehouse	0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0	Hours 0.00		Warehouse	0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0	Hours 0.00		Warehouse	0 0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0 0	Hours 0.00		Warehouse	0 0 0	Part Number	Desc	ription	Warehous
Total Meal Hours Qty Part Number 0 0 0	Hours 0.00		Warehouse	0 0	Part Number	Desc	ription	Warehouse
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0	0.00 Descrip	otion		0 0 0 0		Desc	ription Per Night =	Warehous \$
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0 0 Days at	Hours 0.00		\$ - Customer acknowl	0 0 0 0 0 0	Nights at	\$ -	Per Night =	\$ h labor charges
al Hours Description Total Meal Hours Qty Part Number 0 0 0 0 0 0 0	0.00 Descrip	Per Diem =	\$ - Customer acknowl Exterran's Publishe	0 0 0 0 0 0 0 0 edges and agreed Rate Sheet un	Nights at	\$ -	Per Night =	\$ h labor charges
Total Meal Hours Oty Part Number O O O Days at Is Job Complete? (Y/N)	0.00 Descrip	Per Diem =	\$ - Customer acknowl Exterran's Publishe	0 0 0 0 0 0	Nights at	\$ -	Per Night =	\$ h labor charges

BREITBURN OPERATING LP APPENDIX E EMISSIONS TESTING EXAMPLE

ENGINE EMISSIONS ANALYSIS

Customer:	BreitBurn	Engine CID:	0	
Location:	0	Engine RPM:	0	
Unit:	0	BMEP Calc:	#DIV/0!	
Serial Number:	0	Amb Temp F:	0	
Engine Model:	0	Date of Test:	01/00/00	
		Engine Timing:	0	

54-		DATA OBSERVED		ť
ENGINE		CONVERTER	3	
NOx Observed - PPM	0	NOx Observed - PPM	0	
CO Observed - PPM	0	CO Observed - PPM	0	
O2 Observed - %	0.0			i
Engine Horsepower	0			i
Fuel Used - cu-ft/hr	0			
Fuel Analysis - BTU/cu-ft	0			

	CALCULATED RESULTS								
	g/BHP-Hr	lbs/hr	TPY						
ENGINE NOX	#DIV/0!	0.00	0.00						
ENGINE CO	#DIV/0!	0.00	0.00						
CONVERTER NOX	#DIV/0!	0.00	0.00						
CONVERTER CO	#DIV/0!	0.00	0.00						

NOx CONVERSION	CO CONVERSION	RATIO:	NO	/	NO2
#DIV/0!	#DIV/0!	#DI\	V/0!	/	#DIV/0!

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

226A East 16th Street Traverse City, Michigan 49684

Phone: (231) 922-7302 Fax: (231) 922-0892

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

January 7, 2019

Shane Nixon Michigan Department of Environmental Quality Air Quality Division 2100 West M-32 Gaylord, Michigan 49735-9282

Re:

Permit Renewal Application

Hayes 29 CPF

MI-PTI-N5831-2014 (EUENGINE29)

Dear Shane:

Enclosed with this cover letter is the ROP Permit renewal package for the above referenced facility. The package consists of the ROP application, the permit markup, the PMMAP, and the 2017 MAERS report. Please note the MAERS report was submitted by Breitburn Operating L.P. The emission sources applicable to this permit application are EUENGINE29 and EUDEHY.

Please contact me at (231)941-4772 if you have any questions or need additional information regarding the application.

Sincerel

Enclosures

Xc: Bill Rogers - MDEQ, Gaylord

Edward Nam - EPA Region 5 Air Quality

Michigan Department of Environmental Quality - Air Quality Division

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

RENEWABLE OPERATING PERMIT RENEWAL APPLICATION FORM

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Refer to instructions for additional information to complete the Renewable Operating Permit Renewal Application Form.

GENERAL INSTRUCTIONS

This application form should be submitted as part of an administratively complete application package for renewal of a Renewable Operating Permit (ROP). This application form consists of nine parts. Parts A – H must be completed for all applications and must also be completed for each section of a sectioned ROP. Answer all questions in all parts of the form unless directed otherwise. Detailed instructions for this application form can be found at http://michigan.gov/air (select the Permits Tab, "Renewable Operating Permits (ROP)/Title V", then "ROP Forms & Templates").

PART A: GENERAL INFORMATION

Enter information about the source, owner, contact person and the responsible official.

SRN N5831	SIC Code	NAICS Code 211111	Existing ROP Number		Section Number (if applicable) 2
Source Name LINN Operatir	ng, LLC- Hayes 2	29 CPF			
Street Address 10875 Geronii	mo Trail				
City Gaylord		State MI	ZIP Code 49735	County Otsego	
	nge (if address not a 9N R04W SW1/4				
Source Descriptio Natural gas pr		that treats natural (gas.		
Check here on the mar		ove information is a your existing ROP.	different than what a	ppears in the existin	ng ROP. Identify any chang
DANIAEK IMLO	RIVIATION				
	g, LLC- Hayes 2	9 CPF			Section Number (if applicable)
	check if same as				

For Assistance Contact: 800-662-9278 1 of 12

www/michigan.gov/deq

SRN: N5831	Section Number (if applicable): 2
------------	-----------------------------------

PART A: GENERAL INFORMATION (continued)

At least one contact and responsible official must be identified. Additional contacts and responsible officials may be included if necessary.

Contact 1 Name			itle				
Diane Lundin			EHS Advisor				
Company Name & Mailing address 226 E. Sixteenth St.	(check if same as	source address)					
City Traverse City	State MI	ZIP Code 49686	County Grand Traverse	Country USA			
Phone number 231.941.4772		E-mail addr DLundin(ess Drvraresources.com				
Contact 2 Name (optional)			Title				
Company Name & Mailing address	(check if same as s	source address)					
City	State	ZIP Code	County	Country			
Phone number		E-mail add	E-mail address				
RESPONSIBLE OFFICIAL II	NFORMATION						
Responsible Official 1 Name Allan Rambur			Fitle Production Manager				
Company Name & Mailing address (600 Travis St., Suite 5100	check if same as s	ource address)					
City Houston	State TX	ZIP Code 77002	County	Country USA			
Phone number 281.840.4262		E-mail add	ress @rvraresources.com				
Responsible Official 2 Name (option	ai)	1	itle				
Company Name & Mailing address (check if same as s	ource address)					
City	State	ZIP Code	County	Country			
Phone number		E-mail add	ress				

PART B: APPLICATION SUBMITTAL and CERTIFICATION by Responsible Official

Identify the items that are included as part of your administratively complete application in the checklist below. For your application to be complete, it must include information necessary to evaluate the source and to determine all applicable requirements. Answer the compliance statements as they pertain to all the applicable requirements to which the source is subject. The source's Responsible Official must sign and date this form.

Listing of ROP Application Contents. Check the box to	for th	e items included with your applicati	on.	
Completed ROP Renewal Application Form (and any Al-001 Forms) (required)		Compliance Plan/Schedule of Compli	iance	
Mark-up copy of existing ROP using official version from the AQD website (required)		Stack information		
Copies of all Permit(s) to Install (PTIs) that have not been incorporated into existing ROP (required)		Acid Rain Permit Initial/Renewal Appl	ication	
Criteria Pollutant/Hazardous Air Pollutant (HAP) Potential to Emit Calculations		Cross-State Air Pollution Rule (CSAP	R) Informa	ation
MAERS Forms (to report emissions not previously submitted)		Confidential Information		
Copies of all Consent Order/Consent Judgments that have not been incorporated into existing ROP	\boxtimes	Paper copy of all documentation prov	ided (requ	ired)
Compliance Assurance Monitoring (CAM) Plan		Electronic documents provided (option	nal)	
Other Plans (e.g., Malfunction Abatement, Fugitive Dust, Operation and Maintenance, etc.)		Other, explain: Al-001 PMMAP		
Compliance Statement				
This source is in compliance with <u>all</u> of its applicable requiexisting ROP, Permits to Install that have not yet been incapplicable requirements not currently contained in the exist	orpor	ated into that ROP, and other	⊠ Yes	□No
This source will continue to be in compliance with all of its contained in the existing ROP, Permits to Install that have and other applicable requirements not currently contained	not y	et been incorporated into that ROP,	⊠ Yes	□No
This source will meet in a timely manner applicable require permit term.	emen	ts that become effective during the	⊠ Yes	□No
The method(s) used to determine compliance for each apprexisting ROP, Permits to Install that have not yet been incomot currently contained in the existing ROP.	plicab orpora	le requirement is/are the method(s) spated into that ROP, and all other applic	ecified in t able requi	he rements
If any of the above are checked No, identify the emission unumber(s) or applicable requirement for which the source ROP renewal on an Al-001 Form. Provide a compliance p	is or v	will be out of compliance at the time of	issuance o	ndition of the
Name and Title of the Responsible Official (Print or Ty	pe)			
ALLAN RAMBUR PROS	Ua	TION MANAGER		
As a Responsible Official, I certify that, based on int the statements and information in this application a	forma	ation and belief formed after reasons	able inqui	ry,
11				
All Jall		12/4/1	8	
Signature of Responsible Official		Date		

For Assistance Contact: 800-662-9278 3 of 12

www/michigan.gov/deq

EQP 6000 (revised 7-2018)

SRN: N5831	Section Number (if applicable):	2
01111.110001	Cection Number (if applicable).	_

PART C: SOURCE REQUIREMENT INFORMATION

Answer the questions below for specific requirements or programs to which the source may be subject.

C1.	(including those identified in the existing ROP, Permits to Install and other equipment that have not yet been incorporated into the ROP) are required to be reported in MAERS. Are there any emissions and associated data that have <u>not</u> been reported in MAERS for the most recent emissions reporting year? If <u>Yes</u> , identify the emission unit(s) that was/were not reported in MAERS on an Al-001 Form. Applicable MAERS form(s) for unreported emission units must be included with this application.	☐ Yes	⊠ No
C2.	Is this source subject to the federal regulations on ozone-depleting substances? (40 CFR Part 82)	☐ Yes	⊠ No
C3.	Is this source subject to the federal Chemical Accident Prevention Provisions? (Section 112(r) of the Clean Air Act Amendments, 40 CFR Part 68) If <u>Yes</u> , a Risk Management Plan (RMP) and periodic updates must be submitted to the USEPA.		
04	Has an updated RMP been submitted to the USEPA?	☐ Yes	☐ I/I0
C4.	Has this stationary source <u>added or modified</u> equipment since the last ROP renewal that changes the potential to emit (PTE) for criteria pollutant (CO, NOx, PM10, PM2.5, SO ₂ , VOC, lead) emissions? If <u>Yes</u> , include potential emission calculations (or the PTI and/or ROP revision application	Yes	⊠ No
	numbers, or other references for the PTE demonstration) for the added or modified equipment on an AI-001 Form. If No, criteria pollutant potential emission calculations do not need to be included.		
C5.	Has this stationary source added or modified equipment since the last ROP renewal that changes the PTE for hazardous air pollutants (HAPs) regulated by Section 112 of the federal Clean Air Act?	Yes	⊠ No
	If <u>Yes</u> , include potential emission calculations (or the PTI and/or ROP revision application numbers or other references for the PTE demonstration) for the added or modified equipment on an AI-001 Form. Fugitive emissions <u>must</u> be included in HAP emission calculations. If <u>No</u> , HAP potential emission calculations do not need to be included.		
C6.	Are any emission units subject to the Cross-State Air Pollution Rule (CSAPR)? If Yes, identify the specific emission unit(s) subject to CSAPR on an Al-001 Form.	Yes	⊠ No
C7.	Are any emission units subject to the federal Acid Rain Program? If <u>Yes</u> , identify the specific emission unit(s) subject to the federal Acid Rain Program on an Al-001 Form.	☐ Yes	⊠ No
	Is an Acid Rain Permit Renewal Application included with this application?	☐ Yes	⊠ No
C8.	Are any emission units identified in the existing ROP subject to compliance assurance monitoring (CAM)? If Yes, identify the specific emission unit(s) subject to CAM on an Al-001 Form. If a CAM plan has not been previously submitted to the MDEQ, one must be included with the ROP renewal application on an Al-001 Form. If the CAM Plan has been updated, include an updated copy.	Yes	⊠ No
	Is a CAM plan included with this application? If a CAM Plan is included, check the type of proposed monitoring included in the Plan: 1. Monitoring proposed by the source based on performance of the control device, or	☐ Yes	□No
C9.	2. Presumptively Acceptable Monitoring, if eligible Does the source have any plans such as a malfunction abatement plan, fugitive dust plan, operation/maintenance plan, or any other monitoring plan that is referenced in an existing ROP, Permit to Install requirement, or any other applicable requirement?	∐ ⊠ Yes	□No
	If Yes, then a copy must be submitted as part of the ROP renewal application.		
C10.	Are there any specific requirements that the source proposes to be identified in the ROP as non-applicable?	☐ Yes	⊠ No
	If <u>Yes</u> , then a description of the requirement and justification must be submitted as part of the ROP renewal application on an Al-001 Form.		
	Check here if an Al-001 Form is attached to provide more information for Part C. Enter Al-001 Form PMMAP	n ID: Al-	

SRN: N5831 Section	n Number (if applicable): 2
--------------------	-----------------------------

PART D: PERMIT TO INSTALL (PTI) EXEMPT EMISSION UNIT INFORMATION

Review all emission units at the source and answer the question below. D1. Does the source have any emission units that do not appear in the existing ROP but are required to be listed in the ROP application under R 336.1212(4) (Rule 212(4)) of the Michigan Air Pollution Control Rules? If Yes, identify the emission units in the table below. ☐ Yes ☒ No If No, go to Part E. Note: Emission units that are subject to process specific emission limitations or standards, even if identified in Rule 212, must be captured in either Part G or H of this application form. Identical emission units may be grouped (e.g. PTI exempt Storage Tanks). Rule 201 Exemption Rule 212(4) Citation **Emission Unit ID Emission Unit Description Rule Citation** [e.g. Rule 212(4)(c)] [e.g. Rule 282(2)(b)(i)] Comments:

For Assistance Contact: 800-662-9278 5 of 12

Check here if an AI-001 Form is attached to provide more information for Part D. Enter AI-001 Form ID: AI-

www/michigan.gov/deq

EQP 6000 (revised 7-2018)

SRN: N5831	Section Number (if applicable): 2
------------	-----------------------------------

PART E: EXISTING ROP INFORMATION

Review all emission units and applicable requirements (including any source wide requirements) in the <u>existing ROP</u> and answer the questions below as they pertain to <u>all</u> emission units and <u>all</u> applicable requirements in the existing ROP.

Underlying applicable requirements as they appear in the existing ROP? If Yes, identify changes and additions on Part F, Part G and/or Part H. 22. For each emission unit(s) identified in the existing ROP, all stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were not reported in the most recent MAERS reporting year? If Yes, identity the stack(s) that was/were not reported on applicable MAERS form(s). 33. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI? If Yes, complete Part F with the appropriate information. 34. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form. All the All the dismantle date in the comment area below or on an Al-001 Form.	E4 B		
If Yes, identify changes and additions on Part F, Part G and/or Part H. 22. For each emission unit(s) identified in the existing ROP, all stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were not reported in the most recent MAERS reporting year? If Yes, identity the stack(s) that was/were not reported on applicable MAERS form(s). 33. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI? 44. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form.	E1. Does the source propose to make any additions, changes or deletions to terms, conditions and underlying applicable requirements as they appear in the existing ROP?	□Yes	⊠ No
are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were not reported on applicable MAERS form(s). 3. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI? If Yes, complete Part F with the appropriate information. 4. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form.	If <u>Yes</u> , identify changes and additions on Part F, Part G and/or Part H.		27140
required a PTI? If Yes, complete Part F with the appropriate information. 44. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an AI-001 Form. Omments:	unit(s) identified in the existing ROP that were <u>not</u> reported in the most recent MAERS reporting year? If <u>Yes</u> , identity the stack(s) that was/were not reported on applicable MAERS form(s).	Yes	⊠ No
If Yes, complete Part F with the appropriate information. 4. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form. Comments:	E3. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI?	□Yes	⊠ No
emission unit(s) and the dismantle date in the comment area below or on an AI-001 Form.			2 140
	E4. Have any emission units identified in the existing ROP been dismantled? If <u>Yes</u> , identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form.	☐ Yes	⊠ No
□ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-	Comments:		
□ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
□ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
□ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an AI-001 Form is attached to provide more information for Part E. Enter AI-001 Form ID: AI-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Form ID: Al-			
	☐ Check here if an AI-001 Form is attached to provide more information for Part E. Enter AI-001 For	m ID: AI-	

SRN: N5831	Section Number (if applicable): 2
SRN: N5831	Section Number (if applicable): 2

PART F: PERMIT TO INSTALL (PTI) INFORMATION

Review all emission units and applicable requirements at the source and answer the following questions as they pertain to <u>all</u> emission units with PTIs. Any PTI(s) identified below must be attached to the application.

F1. Has the source been incorpora If <u>No</u> , go to Pa	ated into the existing	where the applicable requirements from the PTI have not ROP? If <u>Yes</u> , complete the following table.	☐ Yes ☒ No
Permit to Install Number	Emission Units/Flexible Group ID(s)	Description (Include Process Equipment, Control Devices and Monitoring Devices)	Date Emission Unit was Installed/ Modified/ Reconstructed
emission unit affected in the	s in the existing ROI	ange, add, or delete terms/conditions to established P? If <u>Yes</u> , identify the emission unit(s) or flexible group(s) bw or on an AI-001 Form and identify all changes, additions, xisting ROP.	☐ Yes ☐ No
the ROP? If Y	<u>es</u> , submit the PTIs a	entify new emission units that need to be incorporated into as part of the ROP renewal application on an AI-001 Form, s) or flexible group(s) in the mark-up of the existing ROP.	☐ Yes ☐ No
F4. Are there any s listed above the	stacks with applicable at were <u>not</u> reported	e requirements for emission unit(s) identified in the PTIs in MAERS for the most recent emissions reporting year? If not reported on the applicable MAERS form(s).	☐ Yes ☐ No
or control device	ces in the PTIs listed	tive changes to any of the emission unit names, descriptions above for any emission units not already incorporated into nges on an AI-001 Form.	☐ Yes ☐ No
Comments:			
Check here if	an Al-001 Form is a	ttached to provide more information for Part F. Enter Al-001 F	orm ID: Al-

9	R	N		N5831	
۰	Γ	18	٠	INDUDI	

Section Number (if applicable): 2

PART G: EMISSION UNITS MEETING THE CRITERIA OF RULES 281(2)(h), 285(2)(r)(iv), 287(2)(c), OR 290

Review all emission units and applicable requirements at the source and answer the following questions.

G1. Does the source have the existing ROP and	e any new and/or existing emission units which do <u>not</u> already appear in which meet the criteria of Rules 281(2)(h), 285(2)(r)(iv), 287(2)(c), or 2	n 290
	ission units in the table below. If <u>No</u> , go to Part H.	☐ Yes ☒ No
Note: If several emiss	sion units were installed under the same rule above, provide a descript ation/modification/reconstruction date for each.	
Origin of Applicable Requirements	Emission Unit Description – Provide Emission Unit ID and a description of Process Equipment, Control Devices and Monitoring Devices	Date Emission Unit was Installed/ Modified/ Reconstructed
Rule 281(2)(h) or 285(2)(r)(iv) cleaning operation		Reconstructed
Rule 287(2)(c) surface coating line		
Rule 290 process with limited emissions		
Comments:		
Check here if an Al-0	01 Form is attached to provide more information for Part G. Enter Al-00	01 Form ID: AI-

SRN: N5831 Section Number (if applicable): 2

PART H: REQUIREMENTS FOR ADDITION OR CHANGE

Complete this part of the application form for all proposed additions, changes or deletions to the existing ROP. This includes state or federal regulations that the source is subject to and that must be incorporated into the ROP or other proposed changes to the existing ROP. **Do not include additions or changes that have already been identified in Parts F or G of this application form.** If additional space is needed copy and complete an additional Part H.

Complete a separate Part H for each emission unit with proposed additions and/or changes.

H1	Are there changes that need to be incorporated into the ROP that have not been identified in Parts F and G? If <u>Yes</u> , answer the questions below.	☐ Yes	⊠ No
H2.	Are there any proposed administrative changes to any of the existing emission unit names, descriptions or control devices in the ROP? If <u>Yes</u> , describe the changes in questions H8 – H16 below and in the affected Emission Unit Table(s) in the mark-up of the ROP.	Yes	⊠ No
H3.	Does the source propose to add a new emission unit or flexible group to the ROP not previously identified in Parts F or G? If <u>Yes</u> , identify and describe the emission unit name, process description, control device(s), monitoring device(s) and applicable requirements in questions H8 – H16 below and in a new Emission Unit Table in the mark-up of the ROP. See instructions on how to incorporate a new emission unit/flexible group into the ROP.	Yes	⊠ No
H4.	Does the source propose to add new state or federal regulations to the existing ROP?	Yes	⊠ No
	If <u>Yes</u> , on an Al-001 Form, identify each emission unit/flexible group that the new regulation applies to and identify <u>each</u> state or federal regulation that should be added. Also, describe the new requirements in questions H8 – H16 below and add the specific requirements to existing emission units/flexible groups in the mark-up of the ROP, create a new Emission Unit/Flexible Group Table, or add an AQD template table for the specific state or federal requirement.		
H5.	Has a Consent Order/Consent Judgment (CO/CJ) been issued where the requirements were not incorporated into the existing ROP? If <u>Yes</u> , list the CO/CJ number(s) below and add or change the conditions and underlying applicable requirements in the appropriate Emission Unit/Flexible Group Tables in the mark-up of the ROP.	Yes	⊠ No
	Does the source propose to add, change and/or delete source-wide requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
H7.	Are you proposing to streamline any requirements? If <u>Yes</u> , identify the streamlined and subsumed requirements and the EU ID, and provide a justification for streamlining the applicable requirement below.	Yes	⊠ No

For Assistance Contact: 800-662-9278 9 of 12

www/michigan.gov/deq

SRN: N5831	Section Number (if applicable): 2
------------	-----------------------------------

PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

H8. Does the source propose to add, change and/or delete emission limit requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
H9. Does the source propose to add, change and/or delete material limit requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
provide a justification below.		
H10. Does the source propose to add, change and/or delete process/operational restriction requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
H11. Does the source propose to add, change and/or delete design/equipment parameter requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
H12. Does the source propose to add, change and/or delete testing/sampling requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. Verify NOx and CO emissions via alternative methods.	⊠ Yes	No
H13. Does the source propose to add, change and/or delete monitoring/recordkeeping requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
H14.Does the source propose to add, change and/or delete reporting requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
SRN: N5831 Section Number (i	if applicable): 2

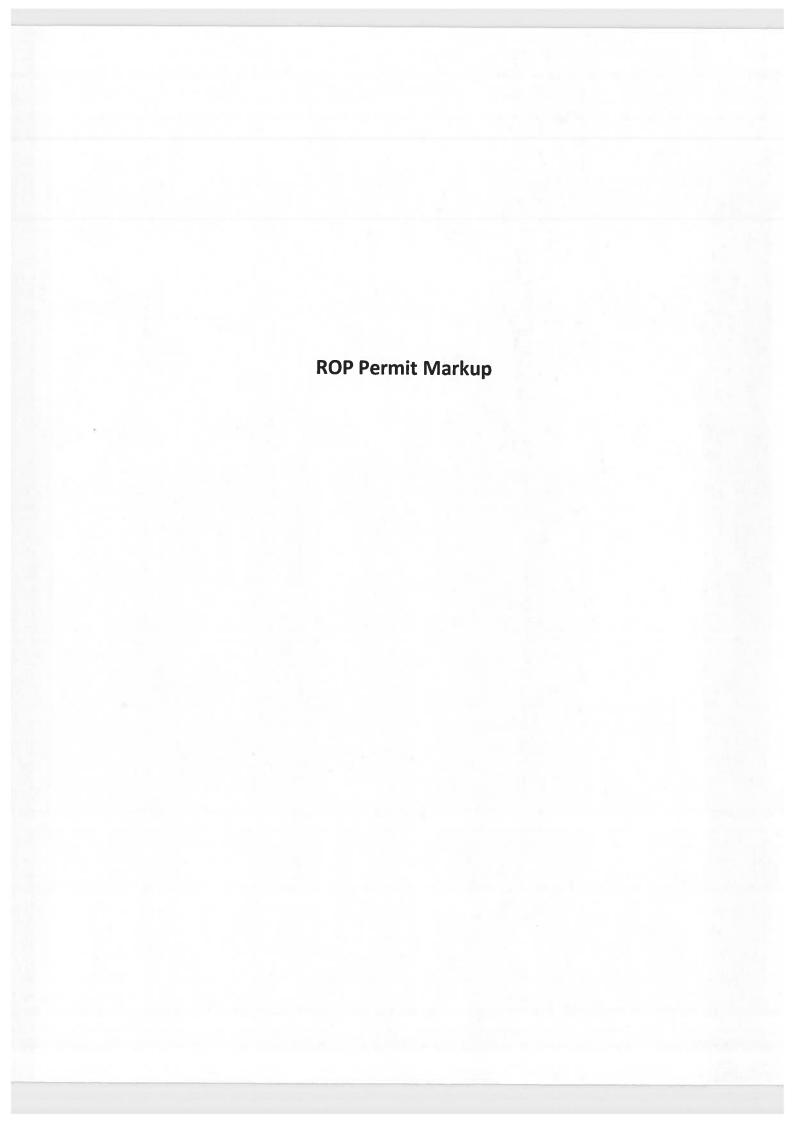
For Assistance Contact: 800-662-9278

10 of 12

www/michigan.gov/deq

PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

H15. Does the source propose to add, change and/or delete stack/vent restrictions? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
H16.Does the source propose to add, change and/or delete any other requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	⊠ No
H17.Does the source propose to add terms and conditions for an alternative operating scenario or		
intra-facility trading of emissions? If <u>Yes</u> , identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	⊠ No
Check here if an Al-001 Form is attached to provide more information for Part H. Enter Al-001 Fo	rm ID: AI-	Testing


Michigan Department of Environmental Quality - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

	SRN: N5831	Section Number (if applicable): 2	
Additional Information ID AI-PMMAP			
Additional Information			
2. Is This Information Confidential?		☐ Yes ⊠ No	
1. Additional Information ID AI-PMMAP Additional Information			
		Page	of 1

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

EFFECTIVE DATE: August 4, 20142019

REVISION DATES: April 21, 20152020, June 5, 20172022

ISSUED TO:

Breitburn Operating, LP – Wilderness CO2 CPF and Linn Operating, LLC – Hayes 29 CPF

State Registration Number (SRN): N5831

LOCATED AT:

10875 Geronimo Trail, Gaylord, Otsego County, Michigan 49735

RENEWABLE OPERATING PERMIT

Permit Number: MI-ROP-N5831-2014b2019c

Expiration Date: August 4, 20192024

Administratively Complete ROP Renewal Application Due Between: February 4, 2018 and February 4, 2019

This Renewable Operating Permit (ROP) is issued in accordance with and subject to Section 5506(3) of Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451). Pursuant to Michigan Air Pollution Control Rule 210(1), this ROP constitutes the permittee's authority to operate the stationary source identified above in accordance with the general conditions, special conditions and attachments contained herein. Operation of the stationary source and all emission units listed in the permit are subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

SOURCE-WIDE PERMIT TO INSTALL

Permit Number: MI-PTI-N5831-2014b2019c

This Permit to Install (PTI) is issued in accordance with and subject to Section 5505(5) of Act 451. Pursuant to Michigan Air Pollution Control Rule 214a, the terms and conditions herein, identified by the underlying applicable requirement citation of Rule 201(1)(a), constitute a federally enforceable PTI. The PTI terms and conditions do not expire and remain in effect unless the criteria of Rule 201(6) are met. Operation of all emission units identified in the PTI is subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

Michigan Department of Environmental Quality

Shane Nixon, Cadillac District Supervisor

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

TABLE OF CONTENTS

AUTHORITY AND ENFORCEABILITY	4
SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF	5
A. GENERAL CONDITIONS	6
Permit Enforceability	6
General Provisions	6
Equipment & Design	7
Emission Limits	7
Testing/Sampling	7
Monitoring/Recordkeeping	7
Certification & Reporting	8
Permit Shield	9
Revisions	10
Reopenings	10
Renewals	10
Stratospheric Ozone Protection	10
Risk Management Plan	11
Emission Trading Permit To Install (PTI)	11
B. SOURCE-WIDE CONDITIONS	
C. EMISSION UNIT CONDITIONS	16
EMISSION UNIT SUMMARY TABLE	
D. FLEXIBLE GROUP CONDITIONS	17
FLEXIBLE GROUP SUMMARY TABLE	17
FGCATENGINES	18
FGWAUKENGINES	22
FGRURALSIRICEMACT	27
E. NON-APPLICABLE REQUIREMENTS	30
APPENDICES	31
Appendix 1. Abbreviations and Acronyms	31
Appendix 2. Schedule of Compliance	32
Appendix 3. Monitoring Requirements	32
Appendix 4. Recordkeeping	32
Appendix 5. Testing Procedures	32
Appendix 6. Permits to Install	32
Appendix 7. Emission Calculations	33
Appendix 8. Reporting	
SECTION 2 – LINN Operating, LLC - Hayes 29 CPF	34
A. GENERAL CONDITIONS	35
Permit Enforceability	35

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

20192024

2014b2019c

201100	
General Provisions	
Equipment & Design	
Emission Limits	
Testing/Sampling	
Monitoring/Recordkeeping	37
Certification & Reporting	37
Permit Shield	38
Revisions	39
Reopenings	39
Renewals	4039
Stratospheric Ozone Protection	40
Risk Management Plan	
Emission Trading	
Permit To Install (PTI)	
B. SOURCE-WIDE CONDITIONS	42
C. EMISSION UNIT CONDITIONS	45
EMISSION UNIT SUMMARY TABLE	15
EUGLYCOLDEHYDRATOR	
EUENGINEH29	
EUMACTZZZZ	
D. FLEXIBLE GROUP CONDITIONS	<u>57</u> 56
E. NON-APPLICABLE REQUIREMENTS	
APPENDICES	<u>59</u> 58
Appendix 1. Abbreviations and Acronyms	<u></u>
Appendix 2. Schedule of Compliance	
Appendix 3. Monitoring Requirements	
Appendix 4. Recordkeeping	
Appendix 5. Testing Procedures	
Appendix 7. Feriasian Calculations	
Appendix 7. Emission Calculations	
Appendix 8. Reporting	<u>61</u> 60

2014b2019c

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

AUTHORITY AND ENFORCEABILITY

For the purpose of this permit, the **permittee** is defined as any person who owns or operates an emission unit at a stationary source for which this permit has been issued. The **department** is defined in Rule 104(d) as the Director of the Michigan Department of Environmental Quality (MDEQ) or his or her designee.

The permittee shall comply with all specific details in the permit terms and conditions and the cited underlying applicable requirements. All terms and conditions in this ROP are both federally enforceable and state enforceable unless otherwise footnoted. Certain terms and conditions are applicable to most stationary sources for which an ROP has been issued. These general conditions are included in Part A of this ROP. Other terms and conditions may apply to a specific emission unit, several emission units which are represented as a flexible group, or the entire stationary source which is represented as a Source-Wide group. Special conditions are identified in Parts B, C, D and/or the appendices.

In accordance with Rule 213(2)(a), all underlying applicable requirements are identified for each ROP term or condition. All terms and conditions that are included in a PTI, are streamlined, subsumed and/or are state-only enforceable will be noted as such.

In accordance with Section 5507 of Act 451, the permittee has included in the ROP application a compliance certification, a schedule of compliance, and a compliance plan. For applicable requirements with which the source is in compliance, the source will continue to comply with these requirements. For applicable requirements with which the source is not in compliance, the source will comply with the detailed schedule of compliance requirements that are incorporated as an appendix in this ROP. Furthermore, for any applicable requirements effective after the date of issuance of this ROP, the stationary source will meet the requirements on a timely basis, unless the underlying applicable requirement requires a more detailed schedule of compliance.

Issuance of this permit does not obviate the necessity of obtaining such permits or approvals from other units of government as required by law.

SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF

ROP No: MI-ROP-N5831-2014b Expiration Date: August 4, 2019

PTI No: MI-PTI-N5831-2014b

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- 1. The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- 2. It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.
- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))

6. A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))

- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard. The grading of visible emissions shall be determined in accordance with Rule 303.
- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹
 (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property. (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.

- d. The analytical techniques or methods used.
- e. The results of the analyses.
- f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
 - a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
 - b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be

certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.

- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - d. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:
 - a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
 - b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
 - c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
 - d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
 - e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))

29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
 - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
 - d. If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.

37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR Part 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR Part 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ. ² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months,

the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI. 2 (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	СО	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month		SC VI.3	R336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

1. The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R336.1205(3), R 336.213(3))

- 2. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R336.1205(3), R 336.213(3))
- 3. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required in SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINE1	Remote 1,085 hp Caterpillar 3516 LE (low emission) reciprocating internal combustion engine (RICE)	11/01/92	FGCATENGINES
EUENGINE2	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE3	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE4	Remote 1,150 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE5	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and air to fuel ratio control (AFRC) On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	11/01/92	FGWAUKENGINES
EUENGINE6	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and AFRC	11/01/92	FGWAUKENGINES

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

FLEXIBLE GROUP SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Flexible Group ID	Flexible Group Description	Associated Emission Unit IDs
FGCATENGINES Remote Caterpliar 3516 LE (low emission)		EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4,
Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE controlled by 3-way catalytic converters, subject to 40 CFR Part 64 Compliance Assurance Monitoring (CAM) requirements		EUENGINE5 and EUENGINE6
Existing non-emergency Spark Ignition (SI) 4 Stean Burn (4SLB) and existing non-emergency Stroke Rich Burn (4SRB) stationary RICE with ratings greater than 500 HP located at an are source of HAPs, that meet the definition of remarks stationary RICE in 40 CFR 63.6675		EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, and EUENGINE6

FGCATENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Four remote Caterpillar 3516 LE (low emission) RICE

Emission Units: EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst (EUENGINE2, EUENGINE3, and EUENGINE4)

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
1.	СО	20.8 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
2.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	EUENGINE2 SC V.1 and SC VI.7	
3.	СО	4.5 tons ²	12-month-rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
4.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
5.	CO	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
6.	NOx	24.4 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)
7.	СО	4.2 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate FGCATENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- 3. The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple in accordance with the manufacturer's recommendations for any engine with an oxidation catalyst. (R 336.1213(3)(a)(iii))

V. <u>TESTING/SAMPLING</u>

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from each engine in FGCATENGINES, by testing at owners expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R336.2003, R336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGCATENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on any engine with an oxidation catalyst in FGCATENGINES, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on any engine with an oxidation catalyst in FGCATENGINES, on a daily basis. (R 336.1213(3)(a)(iii))
- 4. The permittee shall maintain a log of all maintenance activities conducted according to the PM/MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGCATENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 6. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- 7. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

(6)	Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
1.	SVENGINE1	16 ¹	37.5 ¹	R 336.1225
2.	SVENGINE2	16 ¹	37.51	R 336.1225
3.	SVENGINE3	16 ¹	37.51	R 336.1225
4.	SVENGINE4	16 ¹	37.51	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGWAUKENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Two remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE

Emission Unit: EUENGINE5 and EUENGINE6

POLLUTION CONTROL EQUIPMENT:

3-way catalytic converters

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
2.	СО	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
3.	NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month		SC V.1 and SC VI.11	R 336.1205(3)
4.	CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall only burn sweet natural gas in FGWAUKENGINES.² (R 336.1205(3))
- 2. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))

- 3. The permittee shall not operate FGWAUKENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- 4. The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 5. The permittee shall utilize a differential pressure gauge or manometer for any engine with a catalytic converter, to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))
- 6. The permittee shall utilize a temperature gauge or thermocouple for any engine with a catalytic converter, to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (40 CFR 64.3(b)(2)(a), (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall verify NOx and CO emissions from EUENGINE5, by testing at owner's expense, within 90 days of start-up, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)
- 2. The permittee shall verify NOx and CO emissions from EUENGINE6, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGWAUKENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))

2. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))

- 3. The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINE5 and EUENGINE6, on a monthly basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(i))
- 4. An excursion for NOx and CO shall be a differential pressure gauge or manometer reading of 1.5 inches of water over or under the differential pressure under normal operating conditions identified in the MAP, which is determined when the catalytic converter is installed. (40 CFR 64.6(c)(2), R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))
- 6. The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINE5 and EUENGINE6, on a daily basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(iii))
- 7. An excursion for NOx and CO shall be a temperature gauge or thermocouple reading less than 900°F at the inlet of the catalytic converter, or greater than 1250°F at the outlet of the catalytic converter, or the outlet temperature from the catalytic converter is less than the inlet temperature.² (40 CFR 64.6(c)(2))
- 8. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- 9. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGWAUKENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 10. The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGWAUKENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 11. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGWAUKENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 12. If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))
- 13. Upon detecting an excursion or exceedance of the differential pressure, the permittee shall check sample lines, check RPM verses differential pressure and compare the reading to previous month's readings, remove the catalyst and replace gaskets, as necessary. Should the differential pressure still indicate an excursion (greater than 1.5 times the normal differential pressure), the catalyst shall be removed and washed or replaced. (40 CFR 64.7(d))
- 14. Upon detecting an excursion or exceedance of the temperature, the permittee shall check loading on the engine, check for a faulty gauge or thermocouple, and check for proper operation of the ignition system.

Should the above check be performed and the temperatures are still outside the specified ranges, the engine shall be shut down. (40 CFR 64.7(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. Each semiannual report of monitoring and deviations shall include summary information on the number, duration and cause of excursions and/or exceedances and the corrective actions taken. If there were no excursions or exceedances in the reporting period, then this report shall include a statement that there were no excursions and/or exceedances. (40 CFR 64.9(a)(2)(i))
- 5. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 6. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 7. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- 8. If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
1. SVENGINE5	16 ¹	401	R 336.1225
2. SVENGINE6	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all applicable requirements of 40 CFR Part 64. (40 CFR Part 64)

Footnotes:

¹ This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

² This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGRURALSIRICEMACT FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675.

Compliance date is October 19, 2013

Emission Unit: EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, EUENGINE6

POLLUTION CONTROL EQUIPMENT:

NA

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall be in compliance with the emission limitations, operating limitations and other requirements of Subpart ZZZZ of Part 63 at all times after the promulgated compliance date in Subpart ZZZZ of Part 63. (40 CFR 63.6605(a))
- 2. The permittee shall operate and maintain any affected RICE, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. (40 CFR 63.6605(b))
- 3. The permittee shall comply with the following requirements, for each 4SLB and 4SRB remote stationary RICE with a site rating greater than 500 brake HP, by the applicable compliance date. (40 CFR 63.6603(a) and Table 2d)
 - a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first, except as allowed in SC III.4.

b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.

c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.

4. The permittee may utilize an oil analysis program in order to extend the specified oil change requirement in 40 CFR 63.6603 and as listed in SC III.3. The oil analysis program must be performed at the same frequency as oil changes are required. The analysis program must analyze the parameters and keep records as required in Part 63.6625(j) for SI engines. (40 CFR 63.6625(j))

IV. DESIGN/EQUIPMENT PARAMETER(S)

- 1. The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d of Subpart ZZZZ, apply. (40 CFR 63.6625(h))
- 2. The permittee shall operate and maintain the stationary RICE according to the manufacturer's emission-related written instructions or develop you own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air-pollution control practice for minimizing emissions. (40 CFR 63.6640(a), Table 6)

V. <u>TESTING/SAMPLING</u>

1. If using the oil analysis program for SI Engine(s), the permittee shall test for Total Acid Number, viscosity and percent water content. (40 CFR 63.6625(j))

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- By the compliance date, and every 12 months thereafter, the permittee must evaluate the status of their existing stationary SI RICE and document that the SI RICE meets the definition of remote stationary RICE in 40 CFR 63.6675. 40 CFR 63.6675 defines Remote stationary RICE as stationary RICE meeting any of the following criteria:
 - a. Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.
 - b. Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (b)(i) and (ii) of this definition.
 - i. A pipeline segment with 10 or fewer buildings intended for human occupancy within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
 - ii. The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12 month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
 - iii. For purposes of this paragraph (b), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 m) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

c. Stationary RICE that are not located on gas pipelines and that have or fewer buildings intended for human occupancy within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans. (40 CFR 63.6603(f), 63.6675)

- 2. The permittee shall keep records of the initial and annual evaluation of the status of the engine required by SC VI.1. (40 CFR 63.6603(f))
- 3. If the evaluation of the status of the engine required by SC VI.1 indicates that the stationary RICE no longer meets the definition of remote stationary RICE in SC VI.1(a) through (c) and 40 CFR 63.6675, the permittee shall comply with all of the applicable requirements in 40 CFR Part 63, Subpart ZZZZ for existing nonemergency SI 4SLB and/or 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within one year of the evaluation. (40 CFR 63.6603(f))
- 4. The permittee shall keep records as required in SC IV.2 to show continuous compliance with each emission or operating limit that applies. (40 CFR 63.6655(d), 63.6660)
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the permittee operated and maintained the stationary RICE and after-treatment control device (if any) according to the permittee's maintenance plan. (40 CFR 63.6655(e), 63.6660)
- 6. The permittee shall maintain, at a minimum, the following records by the compliance date:
 - a. A copy of each notification and report that is submitted to comply with 40 CFR Part 63, Subpart ZZZZ and the documentation supporting each notification and report. (40 CFR 63.6655(a)(1))
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(2))
 - c. Records of all required maintenance performed on the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(4))
 - d. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation. (40 CFR 63.6655(a)(5))

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

VIII. STACK/VENT RESTRICTION(S)

NA

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ as they apply to FGRURALSIRICEMACT. The permittee may choose an alternative compliance method not listed in FGRURALSIRICEMACT by complying with all applicable provisions required by Subpart ZZZZ for the compliance option chosen. (40 CFR 70.6(9), 40 CFR 63.9(j), 40 CFR Part 63, Subparts A and ZZZZ)

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that no non-applicable requirements have been identified for incorporation into the permit shield provision set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii).

APPENDICES

Appendix 1. Abbreviations and Acronyms
The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

AQD	Air Quality Division	MM	Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	Best Available Control Technology	MW	Megawatts
BTU	British Thermal Unit	NA	Not Applicable
°C	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
CO	Carbon Monoxide	NSR	New Source Review
COM	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H₂S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter		Andrew School

^{*}For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

This source is subject to the compliance assurance monitoring (CAM) program under 40 CFR 64.4(a). The CAM plan for this source is addressed in the malfunction abatement plan (MAP) required in Section D, SC III.1.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	200900188	Added oxidation catalyst as control on EUENGINE2, EUENGINE3, and EUEGINE4 (was left out on original ROP)	EUENGINE2, EUENGINE3 and EUENGINE4

The following ROP amendments or modifications were issued after the effective date of ROP No. MI-ROP-N5831-2014.

Permit to Install Number	ROP Revision Application Number/Issuance Date	Description of Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	201500014/ April 21, 2015	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	EUENGINE5

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in FGCATENGINES, FGWAUKENGINES, and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by an equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

Each engine included in FGCATENGINES and FGWAUKENGINES: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for each engine included in FGCATENGINES and FGWAUKENGINES, including engine(s) from engine change-out(s), and during the hours operated without a catalyst. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

Section 2 – LINN Operating, LLC - Hayes 29 CPF

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

SECTION 2 – LINN Operating, LLC - Hayes 29 CPF

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted.
 (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- 1. The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))
- 6. A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property. (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property. (R 336.1901(b))

Testing/Sampling

13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)

20192024

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))

15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.
 - d. The analytical techniques or methods used.
 - e. The results of the analyses.
 - f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.

2014b2019c

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.

22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))

a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.

- b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.
- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))

20192024

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))

c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA.

(R 336.1213(6)(b)(iii))

- e. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:

a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))

b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))

c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))

d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))

- e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))
- 29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))

2014b2019c

20192024

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))

d. If the department determines that the ROP must be revised to ensure compliance with the applicable

requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

- 36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.
- 37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ. ² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months, the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI. ² (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

ı	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	со	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

1. The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R 336.1205(3), R 336.213(3))

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.213(3))

3. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINEH29	Remote 1,085 hp Caterpillar G3516TALE (lean burn) reciprocating internal combustion engine (RICE) with oxidation catalyst	8/20/13	NA
EUGLYCOLDEHYDRATOR	Glycol dehydrator which removes water along with trace hydrocarbons from the gas stream. The water and hydrocarbons are controlled by a condenser.	11/01/92	NA
EUMACTZZZZ	Remote existing non-emergency spark ignition (SI) 4-stroke lean burn (4SLB) RICE (EUENGINEH29) Caterpillar 3516TALE (low emission) rated 1,085 hp located at an area source	08/20/13	NA

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUGLYCOLDEHYDRATOR EMISSION UNIT CONDITIONS

DESCRIPTION:

Glycol dehydrator system which removes water along with trace hydrocarbons from the gas stream.

Flexible Group ID: NA

POLLUTION CONTROL EQUIPMENT:

Condenser

I. <u>EMISSION LIMIT(S)</u>

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

NA

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. If EUGLYCOLDEHYDRATOR meets the exception criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the actual flow rate of natural gas shall be determined using either of the procedures below:
 - a. The permittee shall install and operate a monitoring instrument that directly measures natural gas flow rate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The permittee shall

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

convert annual natural gas flow rate to a daily average by dividing the annual flow rate by the number of days per year the glycol dehydration unit processed natural gas. (40 CFR 63.772(b)(1)(i))

- b. The permittee shall document, to the AQD District Supervisor's satisfaction, the actual annual average natural gas flow rate to the glycol dehydration unit is less than 85,000 cubic meters per day. (40 CFR 63.772(b)(1)(ii))
- 2. As an alternative, if EUGLYCOLDEHYDRATOR meets the exemption criteria in 40 CFR 63.764(e)(1)(ii) for glycol dehydrators with actual average benzene emissions less than 0.90 megagram (0.99 ton) per year, the emissions shall be determined either uncontrolled, or with federally enforceable controls in place and using either of the procedures below:
 - a. The permittee shall determine actual average benzene emissions using the model GRI-GLYCalc[™], Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalc[™] Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit, and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1). (40 CFR 63.772(b)(2)(i))
 - b. The permittee shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement using the methods in 40 CFR 63.772(a)(1)(i) or (ii), or an alternative method according to 40 CFR 63.7(f). Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated by year. This result shall be converted to megagrams per year. (40 CFR 63.772(b)(2)(ii))
- 3. If EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the permittee shall keep records of the actual annual average natural gas throughput (in terms natural gas flow rate to the glycol dehydration unit per day) as determined in accordance with SC VI.1. The permittee shall keep records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(i))
- 4. As an alternative to SC VI.1, if EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40CFR 63.764(e)(1)(ii) for glycol dehydrators with the actual average benzene emissions less than 0.90 megagram per year, the permittee shall keep records of the actual average benzene emissions (in terms of benzene emissions per year) as determined in accordance with SC VI.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(ii))

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all provisions of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart HH, as they apply to EUGLYCOLDEHYDRATOR. (40 CFR Part 63, Subpart HH)

<u>Footnotes</u>:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUENGINEH29 EMISSION UNIT CONDITIONS

DESCRIPTION:

One remote 1,085 hp Caterpillar G3516TALE (lean burn) RICE

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)
2. CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate EUENGINEH29 unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.

d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.

e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (R 336.1213(3)(a)(iii))

V. <u>TESTING/SAMPLING</u>

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from EUENGINEH29, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in EUENGINEH29 on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINEH29, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINEH29, on a daily basis. (R 336.1213(3)(a)(iii))

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

4. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)

- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device, monthly and 12-month rolling time period records of the hours of EUENGINEH29 is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 6. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

7. If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVENGINEH29	16 ¹	401	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUMACTZZZ EUMACTZZZZ CONDITIONS

DESCRIPTION:

An existing remote, non-emergency spark ignition (SI) four stroke lean burn (4SLB), natural gas-fired reciprocating internal combustion compressor engine (RICE) with a site-rating of 1,085 horsepower at an area source

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. (40 CFR 63.6625 (e), 40 CFR 63.6605 (a)(b))
- 2. The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in 40 CFR Part 63, Supbart ZZZZ Table 2d apply. (40 CFR 63.6625 (h))

IV. <u>DESIGN/EQUIPMENT PARAMETER(S)</u>

NA

V. <u>TESTING/SAMPLING</u>

NA

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

VI. MONITORING/RECORDKEEPING

- 1. Except for monitor malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall monitor continuously at all times that the stationary RICE is operating. (40 CFR 63.6635 (a)(b))
- 2. The Permittee shall not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels; however shall use all the valid data collected during all other periods. (40 CFR 63.663(c))
- 3. The Permittee shall keep maintain the following records, which shall be made available to the Administrator upon request: (40 CFR 63.6655(a)(b)(d)(e))
 - a. A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that was submitted, according to the requirement in 40 CFR 63.10(b)(2)(xiv).
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 - c. Records of applicable performance tests and performance evaluations as required in §63.10(b)(2)(viii).
 - d. Records of all required maintenance performed on the air pollution control and monitoring equipment.
 - e. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- 4. The permittee shall keep the records required in 40 CFR Part 63, Subpart ZZZZ Table 6 of this subpart to show continuous compliance with each applicable emission or operating limitation that applies.
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to the Malfunction Abatement Plan for EUENGINEH29 subject to management practices as shown in 40 CFR Part 63, Subpart ZZZZ, Table 2d to this subpart.

VII. REPORTING

1. The Permittee shall report each instance in which the requirements in 40 CFR Part 63, Subpart ZZZZ Table 8 were not met. (40 CFR 63.6640(e))

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVMACTZZZZ	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

- 1. The permittee shall evaluate the status of their stationary RICE every 12 months. (40 CFR 63.6603(a))
- 2. The permittee shall keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

40 CFR 63.6675, Subpart ZZZZ, the owner or operator must comply with all of the requirements that are not remote stationary RICE within 1 year of the evaluation. (40 CFR 63.6603(f))

- 3. The permittee shall within 1 year of the evaluation comply with 40 CFR 63.6640 if the remote stationary RICE is reconstructed or rebuilt. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a). (40 CFR 63.6640(d))
- 4. The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ, for Stationary Reciprocating Internal Combustion Engines. (40 CFR Part 63, Subparts A and ZZZZ)

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that the requirements identified in the table below are not applicable to the specified emission unit(s) and/or flexible group(s). This determination is incorporated into the permit shield provisions set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii). If the permittee makes a change that affects the basis of the non-applicability determination, the permit shield established as a result of that non-applicability decision is no longer valid for that emission unit or flexible group.

Emission Unit/Flexible Group ID	Non-Applicable Requirement	Justification
EUENGINEH29	40 CFR Part 60, Subpart JJJJ	The Caterpillar 3516TALE RICE was manufactured prior to January 1, 2008, but installed at its current location on August 20, 2013, therefore 40 CFR Part 60, Subpart JJJJ is not applicable.

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c 20192024

2014b2019c

APPENDICES

Appendix 1. Abbreviations and Acronyms

The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

Air Quality Division	MM	Million
Actual cubic feet per minute	MSDS	Material Safety Data Sheet
Best Available Control Technology	MW	Megawatts
British Thermal Unit	NA	Not Applicable
Degrees Celsius	NAAQS	National Ambient Air Quality Standards
Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
Continuous Emission Monitoring	NOx	Oxides of Nitrogen
Code of Federal Regulations	NSPS	New Source Performance Standards
Carbon Monoxide	NSR	New Source Review
Continuous Opacity Monitoring	PM	Particulate Matter
Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
Dry standard cubic foot	pph	Pound per hour
Dry standard cubic meter	ppm	Parts per million
United States Environmental Protection Agency	ppmv	Parts per million by volume
Emission Unit	ppmw	Parts per million by weight
Degrees Fahrenheit	PS	Performance Specification
Flexible Group	PSD	Prevention of Significant Deterioration
Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
General Condition	psig	Pounds per square inch gauge
Grains	PeTE	Permanent Total Enclosure
Hazardous Air Pollutant	PTI	Permit to Install
Mercury	RACT	Reasonable Available Control Technology
Hour	ROP	Renewable Operating Permit
Horsepower	SC	Special Condition
Hydrogen Sulfide	scf	Standard cubic feet
High Volume Low Pressure *	sec	Seconds
Identification (Number)	SCR	Selective Catalytic Reduction
Initial Risk Screening Level	SO ₂	Sulfur Dioxide
	SRN	State Registration Number
Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
Pound	Temp	Temperature
Meter	THC	Total Hydrocarbons
		Tons per year
		Microgram
The district of the second		Visible Emissions
		Volatile Organic Compounds
		Year
Millimeter	<i>y</i> .	
	Air Quality Division Actual cubic feet per minute Best Available Control Technology British Thermal Unit Degrees Celsius Federal Clean Air Act Compliance Assurance Monitoring Continuous Emission Monitoring Code of Federal Regulations Carbon Monoxide Continuous Opacity Monitoring Michigan Department of Environmental Quality Dry standard cubic foot Dry standard cubic meter United States Environmental Protection Agency Emission Unit Degrees Fahrenheit Flexible Group Gallon of Applied Coating Solids General Condition Grains Hazardous Air Pollutant Mercury Hour Horsepower Hydrogen Sulfide High Volume Low Pressure * Identification (Number) Initial Risk Screening Level Initial Threshold Screening Level Lowest Achievable Emission Rate Pound Meter Maximum Achievable Control Technology Michigan Air Emissions Reporting System Malfunction Abatement Plan Michigan Department of Environmental Quality Milligram	Actual cubic feet per minute Best Available Control Technology MW British Thermal Unit NA Degrees Celsius NAAQS Federal Clean Air Act NESHAP Compliance Assurance Monitoring NOX Code of Federal Regulations NSPS Carbon Monoxide NSR Continuous Opacity Monitoring Michigan Department of Environmental Quality PM-10 Dry standard cubic foot Dry standard cubic meter United States Environmental Protection Agency Emission Unit Degrees Fahrenheit PS Flexible Group Gallon of Applied Coating Solids General Condition Grains Hazardous Air Pollutant Mercury Hour Horsepower Hour Horsepower Hoydrogen Sulfide High Volume Low Pressure * Identification (Number) Initial Risk Screening Level Lowest Achievable Emission Rate Pound Meter Maximum Achievable Control Technology Michigan Department of Environmental Quality WCC Milligram VCC VACC VACA NAAQS NAAQ NAAQ NAAQ NAAQ NAAQ NAAQ NA

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4.

PTI No: MI-PTI-N5831-

*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

Specific monitoring requirement procedures, methods or specifications are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	NA	NA	NA

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in EUENGINEH29 and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

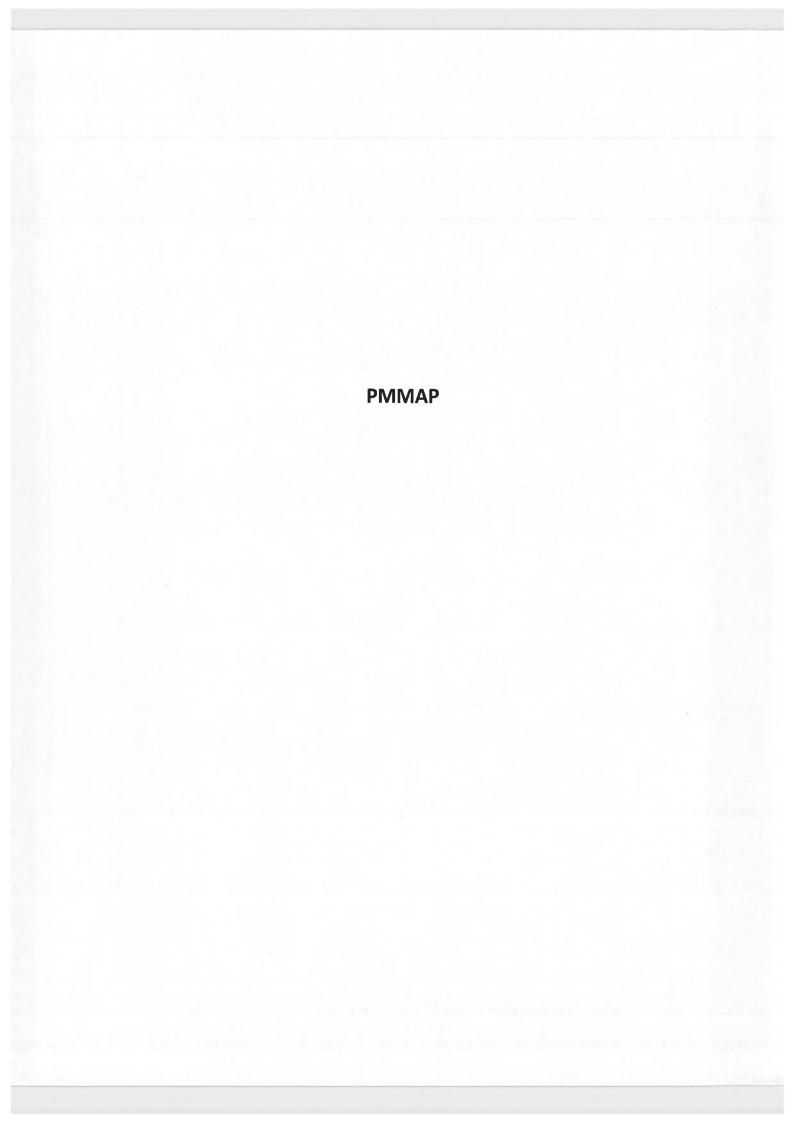
Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUENGINEH29: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for EUENGINEH29, including an engine from an engine change-out. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.


Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

LINN OPERATING, LLC

PREVENTATIVE MAINTENANCE/
MALFUNCTION ABATEMENT PLAN
AND EPA 40 CFR, Part 63 Subpart ZZZZ
MAINTENANCE PLAN

For

HAYES 29 CENTRAL PRODUCTION FACILITY HAYES TOWNSHIP, OTSEGO COUNTY, MI SRN 5831

January 7, 2019

Compressor Engine Identification

Engines (make/model):	Caterpillar 3516 LE
Unit No.	3956
	Low Emission/
	Lean Burn
Horsepower:	1085
Control	Oxidation Catalyst and AFRC

Purpose of Oxidation Catalyst

Oxidation catalysts used on lean burn engines reduce carbon monoxide (CO), volatile organic compounds (VOCs) and trace toxic air contaminants, which include hazardous air pollutants (HAPs) emissions.

Engine Operating Variables To Be Monitored

A copy of the normal field maintenance report and the compressor monthly operating reports are identified as Attachment 1a and 1b, respectively.

Malfunction Corrective Procedures

The engine will be shut down immediately if a malfunction event occurs. Repair work will be completed, the amount of time the engine is down, and the repairs performed will be recorded on the Field Maintenance Report. The catalyst (if impacted) will be inspected prior to engine start up. Note that new engines, or engines that have been recently overhauled or major repairs performed, should be run at the maximum available load for a period of at least 100 hours, before the catalyst element is installed. This allows the new engine components to break in and most major problems associated with engine start up to be resolved, protecting the catalyst element. If major engine work occurs, LINN should document the amount of time the engine is operated without the catalyst on the attached log in Attachment 2.

Major Parts Replacement Inventory

Major replacement parts (including a spare catalyst element) are kept in inventory for quick replacement in the event it is required. Parts inventory is maintained by a subcontractor.

Oxidation Catalyst Operating Variables to Be Monitored

Unit 3956

Operating Variable	Normal Range*	Method of inspections	Frequency
Catalyst Inlet Temperature	>750° F	Visual inspection (thermocouple reading)	Daily
Catalyst Outlet Temperature	>750° F <1,350° F	Visual inspection (thermocouple reading)	Daily
Pressure Differential across Catalyst	5.4" of water column#	Visual inspection (gauge reading)	Monthly

^{*}Catalyst inlet and outlet temperature and calibrated pressure differential ranges have been substantiated by utilizing a portable analyzer on three separate occasions. Maintenance and analyzer data is available in Attachment 3. The analyzer will be utilized to verify (when applicable) the CO reduction is at least 80%.

#Currently, a new baseline is being established based upon observed readings. The current actionable pressure differential is 7.4" w.c., or 2" w.c. above the substantiated range.

Corrective Procedures in the Event of a Malfunction

If an operating variable listed above is out of the specified range the following steps will be taken:

- 1. Within 5 days check emissions reduction efficiencies for CO and NOx with a portable emissions analyzer. If efficiencies are within manufacturer's specifications (80% for CO 0% for NOx) nothing more will be done. LINN may submit the Change in Oxidation Catalyst Operating Variable Notification Form (Attachment 4) to the MDEQ District Supervisor to revise the catalyst operating variable range, if applicable. If efficiencies are not within manufacturer's specifications, proceed to step 2.
- 2. Within 5 days after step 1 above is completed, the catalyst will be removed and cleaned by vacuuming the catalyst face or using clean compressed air over the catalyst face. The catalyst gasket will also be replaced. The catalyst will be returned to service and emissions re-checked. If the catalyst still does not meet efficiency goals, remove the catalyst and send to vendor for cleaning. Install a replacement catalyst during vendor cleaning process.

AFRC O₂ Sensor Replacement Schedule

 O_2 sensors for the AFRC will be replaced quarterly. Records shall be kept of the O_2 sensor replacements.

Emission Checks-Use of a Portable Emissions Analyzer

- a. The analyzer will be calibrated as required by the manufacturer. Records of calibration will be kept on file and made available to the Air Quality District Supervisor upon request.
- b. The analyzer will be used only for CO and NOx.
- c. The analyzer will be used monthly, and, to either (1) check the performance of a catalyst if a monitored parameter is out of range (as discussed above); or (2) when a cleaned catalyst is installed, typically every 12 to 18 months.
- d. LINN will conduct catalyst inlet and outlet checks to estimate destruction efficiency.
- e. Records shall be kept of destruction efficiency analysis.

Scheduled Maintenance

- a. The catalyst will be inspected and cleaned by vacuuming the catalyst face or blowing with clean compressed air every 12-18 months unless the operating variables specified above are out of their respective ranges.
- b. After inspection and cleaning, the catalyst shall be returned to service and emission reduction testing shall be performed. If the catalyst does not respond to the field cleaning, it will be sent to the manufacturer for a chemical cleaning. A replacement catalyst media will be used during the cleaning process in the interim.
- c. The oxidation catalyst gasket will be replaced when the catalyst is serviced (typically every 12-18 months).
- d. The catalyst will be replaced if it is demonstrated that it is not functioning properly after the vendor cleaning, or in lieu of vendor cleaning.

Scheduled Maintenance as indicated in Table 2d to Subpart ZZZZ:

8. Non-Emergency, non- black start 4SLB remote stationary RICE >500 HP	a.	Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹
Brown off in Louisian	b.	Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;
per a miraning paparit Of Militaria and Kapp all in to his me, spirit line 1885 of Fada	C.	Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;
	I PARTIE	The life can be a second as

§63.6625(i) If you own or operate a stationary engine that is subject to the work, operation or management practices in items 1, 2, or 4 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. §63.6625(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil before continuing to use the engine. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

¹ Sources have the option to utilize an oil analysis program as described in section 63.6625 (i) and (j) in order to extend the specified oil change requirement in Table 2d of this Subpart ZZZZ.

Page 5 of 5

Supervisory Personnel Responsible for Maintenance of the Control Equipment

Christopher Zimmerman Production Foreman 4890 Airport Road Lewiston, MI 49756 Office Phone: 989.786.7592 Cell Phone: 989.370.7654

Retention of Records

Records shall be kept on file and retained as described in the permit.

Updates of PM/MAP

Updates of the plan will be submitted to the AQD District Supervisor for written approval. If an operating variable range is modified using the Change in Oxidation Catalyst Operating Variable Notification Form, the PM/MAP will be updated to reflect the new range, as necessary. See Attachment 4.

					,			g Re	port				OF	ERAT	OR							М	IONTH	/YEA	R						
NGINE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
IPM .		-										1 6		- 17	-10	-10		-10	13		-1		20	2.4	20	20	21	20	23	30	—
ing JW temp																															\vdash
ing oil pres																															\vdash
ng oil temp																															
ing hours																															-
tanifold pres										840																					
urbo temp				- 1																											
re-catalyst temp																															
ost-catalyst temp																															_
ompressor																															
uction pres				- 1		7					7																				
ST int pres			4																												\vdash
ND int pres							4															-									\vdash
RD int pres									4																						
isch pres											Ш																				
uction temp		Į.																													
st disch temp										9.50																					\vdash
ND Suc temp																					7.3										
ND dis temp																							-								
RD Suc temp																															
RD dis temp																															
TH Suc temp																															
isch temp											4																				
omp oil pres	4															1													\neg		
omp oil temp									1				-																		
luid levels																															\vdash
own time hrs																															_
											H																				
EASON FOR DOWN	ITIME	-				-					· ·					-										-					
					negation of										BUT.																
															314.1.							1					-16				

-1

Attachment 1B

CATALYST MONTHLY OPERATING REPORT

Unit Number	Location	Date of Service	Pre Temp (min 750°F)	Post Temp (max 1350°F)	Differential Pressure Baseline	Differential Pressure In W.C	Suction	Discharge Pressure	RPM	AFRC Sensor Output L.	AFRC Sensor Output R.	Last O2 Sensor Change
							-					
_												
										-		
												<u>-</u>
			_									
									·			
									. <u> </u>			
											:	
												_

Attachment 2

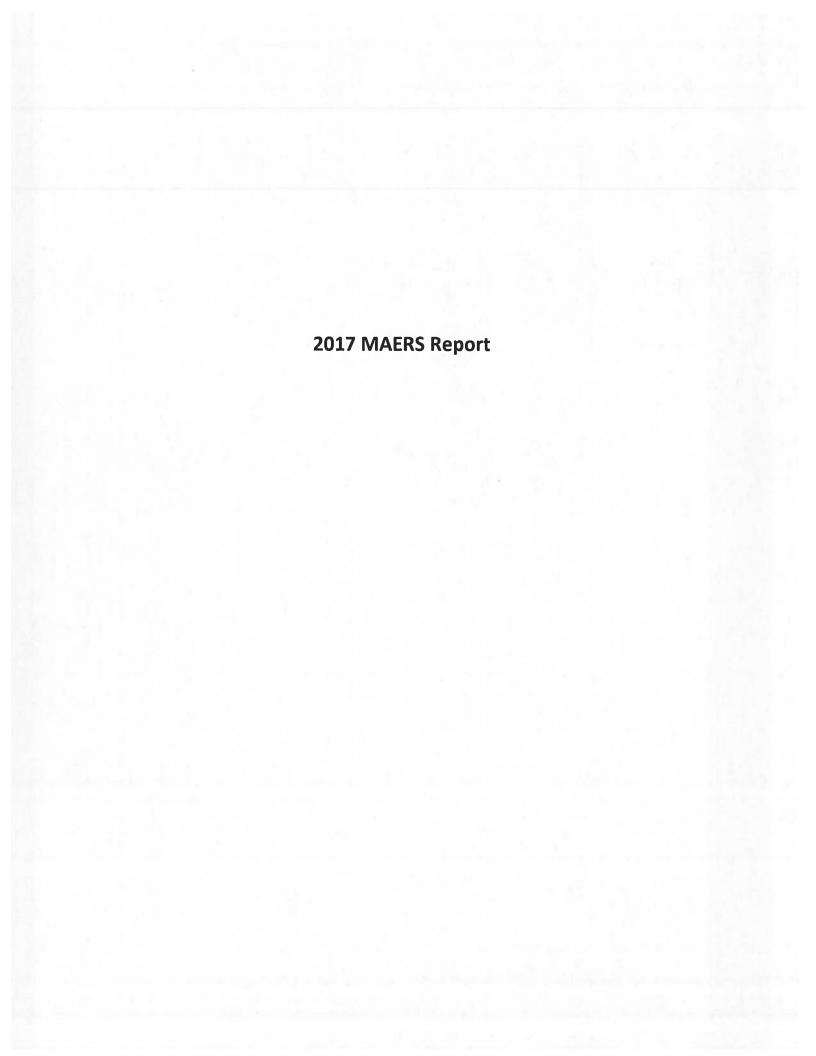
Hayes 29 Unit #3956

	Record of Time Engine Operated Without the Catalytic Converter Total allowable per unit is 200 hours in 12 month period (not calendar year).										
Time/Date of Engine Malfunction	Time/Date of Engine Repair	Reason	Total Hours Down	Total Hours 12 Month Time Period							
	10.196.00										

Only record time engine operated without catalytic converter, not amount of time engine was shut down

Year:

Ope Sub	rate mit	or Si to C	gnat Chris	ure Zin	 man	mor	ıthly	7.	m		-						


	CATALYST MONTHLY OPERATING REPORT											
	LOCATION	CUSTOMER	DATE OF SERVICE	PRE TEMP	POST TEMP	TEMP DIFF	DIFFERENTIAL PRESSURE IN W.C	SUCTION	DISCHARGE PRESSURE	RPM	COMMENTS	
3956	Hayes 29	LINN										
ESTABLI	SHED BASELI	NE 8/20/13					ESTABLISHED BASELINE 1/14/13					
TEMP D	IFF BASELINE	48	0				W/C DIFF	4.6				
	<u> </u>		9/20/2013	837	814	-23	1.5	-1.4	990	1027		
			9/25/2013	881	855	-26	6.5	2.8	980	1177	7	
			9/30/2013	886	864	-22	6	-1.4	990	1167		
			10/2/2013	882	860	-22	6.5	-1.8	980	1170		
			10/8/2013	867	845	-22	6.4	-1.5	1000	1120		
			10/10/2013	870	848	-22	6.5	-1.3	985	1120		
			10/12/2013	870	848	-22	6.5	-1.3	985	1120		
			10/14/2013	880	856	-24	6.5	-1.9	985	1163		
			10/18/2013	870	848	32	11	-1.7	990	1165		
			10/22/2013	872	850	-22	6	-1.9	985	1167	l,	
			10/24/2013	874	852	-22	6	-2	990	1158	Tied .	
			10/28/2013	860	838	-22	6	-2.2	995	1168		
			10/29/2013	859	837	-22	6	-2.5	990	1170		
			10/31/2013	852	830	-22	6	2.5	1010	1163		
ESTABLI:	SHED BASELII	NE 11/1/13					ESTABLISHED BASE	LINE 1/14/1	13			
TEMP DI	FF BASELINE	-24	0				W/C DIFF	5.5				
			11/5/2013	851	831	-20	6	-2.5	995	1166		
			11/7/2013	858	839	-19	6	-0.1	990	1200		
			11/15/2013	834	813	-21	4.5	-2.2	995	1133		
			11/19/2013	819	796	-23	2.5	-3.9	990	1019		
<u> </u>			11/21/2013	829	810	-19	4.5	-2.5	985	1118		
			11/26/2013	821	800	-21	4	-2.3	995	1089		

Attachment 4

LINN Operating, LLC CHANGE IN CATALYTIC CONVERTER OPERATING VARIABLE NOTIFICATION FORM

No. AIT No. No.			
DATE	CATALYST OPERATING VARIABLE	OLD RANGE	NEW RANGE
ption of why/how	range was modified. Include test	ing data to document range modific	rations.
		ang sata to document range mounte	ations.

If a range is changed the PM/M AP will be updated and submitted to DEQ District Supervisor.

Michigan Air Emissions Reporting System (MAERS)

Source Summary Report - AQD Source ID (SRN) N5831

S-101 SOURCE INFORMATION

Source Name Breitburn_Linn Operating, LLC - Hayes 29 CPF

NAICS Code 211130

Portable No

Address 10875 Geronimo Trail, SW4 T29N R4W SEC 29

County OTSEGO

City GAYLORD

Zip Code 49735

District Gaylord

Reporting Year: 2017

Latitude

Longitude

Horizontal Collection Method Source Map Scale

Horizontal Accuracy Measure **Horizontal Reference**

44.87298486

-84.8273659

001

50000

25 Meter(s)

Datum 03

Reference Point Code

Principal Product

Number of Employees

Employer Federal ID

Number

102

NATURAL GAS

2

113785529

OWNER INFORMATION

Owner Name Breitburn Operating LP

Mailing Address 1165 Elkview dr

Address Continued P.O. Box 1256

City Gaylord

State/Province MI

Country USA

Zip/Postal Code 49735

S-102 CONTACT INFORMATION

Emission Inventory Contact Information

(Primary)

Contact Name CAROLANN KNAPP

Mailing Address BREITBURN OPERATING LP

Contact Title EH&S REP

Address Continued 1165 ELKVIEW DR

City GAYLORD

E-Mail Address carolann.knapp@breitburn.com

State/Province MI

Telephone Number (989)7320020

Country USA

Fax Number

Zip or Postal Code 49734

Emission Inventory Contact Information (Secondary)

Contact Name Mailing Address

Contact Title Address Continued

City

E-Mail Address State/Province MI

Telephone Number Country USA

Fax Number Zip or Postal Code

Fee Invoice Contact Information

Contact Name CAROLANN KNAPP Mailing Address BREITBURN OPERATING LP

Contact Title EH&S REP Address Continued P.O. BOX 1256

City GAYLORD

E-Mail Address carolann.knapp@breitburn.com State/Province MI

Telephone Number (989)7320020 Country USA

Fax Number Zip or Postal Code 49734

P-101 PREPARER'S INFORMATION

Preparer's First Name Carolann Preparer's Last Name Knapp Preparer's Title Regional EH&S Rep

Mailing Address 1165 Elkview Drive Address Continued P.O. Box 1256

City Gaylord State/Province MI Country USA Zip/Postal Code 49734

Email Address carolann.knapp@breitburn.com Telephone Number (989)7320020 Ext.369 Fax Number

SV-101 STACK INFORMATION

Stack ID SVENGINE6 AQD Stack ID SV0007 Dismantle Date

Stack Description Stack for engine #6 with catalytic converter

Actual Stk Height Above 40 FT Inside Stack Diameter 12 IN Stack Orientation Vertical

Ground

Exit Gas Temperature 1125 F Actual Exit Gas Flow Rate 6567 FT3/MIN Exit Velocity of Gas 139.356 FT/SEC

Latitude 44.87298486 Longitude -84.8273659 Horizontal Collection Method 001

Source Map Scale 50000 Reference Point Code 102	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code 102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID SVENGINEH29	AQD Stack ID SV0008	Dismantle Date
Stack Description Stack for engine #H29	with oxidation catalyst	
actual Stk Height Above 40 FT Ground	Inside Stack Diameter 12 IN	Stack Orientation Vertical
Exit Gas Temperature 1125 F	Actual Exit Gas Flow Rate 6567 FT3/MIN	Exit Velocity of Gas 139.356 FT/SEC
Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code 102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID SVENGINE5	AQD Stack ID SV0009	Dismantle Date
Stack Description Stack for engine #5 with	th catalytic converter	
ctual Stk Height Above 40 FT Ground	Inside Stack Diameter 12 IN	Stack Orientation Vertical
Exit Gas Temperature 1125 F	Actual Exit Gas Flow Rate 6567 FT3/MIN	Exit Velocity of Gas 139.356 FT/SEC
Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code 102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID SVENGINE1	AQD Stack ID SV0010	Dismantle Date
Stack Description Stack for engine #1		
ctual Stk Height Above 37.5 Ground	Inside Stack Diameter 16	Stack Orientation Vertical
Exit Gas Temperature 852	Actual Exit Gas Flow Rate 7516	Exit Velocity of Gas 89.7156 FT/SEC
Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code 102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID SVENGINE2	AQD Stack ID SV0011	Dismantle Date

Stack Description Stack for engine #2 with oxidation catalyst

Actual Stk Height Above 37.5 Ground

Inside Stack Diameter 16

Stack Orientation Vertical

Exit Gas Temperature 852

Actual Exit Gas Flow Rate 7416

Exit Velocity of Gas 88.522 FT/SEC

Latitude 44.87298486

Longitude -84.8273659

Horizontal Collection Method 001

Source Map Scale 50000

Horizontal Accuracy 25 Meter(s)

Horizontal Reference Datum 03

Reference Point Code 102

Bypass Stack Only N

If Yes, Main Stack ID

Stack ID SVENGINE3

AQD Stack ID SV0012

Dismantle Date

Stack Description Stack for engine #3 with oxidation catalyst

Stack Description Stack for engine #4 with oxidation catalyst

Actual Stk Height Above 37.5 Ground

Inside Stack Diameter 16

Stack Orientation Vertical

Exit Gas Temperature 852

Actual Exit Gas Flow Rate 7416

Exit Velocity of Gas 88.522 FT/SEC

Latitude 44.87298486

Longitude -84.8273659

Horizontal Collection Method 001

Source Map Scale 50000

Horizontal Accuracy 25 Meter(s)

Horizontal Reference Datum 03

Reference Point Code 102

Bypass Stack Only N

If Yes, Main Stack ID

Stack ID SVENGINE4

AQD Stack ID SV0013

Dismantle Date

Actual Stk Height Above 37.5

Ground

Inside Stack Diameter 16

Stack Orientation Vertical

Exit Gas Temperature 852

Actual Exit Gas Flow Rate 7416

Exit Velocity of Gas 88.522 FT/SEC

Latitude 44.87298486

Longitude -84.8273659

Horizontal Collection Method 001

Source Map Scale 50000

Horizontal Accuracy 25 Meter(s)

Horizontal Reference Datum 03

Reference Point Code 102

Bypass Stack Only N

If Yes, Main Stack ID

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID

Emission Unit ID

NAICS Code

Remove from MAERS

Installation Date

Dismantle Date

EU0002

EUENGINE2

211130

Ν

11/01/1992

Preparer's Description

ENGINE WITH OXIDATION CATALYST - 1085 HP

Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR		N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year	
		Υ	86-05A	Υ	

CONTROL DEVICE(S)

Control Device Code
CATALYTIC OXIDR

EMISSION UNIT STACK(S)

Stack ID SVENGINE2 A-101 ACTIVITY INFORMATION **EU/RG ID EUENGINE2**

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-54

LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec,Jan,Feb)

Spring (Mar-May)

Summer (Jun-Aug)

Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

25

24

7

365

8760

MATERIAL INFORMATION

Material Code

NATURAL GAS

Material Throughput 72.67

Unit Code

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

VOC Content

Density BTUs (fuel) Sulfur Content (fuel)

Fall (Sep-Nov)

25

Ash Content (fuel)

0.04 POUNDS PER CUBIC FOOT

1020 BRITISH

0.01 weight percent THERMAL UNITS PER

0 weight percent

CUBIC FOOT

-101 EMISSION	NINFORMATIC	ON EU/RO	D EUENGINE2	SCC Cod	de 2-02-002	2-54		
ollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
0	7180	POUNDS	Other	98.8		MILLION CUBIC FEET	80	
X	39891	POUNDS	Other	548.9		MILLION CUBIC FEET		
,PRIMARY	5.74	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
5,PRIMRY	5.74	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
	43.59	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET		
	4787	POUNDS	Other	65.87		MILLION CUBIC	50	

ATTACHMENT FOR EU/RG ID EUENGINE2

SCC Code 2-02-002-54

Document Name: 3516 Cat 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

FEET

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0003	EUFUGITIVES	211130	N	11/01/1992	
Preparer's Description	Fugitive emissions from valv	ves etc.			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
				N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year	
		Υ	86-05A	Υ	

A-101 ACTIVITY II	NFORMATION I	EU/RG ID EUFUGITIV	ES				
Source Classification	Code (SCC)	Preparer's SCC Comm	nent				
3-10-888-01		FUGITIVES					
	SEASONAL MATE	RIAL USAGE SCHEDULE					
IF THROUGHP	UT IS >0, THEN SEAS	ONAL PERCENTAGES MU	JST TOTAL 100%		OPERAT	TING SCHEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760
MATERIAL INFORMAT	TION						
Material Code	VALVE	Material Throughput	640	Unit Code	EACH YEAR ACTIV	TTY	
Preparer's material de	scription	FUGITIVES					
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)			

E-101 EMISSION	NINFORMATIC	ON EU/RO	D EUFUGITIVES	SCC Co	de 3-10-88	8-01		
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
voc	9216	POUNDS	MAERS EF	3.6	0	EACH YEAR ACTIVITY		

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0005	EUENGINE3	211130	N	11/01/1992	
Preparer's Description	ENGINE WITH OXIDATION	CATALYST - 1085 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR		N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required t MAERS for this reporting year?	
		Υ	86-05A	Υ	

CONTROL DEVICE(S)

Control Device Code
CATALYTIC OXIDR

EMISSION UNIT STACK(S)

Stack ID SVENGINE3 **A-101 ACTIVITY INFORMATION EU/RG ID EUENGINE3**

Preparer's SCC Comment Source Classification Code (SCC)

2-02-002-54 LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0. THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Days per Week Days per Year Hours/Year Winter (Dec, Jan, Feb) Spring (Mar-May) Summer (Jun-Aug) **Hours per Day** Fall (Sep-Nov)

25 25 25 25 24 7 365 8760

MATERIAL INFORMATION

Material Code NATURAL GAS Material Throughput **Unit Code** MILLION CUBIC FEET 76.47

Preparer's material description NATURAL GAS

CUBIC FOOT

VOC Content Density BTUs (fuel) Sulfur Content (fuel) Ash Content (fuel)

> 0.04 POUNDS PER 1020 BRITISH 0.01 weight percent 0 weight percent

THERMAL UNITS PER **CUBIC FOOT**

SCC Code 2-02-002-54 E-101 EMISSION INFORMATION **EU/RG ID EUENGINE3 Pollutant Code** Annual Unit code **Emission Basis List Emission Exponent Emission Factor** Control Comment **Unit Code** Efficiency % **Emissions** Factor 7556 **POUNDS** Other 98.8 MILLION CUBIC 80 CO FEET 548.9 MILLION CUBIC NOX 41976 POUNDS Other FEET PM10,PRIMARY 6.04 **POUNDS** MAERS EF 7.9 -2 MILLION CUBIC FEET PM2.5,PRIMRY 6.04 **POUNDS** MAERS EF 7.9 -2 **MILLION CUBIC** FEET **POUNDS** MAERS EF MILLION CUBIC SO2 45.87 5.998 -1 FEET

MILLION CUBIC

FEET

50

ATTACHMENT FOR EU/RG ID EUENGINE3 SCC Code 2-02-002-54

POUNDS

Document Name: Cat 3516 1085hp File Name: 3516 CAT 1085hp (Foster 28).pdf

65.87

Other

EU-101 EMISSION UNIT INFORMATION

5037

VOC

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0010	EUENGINE1	211130	N	01/01/1992	
Preparer's Description	ENGINE WITH NO CONTRO	DL - 1085 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR		N	N
if Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required to MAERS for this reporting year?	report emissions to
		Y	86-05A	Υ	

CONTROL DEVICE(S)

Control Device Code

EMISSION UNIT STACK(S)

Stack ID SVENGINE1 **A-101 ACTIVITY INFORMATION EU/RG ID EUENGINE1**

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-54

VOC Content

LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec, Jan, Feb) Spring (Mar-May)

Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

Summer (Jun-Aug) 25

24

7

365

8760

MATERIAL INFORMATION

Material Code NATURAL GAS Material Throughput

Unit Code

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

Density

BTUs (fuel)

Sulfur Content (fuel)

Ash Content (fuel)

0.04 POUNDS PER **CUBIC FOOT**

1020 BRITISH THERMAL UNITS PER

0.01 weight percent

Fall (Sep-Nov)

25

71.71

0 weight percent

CUBIC FOOT

Pollutant Code	Annual	Unit code	Emission Basis	List Emission	Exponent	Emission Factor	Control	Comment	
	Emissions			Factor		Unit Code	Efficiency %		
0	35427	POUNDS	Other	494.01		MILLION CUBIC FEET			
OX	39363	POUNDS	Other	548.9		MILLION CUBIC FEET			
M10,PRIMARY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET			
M2.5,PRIMRY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET			
602	43.01	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET			
/oc	9447	POUNDS	Other	131.74		MILLION CUBIC FEET			

ATTACHMENT FOR EU/RG ID EUENGINE1

SCC Code 2-02-002-54

Document Name: 3516 Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date		
EU0011	EUGLYCOLDEHY	211130	N	01/01/1980			
Preparer's Description	GLYCOL DEHYDRATOR - ANTRIM (HAYES 29 DEHY)						
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?		
200000	BTU	HR		N	Υ		
if Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required to report emission MAERS for this reporting year?			
Rule 282(b)(i)	N	Υ	86-05A	Υ			

A-101 ACTIVITY	INFORMATION	EU/RG ID EUGLYCOLDEH	Y

Source Classification Code (SCC)

Preparer's SCC Comment

3-10-003-23

GLYCOL DEHYDRATOR - ANTRIM

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

Winter (Dec, Jan, Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours per Day Days per Week Days per Year Hours/Year

OPERATING SCHEDULE

25 25 25 25 24 365 8760

MATERIAL INFORMATION

Material Code GLYCOL Material Throughput 0.11 **Unit Code** YEAR-GALLON/MINUTE

Preparer's material description **GLYCOL DEHYDRATORS-ANTRIM**

VOC Content Density BTUs (fuel) Sulfur Content (fuel) Ash Content (fuel)

0 weight percent

E-101 EMISSION INFORMATION EU/RG ID EUGLYCOLDEHY SCC Code 3-10-003-23 **Pollutant Code** Annual Unit code **Emission Basis List Emission** Exponent **Emission Factor** Control Comment **Emissions** Factor Efficiency % **Unit Code** VOC 10.12 POUNDS MAERS EF 9.2 YEAR-1 **GALLON/MINUTE**

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0012	EUTANKS	211130	N	01/01/1980	
Preparer's Description	OIL STORAGE TANKS				
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
				N	Υ
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required t MAERS for this reporting year?	
Rule 284(e)	N	Y	86-05A	Υ	

Source Classification Code (SCC) 4-04-003-01 FIXED ROOF TANK-BREATHING LOSS SEASONAL MATERIAL USAGE SCHEDULE IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100% Winter (Dec,Jan,Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours 25 25 24 MATERIAL INFORMATION Material Code CRUDE OIL Material Throughput 20.16 Unit C	OPERATING SCHEDULE per Day Days per Week Days per Year Hours/Yea 7 365 8760
SEASONAL MATERIAL USAGE SCHEDULE IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100% Winter (Dec,Jan,Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours 25 25 25 25 24 MATERIAL INFORMATION	per Day Days per Week Days per Year Hours/Yea
IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100% Winter (Dec,Jan,Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours 25 25 25 25 24 MATERIAL INFORMATION	per Day Days per Week Days per Year Hours/Yea
Winter (Dec,Jan,Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours 25 25 25 25 24 MATERIAL INFORMATION	per Day Days per Week Days per Year Hours/Yea
25 25 25 25 24 MATERIAL INFORMATION	
MATERIAL INFORMATION	7 365 8760
The state of the s	
Material Code CRUDE OIL Material Throughput 20.16 Unit C	
	code 1000 GALLON YEARS
Preparer's material description CRUDE OIL	
VOC Content Density BTUs (fuel) Sulfur Content (fuel) Ash C	Content (fuel)
0 weight percent	

E-101 EMISSIO	N INFORMATIO	ON EU/RO	D EUTANKS	SCC Cod	e 4-04-003	-01			
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
voc	725.76	POUNDS	MAERS EF	3.6	1	1000 GALLON YEARS			

Source Classification Code (SCC)

Preparer's SCC Comment

4-04-003-02

FIXED ROOF TANK-WORKING LOSS

25

10.64

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec, Jan, Feb) Spring (Mar-May)

Summer (Jun-Aug)

Fall (Sep-Nov) Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

25

24

7

365

8760

MATERIAL INFORMATION

Material Code

CRUDE OIL

Material Throughput

Unit Code

1000 GALLONS

Preparer's material description

CRUDE OIL

VOC Content

Density

BTUs (fuel)

Sulfur Content (fuel) Ash Content (fuel)

0 weight percent

E-101 EMISSIO	N INFORMATIO	N EU/RO	GID EUTANKS	SCC Cod	e 4-04-003	-02			
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
voc	11.7	POUNDS	MAERS EF	1.1	0	1000 GALLONS			

A-101 ACTIVITY INFORMATION EU/RG ID EUTANKS

Source Classification Code (SCC)

Preparer's SCC Comment

4-06-001-32

TRUCKLOADING

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec,Jan,Feb)

Summer (Jun-Aug)

Fall (Sep-Nov)

Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

25

25

24

7

365

8760

MATERIAL INFORMATION

Material Code

CRUDE OIL

Spring (Mar-May)

Material Throughput 10.64

Unit Code

1000 GALLONS

Preparer's material description

CRUDE OIL TRUCKLOADING

VOC Content

Density

BTUs (fuel)

Sulfur Content (fuel)

Ash Content (fuel)

E-101 EMISSIO	N INFORMATIO	ON EU/RO	DE EUTANKS	SCC Cod	e 4-06-001	-32		
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
VOC	21.28	POUNDS	MAERS EF	2	0	1000 GALLONS		

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0015	EUENGINE6	211130	N	11/01/1992	
Preparer's Description	ENGINE WITH CATALYTIC	C CONVERTER - 1478 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1478	HP	HR		N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year	
		Υ	86-05A	Y	

CONTROL DEVICE(S)

Control Device Code AFTER,CAT CONV

EMISSION UNIT STACK(S)

Stack ID SVENGINE6 A-101 ACTIVITY INFORMATION **EU/RG ID EUENGINE6**

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-53

RB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec,Jan,Feb) Spring (Mar-May)

Summer (Jun-Aug)

Fall (Sep-Nov)

Days per Week

Days per Year

Hours/Year

25

25

25

25

Hours per Day 24

365

8760

MATERIAL INFORMATION

Material Code

NATURAL GAS

Material Throughput 85.64 **Unit Code**

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

VOC Content

Density BTUs (fuel)

Sulfur Content (fuel)

Ash Content (fuel)

0.04 POUNDS PER **CUBIC FOOT**

1020 BRITISH

0.01 weight percent

0 weight percent

THERMAL UNITS PER **CUBIC FOOT**

E-101 EMISSION	N INFORMATIO	ON EU/RO	ID EUENGINE6	SCC Cod	de 2-02-002	2-53		
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
СО	59086	POUNDS	Other	689.79		MILLION CUBIC FEET	80	
NOX	32014	POUNDS	Other	373.64		MILLION CUBIC FEET	90	
PM10,PRIMARY	829.85	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET		
PM2.5,PRIMRY	829.85	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET		
SO2	51.37	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET		
voc	4308	POUNDS	Other	50.3		MILLION CUBIC	50	

ATTACHMENT FOR EU/RG ID EUENGINE6

SCC Code 2-02-002-53

Document Name: Waukesha 7042 1478hp

File Name: F7042 Emissions levels.pdf

FEET

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0013	EUENGINE4	211130	N	11/01/1992	
Preparer's Description	ENGINE WITH OXIDATION	CATALYST - 1150 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1150	HP	HR		N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year	
		Y	86-05A	Υ	

CONTROL DEVICE(S)

Control Device Code
CATALYTIC OXIDR

EMISSION UNIT STACK(S)

Stack ID SVENGINE4 A-101 ACTIVITY INFORMATION **EU/RG ID EUENGINE4**

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-54

LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

365

Winter (Dec,Jan,Feb) Spring (Mar-May)

Summer (Jun-Aug)

Fall (Sep-Nov) Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

25

25

8760

MATERIAL INFORMATION

Material Code

NATURAL GAS

Material Throughput 71.77

Unit Code

24

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

VOC Content

Density BTUs (fuel)

Sulfur Content (fuel)

Ash Content (fuel)

0.04 POUNDS PER **CUBIC FOOT**

1020 BRITISH

0.01 weight percent

0 weight percent

THERMAL UNITS PER CUBIC FOOT

E-101 EMISSION INFORMATION

EU/RG ID EUENGINE4

SCC Code 2-02-002-54

Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
СО	7844	POUNDS	Other	109.18		MILLION CUBIC FEET	80	
NOX	32655	POUNDS	Other	454.9		MILLION CUBIC FEET		
PM10,PRIMARY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
PM2.5,PRIMRY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
SO2	43.05	POUNDS	MAERS EF	5.998	±1	MILLION CUBIC FEET		
VOC	5444	POUNDS	Other	75.82		MILLION CUBIC FEET	50	

ATTACHMENT FOR EU/RG ID EUENGINE4

SCC Code 2-02-002-54

Document Name: Cat 3516 11150hp

File Name: G3500 Engine Performance 1150hp.pdf

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0014	EUENGINE5	211130	N	11/01/1992	
Preparer's Description	ENGINE WITH CATALYTIC	CONVERTER - 1478 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1478	HP	HR		N	N
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year	
		Υ	86-05A	Y	

CONTROL DEVICE(S)

Control Device Code AFTER,CAT CONV

EMISSION UNIT STACK(S)

Stack ID SVENGINE5 A-101 ACTIVITY INFORMATION EU/RG ID EUENGINES

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-53

RB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec,Jan,Feb)

Spring (Mar-May)

Summer (Jun-Aug)

Hours per Day

Days per Week

Days per Year

Hours/Year

25

VOC

25

0

25

25

Fall (Sep-Nov)

24

7

MILLION CUBIC

FEET

365

8760

MATERIAL INFORMATION

Material Code

NATURAL GAS

Material Throughput

MAERS EF

Unit Code

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

VOC Content

Density BTUs (fuel)

POUNDS

Sulfur Content (fuel)

Ash Content (fuel)

0.04 POUNDS PER CUBIC FOOT 1020 BRITISH THERMAL UNITS PER

0.01 weight percent

3.019

0 weight percent

CUBIC FOOT

E-101 EMISSION INFORMATION EU/RG ID EUENGINE5 SCC Code 2-02-002-53 **Pollutant Code** Annual Unit code **Emission Basis List Emission Emission Factor Exponent** Control Comment **Emissions Factor Unit Code** Efficiency % CO 0 **POUNDS** MAERS EF 3.794 3 MILLION CUBIC **FEET** NOX 0 **POUNDS** MAERS EF 2.254 3 MILLION CUBIC FEET PM10,PRIMARY 0 POUNDS MAERS EF 9.69 0 MILLION CUBIC FEET PM2.5, PRIMRY 0 **POUNDS** MAERS EF 9.69 0 MILLION CUBIC FEET SO₂ 0 POUNDS MAERS EF 5.998 -1 MILLION CUBIC FEET

1

EU-101 EMISSION U	EU-101 EMISSION UNIT INFORMATION									
AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date					
EU0016	EUENGINEH29	211130	N	11/01/1992	09/17/2013					

Preparer's Description	ENGINE WITH CATALYTIC	CONVERTER - 1478 HP	LOCATED AT HAYES 29 FACILITY, PTI 86-05A COVERS THIS ENGINE				
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?		
1478	HP	HR		N	N		
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit require MAERS for this reporting yea			
		Υ	86-05A	Υ			

CONTROL DEVICE(S)

Control Device Code AFTER,CAT CONV

EMISSION UNIT STACK(S)

Stack ID SVENGINEH29 A-101 ACTIVITY INFORMATION EU/RG ID EUENGINEH29

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-53

RB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec, Jan, Feb) Spring (Mar-May)

Summer (Jun-Aug)

Hours per Day

Days per Week

Days per Year

Hours/Year

25

25

25

Fall (Sep-Nov) 25

24

7

365

8760

MATERIAL INFORMATION

Material Code

VOC Content

NATURAL GAS

Material Throughput 0

Unit Code

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

Density BTUs (fuel)

Sulfur Content (fuel)

Ash Content (fuel)

0.04 POUNDS PER **CUBIC FOOT**

1020 BRITISH THERMAL UNITS PER

0.01 weight percent

0 weight percent

CUBIC FOOT

E-101 EMISSION INFORMATION EU/RG ID EUENGINEH29 SCC Code 2-02-002-53

Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
СО	0	POUNDS	MAERS EF	3.794	3	MILLION CUBIC FEET		
NOX	0	POUNDS	MAERS EF	2.254	3	MILLION CUBIC FEET		
PM10,PRIMARY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET		
PM2.5,PRIMRY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET		
SO2	0	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET		
VOC	0	POUNDS	MAERS EF	3.019	1	MILLION CUBIC FEET		

AQD Emission Unit ID

Emission Unit ID

NAICS Code

Remove from MAERS

Installation Date

Dismantle Date

EU0017

EUENGINEH29 NEW

211130

Ν

09/18/2013

Preparer's Description	Preparer's Description LB ENGINE WITH OXIDATION CATALYST-1085hp (REPLACES EUENGINEH29)								
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?				
1085	HP	HR		N	N				
If Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit required MAERS for this reporting year					
		Υ	86-05A	Υ					

CONTROL DEVICE(S)

Control Device Code
CATALYTIC OXIDR

A-101 ACTIVITY INFORMATION **EU/RG ID EUENGINEH29 NEW**

Source Classification Code (SCC)

Preparer's SCC Comment

2-02-002-54

LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

OPERATING SCHEDULE

Winter (Dec, Jan, Feb) Spring (Mar-May)

Summer (Jun-Aug)

Fall (Sep-Nov) Hours per Day Days per Week

Days per Year

Hours/Year

25

25

25

25

24

365

8760

MATERIAL INFORMATION

Material Code

NATURAL GAS

Material Throughput 69.9

Unit Code

Ash Content (fuel)

MILLION CUBIC FEET

Preparer's material description

NATURAL GAS

VOC Content

Density BTUs (fuel)

Sulfur Content (fuel)

0.04 POUNDS PER **CUBIC FOOT**

916 BRITISH

0.01 weight percent

THERMAL UNITS PER

CUBIC FOOT

E-101 EMISSION	INFORMATIO	N EU/RG	ID EVENGINEH	29 NEW SCC	Code 2-02	2-002-54		
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
СО	6820	POUNDS	Other	512.52		MILLION CUBIC FEET	80	
NOX	35880	POUNDS	Other	542.35		MILLION CUBIC FEET		
PM10,PRIMARY	5.52	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
PM2.5,PRIMRY	5.52	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
SO2	41.93	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET		
VOC	3860	POUNDS	Other	116.605		MILLION CUBIC FEET	50	

ATTACHMENT FOR EU/RG ID EUENGINEH29 NEW SCC Code 2-02-002-54

Document Name: Linn's Engine Spec Sample

File Name: LINN Sample Eng. Spec. Emis. Calcs. -.pdf

SOURCE EMISSION FACTOR SUBSET REPORT

SCC Code	Pollutant Code	Pollutant Unit Code	Factor Type	Factor	Exponent	Material Code	Material Unit Code	Control Device 1	Code Control Device Code 2
2-02-200-53	820	428		11199		Here is a special			
	ACETALDEHYDE	LB	Generic	2.846	0	NATURAL GAS	MMCF		
	ACROLEIN	LB	Generic	2.683	0	NATURAL GAS	MMCF		
	AMMONIA	LB	Generic	1.8	1	NATURAL GAS	MMCF	INJCTN,CARBON	
	AMMONIA	LB	Generic	9.1	0	NATURAL GAS	MMCF	SCR	
	BENZENE	LB	Generic	1.612	0	NATURAL GAS	MMCF		
	BUTADIENE,13	LB	Generic	6.763	-1	NATURAL GAS	MMCF		
	CARBON TETRA	LB	Generic	1.805	-2	NATURAL GAS	MMCF		
	CHLOROBENZ	LB	Generic	1.316	-2	NATURAL GAS	MMCF		
	CHLOROFORM	LB	Generic	1.397	-2	NATURAL GAS	MMCF		
	СО	LB	Generic	3.794	3	NATURAL GAS	MMCF		
	CO2	LB	Generic	1.122	5	NATURAL GAS	MMCF		
	DIBROMOET,12	LB	Generic	2.173	-2	NATURAL GAS	MMCF		
	DICHLORETH12	LB	Generic	1.153	-2	NATURAL GAS	MMCF		
	DICLETH,11-	LB	Generic	1.153	-2	NATURAL GAS	MMCF		
	DICLPROPE,13	LB	Generic	1.295	-2	NATURAL GAS	MMCF		
	ETHYLBENZENE	LB	Generic	2.53	-2	NATURAL GAS	MMCF		
	FORMALDEHYDE	LB	Generic	2.091	1	NATURAL GAS	MMCF		
	METHANE	LB	Generic	2.346	2	NATURAL GAS	MMCF		
	METHANOL	LB	Generic	3.121	0	NATURAL GAS	MMCF		
	METHYLENE CL	LB	Generic	4.202	-2	NATURAL GAS	MMCF		
	NAPHTHALENE	LB	Generic	9.904	-2	NATURAL GAS	MMCF		
	NOX	LB	Generic	2.254	3	NATURAL GAS	MMCF		
	PAH	LB	Generic	1.438	-1	NATURAL GAS	MMCF		
	PM10,PRIMARY	LB	Generic	9.69	0	NATURAL GAS	MMCF		
	PM2.5,PRIMRY	LB	Generic	9.69	0	NATURAL GAS	MMCF		
	PRPLENE DICH	LB	Generic	1.326	-2	NATURAL GAS	MMCF		
	SO2	LB	Generic	5.998	-1	NATURAL GAS	MMCF		

	STYRENE	LB	Generic	1.214	-2	NATURAL GAS	MMCF	
	TETCLET,1122	LB	Generic	2.581	-2	NATURAL GAS	MMCF	
	TOLUENE	LB	Generic	5.692	-1	NATURAL GAS	MMCF	
	TRICLETH,112	LB	Generic	1.561	-2	NATURAL GAS	MMCF	
	VINYL CHLOR	LB	Generic	7.324	-3	NATURAL GAS	MMCF	
	VOC	LB	Generic	3.019	1	NATURAL GAS	MMCF	
	XYLENES ISO	LB	Generic	1.989	-1	NATURAL GAS	MMCF	
2-02-200-54								
		LB	Generic	4.274	1	NATURAL GAS	MMCF	
		LB	Generic	5.518	-1	NATURAL GAS	MMCF	
	ACENAPHTHEN	LB	Generic	1.275	-3	NATURAL GAS	MMCF	
	ACENAPHTHYL	LB	Generic	5.641	-3	NATURAL GAS	MMCF	
	ACETALDEHYDE	LB	Generic	8.527	0	NATURAL GAS	MMCF	
	ACROLEIN	LB	Generic	5.243	0	NATURAL GAS	MMCF	
	AMMONIA	LB	Generic	1.8	1	NATURAL GAS	MMCF	INJCTN,CARBON
	AMMONIA	LB	Generic	9.1	0	NATURAL GAS	MMCF	SCR
	BENZ(GHI)PE	LB	Generic	4.223	-4	NATURAL GAS	MMCF	
	BENZENE	LB	Generic	4.488	-1	NATURAL GAS	MMCF	
	BENZO(B)FLUO	LB	Generic	1.693	-4	NATURAL GAS	MMCF	
	BENZO(E)PYRE	LB	Generic	4.233	-4	NATURAL GAS	MMCF	
	BIPHENYL	LB	Generic	2.162	-1	NATURAL GAS	MMCF	
	BUTADIENE,13	LB	Generic	2.723	-1	NATURAL GAS	MMCF	
	CARBON TETRA	LB	Generic	3.743	-2	NATURAL GAS	MMCF	
	CHLOROBENZ	LB	Generic	3.101	-2	NATURAL GAS	MMCF	
	CHLOROETHANE	LB	Generic	1.907	-3	NATURAL GAS	MMCF	
	CHLOROFORM	LB	Generic	2.907	-2	NATURAL GAS	MMCF	
	CHRYSENE	LB	Generic	7.069	-4	NATURAL GAS	MMCF	
	co	LB	Generic	5.68	2	NATURAL GAS	MMCF	
	CO2	LB	Generic	1.122	5	NATURAL GAS	MMCF	
	DIBROMOET,12	LB	Generic	4.519	-2	NATURAL GAS	MMCF	

DICHLORETH12	LB	Generic	2.407	-2	NATURAL GAS	MMCF
DICLETH,11-	LB	Generic	2.407	-2	NATURAL GAS	MMCF
DICLPROPE,13	LB	Generic	2.693	-2	NATURAL GAS	MMCF
ETHYLBENZENE	LB	Generic	4.049	-2	NATURAL GAS	MMCF
FLUORANTHENE	LB	Generic	1.132	-3	NATURAL GAS	MMCF
FLUORENE	LB	Generic	5.783	-3	NATURAL GAS	MMCF
FORMALDEHYDE	LB	Generic	5.386	1	NATURAL GAS	MMCF
HEXANE	LB	Generic	1.132	0	NATURAL GAS	MMCF
METHANE	LB	Generic	1.275	3	NATURAL GAS	MMCF
METHANOL	LB	Generic	2.55	0	NATURAL GAS	MMCF
METHYLENE CL	LB	Generic	2.04	-2	NATURAL GAS	MMCF
METHYLNAPHT2	LB	Generic	3.386	-2	NATURAL GAS	MMCF
NAPHTHALENE	LB	Generic	7.589	-2	NATURAL GAS	MMCF
NOX	LB	Generic	4.162	3	NATURAL GAS	MMCF
PAH	LB	Generic	2.744	-2	NATURAL GAS	MMCF
PERC	LB	Generic	2.53	-3	NATURAL GAS	MMCF
PHENANTHRENE	LB	Generic	1.061	-2	NATURAL GAS	MMCF
PHENOL	LB	Generic	2.448	-2	NATURAL GAS	MMCF
PM10,PRIMARY	LB	Generic	7.9	-2	NATURAL GAS	MMCF
PM2.5,PRIMRY	LB	Generic	7.9	-2	NATURAL GAS	MMCF
PRPLENE DICH	LB	Generic	2.744	-2	NATURAL GAS	MMCF
PYRENE	LB	Generic	1.387	-3	NATURAL GAS	MMCF
SO2	LB	Generic	5.998	-1	NATURAL GAS	MMCF
STYRENE	LB	Generic	2.407	-2	NATURAL GAS	MMCF
TETCLET,1122	LB	Generic	4.08	-2	NATURAL GAS	MMCF
TOLUENE	LB	Generic	4.162	-1	NATURAL GAS	MMCF
TRICLETH,112	LB	Generic	3.244	-2	NATURAL GAS	MMCF
TRIME-PENTAN	LB	Generic	2.55	-1	NATURAL GAS	MMCF
VINYL CHLOR	LB	Generic	1.52	-2	NATURAL GAS	MMCF
VOC	LB	Generic	1.204	2	NATURAL GAS	MMCF

	XYLENES ISO	LB	Generic	1.877	-1	NATURAL GAS	MMCF
3-10-000-23							
	VOC	LB	State Specific Factors	9.2	1	GLYCOL	YR-GPM
3-10-088-01							
	VOC	LB	State Specific Factors	1.44	1	VALVE	EACH-YR
4-04-400-01							
	VOC	LB	Generic	3.6	1	CRUDE OIL	KGAL-YR
4-04-400-02							
	voc	LB	Generic	1.1	0	CRUDE OIL	E3 GAL
4-06-600-32							
	VOC	LB	Generic	2	0	CRUDE OIL	E3 GAL

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Source Form

Form Type	Source		AQD Source	ID (SRN) N	5831			
SOURCE IDEN	ITIFICATION							
Source Name	Breitbur	n_Linn Operating	j, LLC - Hayes 29 (CPF	MESSAGE STORY			
NAICS Code	211130	CO Build Units	Portable	N	o was properly and the second			
Physical Addre	ess (Street Address 1)		overallis tile?	10875 Geroni	mo Trail			
Physical Addre	ess (Street Address 2)	SW4 T29N R4	W SEC 29		Maria Decision			
County	OTSEGO	City	GAYLORD	Zip Code	49735-			
Latitude	44.87298486 Decir	mal Degrees	Longitude	-8	4.8273659 Decimal Degrees			
Horizontal Colle	ction Method	001						
Source Map Sca	ale Number	50000	Horizontal Ac	curacy Measure	25 Meters			
Horizontal Refer	rence Datum Code	03	Reference Po	oint Code	102			
Principal Produ	uct NATURA	AL GAS		Number of Em	ployees 2			
Employer Fede	eral Identification Number	11378	5529					
OWNER INFOR	PMATION							
Owner Name		rn Operating LP						
Mailing Address	s (Street Address 1)		1165 Elkview dr					
Mailing Address	s (Street Address 2)		P.O. Box 125	66	Compatible of Land			
City	Gaylord		State/Pro vinc	ce M				
Country	USA		Zip or Postal	Code 49	9735-			

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Contact Form

Form Type	Contact	AQD So	ource ID (SRN)	N5831		
MISSION INVENTO	RY CONTACT (PRIMAR)	A INCORM	ATION			
Contact First Name, Mi				Control	1 1 1	=
Contact Title	EH&S REP	CAROL	-ANN	Last Name KI	NAPP	
Mailing Address (Street			BREITBUR	N OPERAT	ING LP	
Mailing Address (Street	t Address 2)		1165 ELKV	IEW DR		
City GAYLO	State/Province	Mi	Country	USA	Zip Code	49734
E-Mail Address (if avail	able) caro	lann.knapı	l p@breitburn.co	m		
Telephone Number (989) 7320020 Telephone Extension						
Fax Number						
rax Number	()				·	
	RY CONTACT (SECOND	ARY) INFO	DRMATION	Contact	Last Name	
EMISSION INVENTO	RY CONTACT (SECOND	ARY) INFO	DRMATION	Contact	Last Name	
EMISSION INVENTO	RY CONTACT (SECOND	ARY) INFO	DRMATION	Contact	Last Name	
EMISSION INVENTOR Contact First Name, Mic	RY CONTACT (SECOND ddle Initial : Address 1)	ARY) INFO	DRMATION	Contact	Last Name	
EMISSION INVENTOR Contact First Name, Mic Contact Title Mailing Address (Street	RY CONTACT (SECOND ddle Initial : Address 1)	ARY) INFO	Country	Contact	Last Name	
EMISSION INVENTOR Contact First Name, Mic Contact Title Mailing Address (Street Mailing Address (Street	RY CONTACT (SECOND ddle Initial Address 1) Address 2) State/Province					
EMISSION INVENTOR Contact First Name, Mid Contact Title Mailing Address (Street Mailing Address (Street	RY CONTACT (SECOND ddle Initial Address 1) Address 2) State/Province			USA		

2017 Contact Form

FORM REFERENCE							1
Form Type	Contact	AQD Sour	ce ID (SRN)	N5831		reference to the	
FEE INVOICE CONTACT IN	IFORMATION (Fee	Subject Fac	ilities Only)				
Contact First Name, Middle Initial		CAROLA	NN	Contact L	ast Name	KNAPP	
Contact Title	EH&S REP	17.364					Hind
Mailing Address (Street Addre	ess 1)	Disease of the	BREITBUR	N OPERATI	NG LP		JAN A
Mailing Address (Street Addre	ess 2)	HILIAM (N.)	P.O. BOX 1	256		es cassimosific	
City GAYLORD	State/Province	MI	Country	USA	Zip Code	49734	To miss
E-Mail Address (if available)	carol	ann.knapp@	breitburn.co	m		The second	
Telephone Number	(989) 7320020		Telephone Extension				
Fax Number	()	on tealers		Right Artifacts	mel.		M

2017 Stack Form

FORM REFERENCE					2 4-3 -4-5
Form Type	Stack	AQD Source ID (SRN)	N5831	Ellipsi	

STACK IDENTIFICATION			-5	TE MILL DATE FOR ALL	5 D- 7X -+ 5	
AQD Stack ID	SV0007	Stack ID		SVENGINE6		
Dismantle Date (MM/DD/YY)	YY)					
Stack Description		Stack for engine #	#6 with catalyti	c converter	3300	
Actual Stack Height Above Ground	40	feet	Inside Stack [Diameter 12	inches	
Exit Gas Temperature	1125	degrees Fahrenheit	Actual Exit Gas Flow Rate 6567		cubic feet per minute	
Stack Orientation		Vertical				
Latitude 44.8729	8486	Decimal Degrees	Longitude	-84.8273659	Decimal Degrees	
Horizontal Collection Method	001	Source Map Scale Number	50000	Horizontal Accuracy Measure	25 Meters	
Horizontal Reference Datum	Code	03	Reference Po	int Code 102		
Bypass Stack Only		N	If yes, Stack II	D of main stack		

Bypass Stack Only

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

If yes, Stack ID of main stack

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERENCE								
Form Type	Stack	AQD Source	e ID (SRN)	N5831				
OTA OK IDENTIFICATION	Year Co							
STACK IDENTIFICATION								
AQD Stack ID	SV0008	Stack ID		SVENGINEH29		1111		
Dismantle Date (MM/DD/YY)	YY)						Shipar 64 condition	
Stack Description	Til A	Stack for engine #	Stack for engine #H29 with oxidation catalyst					
Actual Stack Height Above Ground	40	feet	Inside Stack	Diameter	12	li de	inches	
Exit Gas Temperature	1125	degrees Fahrenheit	Actual Exit 0	Gas Flow Rate	6567	157	cubic feet per minute	
Stack Orientation		Vertical		(0	Jan 19		The second of th	
Latitude 44.8729	8486	Decimal Degrees	Longitude	A SHEET A	-84.8273659		Decimal Degrees	
Horizontal Collection Method	001	Source Map Scale Number	50000	Horizontal	Accuracy Meas	ure	25 Meters	
Horizontal Reference Datum	Code	03	Reference F	oint Code	7.5	102		

N

2017 Stack Form

FORM REFERENCE				
Form Type	Stack	AQD Source ID (SRN)	N5831	

AQD Stack ID	SV0009	Stack ID		SVENGIN	E5		
Dismantle Date (MM/DD/YY)	YY)						
Stack Description		Stack for engine	#5 with cataly	tic converte	r		
Actual Stack Height Above Ground	40	feet	Inside Stack	Diameter	12	inches	
Exit Gas Temperature	1125	degrees Fahrenheit	egrees Fahrenheit Actual Exit Gas Flow Rate 6567		cubic fe	cubic feet per minute	
Stack Orientation		Vertical					
Latitude 44.8729	8486	Decimal Degrees	Longitude		-84.8273659	Decima	l Degrees
Horizontal Collection Method	001	Source Map Scale Number	50000	Horizontal	Accuracy Measure	25	Meters
Horizontal Reference Datum	Code	03	Reference P	oint Code	102		
Bypass Stack Only		N	If yes, Stack	ID of main sta	ack		

2017 Stack Form

FORM REFERENCE				TO THE REST OF THE PERSON OF T
Form Type	Stack	AQD Source ID (SRN)	N5831	

AQD Stack ID	SV0010	Stack ID		SVENGIN	E1	1. 2	The state of the state of
Dismantle Date (MM/DD/YYY	(Y)					- 10	THE RESERVE
Stack Description		Stack for engine	#1	i mulgitæra	That .		nerveneer
Actual Stack Height Above Ground	37.5	feet	Inside Stack	Diameter	16	0,44	inches
Exit Gas Temperature	852	degrees Fahrenheit	Actual Exit G	as Flow Rate	7516	10.1	cubic feet per minute
Stack Orientation		Vertical			other.		
Latitude 44.8729	8486	Decimal Degrees	Longitude	- Graph	-84.8273659)	Decimal Degrees
Horizontal Collection Method	001	Source Map Scale Number	50000	Horizontal	Accuracy Meas	ure	25 Meters
Horizontal Reference Datum	Code	03	Reference Po	oint Code	GP .	102	chall compared the
Bypass Stack Only		N	If yes, Stack	ID of main sta	ack		

2017 Stack Form

FORM REFERENCE				
Form Type	Stack	AQD Source ID (SRN)	N5831	

STACK IDENTIFICATION								
AQD Stack ID	SV0011	Stack I	D	SVENGIN	E2			
Dismantle Date (MM/DD/YY)	YY)		-					
Stack Description		Stack for engi	ne #2 with oxida	tion catalys	<u> </u>			
Actual Stack Height Above Ground	37.5	feet	Inside Stack	c Diameter	16	inches		
Exit Gas Temperature	852	degrees Fahrenh	eit Actual Exit	Actual Exit Gas Flow Rate 7416		cubic fo	cubic feet per minute	
Stack Orientation		Vertical						
Latitude 44.8729	8486	Decimal Degrees	Longitude		-84.8273659	Decima	al Degrees	
Horizontal Collection Method	001	Source Map Sca Number	ale 50000	Horizontal	Accuracy Measure	25	Meters	
Horizontal Reference Datum	Code	03	Reference F	Point Code	102			
Bypass Stack Only		N	If yes, Stack	ID of main sta	ack			

Bypass Stack Only

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

If yes, Stack ID of main stack

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERENCE								
Form Type	Stack	1	AQD Source	e ID (SRN)	N5831			
STACK IDENTIFICATION								
AQD Stack ID	SV0012		Stack ID		SVENGINE3			The second
Dismantle Date (MM/DD/YY)	YY)							Traslle 15 19 45
Stack Description	7	Stack for	Stack for engine #3 with oxidation catalyst					
Actual Stack Height Above Ground	37.5	feet	walnut	Inside Stack	Diameter	16	2.70	inches
Exit Gas Temperature	852	degrees Fa	ahrenheit	Actual Exit G	as Flow Rate	7416		cubic feet per minute
Stack Orientation		Vertical			T 15	pitrio .	-41	and the second
Latitude 44.8729	8486	Decimal D	egrees	Longitude	THE SAME	-84.8273	659	Decimal Degrees
Horizontal Collection Method	001	Source M Number	lap Scale	50000	Horizontal	Accuracy M	easure	25 Meters
Horizontal Reference Datum	Code	03		Reference Po	oint Code	64	102	

N

2017 Stack Form

FORM REFERENCE					
Form Type	Stack	AQD Source ID (SRN)	N5831		

AQD Stack ID	SV0013	Stack ID		SVENGINE4			
Dismantle Date (MM/DD/YY)			<u></u>				
Stack Description		Stack for engine	#4 with oxidati	ion catalyst		·	
Actual Stack Height Above Ground	37.5	feet	Inside Stack	Diameter 16	inches		
Exit Gas Temperature	852	degrees Fahrenheit	nheit Actual Exit Gas Flow Rate 7416		cubic fe	cubic feet per minute	
Stack Orientation		Vertical					
Latitude 44.8729	8486	Decimal Degrees	Longitude	-84.8273659	Decima	al Degrees	
Horizontal Collection Method	001	Source Map Scale Number	50000	Horizontal Accuracy Measure	25	Meters	
Horizontal Reference Datum	Code	03	Reference Po	pint Code 102			
Bypass Stack Only		N	If yes, Stack	D of main stack			

2017 Emission Unit Form

FORM REFERENCE						Tau anani	
Form Type Emiss	ion Unit	AQD Source	ce ID (SRN)	N5831	and the same		
EMISSION UNIT IDENTIFIC	CATION						
AQD Emission Unit ID	EU0002	EU ID	EUENGINE2				
NAICS Code (if different from	om Source Form)	211130		, sille	E Individual Co		
Installation Date MM/DD/Y	YYY	11/01/1992	Dismantle Date MM/DD/YYYY				
Emission Unit Description Control Devices)	- (Include Process I	Equipment and	ENGINE W	ITH OXIDATI	ION CATALYST - 1085	HP	
Design Capacity 1085		Design Capacity Nu	umerator	HP	Design Capacity Den	ominator HR	
Maximum Nameplate Capa	acity				Megawatts		
RULE 201 APPLICAB	ILITY					China	
Grandfathered?	N						
Exempt from Rule 201?	N	If Yes, Ru	le Number				
If Rule 201 Exempt, Is Three	oughput Below Rep	orting Thresholds?					
Permit? Y		If Yes, Ent	ter the Permit N	lumber	86-05A		
Is This Emission Unit Requ	ired To Report Em	issions To MAERS F	For This Report	ing Year?	Y		
		CONTR	OL DEVICE	E(S)			
21. Control Device Code	CATALY	TIC OXIDR					
		EMISSION	N UNIT STA	CK(S)			
22. Stack ID	SVENGI	NE2					

2017 Emission Unit Form

FORM REFER	ENCE			XX.			
Form Type	Emissio	on Unit		AQD Source	∍ ID (SRN)	N5831	
EMISSION UNIT	IDENTIFICA	ATION					
AQD Emission (Unit ID	EU0003		EU ID		EUFUG	ITIVES
NAICS Code (if	different from	n Source Form)		211130			
Installation Date	∍ MM/DD/YY	YY	11/01/1	992	Dismantle D	Date MM/DD/	MYYY
Emission Unit D Control Devices)	escription - ((Include Process	Equipme	ent and	Fugitive en	nissions fr	om valves etc.
Design Capacity	/		Design	Capacity Nun	nerator Desi		Design Capacity Denominator
Maximum Name	eplate Capac	ity					Megawatts
RULE 201 AP	PLICABIL	ITY					
Grandfathered?		N					
Exempt from Ru	ıle 201?	N		If Yes, Rule	Number		
If Rule 201 Exer	mpt, Is Throu	ghput Below Re	porting T	hresholds?			
Permit?	Υ		-	If Yes, Ente	r the Permit N	umber	86-05A
Is This Emission	1 Unit Require	ed To Report Em	nissions 7	To MAERS Fo	r This Reporting	ng Year?	Υ
				CONTRO	DL DEVICE	(6)	
				CONTING	T DEALCE!	,3)	
			-	EMISSION	UNIT STAC	K(S)	

2017 Emission Unit Form

FORM REFERENCE					
Form Type Emission L	Jnit	AQD Source ID (SRN)	N5831	and the same	and the first
EMISSION UNIT IDENTIFICATION	N			Will William	
AQD Emission Unit ID	EU0005	EU ID	EUENGIN	E3	manu m
NAICS Code (if different from Se	ource Form)	211130	Carrers"	The state of the s	and the same of
Installation Date MM/DD/YYYY	11/01/1	992 Dismantle	Date MM/DD/YY	ΥΥ	
Emission Unit Description - (Incl Control Devices)	lude Process Equipmo	ent and ENGINE \	WITH OXIDATION	ON CATALYST - 1085	HP
Design Capacity 1085	Design	Capacity Numerator	HP	Design Capacity Deno	minator HR
Maximum Nameplate Capacity	THE REAL PROPERTY.			Megawatts	School Bunk
RULE 201 APPLICABILIT	Υ			YEAR YEAR	ASSLUBBALIQUE
Grandfathered?	N				
Exempt from Rule 201?	N	If Yes, Rule Number	re(hasee)=		ville of Swedie
If Rule 201 Exempt, Is Throughp	out Below Reporting T	hresholds?	California.	mindo-61 lyingil hampeur	Tradema Plens
Permit? Y	300-06	If Yes, Enter the Permit	Number	86-05A	
Is This Emission Unit Required	To Report Emissions	To MAERS For This Repo	rting Year?	Y	
		CONTROL DEVIC	E(S)		
21. Control Device Code	CATALYTIC OX	(IDR			electrosterior
		EMISSION UNIT STA	ACK(S)		
22. Stack ID	SVENGINE3			LEI MERLEYAN ET	1,7 (1)

2017 Emission Unit Form

FORM REFERENCE						
Form Type Emission Unit	AQD Source	e ID (SRN) N5831				
EMISSION UNIT IDENTIFICATION						
AQD Emission Unit ID EU0010	EU ID	EUENGINE	1			
NAICS Code (if different from Source Form)	211130					
Installation Date MM/DD/YYYY	01/01/1992	Dismantle Date MM/DD/YYYY				
Emission Unit Description - (Include Process Control Devices)	; Equipment and	ENGINE WITH NO CONTR	ROL - 1085 HP			
Design Capacity 1085	Design Capacity Num	nerator HP	Design Capacity Denominator HR			
Maximum Nameplate Capacity			Megawatts			
RULE 201 APPLICABILITY						
Grandfathered?						
Exempt from Rule 201? N	If Yes, Rule	Number				
If Rule 201 Exempt, Is Throughput Below Re	porting Thresholds?					
Permit? Y	If Yes, Enter	r the Permit Number	86-05A			
Is This Emission Unit Required To Report En	nissions To MAERS For	r This Reporting Year?	Υ			
	CONTRA					
24.2 : 10 : 0 !	CONTRO	DL DEVICE(S)				
21. Control Device Code						
	EMISSION	UNIT STACK(S)				
22. Stack ID SVENG						

2017 Emission Unit Form

FORM REFERENCE				SOWERENER	
Form Type Emission Unit	AQD Source	e ID (SRN)	N5831		
			. 178		
EMISSION UNIT IDENTIFICATION					
AQD Emission Unit ID EU0011	EU ID		EUGLYC	OLDEHY	
NAICS Code (if different from Source Fo	rm) 211130		OCHER	A CONTRACTOR OF THE PARTY	
Installation Date MM/DD/YYYY	01/01/1980	Dismantle D	ate MM/DD/Y	YYY	
Emission Unit Description - (Include Prod Control Devices)	cess Equipment and	GLYCOL DI	EHYDRATO	R - ANTRIM (HAYES 29 DEHY)	
Design Capacity 200000 Design Capacity Numerator BTU Design Capacity Denominator					
Maximum Nameplate Capacity	manife.			Megawatts	
RULE 201 APPLICABILITY			YEAR.	TELLISTIC STATES	
Grandfathered? N				State	
Exempt from Rule 201? Y	If Yes, Rule	Number	Rule 282(i)	
If Rule 201 Exempt, Is Throughput Below	v Reporting Thresholds?		N		
Permit? Y	If Yes, Ente	r the Permit Nu	ımber	86-05A	
Is This Emission Unit Required To Repo	rt Emissions To MAERS Fo	r This Reportir	ng Year?	ACHIEL COMPANY OF THE STREET	
	CONTRO	DL DEVICE(S)		
	EMISSION	UNIT STAC	K(S)		
			5.000		

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Form Type Emissio	n Unit		AQD Source	ID (SPNI)	N5831	
Lillissio	II OIIIL		AQD Source	; ID (SKN)	И202.1	
		_				
EMISSION UNIT IDENTIFICA	TION		<u> </u>			
AQD Emission Unit ID	EU0012	- "-	EU ID		EUTANKS	
NAICS Code (if different from	Source Form)		211130			
Installation Date MM/DD/YYY	Υ	01/01/1	980	Dismantle D	Pate MM/DD/YYY	Y
Emission Unit Description - (I Control Devices)	nclude Process	Equipme	ent and	OIL STORA	GE TANKS	
Design Capacity	Capacity Numerator			Design Capacity Denominator		
Maximum Nameplate Capaci	ty					Megawatts
RULE 201 APPLICABIL	ITY					
Grandfathered?	N	_				
Exempt from Rule 201?	Υ		If Yes, Rule	Number	Rule 284(e)	
If Rule 201 Exempt, Is Through	ghput Below Re	porting T	hresholds?		N	
Permit? Y			If Yes, Ente	r the Permit Nu	umber	86-05A
Is This Emission Unit Require	ed To Report En	nissions 7	ι Γο MAERS Fo	r This Reportir	ng Year?	Υ
			CONTRO	DEVICE(S)	
1						
			EMISSION	UNIT STAC	K(S)	

2017 Emission Unit Form

FORM REFERENCE					The second second	478 FEB 8	
Form Type Emissi	on Unit	AQD Sour	AQD Source ID (SRN) N5831				
EMISSION UNIT IDENTIFIC	ATION				The state of the s	1	
AQD Emission Unit ID	EU0015	EU ID		EUENGIN	E6		
NAICS Code (if different fro	m Source Form)	211130		sout the	CHEMINA PARAME		
Installation Date MM/DD/YY	YY 11/0	01/1992	Dismantle I	Date MM/DD/Y	YYY		
Emission Unit Description - Control Devices)	(Include Process Equ	ipment and	ENGINE W	ITH CATALY	TIC CONVERTER - 1478 HP		
Design Capacity 1478	Design Capacity 1478 Design Capacity Numerator HP Design Capacity Denominat						
Maximum Nameplate Capa	city	77			Megawatts	e daniona	
RULE 201 APPLICABI	LITY				THE PARTY OF		
Grandfathered?	N						
Exempt from Rule 201?	N	If Yes, Ru	le Number	Witness (Ma)	100	4.000	
If Rule 201 Exempt, is Thro	ughput Below Reporti	ng Thresholds?				D 1987	
Permit? Y	VIII - BANGA	If Yes, En	ter the Permit N	umber	86-05A		
Is This Emission Unit Requi	red To Report Emissi	ons To MAERS I	For This Report	ng Year?	Y way dun		
		CONTR	ROL DEVICE	(S)			
21. Control Device Code	AFTER,CAT	CONV		TE MILA	E BOYLEYAN'T BUILDING		
		EMISSION	N UNIT STA	CK(S)			
22. Stack ID	SVENGINE				FS APPEARS	117.153	

2017 Emission Unit Form

FORM REFERENCE						
Form Type Emi	ssion Unit	AQD Source	ID (SRN)	N5831		
EMISSION UNIT IDENTI	FICATION					
AQD Emission Unit ID	EU0013	EU ID		EUENGIN	E4	
NAICS Code (if differen	t from Source Form)	211130				
Installation Date MM/DD/YYYY 11/01/1992 Dismantle Date MM/DD/YYYY						
Emission Unit Description Control Devices)	on - (Include Process	Equipment and	ENGINE WI	TH OXIDATION	ON CATALYST - 1150 HP	
Design Capacity 115	0	Design Capacity Nun	nerator	HP	Design Capacity Denominator H	R
Maximum Nameplate C	apacity				Megawatts	
RULE 201 APPLICA	BILITY					
Grandfathered?	N					
Exempt from Rule 201?	N	If Yes, Rule	Number			
If Rule 201 Exempt, Is T	hroughput Below Re	porting Thresholds?				
Permit? Y		If Yes, Enter	r the Permit Nu	ımber	86-05A	
Is This Emission Unit Re	equired To Report En	issions To MAERS Fo	r This Reportir	ng Year?	Υ	
		CONTRO	L DEVICE(S)		
21. Control Device Code	CATALY	TIC OXIDR				
00.041.15		EMISSION	UNIT STAC	K(S)		
22, Stack ID	SVENG	INE4				

2017 Emission Unit Form

FORM REFERENCE			A STATE OF THE PARTY OF THE PAR		
Form Type Emission Unit	AQD So	ource ID (SRN) N5831	of a military many		
EMISSION UNIT IDENTIFICATION					
AQD Emission Unit ID EU00)14 EU ID	EUENG	INE5		
NAICS Code (if different from Source	Form) 211130	ATTE	The second second second second second		
Installation Date MM/DD/YYYY	Dismantle Date MM/DD/	YYYY			
Emission Unit Description - (Include I Control Devices)	Process Equipment and	ENGINE WITH CATAL	LYTIC CONVERTER - 1478 HP		
Design Capacity 1478	Numerator HP	Design Capacity Denominator HR			
Maximum Nameplate Capacity	- шастра		Megawatts		
RULE 201 APPLICABILITY			YOUR AND IT WAS IN		
Grandfathered? N					
Exempt from Rule 201? N	If Yes, I	Rule Number	M. The State of th		
If Rule 201 Exempt, Is Throughput Bo	elow Reporting Thresholds	s?	Commence of Williams of Section South Section 2		
Permit? Y	If Yes, I	Enter the Permit Number	86-05A		
Is This Emission Unit Required To Re	eport Emissions To MAER	S For This Reporting Year?	Landaum Terred Y becamed Indianoceme		
	CON	TROL DEVICE(S)			
21. Control Device Code A	FTER,CAT CONV	- E1-33W	CONTRACTOR LINES AND A SECOND		
	EMISSI	ON UNIT STACK(S)			
22. Stack ID	SVENGINE5	ec. a la l	SINE MENIESES		

2017 Emission Unit Form

FORM REFER	ENCE					·	-		
Form Type	Emissio	n Unit		AQD Source	e ID (SRN)	N5831			
EMISSION UNIT	IDENTIFICA	TION							
AQD Emission I	Jnit ID	EU0016		EU ID		EUENGINE	H29		
NAICS Code (if	different from	Source Form)		211130					
Installation Date	MM/DD/YYY	~	11/01/1	992	Dismantle Date	e MM/DD/YYY	Υ	09/17/2013	•
Emission Unit D Control Devices)	escription - (I	nclude Process	Equipme	ent and				RTER - 1478 HP PTI 86-05A COVE	RS THIS
Design Capacity	1478		Design	Capacity Nun	nerator	НР	Design Ca	pacity Denominator	HR
Maximum Name	plate Capaci	ty					Megawatts		11
RULE 201 AP	PLICABIL	ITY							
Grandfathered?		N							
Exempt from Ru	le 201?	N		If Yes, Rule	Number				
If Rule 201 Exer	npt, Is Throug	ghput Below Re	porting T	hresholds?		7			
Permit?	Υ			If Yes, Enter	r the Permit Num	ber	86-05A		
Is This Emission	Unit Require	ed To Report En	nissions 7	To MAERS Fo	r This Reporting	Year?		Υ	
				CONTRO	L DEVICE(S)				
21. Control Device	e Code	AFTER,	CAT CO	NV					
				EMISSION	UNIT STACK	(S)		<u> </u>	_
22. Stack ID		SVENG							

2017 Emission Unit Form

FORM REFERENCE					
Form Type Emission Unit	AQD Source	e ID (SRN) N	5831		EW
EMOCION UNIT IDENTIFICATION					
EMISSION UNIT IDENTIFICATION					11
AQD Emission Unit ID EU0017	EU ID	E	UENGINEH29	NEW	
NAICS Code (if different from Source Form)	211130				
Installation Date MM/DD/YYYY	09/18/2013	Dismantle Date	MM/DD/YYYY		
Emission Unit Description - (Include Process Control Devices)	s Equipment and	LB ENGINE WI (REPLACES EL		N CATALYST-1085hp	
Design Capacity 1085	Design Capacity Nu	merator H	P De	esign Capacity Denominator	HR
Maximum Nameplate Capacity			Meg	gawatts	
RULE 201 APPLICABILITY					
Grandfathered? N		1-115			
Exempt from Rule 201? N	If Yes, Rule	e Number			
If Rule 201 Exempt, Is Throughput Below Re	eporting Thresholds?		44		
Permit? Y	If Yes, Ente	er the Permit Number	er 86-	05A	
Is This Emission Unit Required To Report Er	missions To MAERS F	or This Reporting Y	ear?	Υ	
	CONTR	OL DEVICE(S)			
21. Control Device Code CATAL	YTIC OXIDR	W = 41			
	EMISSION	UNIT STACK(S	6)		
		·			

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERE	ENCE							
Form Type	Activity	AQD Source II	D (SRN)	N5831	EU ID	le bye	EUENGINE2	
ACTIVITY INFO	RMATION						WHITTON STORM	
Source Classifi	cation Code	e(SCC) 20	0200254					
SCC Comment		ry El	B ENGINE		Bland	PER P		
SEASONAL MAT	ERIAL USAC	SE SCHEDULE,	IF THROUGH	PUT IS > 0, THEN	SEASONAL P	ERCENTA	GES MUST TOTAL 100%	
Winter (Jan,Feb,	Dec)	Spring (Mar-M	lay)	Summer (Ji	un-Aug)	The Same	Fall (Sep-Nov)	
25							25	
OPERATING SCH	IEDULE							
Hours per Day			Days per Week		T LAW M	Days p	s per Year	
24		7			3		365	
MATERIAL INFO	RMATION					. 10.7		
Material Code			Material Throu	ghput	A GUESTINE	Unit C	ode	
NATURAL GAS		7:	2.67			MMCF		
Material Descript	ion	N	ATURAL GA	S	839	7) LI 174	The state of the s	
VOC Content (co	atings or solv	vent) %	6 by Weight		Density	Will St	0.04 LB/FT3	
BTUs (fuel)	1020 BTU	J/FT3						
Sulfur Content (fu	uel)	0.01 % by We	eight	Ash Conter	t (fuel)	0 % by	Weight	

ATTACHMENT:

Document Name:

3516 Cat 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID		EUFUGITIVES	
ACTIVITY INFO	PRMATION							
Source Classif		(SCC)	31088801			-		
SCC Comment		<u>`</u>	FUGITIVES			17 =		
SEASONAL MAT	ERIAL USAG	E SCHEDUL	E, IF THROUGH	PUT IS > 0, THEN	SEASONAL P	ERCENTAC	GES MUST TOTAL 100%	
Winter (Jan,Feb,	Dec)	Spring (Mar-	-May)	Summer (J	un-Aug)		Fall (Sep-Nov)	
25		25		25			25	
OPERATING SCI	HEDULE	<u> </u>	·					
Hours per Day			Days per Week			Days pe	er Year	
24			7			365		
MATERIAL INFO	RMATION							
Material Code			Material Through	hput		Unit Co	de	
VALVE			640			EACH-Y	/R	
Material Descript	ion		FUGITIVES		141	121 17		
VOC Content (co	atings or solv	ent)	% by Weight		Density			
BTUs (fuel)								
Sulfur Content (fo	 uel)	% by Weigl	ht	Ash Conter	nt (fuel)	% by W	/eight	

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERENCE	CE						THE REPORT OF THE PARTY OF THE		
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID	0.000	EUENGINE3		
ACTIVITY INFORM	IATION						NOTAL TOUR		
Source Classificat	ion Code	(SCC)	20200254			m <u>e</u> 19			
SCC Comment			LB ENGINE		(auto)				
SEASONAL MATER	AL USAG	E SCHEDUL	E, IF THROUGHPU	T IS > 0, THEN S	EASONAL PE	RCENTA	GES MUST TOTAL 100%		
Winter (Jan,Feb, De	c)	Spring (Ma	r-May)	Summer (Jui	n-Aug)	with 6	Fall (Sep-Nov)		
25		25		25			25		
OPERATING SCHED	ULE								
Hours per Day		m.Van	Days per Week		sainti gis	Days p	per Year		
24			7			365	365		
MATERIAL INFORM	ATION						ARTHUR SAN THE TOTAL PROPERTY OF THE PARTY O		
Material Code			Material Through	out	a paker 1	Unit C	ode		
NATURAL GAS			76.47			MMCF			
Material Description			NATURAL GAS		END INS	LIAN.	A DUNCTION II		
VOC Content (coatin	ngs or solv	vent)	% by Weight		Density	NOW T	0.04 LB/FT3		
BTUs (fuel) 1	1020 BTU	J/FT3					ETYDATA OSOF		
Sulfur Content (fuel)		0.01 % by	Weight	Ash Content	(fuel)	0 % by	Weight		

ATTACHMENT:

Document Name:

Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

Form Type Activity	AQD Sour	ce ID (SRN)	N5831	EU ID		EUENGINE1
ACTIVITY INFORMATION					-	
Source Classification Code	e(SCC)	20200254				
SCC Comment		LB ENGINE				
SEASONAL MATERIAL USAG	SE SCHEDUL	E, IF THROUGHPUT	IS > 0, THEN SE	ASONAL PE	RCENTA	GES MUST TOTAL 100%
Winter (Jan,Feb, Dec)	Spring (Ma	r-May)	Summer (Jun-	Aug)		Fall (Sep-Nov)
25	25		25			25
OPERATING SCHEDULE			<u>' </u>			
Hours per Day		Days per Week			Days p	per Year
24		7			365	
MATERIAL INFORMATION	_		<u></u>			
Material Code		Material Throughput			Unit Co	ode
NATURAL GAS		71.71			MMCF	
Material Description		NATURAL GAS	<u>-</u>	-		
VOC Content (coatings or solv	rent)	% by Weight		Density		0.04 LB/FT3
BTUs (fuel) 1020 BTU	I/FT3				 -	
Sulfur Content (fuel)	0.01 % by	Weight	Ash Content (fo	uel)	0 % by	Weight

ATTACHMENT:

Document Name:

3516 Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

2017 Activity Form

FORM REFER	RENCE			Yan Edward		100	TO REAL PROPERTY.	9.79
Form Type	Activity	AQD Sou	rce ID (SRN)	N5831	EU ID	Market Services	EUGLYCOLDEHY	SUT
ACTIVITY INFO	ORMATION							N. T.IV
Source Classi	fication Code	e(SCC)	31000323					
SCC Comment			GLYCOL DEH	YDRATOR - ANT	TRIM	0300		
SEASONAL MA	TERIAL USAG	SE SCHEDU	LE, IF THROUGH	PUT IS > 0, THEN	SEASONAL P	ERCENTA	GES MUST TOTAL 100%	J. S.
Winter (Jan,Fet	o, Dec)	Spring (M	ar-May)	Summer (J	un-Aug)	No.	Fall (Sep-Nov)	1 20
25		25		25			25	
OPERATING SC	HEDULE						a. Manual a.	H)TE
Hours per Day		. Garles	Days per Week		A SHEET OF	Days	per Year	
24			7			365		
MATERIAL INFO	DRMATION						45-DARWO SH	Wes
Material Code		T. Dep	Material Throug	jhput		Unit C	ode	- 1.40
GLYCOL			0.11			YR-GP	M	
Material Descrip	otion		GLYCOL DEH	YDRATORS-AN	TRIM	NO LINES	1000	11.01
VOC Content (c	coatings or sol	vent)	% by Weight		Density	dya M	converse to my first OVE	11.7
BTUs (fuel)								1=09)
Sulfur Content	(fuel)	0 % by W	eight	Ash Conter	nt (fuel)	% by	Weight	7617

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID		EUTANKS	_
						×		_
ACTIVITY INFORM	NATION							
Source Classification	tion Code	(SCC)	40400301			TAVE II		
SCC Comment			FIXED ROOF TAN	K-BREATHIN	G LOSS			_
SEASONAL MATER	IAL USAG	E SCHEDUL	E, IF THROUGHPUT	IS > 0, THEN SI	EASONAL PE	RCENTAC	GES MUST TOTAL 100%	
Winter (Jan,Feb, De)C)	Spring (Mar	r-May)	Summer (Jur	n-Aug)		Fall (Sep-Nov)	_
25		25		25			25	
OPERATING SCHEE	JULE							
Hours per Day			Days per Week			Days pe	er Year	
24			7			365		
MATERIAL INFORM	ATION							_
Material Code			Material Throughput			Unit Co	de	_
CRUDE OIL			20.16			KGAL-Y	′R	
Material Description			CRUDE OIL					_
VOC Content (coating	ngs or solve	ent)	% by Weight	···	Density			_
BTUs (fuel)								-
Sulfur Content (fuel)	1	0 % by Wei	ght	Ash Content	(fuel)	% by W	/eight	-

2017 Activity Form

FORM REFER	RENCE			ALC: LE		e 1	301/334
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID		EUTANKS
ACTIVITY INF	ORMATION						
Source Classi	ification Code	e(SCC)	40400302				
SCC Comment			FIXED ROOF	TANK-WORK	ING LOSS	LINE	i diame
SEASONAL MA	TERIAL USAG	SE SCHEDUL	E, IF THROUGH	PUT IS > 0, TH	EN SEASONAL P	ERCENTA	GES MUST TOTAL 100%
Winter (Jan,Fet	o, Dec)	Spring (Ma	r-May)	Summe	r (Jun-Aug)	Topl Lay	Fall (Sep-Nov)
25							25
OPERATING SC	HEDULE						L LUIDICT SKI
Hours per Day		wu/1993	Days per Weel	(1000	Days p	oer Year
24			7			365	
MATERIAL INFO	ORMATION						
Material Code		1995	Material Throu	ghput	Allegania III I	Unit Co	ode
CRUDE OIL			10.64			E3 GA	L Jis
Material Descri	ption		CRUDE OIL	EUROA	This had no a	CLIVE I	4-y dynie
VOC Content (d	coatings or sol	vent)	% by Weight		Density		
BTUs (fuel)							
Sulfur Content	(fuel)	0 % by We	iaht	Ash Co	ntent (fuel)	% by \	Weight

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Form Type Activity	/ AQD Sour	ce ID (SRN)	N5831	EU ID		EUTANKS
ACTIVITY INFORMATION	/					
Source Classification Cod	de(SCC)	40600132				
SCC Comment		TRUCKLOADING	;			
SEASONAL MATERIAL USA	AGE SCHEDU	LE, IF THROUGHPU	Γ IS > 0, THEN SE	ASONAL PI	ERCENTA	GES MUST TOTAL 100%
Winter (Jan,Feb, Dec)	Spring (Ma	ır-May)	Summer (Jun-	-Aug)		Fall (Sep-Nov)
25	25		25			25
OPERATING SCHEDULE						
Hours per Day	*	Days per Week			Days p	er Year
24		7			365	
MATERIAL INFORMATION						
Material Code		Material Throughpu	ut		Unit Co	ode
CRUDE OIL		10.64			E3 GAL	-
Material Description		CRUDE OIL TRU	CKLOADING			
VOC Content (coatings or so	olvent)	% by Weight		Density		
BTUs (fuel)	<u>-</u>			<u> </u>		
Sulfur Content (fuel)	% by Weig	ght	Ash Content (f	uel)	% by V	Veight

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERE	ENCE						
Form Type	Activity	AQD Sou	urce ID (SRN) N5831 EU ID				EUENGINE6
ACTIVITY INFO	RMATION						U.S. BANKS NAME
Source Classifi		(SCC)	20200253		100	MINDS.	CONTRACT PROPERTY
SCC Comment			RB ENGINE		To Make		La company
SEASONAL MAT	ERIAL USAC	SE SCHEDU	ILE, IF THROUGHI	PUT IS > 0, THEN S	SEASONAL P	ERCENTA	AGES MUST TOTAL 100%
Winter (Jan,Feb,	Dec)	Spring (M	ar-May)	Summer (Ju	un-Aug)	(alter	Fall (Sep-Nov)
25		25		25			25
OPERATING SCH	HEDULE	TIT					and a substitution of the
Hours per Day		303 %	Days per Week		An William	Days	per Year
24			7				
MATERIAL INFO	RMATION						
Material Code			Material Through	hput	Drought	Unit C	Code
NATURAL GAS			85.64			ммсғ	230.85
Material Descript	tion		NATURAL GA	S	100.15	13 M.P.	
VOC Content (co	patings or solv	vent)	% by Weight		Density	lan ar	0.04 LB/FT3
BTUs (fuel)	1020 BTU	J/FT3					
Sulfur Content (f	uel)	0.01 % by	Weight	Ash Conten	it (fuel)	0 % by	Weight

ATTACHMENT:

Document Name:

Waukesha 7042 1478hp

File Name: F7042 Emissions levels.pdf

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

Form Type Activity	AQD Source	e ID (SRN)	N5831	EU ID		EUENGINE4
ACTIVITY INFORMATION						
Source Classification Code	(SCC)	20200254				
SCC Comment	· · ·	LB ENGINE		'		
SEASONAL MATERIAL USAG	E SCHEDUL	E, IF THROUGHPUT	IS > 0, THEN SE	ASONAL PE	RCENTA	GES MUST TOTAL 100%
Winter (Jan,Feb, Dec)	Spring (Mai	-May)	Summer (Jun-	Aug)		Fall (Sep-Nov)
25	25		25			25
OPERATING SCHEDULE						
Hours per Day		Days per Week			Days p	per Year
24		7			365	
MATERIAL INFORMATION						
Material Code		Material Throughpu	t	-	Unit Co	ode
NATURAL GAS		71.77			MMCF	
Material Description		NATURAL GAS		Н		
VOC Content (coatings or solv	ent)	% by Weight		Density	_	0.04 LB/FT3
BTUs (fuel) 1020 BTU	/FT3					V.
Sulfur Content (fuel)	0.01 % by V	Veight	Ash Content (f	uel)	0 % by	Weight

ATTACHMENT:

Document Name:

Cat 3516 11150hp

File Name: G3500 Engine Performance 1150hp.pdf

2017 Activity Form

FORM REFE	RENCE					
Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	EUENGII	NE5
ACTIVITY INF	ORMATION					New York of the latest and the lates
Source Class		(SCC) 20200253	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100	M	Telling marketing
SCC Comment		RB ENGIN	E	111111111111111111111111111111111111111		
SEASONAL MA	TERIAL USAG	SE SCHEDULE, IF THROU	GHPUT IS > 0, THEN	SEASONAL PE	RCENTAGES MUST	TOTAL 100%
Winter (Jan,Fe		Spring (Mar-May)	Summer (Fall (Sep	
25		25	25		25	
OPERATING SO	CHEDULE					T. Harris
Hours per Day		Days per W	/eek	The Acids	Days per Year	
24		7			365	
MATERIAL INF	ORMATION					KIEWET WALL
Material Code		Material Th	roughput	GALLED :	Unit Code	100
NATURAL GA	S	0			MMCF	
Material Descri	ption	NATURAL	GAS	14 PM	THE STATE OF THE S	- 6.0
VOC Content (coatings or solv	vent) % by Weig	ght	Density	0.04 LB/I	FT3
BTUs (fuel)	1020 BTU	J/FT3			873	LAYER DIAD F
Sulfur Content	(fuel)	0.01 % by Weight	Ash Conte	nt (fuel)	0 % by Weight	

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Form Type	Activity	AQD Source	ce ID (SRN)	N5831	EU ID		EUENGINEH29	
ACTIVITY INFO	ORMATION							
Source Classif	fication Code	(SCC)	20200253					
SCC Comment			RB ENGINE	 -				
SEASONAL MAT	TERIAL USAG	E SCHEDUL	E, IF THROUGHPUT I	S > 0, THEN SE	ASONAL PE	RCENTAG	GES MUST TOTAL 100%	
Winter (Jan,Feb	, Dec)	Spring (Mar	r-May)	Summer (Jun-	Aug)		Fall (Sep-Nov)	
25		25		25			25	:
OPERATING SC	HEDULE			<u></u>				
Hours per Day			Days per Week		-	Days p	er Year	
24			7			365		
MATERIAL INFO	RMATION							
Material Code			Material Throughput			Unit Co	ode	
NATURAL GAS	3		0			MMCF		
Material Descrip	tion		NATURAL GAS			-		
VOC Content (co	oatings or solv	ent)	% by Weight		Density		0.04 LB/FT3	
BTUs (fuel)	1020 BTU	I/FT3						
Sulfur Content (f	iuel)	0.01 % by V	Weight	Ash Content (fi	uel)	0 % by	Weight	

FORM REFERENCE

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29 NEW	
		eta justin			MED 92.02	
ACTIVITY INFO	PRMATION					
Source Classif	ication Code	e(SCC) 20200254			ALM INC.	
SCC Comment		LB ENGINE				
SEASONAL MAT	TERIAL USAG	SE SCHEDULE, IF THROUGH	IPUT IS > 0, THEN	SEASONAL PE	RCENTAGES MUST TOTAL 100°	
Winter (Jan,Feb, Dec) Spring (Ma		Spring (Mar-May)	Summer (J	Jun-Aug)	Fall (Sep-Nov)	
25		25	25		25	
OPERATING SC	HEDULE			La Harris		
Hours per Day		Days per Wee	k		Days per Year	
24		7	7		365	
MATERIAL INFO	RMATION					
Material Code		Material Throu	Material Throughput		Unit Code	
NATURAL GAS	3	69.9	69.9		MMCF	
Material Descrip	tion	NATURAL GA	\S			
VOC Content (c	oatings or sol	vent) % by Weight		Density	0.04 LB/FT3	
BTUs (fuel)	916 BTU	/FT3				
Sulfur Content (1	fuel)	0.01 % by Weight	Ash Conte	nt (fuel)	% by Weight	

ATTACHMENT:

Document Name:

Linn's Engine Spec Sample

File Name: LINN Sample Eng. Spec. Emis. Calcs. -.pdf

2017 Emissions Form

FORM REFERE	NCE					- X-	
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE2	
scc	20200254		Material Co	ode	NATURAL GAS		

EMISSION INFORMATION			
Pollutant Code	СО	Annual Emissions	7180 LB
Emission Basis	Other		
List Emission Factor	98.80	Exponent	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %
Comment			

	EMISSION INFORMATION						
IOX	Annual Emissions	39891 LB					
Other							
48.90	Exponent						
LB / MMCF	Control Efficiency	%					
	648.90	Other Exponent					

ssions 5.74 LB
-2
ciency %

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.74 LB
Emission Basis	MAERS EF		
List Emission Factor	7.90	Exponent	-2
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (S	RN) N5831	EU ID	EUENGINE2	a suggest	
SCC	20200254		Material Code	NATURAL G	AS	1,144	

Pollutant Code	SO2	Annual Emissions	43.59 LB	
Emission Basis	MAERS EF		THE RESERVE OF THE PERSON OF T	10
List Emission Factor	6.00	Exponent	-1	L-MAXIE III
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	eu Englie

Pollutant Code	VOC	Annual Emissions	4787 LB	
Emission Basis	Other	Marian Carlo		
List Emission Factor	65.87	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	

2017 Emissions Form

FORM REFE	RENCE				
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUFUGITIVES
SCC	31088801	Materia	al Code	VALVE	

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	9216 LB	
Emission Basis	MAERS EF			
List Emission Factor	3.60	Exponent	0	
Emission Factor Unit Code	LB / EACH-YR	Control Efficiency	%	
Comment				

2017 Emissions Form

FORM REFERENCE						
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUGLYCOLDEHY	
SCC	31000323	Mate	rial Code	GLYCOL	Appendison -	

Pollutant Code	VOC	Annual Emissions	10.12 LB
Emission Basis	MAERS EF		
List Emission Factor	9.20	Exponent	1
Emission Factor Unit Code	LB / YR-GPM	Control Efficiency	%

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (S	SRN)	N5831	EU ID	EUTANKS	
SCC	40400301		Material Cod	е	CRUDE OIL		

MISSION INFORMATION	1			-1
Pollutant Code	VOC	Annual Emissions	725.76 LB	
Emission Basis	MAERS EF	<u> </u>		
List Emission Factor	3.60	Exponent	1	
Emission Factor Unit Code	LB / KGAL-YR	Control Efficiency	%	

2017 Emissions Form

FORM REFERI	ENCE				MARKET THE SAME	Maria High
Form Type	Emissions	AQD Source ID (SF	RN) N5831	EU ID	EUENGINE1	- 27
SCC	20200254	N	Material Code	NATURAL G	AS	45.00

Pollutant Code	CO	Annual Emissions	35427 LB	
Emission Basis	Other			-5-68
List Emission Factor	494.01	Exponent	14.8	1000
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	andu A

Pollutant Code	NOX	Annual Emissions	39363 LB	
Emission Basis	Other		SARO S	
List Emission Factor	548.90	Exponent	17.10	4-191
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	a. moter

Pollutant Code	PM10,PRIMARY	Annual Emissions	5.67 LB
Emission Basis	MAERS EF		
List Emission Factor	7.90	Exponent	-2
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.67 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFERE	NCE						
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE1	
SCC	20200254	7	Material Co	de	NATURAL GA	S	

EMISSION INFORMATION	V			·
Pollutant Code	SO2	Annual Emissions	43.01 LB	•
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	9447 LB	
Emission Basis	Other			
List Emission Factor	131.74	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment	-			

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (S	RN) N5831	EU ID	EUTANKS		
SCC	40400302		Material Code	CRUDE OIL			

Pollutant Code	VOC	Annual Emissions	11.7 LB
Emission Basis	MAERS EF		A SKEINE COLUMN SEE
List Emission Factor	1.10	Exponent	0
Emission Factor Unit Code	LB / E3 GAL	Control Efficiency	%

2017 Emissions Form

FORM REFERENCE						
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUTANKS	
SCC	40600132	Materia	Code	CRUDE OIL		

EMISSION INFORMATION				-
Pollutant Code	VOC	Annual Emissions	21.28 LB	
Emission Basis	MAERS EF			
List Emission Factor	2.00	Exponent	0	
Emission Factor Unit Code	LB / E3 GAL	Control Efficiency	%	

2017 Emissions Form

FORM REFER	ENCE					Market
Form Type	Emissions	AQD Source ID	(SRN)	N5831	EU ID	EUENGINE3
SCC	20200254	TUNE-	Material C	Code	NATURAL GA	AS

Pollutant Code	CO	Annual Emissions	7556 LB	
Emission Basis	Other		STEAR A	
List Emission Factor	98.80	Exponent		1511
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	115

Pollutant Code	NOX	Annual Emissions	41976 LB	
Emission Basis	Other		1000	
List Emission Factor	548.90	Exponent	73.00	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Pollutant Code	PM10,PRIMARY	Annual Emissions	6.04 LB
Emission Basis	MAERS EF		
List Emission Factor	7.90	Exponent	-2
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	6.04 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFE	RENCE			 	
Form Type	Emissions	AQD Source ID (S	RN) N5831	EU ID	EUENGINE3
SCC	20200254		Material Code	 NATURAL G	AS

EMISSION INFORMATION					
Pollutant Code	SO2	Annual Emissions	45.87 LB		
Emission Basis	MAERS EF				
List Emission Factor	6.00	Exponent	-1	·	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%		
Comment					

EMISSION INFORMATION						
Pollutant Code	VOC	Annual Emissions	5037 LB			
Emission Basis	Other					
List Emission Factor	65.87	Exponent				
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %			
Comment						

2017 Emissions Form

FORM REFERENCE						
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE4
SCC	20200254	The Table	Material (Code	NATURAL G	AS

СО	Annual Emissions	7844 LB
Other		SPERM TO THE PERMIT
109.18	Exponent	mpanet in
LB / MMCF	Control Efficiency	80 %
	Other 109.18	Other 109.18 Exponent

Pollutant Code	NOX	Annual Emissions	32655 LB	
Emission Basis	Other		12/110	000
List Emission Factor	454.90	Exponent	50.45	102, 41, 101
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	Telephinton, or ,

Pollutant Code	PM10,PRIMARY	Annual Emissions	5.67 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

EMISSION INFORMATION				
Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.67 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINE4	
SCC	20200254	Mate	rial Code	NATURAL GAS		

EMISSION INFORMATION				
Pollutant Code	SO2	Annual Emissions	43.05 LB	
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				TI.

Pollutant Code	VOC	Annual Emissions	5444 LB	
Emission Basis	Other			
List Emission Factor	75.82	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	

2017 Emissions Form

FORM REFERENCE						231 /4
Form Type	Emissions	AQD Source ID (SR	N) N5831	EU ID	EUENGINE5	17.7
SCC	20200253	M	laterial Code	NATURAL G	AS	

Pollutant Code	CO	Annual Emissions	0 LB
Emission Basis	MAERS EF		Langua V
List Emission Factor	3.79	Exponent	3
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	NOX	Annual Emissions	0 LB
Emission Basis	MAERS EF		
List Emission Factor	2.25	Exponent	3
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	PM10,PRIMARY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

EMISSION INFORMATION				
Pollutant Code	PM2.5,PRIMRY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINE5
SCC	20200253	April 1	Material	Code	NATURAL G	AS

EMISSION INFORMATION	V				
Pollutant Code	SO2		Annual Emissions	0 LB	
Emission Basis	M	AERS EF			
List Emission Factor	6.00		Exponent	-1	
Emission Factor Unit Code	LE	3 / MMCF	Control Efficiency	%	
Comment	-				

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	3.02	Exponent	1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (S	RN) N	5831	EU ID	EUENGINE6
SCC	20200253	THE REAL PROPERTY.	Material Code		NATURAL GA	S

Pollutant Code	CO	Annual Emissions	59086 LB	
Emission Basis	Other		P BYTER N	1 1991
List Emission Factor	689.79	Exponent		min Age
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	10,000

Pollutant Code	NOX	Annual Emissions	32014 LB
Emission Basis	Other		Value
List Emission Factor	373.64	Exponent	\$1.00 m
Emission Factor Unit Code	LB / MMCF	Control Efficiency	90 %

Pollutant Code	PM10,PRIMARY	Annual Emissions	829.85 LB
Emission Basis	MAERS EF		
List Emission Factor	9.69	Exponent	0
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	829.85 LB
Emission Basis	MAERS EF		
List Emission Factor	9.69	Exponent	0
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

2017 Emissions Form

FORM REFEI	RENCE						
Form Type	Emissions	AQD Source ID	(SRN)	N5831	EU ID	EUENGINE6	T,
SCC	20200253		Material C	ode	NATURAL GA	S	

EMISSION INFORMATION				77
Pollutant Code	SO2	Annual Emissions	51.37 LB	
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment		——————————————————————————————————————		

<u> </u>	* 		
C	Annual Emissions	4308 LB	
Other			
30	Exponent	*	
LB / MMCF	Control Efficiency	50 %	
	30	30 Exponent	30 Exponent

2017 Emissions Form

FORM REFERENCE					A STATE OF THE STA	
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29
SCC	20200253	02/8/1	Material (Code	NATURAL G	AS

Pollutant Code	CO	Annual Emissions	0 LB
Emission Basis	MAERS EF		
List Emission Factor	3.79	Exponent	3
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	NOX		Annual Emissions	0 LB	
Emission Basis		MAERS EF		130140	
List Emission Factor	2.25		Exponent	3	
Emission Factor Unit Code		LB / MMCF	Control Efficiency	%	nages and vine

Pollutant Code	PM10,PRIMARY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFER	RENCE		_				
Form Type	Emissions	AQD Source ID (S	SRN)	N5831	LTI	EU ID	EUENGINEH29
SCC	20200253		Material Co	ode		NATURAL G	AS

EMISSION INFORMATION				
Pollutant Code	SO2	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	3.02	Exponent	1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	<u> </u>
Comment Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFERENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29 NEW
SCC	20200254	Mate	erial Code	NATURAL GAS	

Pollutant Code	CO	Annual Emissions	6820 LB
Emission Basis	Other		OWERS CONTRACTOR
List Emission Factor	512.52	Exponent	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %

Pollutant Code	NOX	Annual Emissions	35880 LB	
Emission Basis	Other		villes V	
List Emission Factor	542.35	Exponent	To Marie To	April 100g
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Pollutant Code	PM10,PRIMARY	Annual Emissions	5.52 LB
Emission Basis	MAERS EF		
List Emission Factor	7.90	Exponent	-2
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.52 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFER	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29 NEW
SCC	20200254		Material Co	ode	NATURAL GA	S

EMISSION INFORMATION				F 170
Pollutant Code	SO2	Annual Emissions	41.93 LB	
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	 191
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

EMISSION INFORMATION			
Pollutant Code	VOC	Annual Emissions	3860 LB
Emission Basis	Other		
List Emission Factor	116.61	Exponent	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %
Comment			

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	RENCE			
Form Type	Preparer	AQD Source ID (SRN)	N5831	

Preparer's First Name, Middle Initial	Carolann		Preparer's Last Name	Knapp
Preparer's Title Regiona	I EH&S Rep	Sild Angel - Cali	and Lind Section	San Const
Mailing Address (Street Address 1)	W complete CNU	1165 Elkview	Drive	
Mailing Address (Street Address 2)	P.O. Box 1256	and the second		
City Gaylord	State/Province	MI		
Country USA	Zip Code	49734		
E-Mail Address (if available)	carolann.knapp@	Dbreitburn.com		
Telephone Number (989) 73.	20020	Telephone Exte	ension 369	
Fax Number ()				

PREPARER'S ID (only complete this area if you have more than one preparer)

FORM REFERENCE

Submittal

Form Type

Michigan Department of Environmental Quality - Air Quality Division Michigan Air Emissions Reporting System (MAERS)

2017 Submittal Form

(Required Form)

N5831

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

AQD Source ID (SRN)

SOURCE IDENTIFICATION				
Source Name Br	reitburn_Linn Operating, LL0	C - Hayes 29 CPF	r .	· · · · · · · · · · · · · · · · · · ·
Mailing Address (Street Address	1)	10875 G	Seronimo Trail	
Mailing Address (Street Address 2	2) SW4 T29N	R4W SEC 29		
County OTSEGO	City	GAYLORD	Zip Code	49735-
Submittal Method El	ectronic		Amended Sub	mittal
PRIMARY PREPARER'S AUT	HORIZATION			
Based on information and belief formed	I after reasonable inquiry, the stateme	nts and information in this sub	omittal are true, accurat	te, and complete.
Primary Preparer	Carolann Knapp			
Telephone Number (98	89)7320020	Telephone Extension	(989)7	7320020
E-Mail Address (if available)	carolann.knapp@b	reitburn.com		
Signature		Date		

LINN OPERATING, LLC

PREVENTATIVE MAINTENANCE/ MALFUNCTION ABATEMENT PLAN AND EPA 40 CFR, Part 63 Subpart ZZZZ MAINTENANCE PLAN

For

HAYES 29 CENTRAL PRODUCTION FACILITY HAYES TOWNSHIP, OTSEGO COUNTY, MI SRN 5831

January 7, 2019

Compressor Engine Identification

Engines (make/model):	Caterpillar 3516 LE
Unit No.	3956
	Low Emission/
	Lean Burn
Horsepower:	1085
Control	Oxidation Catalyst and AFRC

Purpose of Oxidation Catalyst

Oxidation catalysts used on lean burn engines reduce carbon monoxide (CO), volatile organic compounds (VOCs) and trace toxic air contaminants, which include hazardous air pollutants (HAPs) emissions.

Engine Operating Variables To Be Monitored

A copy of the normal field maintenance report and the compressor monthly operating reports are identified as Attachment 1a and 1b, respectively.

Malfunction Corrective Procedures

The engine will be shut down immediately if a malfunction event occurs. Repair work will be completed, the amount of time the engine is down, and the repairs performed will be recorded on the Field Maintenance Report. The catalyst (if impacted) will be inspected prior to engine start up. Note that new engines, or engines that have been recently overhauled or major repairs performed, should be run at the maximum available load for a period of at least 100 hours, before the catalyst element is installed. This allows the new engine components to break in and most major problems associated with engine start up to be resolved, protecting the catalyst element. If major engine work occurs, LINN should document the amount of time the engine is operated without the catalyst on the attached log in Attachment 2.

Major Parts Replacement Inventory

Major replacement parts (including a spare catalyst element) are kept in inventory for quick replacement in the event it is required. Parts inventory is maintained by a subcontractor.

Oxidation Catalyst Operating Variables to Be Monitored

Unit 3956

Operating	Normal Range*	Method of	Frequency
Variable		inspections	
Catalyst Inlet	>750° F	Visual inspection	Daily
Temperature		(thermocouple	
		reading)	
Catalyst Outlet	>750° F	Visual inspection	Daily
Temperature	<1,350° F	(thermocouple	
		reading)	
Pressure	5.4" of water	Visual inspection	Monthly
Differential across	column#	(gauge reading)	
Catalyst			

^{*}Catalyst inlet and outlet temperature and calibrated pressure differential ranges have been substantiated by utilizing a portable analyzer on three separate occasions. Maintenance and analyzer data is available in Attachment 3. The analyzer will be utilized to verify (when applicable) the CO reduction is at least 80%.

#Currently, a new baseline is being established based upon observed readings. The current actionable pressure differential is 7.4" w.c., or 2" w.c. above the substantiated range.

Corrective Procedures in the Event of a Malfunction

If an operating variable listed above is out of the specified range the following steps will be taken:

- 1. Within 5 days check emissions reduction efficiencies for CO and NOx with a portable emissions analyzer. If efficiencies are within manufacturer's specifications (80% for CO 0% for NOx) nothing more will be done. LINN may submit the Change in Oxidation Catalyst Operating Variable Notification Form (Attachment 4) to the MDEQ District Supervisor to revise the catalyst operating variable range, if applicable. If efficiencies are not within manufacturer's specifications, proceed to step 2.
- 2. Within 5 days after step 1 above is completed, the catalyst will be removed and cleaned by vacuuming the catalyst face or using clean compressed air over the catalyst face. The catalyst gasket will also be replaced. The catalyst will be returned to service and emissions re-checked. If the catalyst still does not meet efficiency goals, remove the catalyst and send to vendor for cleaning. Install a replacement catalyst during vendor cleaning process.

AFRC O₂ Sensor Replacement Schedule

O₂ sensors for the AFRC will be replaced quarterly. Records shall be kept of the O₂ sensor replacements.

Emission Checks- Use of a Portable Emissions Analyzer

- a. The analyzer will be calibrated as required by the manufacturer. Records of calibration will be kept on file and made available to the Air Quality District Supervisor upon request.
- b. The analyzer will be used only for CO and NOx.
- c. The analyzer will be used monthly, and, to either (1) check the performance of a catalyst if a monitored parameter is out of range (as discussed above); or (2) when a cleaned catalyst is installed, typically every 12 to 18 months.
- d. LINN will conduct catalyst inlet and outlet checks to estimate destruction efficiency.
- e. Records shall be kept of destruction efficiency analysis.

Scheduled Maintenance

- a. The catalyst will be inspected and cleaned by vacuuming the catalyst face or blowing with clean compressed air every 12-18 months unless the operating variables specified above are out of their respective ranges.
- b. After inspection and cleaning, the catalyst shall be returned to service and emission reduction testing shall be performed. If the catalyst does not respond to the field cleaning, it will be sent to the manufacturer for a chemical cleaning. A replacement catalyst media will be used during the cleaning process in the interim.
- c. The oxidation catalyst gasket will be replaced when the catalyst is serviced (typically every 12-18 months).
- d. The catalyst will be replaced if it is demonstrated that it is not functioning properly after the vendor cleaning, or in lieu of vendor cleaning.

Scheduled Maintenance as indicated in Table 2d to Subpart ZZZZ:

8. Non-Emergency, non- black start 4SLB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;

§63.6625(i) If you own or operate a stationary engine that is subject to the work, operation or management practices in items 1, 2, or 4 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. §63.6625(i) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil before continuing to use the engine. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

¹ Sources have the option to utilize an oil analysis program as described in section 63.6625 (i) and (i) in order to extend the specified oil change requirement in Table 2d of this Subpart ZZZZ.

Supervisory Personnel Responsible for Maintenance of the Control Equipment

Christopher Zimmerman Production Foreman 4890 Airport Road Lewiston, MI 49756 Office Phone: 989.786.7592

Cell Phone: 989.786.7592

Retention of Records

Records shall be kept on file and retained as described in the permit.

Updates of PM/MAP

Updates of the plan will be submitted to the AQD District Supervisor for written approval. If an operating variable range is modified using the Change in Oxidation Catalyst Operating Variable Notification Form, the PM/MAP will be updated to reflect the new range, as necessary. See Attachment 4.

Attachment 1a	Con	npre	esso	or M	lontl	hly C	Opei	atino	g Re _l	port				-	UN		1112							LOCA								
														OI	PERAT	OR						-		NONTH	I/YEAI	₹						
ENGINE		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
RPM																																
Eng JW temp																																
Eng oil pres																																
Eng oil temp																	8														-	
Eng hours																																
Manifold pres																																
Turbo temp																																
Pre-catalyst temp										,						,							***************************************									
Post-catalyst temp				180				i.																								
Compressor																																
Suction pres	***************************************																									-						
1ST int pres				4																											***	
2ND int pres																																
3RD int pres																																
Disch pres				Ü	·																											
Suction temp			•																													
1st disch temp																																
2ND Suc temp																										-					nacr.	
2ND dis temp				···········																											-	
3RD Suc temp	•																															
3RD dis temp																																
4TH Suc temp								1																								
Disch temp																																
Comp oil pres		<i>i</i>		****																												
Comp oil temp								1:-																								
Fluid levels								<u> </u>																		-						
Down time hrs		\dashv																														
		+					 																									
REASON FOR DO	WNTIN	ИE					<u> </u>	1 .	11					·	<u> </u>								L	L	L		<u> </u>	l				
											<u> </u>																					

							····									1 4																

Attachment 1B

CATALYST MONTHLY OPERATING REPORT

Unit Number	Location	Date of Service	Pre Temp (min 750°F)	Post Temp (max 1350°F)	Differential Pressure Baseline	Differential Pressure In W.C	Suction	Discharge Pressure	RPM	AFRC Sensor Output L.	AFRC Sensor Output R.	Last O2 Sensor Change

Attachment 2

Hayes 29 Unit #3956

Year:												
	Record of Time Engine Operated Without the Catalytic Converter Total allowable per unit is 200 hours in 12 month period (not calendar year).											
Time/Date of Engine Malfunction	Time/Date of Engine Repair	Reason	Total Hours Down	Total Hours 12 Month Time Period								

Only record time engine operated without catalytic converter, not amount of time engine was shut down

Operator Signature	
Submit to Chris Zimmerman monthly.	

	CATALYST MONTHLY OPERATING REPORT												
		CUSTOMER	DATE OF SERVICE	PRE TEMP	POST TEMP	TEMP DIFF	DIFFERENTIAL PRESSURE IN W.C	SUCTION	DISCHARGE PRESSURE	RPM	COMMENTS		
3956	Hayes 29	LINN											
ESTABLI	SHED BASELI	NE 8/20/13					ESTABLISHED BASE	ELINE 1/14/	13				
TEMP D	IFF BASELINE	48	0				W/C DIFF	4.6					
			9/20/2013	837	814	-23	1.5	-1.4	990	1027			
			9/25/2013	881	855	-26	6.5	2.8	980	1177			
			9/30/2013	886	864	-22	6	-1.4	990	1167			
			10/2/2013	882	860	-22	6.5	-1.8	980	1170			
			10/8/2013	867	845	-22	6.4	-1.5	1000	1120			
			10/10/2013	870	848	-22	6.5	-1.3	985	1120			
			10/12/2013	870	848	-22	6.5	-1.3	985	1120			
			10/14/2013	880	856	-24	6.5	-1.9	985	1163			
			10/18/2013	870	848	32	11	-1.7	990	1165			
			10/22/2013	872	850	-22	6	-1.9	985	1167			
			10/24/2013	874	852	-22	6	-2	990	1158			
			10/28/2013	860	838	-22	6	-2.2	995	1168			
			10/29/2013	859	837	-22	6	-2.5	990	1170			
			10/31/2013	852	830	-22	6	2.5	1010	1163			
ESTABLI	SHED BASELI	NE 11/1/13					ESTABLISHED BASE	ELINE 1/14/	13				
TEMP D	IFF BASELINE	-24	0				W/C DIFF	5.5					
			11/5/2013	851	831	-20	6	-2.5	995	1166			
			11/7/2013	858	839	-19	6	-0.1	990	1200			
			11/15/2013	834	813	-21	4.5	-2.2	995	1133			
			11/19/2013	819	796	-23	2.5	-3.9	990	1019			
			11/21/2013	829	810	-19	4.5	-2.5	985	1118			
			11/26/2013	821	800	-21	4	-2.3	995	1089			

Attachment 4

LINN Operating, LLC CHANGE IN CATALYTIC CONVERTER OPERATING VARIABLE NOTIFICATION FORM

FACILITY NAME SRN No. PERMIT No. UNIT No.			
DATE	CATALYST OPERATING VARIABLE	OLD RANGE	NEW RANGE
Description of why/how	range was modified. Include test	ting data to document range modific	ations.

If a range is changed the PM/MAP will be updated and submitted to DEQ District Supervisor.

EGLE

RENEWABLE OPERATING PERMIT M-001: RULE 215 CHANGE NOTIFICATION RULE 216 AMENDMENT/MODIFICATION APPLICATION

This information is required by Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment.

1.	SRN N5831	2. ROP Number	MI-ROP-N5831-2014b	3. County	Ótsego	
4.	Stationary Source Name	Riverside Energy M	lichigan-Hayes 29 Cpf, S	ection 2		
5.	Location Address	10875 Geronimo Tr	ail	6. City	Gaylord	
7.	Submittal Type - The submup of the affected ROP pa	ges for applications f	or Rule 216 changes.	ed below. Check or	nly one box. Attac	ch a mark-
	Rule 215(1) Notification		te Items 8 – 10 and 14			
	☐ Rule 215(2) Notification	of change. Complet	te Items 8 – 10 and 14			
	☐ Rule 215(3) Notification	of change. Complete	te Items 8 – 11 and 14			
	□ Rule 215(5) Notification	of change. Complet	te Items 8 – 10 and 14			
			ent. Complete Items 8 – 10			
	Rule 216(1)(a)(v) Admir be submitted. See detail		. Complete Items 8 – 14. F	Results of testing, mor	nitoring & recordkee	ping must
	Rule 216(2) Minor Modi	fication. Comple	te Items 8 – 12 and 14			
	Rule 216(3) Significant	Modification. Complet applica	te Items 8 – 12 and 14, and tion forms. See detailed in	provide any additiona structions.	al information neede	ed on ROP
	Rule 216(4) State-Only	Modification. Complet	e Items 8 – 12 and 14			
8.	Effective date of the change See detailed instructions.	ge. (MM/DD/YYYY)	<u>08/01/2019</u>	9. Change in emis	ssions? Yes	⊠ No
10	Description of Change - pollutants that will occur.	Describe any change If additional space is	s or additions to the ROF s needed, complete an A	P, including any cha dditional Information	inges in emission: n form (Al-001).	s and/or
	Request to change Hayer request that James Schra	s 29 ownership name amski be our Respon	e from Riveria Resources sible Official.	to Riverside Energ	y Michigan. And	also to
11	. New Source Review Per	mit(s) to Install (PTI)	associated with this appl	ication?	☐ Yes D	₫ No
	If Yes, enter the PTI Num					
12	. Compliance Status - A n Al-001 if any of the follow	arrative compliance pring are checked No.	olan, including a schedule	e for compliance, m	ust be submitted	using an
	a. Is the change identifie	d above in compliand	ce with the associated ap	plicable requiremen	nt(s)? 🔲 Yes	□ No
	 b. Will the change identification requirement(s)? 	ïed above continue to	o be in compliance with t	he associated appli	cable ☐ Yes	□No
	c. If the change includes	a future applicable re	equirement(s), will timely	compliance be ach	ieved? Yes	☐ No
13	Operator's Additional Info AI-001 form used to prov			n (AI) ID for the asso	ociated Al	
14	. Contact Name	Telephon	e No.	E-mail Address		
	Carolann Knapp	231-631-2	2995	Cknapp@riverside	em.com	
15	. This submittal also upda (If yes, a mark-up of the	tes the ROP renewal	application submitted on e ROP must be attached)////////	Yes	⊠ N/A

NOTE: A CERTIFICATION FORM (C-001) SIGNED BY A RESPONSIBLE OFFICIAL MUST ACCOMPANY ALL SUBMITTALS

For Assistance Contact: 800-662-9278 www.mlchigan.gov/egle

EGLE

Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION C-001: CERTIFICATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to provide this information may result in civil and/or criminal penalties. Please type or print clearly.

This form is completed and included as part of Renewable Operating Permit (ROP) initial and renewal applications, notifications of change, amendments, modifications, and additional information.

Form Type C-001					SRN N5831					
T dill Type 5 55.										
Stationary Source Name				***************************************						
Riverside Energy Michigan-Hayes 29 Cp	of, Section 2									
City				County						
Gaylord, MI				Otsego						
SUBMITTAL CERTIFICATION INFO	PARATION									
Type of Submittal Check only one.										
☐ Initial Application (Rule 210)		ication / Administra	ative Arr	nendment /	Modification (Rules 215/216)				
Renewal (Rule 210)	_	r, describe on Al-0				•				
Tionera, (Tale 2.5)										
2. If this ROP has more than one Secti	ion, list the Sec	ction(s) that this Ce	ertification	on applies	to <u>2</u>					
3. Submittal Media 🛛 E-mai	T	☐ FTP		Disk	[☐ Paper				
	4. Operator's Additional Information ID - Create an Additional Information (Al) ID that is used to provide supplemental information									
on Al-001 regarding a submittal.										
Al			···							
CONTACT INFORMATION										
Contact Name			Title							
Carolann Knapp		,	Compli	iance Coor	dinator					
Phone number		E-mail address cknapp@riverside	om car	~						
231-631-2995		ckuappenverside	em.com	[]						
This form must be signed and	dated by a	Responsible U		i						
Responsible Official Name James Schramski		٠	Title	perations						
			V1 0,	Jerations						
Mailing address 10691 E. Carter Rd										
City	State	ZIP Code	Cou	unty		Country				
Traverse City	MI	49684	Gra	nd Travers	se	USA				
As a Responsible Official, I ce										
inquiry, the statements and inf	ormation in	this submitta	l are t	rue, acc	urate and c	omplete.				
AC	\mathcal{L}			*	8/13/19	7				
					Date					

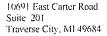
Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION NOV 1 2 2019 C-001: CERTIFICATION

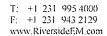
This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as a mended, and the Federal Clean Air Act of 1990. Failure to provide this information may result in civil and/or criminal penalties. Please type or print clearly.

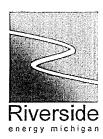
This form is completed and included as part of Renewable Operating Permit (ROP) initial and renewal applications, notifications of change, amendments, modifications, and additional information.

Form Type C-001					SRN N5831	
Stationary Source Name						
Riverside Energy Michigan-Hayes 29	CPF					
City				County		
Gaylord				Otsego		
SUBMITTAL CERTIFICATION IN	FORMATION					
1. Type of Submittal Check only or	ne box.					
☐ Initial Application (Rule 210)	☐ Noti	fication / Administr	ative Ar	nendment /	Modification ((Rules 215/216)
☐ Renewal (Rule 210)	Other Other In the content of the	er, describe on Al-0	001			
2. If this ROP has more than one Se	ection, list the Se	ction(s) that this C	ertificati	on applies t	to <u>2</u>	
3. Submittal Media 🔲 E-m	nail	☐ FTP		Disk		□ Paper
4. Operator's Additional Information	ID - Create an A	dditional Informatio	n (AI) II	D that is us	ed to provide	supplemental information
on Al-001 regarding a submittal. Al PMMAP						
CONTACT INFORMATION						
Contact Name			Title			
Carolann Knapp			Compl	iance Coord	dinator	
Phone number		E-mail address				
231-995-4130		cknapp@riverside	eem.cor	m 		
This form must be signed and	d dated by a	Responsible C	Officia	l.		
Responsible Official Name			Title			
James Schramski VP Operations						
Mailing address 10691 E. Carter Rd., Ste 201						
City	State	ZIP Code	Cou	unty		Country
Traverse City	МІ	49684	Gra	ind Travers	e	USA
As a Responsible Official, I inquiry, the statements and i						
OSland	2				11/8/19	9
Signature of Responsible Official					Date	·


EGLE

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION


This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.


	SRN: N5831	Section Number (if applicable): 2
1. Additional Information ID AI- РММАР		
AT LIMINAL		A MANAGEMENT AND A MANA
Additional Information		
2. Is This Information Confidential?		☐ Yes ⊠ No
Submitting a revised Preventative Maintenance & Malfund	ction Abatement Pla	an for Riverside Energy Michigan
		Page 1 of 1

For Assistance Contact: 800-662-9278

MACES___

RECEIVED AQD

NOV 12 2019

November 7, 2019

Department of Environmental Quality Air Quality Division 120 W. Chapin St. Cadillac, MI 49601-2158

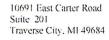
Attn: Jodi Lindgren

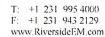
Re: Preventative Maintenance/Malfunction Abatement Plan for the Hayes 29 CPF

Permit #MI-ROP-N5831 Section 2

Dear Jodi,

Attached please find the Preventative Maintenance & Malfunction Abatement Plan for Riverside's Section 2 of the Hayes 29 CPF, referenced above. And per your direction, you will also find enclosed a signed and completed C-001 Certification Form as well as an A-001 form that are required documents for the application renewal process.


If you have any questions regarding this PM/MAP, please call (231) 995-4130 or reach me at cknapp@riversideem.com.


Sincerely,

Carolann Knapp

Compliance Coordinator

Enclosures

RECEIVED AQD

NOV 12 2019

November 7, 2019

Department of Environmental Quality Air Quality Division 120 W. Chapin St. Cadillac, MI 49601-2158

Attn: Jodi Lindgren

Re: Preventative Maintenance/Malfunction Abatement Plan for the Hayes 29 CPF

Permit #MI-ROP-N5831 Section 2

Dear Jodi,

Attached please find the Preventative Maintenance & Malfunction Abatement Plan for Riverside's Section 2 of the Hayes 29 CPF, referenced above. And per your direction, you will also find enclosed a signed and completed C-001 Certification Form as well as an A-001 form that are required documents for the application renewal process.

If you have any questions regarding this PM/MAP, please call (231) 995-4130 or reach me at cknapp@riversideem.com.

Sincerely,

Carolann Knapp

Compliance Coordinator

Enclosures

PREVENTATIVE MAINTENANCE & MALFUNCTION ABATEMENT PLAN

RIVERSIDE ENERGY MICHIGAN, LLC

HAYES 29 CPF MI-ROP-N5831

10875 GERONIMO TRAIL GAYLORD, MI 49735 OTSEGO COUNTY

November 7, 2019

TABLE OF CONTENTS

		Page No.
1.0	INTRODUCTION	3
2.0	ENGINES AND CATALYTIC CONTROL UNITS	3
3.0	RECORDKEEPING	4
4.0	UPDATES	5

APPENDIXES:

Appendix A – List of Facility Specific Equipment Covered by this PM/MAP

Appendix B – Monthly Operating Report

Appendix C – Catalyst Monthly Operating Report

1.0 INTRODUCTION

Central Production Facility (CPF) receives gas from natural gas wells in the area. Gas is dehydrated and compressed prior to flowing to sales points. Riverside Energy Michigan, LLC (Riverside) uses both rich burn and lean burn engines at its facilities. Generally, there are no addon control devices for lean burn engines. However, a few of Riverside's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of Riverside's facilities.

The text of this PM/MAP is uniform for all of Riverside's facilities. The cover page and the specific engine and catalyst information (if applicable) shown in Appendix A will be unique to each facility.

1.1 CONTACT PERSON

Any questions regarding this PM/MAP should be directed to Mr. Chris Matts, Operations Supervisor – Special Projects, at 989-732-4146, ext. 4112, or Ms. Natalie Schrader, Compliance Coordinator, at 231-995-4076.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Hayes 29 CPF has (1) natural gas fired combustion engine which is identified in Appendix A. It is equipped with a Oxidation Catalyst. Oxidation Catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPS). Information on all on-site engines is stored and updated in a compressor database and/or spreadsheet.

2.2 Operation of Catalytic Converters

For both 3-way catalysts and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

Preventive maintenance of the engines is done to keep the engines operating properly and to extend their life span. Any major malfunction of the engine will cause it to automatically shut down and activate the alarm, leading to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions and will initiate an engine shutdown if necessary. In the event of a shutdown, the contract mechanic is called out to repair the engine and a record of the event is made. Records are kept in Riverside's database.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperatures. If the oxygen content is too high for a 3-way catalytic converter, the NOx reduction reaction will not yield the desired 90% decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level frops to low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation.

A high-pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for a 3-way catalyst is 750° F to 1350° F. But is not uncommon for an oxidation catalyst to perform as inverted temperatures, with the proper reduction still performing.

2.4 Catalyst Inspections and Maintenance

To reduce the chance of fouling problems with a 3-way catalyst and oxidation catalysts, if an engine is new or major maintenance is performed, the engine could run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter for a maximum of 200 hours per year (per permit conditions). Records will be maintained of the engine hours of operation without the catalyst. All catalysts will be equipped with pre-and post-catalyst temperature sensors. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a service person will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance.

Preventative maintenance schedule for Riverside engines and catalysts is included in Table 1. A log of all inspections and maintenance work will be maintained in a database or spreadsheet. A schedule is maintained for each engine and its add-on control devices (see Table 2 "Operating Variables and Remedial Actions").

Third party compressor maintenance personnel are responsible for overseeing inspection, maintenance and repair of all add-on control devices.

2.5 Spare / Replacement Parts

All engine replacement parts, catalyst insert kits and extra temperature probes will be maintained by the contracted maintenance service company. No spare or major replacement parts will be kept on site.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are kept and updated on Riverside's date server in a database or in a spreadsheet form. Appendix B is an example of data recorded each month by a contract service company; hard copy records of these reports are sent to the Riverside office at the end of each month. Appendix C is an example catalyst maintenance log. This data is recorded in a database or spreadsheet. All required records will be retained for a period of 5 years per permit conditions.

Riverside will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the EGLE.

4.0 UPDATES

If Riverside engines experience a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the EGLE District Supervisor for review and approval.

Table 1
Engine & Catalytic Converter Preventative Maintenance Schedule

Item	Activity	Equipment Status	Frequency
Engine	Service * Check and adjust valves * Check engine compression * Check timing * Check fuel pressure * Check air filter * Change pre-air filter * Check all kill devices	Off line	Every 60-90 days
Engine	Major Service * Perform service as listed above * Change motor oil and filter	Off line	Approximately every 3,000 hours of engine operation.
Engine	Swing/Overhaul * Replace existing engine with rebuilt engine * When new/rebuilt engine is installed, or major maintenance is performed, the unit will be run without the catalyst, if applicable, for up to 100 hours per event. This prevents the catalyst from becoming damaged.	Off line	Approximately every 85,000 hours of engine operation, or as needed.
Catalyst	* Check Differential pressure across catalyst * Establish baseline ΔP each time a new CC or cleaned CC insert is installed at normal operating conditions (rpm's). Check monthly. If greater than baseline ΔP by 4" WC @ 80-100% max rpm, then inspect catalyst and take actions based on findings. * Check inlet and outlet temperatures across the catalyst * If the pre-catalyst temp. is less than 750°F, or another min. temp established through testing, a service person will be called out to investigate. * If the post-catalytic temp. exceeds 1350°F, the engine will be shut down. * If the ΔT across CC is negative, a service person will evaluate cause and determine a resolution, based on history and degree of change and	Online	Monthly

establish engine specific ΔT through testing.	

Table 1 Continued Engine and Catalytic Converter Preventative Maintenance Schedule

Item	Activity	Equipment Status	Frequency
Catalyst	* The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming the catalyst face and washing the fouling and built up ash. * If the catalyst does not respond to the annual vacuum blowing treatment or washing, the catalyst will be shipped to the manufacturer and washed. A replacement catalyst insert shall be used. * Replace the gaskets (typically done when the catalyst is removed for any servicing). * Establish baseline.	Offline	Every 12-18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown
Catalyst	* Remove catalyst insert and wash in chemical solution to remove surface contamination * Replace with clean or fresh insert * Establish baseline.	Offline	Every 18-24 months of operation
Portable Emission Analyzer	* Maintenance and calibration	On or offline	Testing will be done by Riverside or contract company on a 5-year schedule

Appendix A Equipment Information

Facility	AQD	Unit #	Туре	AFRC (Yes/No)	Model	Lean Burn or Standard
HAYES 29	EUENGINEH 29	3956	OXIDATION	Yes	CATERPILLAR 3516, 1085 HP	Lean Burn

Table 2 - Operating Variables and Remedial Actions

Responsible Supervisor	Operations Manager, Contract Service Vendor	Operations Manager, Contract Service Vendor	Operations Manager, Contract Service Vendor
Corrective Procedure or operational Change in the Event of a Malfunction	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary, within 5 days.	Engine will be shut down at 1200° F or greater. For 3-way catalysts: if outlet temperature is less than the inlet temperature, a mechanic will investigate within 3 days and make appropriate repairs within 5 days.	Engine will be shut down
Normal Operating Range	Varies by engine. Recorded in database.	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temp. must be equal or greater than the catalytic inlet temp.	
Frequency	Monthly	Monthly or as Needed	As needed
Monitoring Method	Gauge or manometer	Thermocouple	
Operating Variable	0-4" WC Change in ∆P @ normal operating conditions	Inlet and Outlet temperatures	
Device Description	Catalyst	Catalyst	Engine

APPENDIX B			S	SERIAL #	#								r	LOCATION	NC	HA	HAYES 29									
MONTHLY OPERATING REPORT			2	MAKE	Š	CAT 3516	- 600						ರ	CUSTOMER	IER	RIV	ERSID	E ENE	RIVERSIDE ENERGY MICHIGAN, LLC	IICHIC	AN, L	Σ				
			ם	# LINI	3956	99							Z	MONTH												
DATE 1 2 3	4	w	9	7 8	6	10	11	12	13	14	15	16	17 1	18 19	20	21	22	23	24	25	26	27	28	29	30	31
SUCTION					-						1	1			_									+	+	Т
1st INTERSTAGE					\dashv								-		-									1		
2 nd INTERSTAGE																								+		T
3 rd INTERSTAGE															-											
DISCHARGE																										
RPM											4															
FUEL PRESSURE																										
S. 1 INLET TEMP																										
S. 1 DISCH.TEMP					_	_																				
S. 2 INLET TEMP																										
S. 2 DISCH.TEMP																										
S. 3 INLET TEMP															_											
S. 3 DISCH. TEMP																										
S. 4 INLET TEMP																										
S. 4 DISCH. TEMP															_											
D.H.TOWERTEMP					-	-							\dashv	\dashv	4	_										
COM. OIL PRES.					-								\dashv	\dashv	_	_	_									
COM. OIL TEMP.															-											
ENGINE HRS.					-	-							\dashv	\dashv	\dashv	_										\neg
ENGINE HRS W/O CC													\dashv	\dashv		_										
CC TEMP. IN					-										-											
CC TEMP. OUT																										
MANIFOLD PRES.					-								1		_											\neg
OIL PRESSURE				-	\dashv	4	4					1	\neg	-	_	_										
OIL TEMP															\dashv									\neg	\dashv	П
J.W.TEMP. IN															\dashv	_										\neg
J.W.TEMP. OUT															\dashv											П
J.C. H20 TEMP. IN					-	-	_					\exists	\dashv	\dashv	\dashv	-	_									\neg
J.C. H20 TEMP. OUT													1													
DOWNTIME HRS.					\dashv	_							1		-											T
D.T. = CUSTOMER				+	\dashv	\dashv	\dashv	\dashv			\exists	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv					\top	\forall	\forall	\top
FLOW RATE (MMCFD)			\exists	+	\dashv	\dashv	\dashv	\dashv	\Box		\top		1	+	\dashv	\dashv	\dashv	\dashv						\top	\top	П
INITIALS					\dashv	\dashv									_											

, e.

YES 29	CPF						
Date of Service	Pre Temp	Post Temp	Differential Pressure	Suction	Disscharge Pressure	RPM	% Loa
							-
PE OF	 MAINTENA	NCE PERF	ORMED				
Date			Cor	nments			

Puite, Tammie (EGLE)

From:

Lindgren, Jodi (EGLE)

Sent:

Wednesday, November 20, 2019 4:28 PM

To:

Puite, Tammie (EGLE)

Subject:

FW: ROP Renewal Update

Attachments:

doc00046320191031153712.pdf

I keep forgetting to ask you about this. Remember when we were talking about the Riviera to Riverside name change for the Hayes section of the Wilderness/Hayes ROP? You had not seen the request yet. I did email Carolann concerning the need for the update. She responded saying she did submit the C-001 and M-001 forms requesting the change. The forms are attached. Is this what she needed to do? Are the original forms MIA or have they found their way to your desk since we spoke? Let me know if I need to request anything else from Riverside/Carolann.

Thank you!!

Jodi Lindgren
Environmental Quality Analyst
Air Quality Division / Cadillac District Office
Michigan Department of Environment, Great Lakes, and Energy
231-942-2863 | LindgrenJ2@michigan.gov

Follow Us | Michigan.gov/EGLE

From: Carolann Knapp < cknapp@riversideem.com>

Sent: Thursday, October 31, 2019 4:42 PM

To: Lindgren, Jodi (EGLE) < Lindgren J2@michigan.gov>

Subject: FW: ROP Renewal Update

I had sent an M-001 & C-001 (attached) to Shane already, was that not the right form?

From: Lindgren, Jodi (EGLE) < LindgrenJ2@michigan.gov >

Sent: Thursday, October 31, 2019 4:25 PM

To: Carolann Knapp < cknapp@riversideem.com >

Subject: ROP Renewal Update

Afternoon Carolann!

We need paperwork to reflect the correct ownership name in the renewal permit. We did get a notification letter stating that Riverside has taken ownership of Riviera holdings. However, we need the ROP renewal application updated as well. You can do this by resubmitting pages 1-3 (or others I may have missed with "Riviera") of the renewal application or you can submit forms C-001 and M-001 for an administrative modification. Please let me know if you have any questions.

Thank you!

Jodi Lindgren
Environmental Quality Analyst
Air Quality Division / Cadillac District Office
Michigan Department of Environment, Great Lakes, and Energy

231-942-2863 | LindgrenJ2@michigan.gov Follow Us | Michigan.gov/EGLE