

THROX Exhaust Stack Particulate Matter and Flow RATA Test Report

Prepared for:

Dow Corning Corporation

Dow Corning Corporation 3901 S. Saginaw Rd. Midland, MI 48640

RECEIVED

JAN 2 2 2014

AIR QUALITY DIV.

Project No. 13-4462.00 January 8, 2014

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (248) 548-8070

EXECUTIVE SUMMARY

BT Environmental Consulting, Inc. (BTEC) was retained by Dow Corning Corporation (Dow) to conduct a Relative Accuracy Test Audit (RATA) and an emissions rate compliance test of the THROX unit at the Dow facility in Midland, Michigan. The emissions test program was conducted on November 19-21, 2013.

Testing of Throx exhaust consisted of eleven 21-minute test runs on the flowrate, CO2, and NOx monitors, triplicate 60-minute test runs for PM_{10} , CO, and VOC. Triplicate 60-minute test runs for PM_{10} were also conducted on the Throx inlet. The emissions test program was required by MDEQ Air Quality Division Permit to Install 91-07D. The overall results of the emissions test program are detailed by Table I.

I est Date: November 19-21, 2012					
Source	Pollutant	Emission Result	Emission Limit		
Throx Inlet	PM ₁₀	25.96 lb/hr	NA		
	PM ₁₀	1.16 lb/hr	3.5 lb/hr		
	СО	0.01 lb/hr	90 ton/yr		
Throw Exhaust	VOC	0.03 lb/hr	6.6 lb/hr		
THIOX EXHaust	Flow RATA	6.8%	20%		
	CO ₂ RATA	7.5%	20%		
	NOx RATA	0.5%	20%		

Table IOverall Emission SummaryCest Date: November 19-21, 2012

TABLE OF CONTENTS

1. IN	TRODUCTION1
1.A	IDENTIFICATION, LOCATION, AND DATES OF TEST1
1.B	PURPOSE OF TESTING1
1.C	SOURCE DESCRIPTION
1.D	TEST PROGRAM CONTACTS1
2. SI	UMMARY OF RESULTS
2.A	OPERATING DATA
2.в	Applicable Permit
2.c	RESULTS
3. SC	DURCE DESCRIPTION
3.A	PROCESS DESCRIPTION 3
З.в	PROCESS FLOW DIAGRAM 3
3.C	RAW AND FINISHED MATERIALS
3.D	PROCESS CAPACITY
3.e	PROCESS INSTRUMENTATION
4. SA	MPLING AND ANALYTICAL PROCEDURES
4.A	SAMPLING TRAIN AND FIELD PROCEDURES
4.в	RECOVERY AND ANALYTICAL PROCEDURES
4.C	SAMPLING PORTS
4.D	TRAVERSE POINTS
5. TI	EST RESULTS AND DISCUSSION
5.A	RESULTS TABULATION
5.в	DISCUSSION OF RESULTS
5.c	SAMPLING PROCEDURE VARIATIONS
5.D	PROCESS OR CONTROL DEVICE UPSETS
5.e	CONTROL DEVICE MAINTENANCE
5.F	RE-TEST7
5.G	AUDIT SAMPLE ANALYSES
5.н	CALIBRATION SHEETS7
5.I	SAMPLE CALCULATIONS
5.J	FIELD DATA SHEETS
5.к	LABORATORY DATA

TABLE OF CONTENTS (continued)

SUMMARY TABLES

Table 1	Test Personnel Summary
Table 2	Overall Emissions Summary
Table 3	THROX Inlet Particulate Matter Emission Rates
Table 4	THROX Exhaust Particulate Matter Emission Rates
Table 5	THROX Exhaust Flow RATA Results Summary
Table 6	THROX Exhaust CO ₂ % RATA Results Summary
Table 7	THROX Exhaust NOx ppm RATA Results Summary
Table 8	THROX Exhaust CO and VOC Emission Rates

FIGURES

Figure 1 – Throx Inlet Traverse Point Diagram

- Figure 2 Throx Exhaust Traverse Point Diagram
- Figure 3 USEPA Method 4 Sampling Train Drawing
- Figure 4 USEPA Method 5/202 Sampling Train Drawing
- Figure 5 USEPA Method 25A Sampling Train Drawing
- Figure 6 USEPA Method 3A/7E/10 Sampling Train Drawing

APPENDIX

- Appendix A AQD Test Plan/Report Format Guideline
- Appendix B Field and Computer Generated Raw Data and Field Notes
- Appendix C Dow Corning RATA and Process Data
- Appendix D Equipment Calibration and Span Gas Documents
- Appendix E Example Calculations
- Appendix F Laboratory Analytical Results

1. Introduction

BT Environmental Consulting, Inc. (BTEC) was retained by Dow Corning Corporation (Dow) to conduct a Relative Accuracy Test Audit (RATA) and an emissions rate compliance test of the THROX unit at the Dow facility in Midland, Michigan. The emissions test program was conducted on November 19-21, 2013. The purpose of this report is to document the results of the test program.

AQD has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (February 2008). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

Sampling and analysis for the emission test program was conducted on November 19 and 21, 2013 at the Dow Corning facility located in Midland, Michigan. Testing of Throx exhaust consisted of eleven 21-minute test runs on the flowrate, CO2, and NOx monitors, triplicate 60-minute test runs for PM_{10} , CO, and VOC. Triplicate 60-minute test runs for PM_{10} were also conducted on the Throx inlet

1.b Purpose of Testing

The purpose of testing was to quantify PM_{10} , CO, and VOC emissions from the Throx Exhaust, PM_{10} emissions from the Throx Inlet, and perform a RATA on the Throx Exhaust flow, CO₂, and NOx monitors.

1.c Source Description

The emission unit is a thermal oxidizer followed in series by a quench, a caustic scrubber, and two ionizing wet scrubbers.

1.d Test Program Contacts

The contact for the source and test report is:

Mr. Michael Gruber, II Environmental Manager Dow Corning Corporation P.O. Box 995, Mail#065 Midland, Michigan 48686 (989) 496-5539

RECEIVED JAN 2 2 2014 AIR QUALITY DIV.

Names and affiliations for personnel who were present during the testing program are summarized by Table 1.

BTEC Project No. 13-4462.00 January 8, 2014

Name and Title	Affiliation	Telephone		
Mr. Michael Gruber, II Environmental Manager	Dow Corning Corporation P.O. Box 995, Mail#065 Midland, Michigan 48686	(989) 496-5539		
Mr. Barry Boulianne Senior Project Manager	BTEC 4949 Fernlee Avenue Royal Oak, MI 48073	(248) 548-8070		
Mr. Brandon Chase Staff Environmental Engineer	BTEC 4949 Fernlee Avenue Royal Oak, MI 48073	(248) 548-8070		
Mr. Jeff Peitzsch Staff Environmental Engineer	BTEC 4949 Fernlee Avenue Royal Oak, MI 48073	(248) 548-8070		
Mr. Kenny Felder Environmental Technician	BTEC 4949 Fernlee Avenue Royal Oak, MI 48073	(248) 548-8070		

Table 1 Test Personnel

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions compliance test program.

2.a Operating Data

Process operating data collected during the emissions test program is included in Appendix C.

2.b Applicable Permit

The Dow facility is covered by Permit No. MI-ROP-A4043-2008.

The emissions test program was required by AQD Permit No. 91-07D.

2.c Results

The overall results of the emissions test program are detailed by Table 2. Detailed results for each test run are included in Tables 3-8.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a Process Description

The emission unit is a thermal oxidizer followed in series by a quench; a caustic scrubber, and two ionizing wet scrubbers.

3.b Process Flow Diagram

Due to the simplicity of the process, a process flow diagram is not necessary.

3.c Raw and Finished Materials

The raw materials include natural gas and process operations exhaust gas.

3.d Process Capacity

The FGTHROX has a 99.9% destruction efficiency for hydrocarbons and is nominally rated for approximately 95 MMBTU/hr heat input.

3.e Process Instrumentation

Process instrumentation is summarized by the operating data provided in Appendix C.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used.

4.a Sampling Train and Field Procedures

Sampling and analysis procedures utilized the following test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations:

•	Method 1 -	"Sample and Velocity Traverses for Stationary Sources"
•	Method 2 -	"Determination of Stack Gas Velocity and Volumetric Flowrate"
•	Method 3A -	"Determination of Molecular Weight of Dry Stack Gas"
•	Method 4 -	"Determination of Moisture Content in Stack Gases"
•	Method 5 -	"Determination of Particulate Emissions from Stationary Sources"
•	Method 7E -	"Determination of Nitrogen Oxide Emissions from Stationary Sources"

- Method 10 "Determination of Carbon Monoxide Emissions from Stationary Sources"
- Method 25A "Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer""
- Method 202 "Determination of Condensable Particulate Emissions from Stationary Sources""

Stack gas velocity traverses were conducted in accordance with the procedures outlined in Methods 1 and 2. A cyclonic flow evaluation was conducted at each sampling location. An S-type pitot tube and thermocouple assembly calibrated in accordance with Method 2, Section 4.1.1 was used to measure exhaust gas velocity pressures and temperatures during testing. Because the pitot tube dimensions outlined in Sections 2.6 through 2.8 were within the specified limits, the baseline pitot tube coefficient of 0.84 (dimensionless) was assigned for this testing.

For Method 4, BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel probe with glass liner, (2) a set of four Greenburg-Smith (GS) impingers with the first and third modified and the second a standard GS impinger, the first two containing 100 ml of deionized water, the third empty, and a fourth modified GS impinger containing approximately 300 g of silica gel desiccant, (3) a length of sample line, and (4) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

40 CFR 60, Appendix A, Method 5, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 60, Appendix A, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 4 for a schematic of the sampling train). Triplicate 60-minute test runs were conducted for each source.

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel nozzle, (2) a steel probe, (3) a heated filter holder, (4) a vertical condenser, (5) an empty pot bellied impinger, (6) an empty modified Greenburg-Smith (GS) impinger, (7) unheated filter holder with a teflon filter, (8) a second modified GS impinger with 100 ml of deionized water, and a third modified GS impinger containing approximately 300 g of silica gel desiccant, (9) a length of sample line, and (10) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, and the nozzle and the front half of the filter holder assembly were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container. The impinger train was then purged with nitrogen for one hour at a flow rate of 18 liters per minute. The CPM filter was recovered and placed in a petri dish. The back half of the filter housing, the

condenser, the pot bellied impinger, the moisture drop out impinger, and the front half of the CPM filter housing and all connecting glassware were triple rinsed with deionized water which was collected in a pre-cleaned sample container. The same glassware was then rinsed with acetone which was collected in a pre-cleaned sample container labeled as the organic fraction. The glassware was then double rinsed with hexane which was added to the same organic fraction sample bottle.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition, blank samples of the acetone, DI water, hexane, and filter were collected. BTEC personnel carried all samples to BTEC's laboratory (for filter and acetone gravimetric analysis) in Royal Oak, Michigan. DI water and organic samples were couriered by Maxxam personnel to Maxxam's lab in Mississauga, Ontario for analysis.

Exhaust NOx content was measured using a Teledyne Model T-200H NOx gas analyzer, and the CO and CO₂ content were measured using a Teledyne Model 300EM CO/CO₂ gas analyzer. A sample of the gas stream was drawn through an insulated stainless-steel probe with an in-line glass fiber filter to remove any particulate, a heated Teflon[®] sample line, and through an electronic sample conditioner to remove the moisture from the sample before it enters the analyzer. Data was recorded at 4-second intervals on a PC equipped with data acquisition software.

Volatile Organic compound (VOC) concentrations were measured according to 40 CFR 60, Appendix A, Method 25A. A sample of the gas stream was drawn through a stainless steel probe with an in-line glass fiber filter to remove any particulate, and a heated Teflon[®] sample line to prevent the condensation of any moisture from the sample before it enters the analyzer. Data was recorded at 4-second intervals on a PC equipped with Labview[®] II data acquisition software. BTEC used a VIG Model 20 THC hydrocarbon analyzer to determine the VOC concentration.

The VIG THC hydrocarbon analyzer channels a fraction of the gas sample through a capillary tube that directs the sample to the flame ionization detector (FID), where the hydrocarbons present in the sample are ionized into carbon. The carbon concentration is then determined by the detector in parts per million (ppm). This concentration is transmitted to the data acquisition system (DAS) at 4-second intervals in the form of an analog signal, specifically voltage, to produce data that can be averaged over the duration of the testing program. This data is then used to determine the average ppm for total hydrocarbons (THC) using the equivalent units of propane (calibration gas). The analyzer was calibrated for a range of 0 to 100 ppm.

In accordance with Method 25A, a 3-point (zero, mid, and high) calibration check was performed on the THC analyzer. Calibration drift checks were performed at the completion of each run.

4.b Recovery and Analytical Procedures

Recovery and analytical procedures were described in Section 4.a.

4.c Sampling Ports

A diagram of the stack indicating traverse point locations and stack dimensions is included as Figures 1-2.

4.d Traverse Points

A diagram of the stack indicating traverse point locations and stack dimensions is included as Figures 1-2.

5. Test Results and Discussion

Sections 5.a through 5.k provide a summary of the test results.

5.a Results Tabulation

The overall results of the emissions test program are detailed by Table 2.

Test Date: November 19-21, 2012					
Source	Emission Limit				
Throx Inlet	PM ₁₀	25.96 lb/hr	NA		
	PM10	1.16 lb/hr	3.5 lb/hr		
	CO	0.01 lb/hr	90 ton/yr		
Three Exhaust	VOC	0.03 lb/hr	6.6 lb/hr		
THEOX EXHAUST	Flow RATA	6.8%	20%		
	CO ₂ RATA	7.5%	20%		
	NOx RATA	0.5%	20%		

Table 2Overall Emission SummaryTest Date: November 19-21, 2012

5.b Discussion of Results

All emission results are below the emission limits.

5.c Sampling Procedure Variations

There were no variations in the sampling procedures from that specified by the emissions test plan.

RECEIVED

5.d Process or Control Device Upsets

JAN 2 2 2014

AIR QUALITY DIV. Dow process monitor recording went off-line during Run 3 of the RATA. Run 3 has been

Control Device Maintenance 5.e

There was no non-routine control equipment maintenance performed immediately prior to the emissions test program.

5.f **Re-Test**

discarded.

The emissions test program was not a re-test.

Audit Sample Analyses 5.g

No audit samples were collected as part of the test program.

Calibration Sheets 5.h

Relevant equipment calibration documents are provided in Appendix C.

5.i **Sample Calculations**

Sample calculations are provided in Appendix D.

5.j **Field Data Sheets**

Field documents relevant to the emissions test program are presented in Appendix B.

5.k Laboratory Data

Laboratory analytical results are available in Appendix F.

Table 4				
Fhrox Exhaus	t Particulate Matter	Emission	Rates	

Company Same Designation	Dow			
Test Date	1 nrox 11/21/2013	11/21/2013	11/21/2013	
Cot Date	11/21/2015	11/2//2015	11/21/2010	
			· · · · · · · · · · · · · · · · · · ·	
Meter/Nozzle Information	P-1	P-2	P-3	Average
Mater Temperature Tru (E)	577	65.0	67.2	63.3
Meter Pressure - Pro (in Ho)	20.7	29.6	29.6	29.6
Measured Sample Volume (Vm)	53.7	37.2	36.9	42.6
Sample Volume (Vm-Std ft3)	54.4	371	36.6	42.7
Sample Volume (Vm-Std m3)	1.54	1.05	1.04	1.21
Condensate Volume (Vw-std)	11.189	7.497	7.502	8,729
Gas Density (Ps(std) lbs/ft3) (wet)	0,0697	0.0698	0.0698	0.0698
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	4.58	3,11	3.08	3.59
Total weight of sampled gas (m g lbs) (dry)	4.06	2,76	2,73	3.18
Nozzle Size - An (sq. ft.)	0.001294	0.000860	0.000860	0.001004
Isokinetic Variation - I	95.3	95.9	95.8	95.7
Stack Data				
Average Stack Temperature - Ts (F)	135.9	135.2	135.3	135.4
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	27.0	27.0	27.0	27.0
Stack Gas Specific Gravity (Gs)	0.932	0.933	0.932	0.932
Percent Moisture (Bws)	17.05	16.82	17.01	16.96
Water Vapor Volume (fraction)	0,1705	0.1682	0.1701	0.1696
Pressure - Ps ("Hg)	29.5	29.5	29.5	29.5
Average Stack Velocity -Vs (ft/sec)	16.9	17.2	17.0	17.0
Area of Stack (ft2)	15.9	15.9	15.9	15.9
Exhaust Gas Flowrate	·····	·		u
Flowrate fl ³ (Actual)	16.124	16.371	16.204	16.233
Flowrate ft ³ (Standard Wet)	14 096	14 330	14 182	14,202
Flowrate ft ³ (Standard Drv)	11,692	11,920	11.769	11,794
Flowrate m ³ (standard dry)	331	338	333	334
Total Darticulate Waights (mg)				
Total Particulate weights (ing)				
Total Nozzle/Probe/Filter	34.5	23.7	26.6	28.3
Organic Condensible Particulate	1.3	1.1	0.0	0.8
Inorganic Condensible Particulate	3.0	5.3	3.9	4.1
Condensible Blank Correction	2.0	2.0	2.0	2.0
Total Condensible Particulate	2.3	4.4	1.9	2.9
Total Filterable and Condensible Particulate	36,8	28.1	28.5	31.1
Filterable Particulate Concentration				
lb/1000 lb (wet)	0.017	0.017	0.019	0.017
lb/1000 lb (dry)	0.019	0.019	0.022	0.020
mg/dscm (dry)	22.4	22.6	25.7	23.5
gr/dsef	0.010	0.010	0.011	0.010
Filterable Particulate Emission Rate				
lb/ hr	0.98	1.01	1.14	1.04
Condensible Particulate Concentration				
Ib/1000 lb (wet)	0,001	0.003	0.001	0.002
Ib/1000 lb (dry)	0,001	0.004	0.002	0.002
mg/dscm (dry)	1.5	4,2	1.8	2.5
Brusui Condansible Perticulate Emission Data	0.001	0,002	100.0	0.001
b/hr	0.07	0.19	0.08	0.11
Total Particulate Concentration				
lb/1000 lb (wet)	0.018	0.020	0.020	0.019
lb/1000 lb (dry)	0.020	0.022	0.023	0.022
mg/dscm (dry)	23.9	26.8	27.5	26.0
gr/dscf	0.010	0.012	0.012	0.011
Total Particulate Emission Rate				
lb/ hr	1.05	1,20	1.22	1.16

TABLE 5

Throx Exhaust Flow RATA Results Summary

Dow Corning Corp.

Midland, Michigan

THROX

	FLOW Relative Accuracy				
	Relative Accuracy:		6.8		
Run #	Time*	RM KSCFM	CBM KSCFM	Diff	<u>%Diff</u>
1	7:32-7:53	17.1	18.9	-1.7932	-0.10
2	8:06-8:27	18.8	21.1	-2.2991	-0.12
4	11:20-11:41	19.5	21.1	-1.5778	-0.08
5	11:56-12:17	20.0	20.8	-0.8358	-0.04
6	12:30-12:51	20.5	21.7	-1.2487	-0.06
7	13:01-13:22	21.2	21.7	-0.5380	-0.03
8	13:34-13:55	19.2	20.1	-0.8999	-0.05
9	14:06-14:27	18.4	19.0	-0.6313	-0.03
10	14:40-15:01	20.1	20.0	0.0524	0.00
11	15:12-15:33	19.8	19.8	-0.0446	0.00
12				#VALUE!	#VALUE
13				#VALUE!	#VALUE
		19.5	20.3	-0.835	-0.044
	S	Sdev	0.6312		
	(CC	0.4852		
	RA (based on Re	f. Meth.)	6.8%		

*: Time stamp is according to Dow's clock. BTEC time is 10 minutes behind Dow.

i.e., 7:42 BTEC time = 7:32 Dow time Note: Run 3 is omitted because Dow process monitoring recording went offline.

Confidence Coefficient = n=9 t = 2.306	$CC = t_{0.975} \frac{S_d}{\sqrt{n}}$	P.S. 2 Equation 2-5
Standard Deviation ⊨	$S_{d} = \left[\frac{\sum_{i=1}^{n} d_{i}^{2} - \frac{\left(\sum_{i=1}^{n} d_{i}\right)^{2}}{n}}{n-1}\right]^{\frac{1}{2}}$	P.S. 2 Equation 2-4
Relative Accuracy = RM=Reference Monitor	$R\mathcal{A} = \frac{\left \vec{d}\right + cc }{\overline{RM}} \times 100$	P.S. 2 Equation 2-6

RA calculated as specified in Performance Specification 2, Appendix B, 40 CFR 60 -Equation 2-4

As specified in P.S. 2, subsection 8.4.4, three sets of test runs may be rejected, these rejected test runs are high-lighted in the table

TABLE 6

Throx Exhaust CO2 % RATA Results Summary

Dow Corning Corp.

Midland, Michigan

THROX

	CO2 % Relative Accuracy				
	Relative Accuracy:		7.5		
Run #	Time*	RM %	CEM	Diff	<u>%Diff</u>
1	7:32-7:53	1.89	1.7	0.1900	0.10
2	8:06-8:27	1.94	1.8	0.1400	0.07
4	11:20-11:41	2.69	2.5	0.1900	0.07
5	11:56-12:17	2.37	2.2	0.1700	0.07
6	12:30-12:51	2.39	2.2	0.1900	0.08
7	13:01-13:22	2.38	2.2	0.1800	0.08
8	13:34-13:55	2.46	2.3	0.1600	0.07
9	14:06-14:27	2.49	2.4	0.0900	0.04
10	14:40-15:01	2.37	2.3	0.0700	0.03
11	15:12-15:33	2.41	2.3	0.1100	0.05
12				#VALUE!	#VALUE!
13				#VALUE!	#VALUE!
		2.389	2.24	0.144	0.061
	S	dev	0.0448		
	C	C	0.0344		
	RA (based on Ref	Meth.)	7.5%		

*: Time stamp is according to Dow's clock. BTEC time is 10 minutes behind Dow. i.e., 7:42 BTEC time = 7:32 Dow time

Note: Run 3 is omitted because Dow process monitoring recording went offline.

Confidence Coefficient = n=9 t = 2.306	$CC = \frac{S_{J}}{\sqrt{n}}$	P.S. 2 Equation 2-5
Standard Deviation =	$S_{d} = \left[\frac{\sum_{i=1}^{n} d_{i}^{2} - \frac{\left(\sum_{i=1}^{n} d_{i}\right)^{2}}{n}}{n-1}\right]^{\frac{1}{2}}$	P.S. 2 Equation 2-4
Relative Accuracy = RM=Reference Monitor	$RA = \frac{\left \vec{d}\right + cc }{RM} \times 100$	P.S. 2 Equation 2-6

RA calculated as specified in Performance Specification 2, Appendix B, 40 CFR 60 - Equation 2-4 $\,$

As specified in P.S. 2, subsection 8.4.4, three sets of test runs may be rejected, these rejected test runs are high-lighted in the table

TABLE 7

Throx Exhaust NOx ppm RATA Results Summary

Dow Corning Corp.

Midland, Michigan

THROX

	NO _X PPM Relative Accuracy					
	Relative Accuracy:		0.5			
Run #	Time*	RM PPMVD	CEM PPMVD	Diff	<u>%Diff</u>	
1	7:32-7:53	64.14	63.0	1.1400	0.02	
2	8:06-8:27	58.43	58.5	-0.0700	0.00	
4	11:20-11:41	47.79	48.1	-0.3100	-0.01	
5	11:56-12:17	57.84	57.8	0.0400	0.00	
6	12:30-12:51	51.38	51.1	0.2800	0.01	
7	13:01-13:22	49,55	49.1	0.4500	0.01	
8	13:34-13:55	50.53	50.6	-0.0700	0.00	
9	14:06-14:27	52.56	52.1	0.4600	0.01	
10	14:40-15:01	53.52	53.5	0.0200	0.00	
11	15:12-15:33	56.11	56.3	-0.1900	0.00	
12				#VALUE!	#VALUE!	
13				#VALUE!	#VALUE!	
		53.079	53.01	0.068	0.001	
	Sdev CC		0.2728			
			0.2097			
RA (based on Ref. Meth.)		0.5%				

*: Time stamp is according to Dow's clock. BTEC time is 10 minutes behind Dow.

i.e., 7:42 BTEC time = 7:32 Dow time

Note: Run 3 is omitted because Dow process monitoring recording went offline.

Confidence Coefficient ∺ n=9 t=2.306	$CC = \overset{i}{\circ} \overset{SJ}{_{975}} \frac{SJ}{\sqrt{n}}$	P.S. 2 Equation 2-5
Standard Deviation =	$S_{d} = \left[\frac{\sum_{i=1}^{n} d_{i}^{2} - \frac{(\sum_{i=1}^{n} d_{i})^{2}}{n}}{n-1}\right]^{\frac{1}{2}}$	P.S. 2 Equation 2-4
Relative Accuracy = RM#Reference Monitor	$RA = \frac{\left \overline{d}\right + cc }{\overline{RM}} \times 100$	P.S. 2 Equation 2-6

RA calculated as specified in Performance Specification 2, Appendix B, 40 CFR 60 - Equation 2-4 $\,$

As specified in P.S. 2, subsection 8.4.4, three sets of test runs may be rejected, these rejected test runs are high-lighted in the table

Table 8 Throx Exhaust CO and VOC Emission Rates Dow Corning Midland, Michigan BTEC Project No. 13-4462 Sampling Dates: November 21, 2013

Parameter	Run 1	Run 2	Run 3	Average
		11/01/2010		
Test Run Date	11/21/2013	11/21/2013	11/21/2013	
Test Run Time	11:06-12:06	12:35-13:35	14:14-15:14	
Outlet Flowrate (dscfm)	11,692	11,920	11,769	11,794
Outlet Flowrate (scfm)	14,096	14,330	14,182	14,202
Outlet Carbon Monoxide Concentration (ppmy)	0.57	0.66	0.99	0.74
Outlet CO Concentration (ppmv, corrected as per USEPA 7E)	0.10	0.35	0.39	0.28
CO Emission Rate (lb/hr)	0.03	0.03	0.05	0.04
CO Emission Rate (lb/hr) (corrected as per USEPA 7E)	0.01	0.02	0.02	0.01
Outlet VOC Concentration (nomy as propage)	1 20	0.21	0.24	0.55
Outlet VOC Concentration (ppmv as propano)	0.81	0.00	0.21	0.32
VOC Emission Rate as Propane (lb/br)	0.12	8.02	0.07	0.05
VOC Emission Rate as Propane (10/01)	0.02	0.02	0.02	0.03
VOC Emission Rate as Fropane(10/11) (corrected as per USEPA /E)	0.08	0.00	0.01	0.03

scfm = standard cubic feet per minute dscfm = dry standard cubic feet per minute ppmv = parts per million on a volume-to-volume basis lb/hr = pounds per hour MW = molecular weight (CO = $28.01, C_3H_8 = 44.10$) 24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg) $35.31 = ft^3$ per m³ 453600 = mg per lb

Equations

lb/hr = ppmv * MW/24.14 * 1/35.31 * 1/453.600 * scfm * 60 for VOC lb/hr = ppmv * MW/24.14 * 1/35.31 * 1/453.600 * dcfm * 60

		Ta	ble 3		
Throx I	nlet	Particulate	e Matter	Emission	Rates

Company Source Designation Test Date	Dow Throx Inlet 11/21/2013	11/21/2013	11/21/2013	
Meter/Nozzle Information	P-1	P.7	P.3	Average
	1-1			71101.050
Meter Temperature Tm (F)	56,6	62.0	63.3	60.6
Meter Pressure - Pm (in. Hg)	29.7	29,6	29.6	29,6
Measured Sample Volume (Vm)	32.8	18.3	17.3	22.8
Sample Volume (Vm-Std ft3)	33.6	18.5	17.4	23.2
Sample Volume (Vm-Std m3)	0.95	0.52	0.49	0.66
Condensate Volume (Vw-std)	8.624	4.889	4.291	5.935
Gas Density (Ps(std) lbs/ft3) (wet)	0.0688	0.0687	0.0690	0.0689
Gas Density (Ps(std) lbs/ft3) (dry)	0.0746	0.0746	0.0746	0.0746
fotal weight of sampled gas (m g lbs) (wet)	2.91	1.61	1,50	2.00
fotal weight of sampled gas (m g lbs) (dry)	2.51	1.38	1.30	1.73
Vozzle Size - An (sq. ft.)	0.000759	0.000346	0.000346	0.000484
sokinetic Variation - I	94.6	101.7	101.8	99.4
itack Data				
Verage Stack Temperature - Ts (F)	146.8	145.3	145.3	145.8
Aolecular Weight Stack Gas- dry (Md)	28.8	28,8	28.8	28.8
Aolecular Weight Stack Gas-wet (Ms)	26.6	26.6	26.7	26.6
tack Gas Specific Gravity (Gs)	0,920	0.918	0.922	0.920
ercent Moisture (Bws)	20.42	20.92	19,76	20.36
Vater Vapor Volume (fraction)	0.2042	0.2092	0,1976	0.2036
ressure - Ps ("Hg)	29.2	29.2	29.2	29.2
verage Stack Velocity -Vs (ft/sec)	19.3	21.7	20.1	20.3
strea of Stack (ff2)	12.6	12.6	12.6	12.6
Exhaust Gas Flowrate				
Nowrate (1 ³ (Actual)	14 51 5	16 325	15 158	15 333
Iowrate ft ³ (Standard Wat)	10 318	13 997	12 804	13,033
Jourge ft ³ (Standard Day)	0.203	10.087	10.346	10,000
lowrate m ³ (standard dry)	278	311	293	294
'otal Particulate Weights (mg)				
Fotob Monala/Droba/Eiltor	<u> </u>	210.4	257.1	407.5
otar Nozzie/Probe/Filler	005.0	319.0	337.4	427.5
Agame Concensible Particulate	2.1	1.4	2.2	2.1
norganic Condensible Particulate	6.0	5.7	4.5	5.4
ondensible Blank Correction	2.0	2.0	2.0	2.0
oral Condensible Particulate	6.7	5.1	4.7	5.5
otal Filterable and Condensible Particulate	612,3	324.7	362.1	433.0
ilterable Particulate Concentration	0.172	0.420	0.507	A 175
0/1000 ID (WCI)	0.459	0.439	0.520	0.475
	0,533	0.511	0.605	0.550
ng/ascm (dry)	636,2	610,6	724.4	657.0
r/dsei	0.278	0.267	0.317	0.287
nterable Particulate Emission Rate b/ hr	23,45	25.21	28.18	25.61
ondensible Particulate Concentration				
b/1000 lb (wet)	0.005	0.007	0.007	0.006
b/1000 lb (dry)	0.006	0.008	0.008	0.007
g/dscm (drv)	7.0	9.7	9.5	8.8
/dscf	0.003	0.004	0.004	0.004
ondensible Particulate Emission Rate	A 26	0.40	0.37	0.34
otal Particulate Concentration	0,20	0.40	0.57	0,34
b/1000 lb (wet)	0.464	0.446	0,533	0.481
5/1000 lb (drv)	0.539	0.519	0,614	0.557
ig/dscm (dry)	643.2	620.3	733,9	665.8
r/dsef	0 281	0.271	0.321	0.291
otal Particulate Emission Rate	~.LU1		•	
5/ hr	23.71	25.61	28.55	25.96

Figures

RECEIVED

