RECEIVED

JUL 1 1 2023

AIR QUALITY DIVISION

CEMS RATA Test Report ROP-MI-A4043-2019 40 CFR Part 60, Appendix B, Performance Specifications 2 and 3

Gas Fired Boilers #12, #13, #14 (Building 432 Boilers)

Project number: 60699646

June 06, 2023

Quality information

Prepared by

Checked by

Reviewed by

Christopher Trevillian Air Quality Scientist III Wayne Washburn Air Quality Scientist IV

Wayne M. Washburn

James Edmister Project Manager

Prepared for:

Mr. Chuck Glenn Air Sample SME T: (979) 238-9109 M: (979) 709-2307 (cell) E: ceglenn@dow.com

Dow Freeport, Texas 77541 USA

Managed by:

Mr. James Edmister
Project Manager
T: (865) 483-9870
M: (585) 721-9128 (cell)
E: James.Edmister@aecom.com

AECOM 3700 James Savage Rd Bld. 1602 Midland, MI 48642 USA www.aecom.com

<u>Please note</u>: The Dow process unit is the final copyholder and owner of this document. A temporary electronic copy will be retained by the AECOM test team for a short period of time.

Copyright © 2023 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Introd	luction	1-1
	1.1	Background	1-1
	1.2	Overview of the Test Program	1-1
	1.3	Key Personnel	1-2
	1.4	Executive Summary	1-2
2.	Sumr	nary and Discussion of Results	2-1
	2.1	Objectives and Test Matrix	2-1
	2.2	Facility Operations	2-1
	2.3	Comments/Exceptions	2-1
3.	Facili	ty Description	3-1
	3.1	Process Description	3-1
	3.2	Control Equipment Description	3-1
	3.3	Flue Gas Sampling Locations	3-1
4.	Samp	oling and Analytical Procedures	4-1
	4.1	Test methods	4-1
	4.2	Procedures	4-1
	4.3	Flue Gas Molecular Weight – EPA Method 3	4-1
	4.4	Determination of Nitrogen Oxides – EPA Method 7E	
	4.5	Sampling Equipment	4-2
	4.6	Transportable Instrumental Analyzer Laboratory	4-4
	4.7	Calibration Procedures	4-4
5.	Boile	r 12 Data (Vent SV432-001)	5-1
	5.1	Calculations	5-1
	5.2	Oxygen Calibration Data Summary	5-6
	5.3	Oxides of Nitrogen Calibration Data Summary	5-7
	5.4	Response Time	
	5.5	Stratification Test	5-9
	5.6	Relative Accuracy Corrected Concentration	5-10
	5.7	Oxygen Relative Accuracy Results	5-11
	5.8	Oxides of Nitrogen Relative Accuracy Results	5-12
	5.9	Summary Data	5-13
	5.10	Facility Data	5-57
	5.11	Field Data Sheets	5-69
6.	Boile	⁻ 13 Data (Vent SV432-002)	6-1
	6.1	Calculations	
	6.2	Oxygen Calibration Data Summary	6-6
	6.3	Oxides of Nitrogen Calibration Data Summary	6-7
	6.4	Response Time	
	6.5	Stratification Test	
	6.6	Relative Accuracy Corrected Concentration	
	6.7	Oxygen Relative Accuracy Results	
	6.8	Oxides of Nitrogen Relative Accuracy Results	
	6.9	·	6-13

	6.10	Facility Data	6-56
	6.11	Field Data Sheets	6-68
7.	Boiler	⁻ 14 Data (Vent SV432-003)	7-1
	7.1	Calculations	7-1
	7.2	Oxygen Calibration Data Summary	7-6
	7.3	Oxides of Nitrogen Calibration Data Summary	7-7
	7.4	Response Time	7-8
	7.5	Stratification Test	7-9
	7.6	Relative Accuracy Corrected Concentration	7-10
	7.7	Oxygen Relative Accuracy Results	7-11
	7.8	Oxides of Nitrogen Relative Accuracy Results	7-12
	7.9	Summary Data	7-13
	7.10	Facility Data	7-58
	7.11	Field Data Sheets	7-70
Appe	ndix A	- Certificates of Analysis	A
Fig	ures		
Figur	e 3-1. F	Facility Process Diagram	3-2
Figur	e 3-2. F	Facility Stack Exhaust Diagram	3-3
Figur	e 4-1. S	SAMPLING TRAIN USED FOR NOx & O ₂ (M7E & M3A)	4-2
Tab	les		
Table	1-1. R	Responsible Groups	1-1
Table 1-2. Key Personnel			
Table 1-3. Boilers 12, 13, and 14 Summary of Results			
		Operating Parameter Summary	
Table	4-1. O	perating Parameter Summary	4-2

Appendices

Appendix A - Certificates of Analysis

1. Introduction

1.1 Background

Under contract with Dow Midland Operations, AECOM, Inc., conducted Relative Accuracy Test Audit (RATA) testing on the Continuous Emission Monitoring Systems (CEMS) associated with Boiler 12 (Vent SV432-001), Boiler 13 (Vent SV432-002), and Boiler 14 (Vent SV432-003). Boilers 12, 13, and 14 are physically located in Building 432 at Dow's Infrastructure facility in Midland, Michigan. The test was conducted on May 17th, and 18th, 2023.

Dow operates a chemical manufacturing facility in Midland, Michigan. This facility consists of numerous different chemical manufacturing processes including 432 Building, which produces steam from its three boilers (12, 13, and 14).

432 Building is used to provide steam to chemical manufacturing plants located in the Dow Silicones Corporation Midland Site, which includes three natural gas boilers, and all required ancillary equipment. Boiler feed water is imported from existing site infrastructure. Natural gas (High Pressure Fuel Gas, HPFG) provide fuel for these three boilers. Steam produced in the auxiliary boilers is sent throughout the Dow Silicones Corporation Midland site at 150 psig.

1.2 Overview of the Test Program

This RATA test report describes the test procedures performed on 432 Building Boiler 12 (Vent SV432-001), Boiler 13 (Vent SV432-002), and Boiler 14 (Vent SV432-003), at the Infrastructure facility, owned and operated by Dow, Michigan Operations, Midland, Michigan.

The test described in this document was designed to demonstrate compliance with the requirements of the Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit (ROP-MI-A4043-2019a) as well as the regulations in US EPA 40 CFR Part 60, Appendix B, Performance Specifications 2 and 3.

The following table (Table 1-1) summarizes the pertinent data for this performance test:

Responsible Groups **Dow Silicones Corporation AECOM** Michigan Department of Environmental Quality (MDEQ) U. S. Environmental Protection Agency (US EPA) Applicable Regulations MI-ROP-A4043-2019b Industry / Plant 432 Building Plant Location **Dow Silicones Corporation** Midland, Michigan 48667 December 2006 Boiler 12 Unit Initial Start-up December 2006 Boiler 13 December 2006 Boiler 14 April 26th and 27th, 2022 Date of Last RATA Air Pollution Control Equipment Low NOx Burners Exclusive use of Natural Gas **Emission Points** Boiler 12 - Vent SV432-001 Boiler 13 - Vent SV432-002 Boiler 14 - Vent SV432-003 Pollutants/Diluent Measured Nitrogen Oxides (NOx) Oxygen (O₂)

Table 1-1. Responsible Groups

Test Dates	 Boiler 12 – May 17, 2023 	
	 Boiler 13 – May 18, 2023 	1
	 Boiler 14 – May 17, 2023 	

1.3 Key Personnel

The contact for the source and test report is:

Ms. Becky Meyerholt, Air Specialist The Dow Chemical Company 1400 Building Midland, Michigan 48674 (989) 638-7824 rmeyerholt@dow.com

Names and affiliations of personnel, including their roles in the test program, are summarized in the following table.

Role	Role Description	Name	Affiliation
Process Focal Point	 Coordinate plant operation during the test Ensure the unit is operating at the agreed upon conditions in the test plan Collect any process data required Provide all technical support related to process operation 	Brandon Krieger	Dow Chemical
Environmental Focal Point	Ensure all regulatory requirements and citations are reviewed and considered for the testing	Becky Meyerholt	Dow Chemical
Air Sample SME	 Leadership of the sampling program Develop the overall testing plan Determine the correct sample methods 	Chuck Glenn	Dow Chemical
Technical Reviewer	Completes technical review of the test data	Wayne Washburn	AECOM
Field Team Leader	Ensures field sampling meets the quality assurance objectives of the plan	Peter Becker	AECOM
Sample Project Leader	Ensures data generated meets the quality assurance objectives of the plan	James Edmister	AECOM

Table 1-2. Key Personnel

1.4 Executive Summary

A results summary for the 432 Building RATA's on Boilers 12,13, and 14 are presented in **Table 1-3**. The results show that the Boilers are within the allowable limits specified in 40 CFR Part 60, Appendix B, Performance Specifications 2 and 3.

Test program participants included: Peter Becker, Quincy Crawford, and James Edmister from AECOM; as well as Becky Meyerholt from The Dow Chemical Company.

Additional information is contained in the Appendices as follows: **Appendix A** provides Emissions Data from AECOM's test activities. **Appendix B** contains Facility Data for the Compliance Test Appendix E

JUL 1 1-2023

contains Quality Assurance Data, including Calibration Error Tests, System Bias and Drift Checks, System Response Times, and Gas Cylinder Certification Sheets.

Table 1-3. Boilers 12, 13, and 14 Summary of Results

	Boiler 12	! (Vent SV432-001)	
Test Type	NOx Monitor Results lb/mmBtu	Allowable	Pass/Fail
	7.82%	200/ DA veire DM ev	Pass
Relative Accuracy	4.94%	20% RA using RM or 10% RA using EL	Pass
		10 /0 NA dailing EE	Pass
Test Type	O2 Monitor Results	Allowable	Pass/Fail
	5.90%	No greater than 20.0 % of mean	Pass
	0.32%	value of RM	Pass
Relative Accuracy		or the absolute difference between RM and CEMS <= 1.0%	Pass
	Boiler 13	3 (Vent SV432-002)	
Test Type	NOx Monitor Results lb/mmBtu	Allowable	Pass/Fail
	0.50%	200/ 84	Pass
Relative Accuracy	0.32%	20% RA using RM or 10% RA using EL	Pass
		10% KA USING EL	Pass
	O2 Monitor Results		Pass/Fail
Test Type		Allowable	Semi/Annual
	2.22%	No greater than 20.0 % of mean	Pass
	0.14%	value of RM	Pass
Relative Accuracy		or the absolute difference between RM and CEMS <= 1.0%	Pass
	Boiler 14	(Vent SV432-003)	
Test Type	NOx Monitor Results lb/mmBtu	Allowable	Pass/Fail
	4.80%	200/ BA using BM	Pass
Relative Accuracy	3.55%	20% RA using RM or 10% RA using EL	Pass
		10 /0 ICA USING LL	Pass
Test Type	O2 Monitor Results	Allowable	Pass/Fail
	2.05%	No greater than 20.0 % of mean	Pass
	0.12%	value of RM	Pass
Relative Accuracy		or the absolute difference between RM and CEMS <= 1.0%	Pass

^{*}Emission limit is 0.10 NOx lb/MMBtu based on instantaneous value found in NSPS Subpart Db.

2. Summary and Discussion of Results

2.1 Objectives and Test Matrix

The purpose of this test was to demonstrate compliance with MI-ROP-A4043-2019b, 40 CFR Part 60, Appendix B, Performance Specification 2 and 3.

- Measure the NOx emissions from the boiler stacks.
- Determine the O₂ concentration from the boiler stacks

2.2 Facility Operations

During the CEMS tests, the plant was operated at greater than 50% of the full load rating of the boiler being tested. Although these units are currently operated as standby units, which is different than how they were operated in the past (and during past tests), it was proposed to operate the units at greater than 50% of the previous normal load during testing. Prior to becoming standby units, the previous normal load was approximately 60 MMBtu/hr heat input.

2.3 Comments/Exceptions

 This Performance Specification Test for the boiler stacks consisted of up to 12 total 21-minute runs. A maximum of three runs were not used for RATA calculations as allowed by 40 CFR Part 60, PS 2 and 3.

3. Facility Description

3.1 Process Description

432 Building is used to provide steam to chemical manufacturing plants located in the Dow Silicones Corporation Midland Site, which includes three natural gas boilers and all required ancillary equipment. Boiler feed water is imported from existing site infrastructure. Natural gas (High Pressure Fuel Gas, HPFG) provide fuel for these three boilers. Steam produced in the auxiliary boilers will be sent throughout the Dow Silicones Corporation Midland site at 150 psig.

Table 3-1. Operating Parameter Summary

Parameter	Maximum	Normal Highest	Test Condition
Heat Input (MMBtu/hr)	~ 103 MMBtu/hr	~ 60 MMBtu/hr	≥ 30 MMBtu/hr

3.2 Control Equipment Description

The boilers utilize a low NOx burner design with O2 trim to reduce the stack NOx concentration.

3.3 Flue Gas Sampling Locations

Emission sampling was conducted from each boiler stack for the RATA testing. Each stack has sampling ports installed at a height which complies with the requirements of 40 CFR 60, Appendix A, Reference Method 1. The sample locations are a minimum of two diameters upstream of gas flow disturbances.

Figure 3-1. Facility Process Diagram

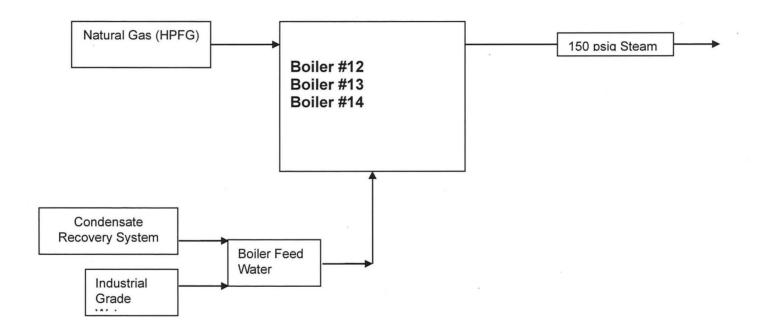
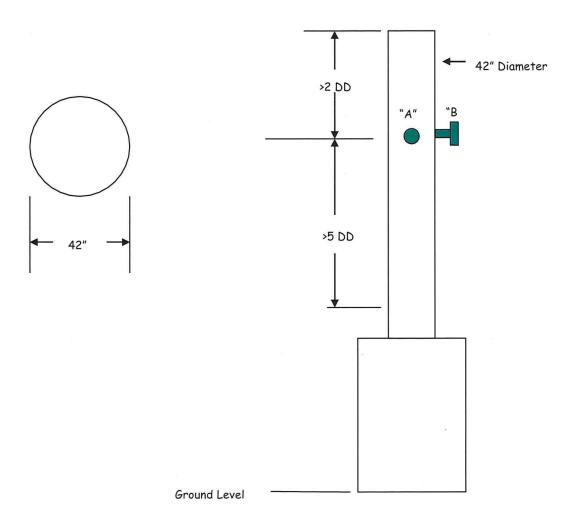



Figure 3-2. Facility Stack Exhaust Diagram

4. Sampling and Analytical Procedures

The following is a description of the testing that was completed at 432 Building (Boilers 12, 13, and 14) as specified in the air permit (ROP-MI-A4043-2019b).

4.1 Test methods

- PS 2 Method 7E for NOx; and
- PS 3 Method 3A for O₂.

4.2 Procedures

The above methods were performed using mobile continuous emission monitors. Gases were withdrawn from the stack and transported to monitors located at ground level. A stainless-steel probe was inserted into the stack and used to collect sample gas. A Teflon sample line heated to 250°F transported sample gas from the probe to the analyzers. The analyzers were kept at a constant temperature inside the mobile laboratory.

Sample gas was collected continuously from the stack for a period of 21 minutes per run at the three traverse points of 16.7%, 50.0% and 83.3% of the measurement line that passes through the centroidal area of the stack or duct cross section. A Stratification test outlined in EPA Method 7E was performed for all three boilers and determined the three points listed above were adequate for testing. At the mobile laboratory, the stack gas was routed to a condenser and then transported to the analyzers for analysis.

The Relative Accuracy Tests were conducted by comparison of the CEMS response to a value measured by a Performance Test Method (PTM) which, in this case, was Method 7E for Nitrogen Oxides, and Method 3A for O₂.

4.3 Flue Gas Molecular Weight – EPA Method 3

EPA Method 3A (Instrumental Method) was utilized to determine the diluent during each run on the outlet.

An analyzer measured O_2 content on the basis of the strong paramagnetic properties of O_2 relative to other compounds present in combustion gases. In the presence of a magnetic field, O_2 molecules become temporary magnets. The analyzer determines the sample gas O_2 concentration by detecting the displacement torque of the sample test body in the presence of a magnetic field.

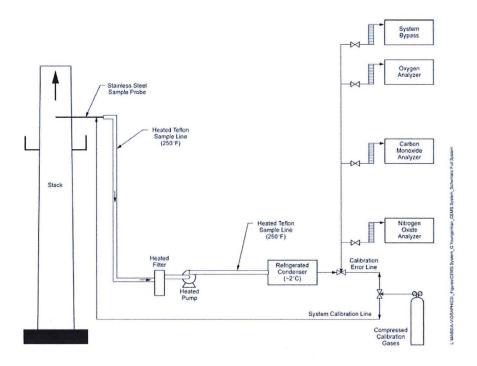
4.4 Determination of Nitrogen Oxides – EPA Method 7E

EPA Method 7E was utilized to determine nitrogen oxide concentrations during each run on the outlet.

An analyzer measured NOx using chemiluminescence technology. Ozone is combined with nitric oxide to form nitrogen dioxide in an activated state. The activated NO₂ luminesces broadband visible to infrared light as it reverts to a lower energy state. Photomultiplier and associated electronics counts the photons that are proportional to the amount of NO present. Since the stream contains both NO and NO₂, the amount of nitrogen oxide (NO₂) must first be converted to nitric oxide, NO, by passing the sample through a converter before the above ozone activation reaction is applied. The above reaction yields the amount of NO and NO₂ combined in the air sample.

Please note The Dow Chemical Company has elected to complete a post-run bias and drift assessment after each set of three 21-minute runs for all analytes as allowed in EPA Method 7E 8.5 for all gas phase analyzer methods. EPA Method 7E section 8.5 reads as follows:

Post-Run System Bias Check and Drift Assessment. How do I confirm that each sample I collect is valid? After each run, repeat the system bias check or 2-point system calibration error check (for dilution systems) to validate the run. Do not make adjustments to the measurement system (other than to maintain the target sampling rate or dilution ratio) between the end of the run and the completion of the post-run system bias or system calibration error check. Note that for all post-run system bias or 2-point system calibration error checks, you may inject the low-level gas first and the upscale gas last, or vice-versa. You may risk sampling for multiple runs before performing the post-run bias or system calibration error check provided you pass this test at the conclusion of the group of runs. A failed final test in this case will invalidate all runs subsequent to the last passed test.


4.5 Sampling Equipment

CEMS RATA sampling was conducted on the outlet stack of each of the three boilers for Oxides of Nitrogen using EPA Method 7E, and for Oxygen using EPA Method 3A. The NOx and O_2 sampling was conducted by continuously extracting sample from three points on the centroidal plane of to stack and analyzing a portion of the sample by chemiluminescence for NOx and Paramagnetic technology for Oxygen concentrations. Calibrations were performed using EPA Protocol 1 standards of NOx and O_2 ,. Twelve runs each of twenty-one-minute durations were conducted. A diagram of the sampling system is shown in **Figure 4-1**, and in **Table 4-1** a list of Facility CEMS and AECOM Sampling equipment.

Table 4-1. Operating Parameter Summary

AECOM Analyzers (RM)						
Constituent	Unit	Manuf.	Model	Serial #	Span	
Nitrogen Oxides	ppmv	Thermo	42c	Nox-MI902	0-100	
Oxygen	vol %	SERVOMEX	1440	OXC-MI90	0-25	
		Boiler 12	2			
Constituent	Unit	Manuf.	Model	Serial #	Span	
Nitrogen Oxides	ppmv	Thermo	42Q-LS	1192884871	0-100	
Oxygen	vol %	Brand Gaus	4705	10478	0-25	
Boiler 13						
Constituent	Unit	Manuf.	Model	Serial #	Span	
Nitrogen Oxides	ppmv	Thermo	42Q-LS	1192884872	0-100	
Oxygen	vol %	Brand Gaus	4705	10556	. 0-25	
Boiler 14						
Constituent	Unit	Manuf.	Model	Serial #	Span	
Nitrogen Oxides	ppmv	Thermo	42Q-LS	1192884873	0-100	
Oxygen	vol %	Brand Gaus	4705	10555	0-25	

Figure 4-1. SAMPLING TRAIN USED FOR NOx & O2 (M7E & M3A)

4.6 Transportable Instrumental Analyzer Laboratory

Gas stream samples were withdrawn from each individual exhaust stack and transported to the AECOM mobile instrumental measurements laboratory located at ground level. A stainless-steel sampling probe will be inserted into the stack and used to collect sample gas. Traverse points across each stack will be selected according to the procedure outlined in EPA Method 7E, Section 8.1, and marked clearly on the sampling probe. A heated Teflon sample line transported the sample gas from the sampling probe to the mobile laboratory. The instrumental analyzers were kept at a stable temperature inside the AECOM mobile laboratory. At the mobile laboratory, stack exhaust gas was routed to a moisture condenser and then transported to each individual analyzer for analysis on a dry basis (i.e., for O₂/CO₂, and NOx).

The analog electronic output signals from each analyzer will be converted to a digital format and stored by AECOM's computerized data acquisition system. The system translates this digital signal into the proper units of measurement (e.g., ppmv NOx, dry basis) and stores them on a hard drive. The system stores the data as ten second averages.

4.7 Calibration Procedures

The analyzers were calibrated prior to initiating testing using appropriately certified standards as specified by EPA Methods 3A, 7E, and 10, as applicable. Only EPA Protocol calibration gases or certified pure zero nitrogen and air gases were used for calibration.

A three-point analyzer calibration error test was performed on each instrumental analyzer prior to testing. Zero and span gases were introduced directly to the instruments to establish calibration set points. Then, the mid-range gas was introduced as a QC check of instrument linearity. The calibration error of the response to each of these gases will be no more than $\pm 2\%$ of span from the calibration gas value, or the analyzer will be re-calibrated and the calibration error test repeated.

The AECOM instrumental sampling system bias was then checked. The total system, which includes the probe, heated filter, sample line, sample pump, and moisture condenser, will be incorporated into the system bias check.

A system response time test for each parameter was performed and documented during the initial system bias check. A stratification test was performed including the required traverse points determined according to EPA Method 7E, Section 8.1.2.

RECEIVED
JUL 1 1 2023

AIR QUALITY DIVISION