CLIFFS RECEIVED

CLEVELAND-CLIFFS INC. Cleveland-Cliffs Steel Corporation Dearborn Works 4001 Miller Road, Dearborn, MI 48120 P 313.317.8900 clevelandcliffs.com

FEB 15 2023

Air Quality Division Detroit Office

February 8, 2023

Ms. Katherine Koster Senior Environmental Engineer EQLE, AQD, Detroit District 3058 West Grand Boulevard, Suite 2-300 Detroit, Michigan 48202

Ms. Jenine Camilleri Enforcement Unit Supervisor EQLE, AQD P.O. Box 30260 Lansing, Michigan 48909-7760

Re: Cleveland-Cliffs Dearborn Works Response to Violation Notice dated January 19, 2023

Dear Mss. Koster and Camilleri:

I am writing on behalf of Cleveland-Cliffs Dearborn Works in response to the Violation Notice dated January 19, 2023. The Violation Notice alleges that Cleveland-Cliffs failed to perform an acceptable stack test for total mercury (Hg) on the ESP and SEC Baghouse within 3 years from the prior test.

Cleveland-Cliffs disagrees that a violation occurred for two reasons. First, Cleveland-Cliffs asserts that the mercury data from the first test, conducted in July 2022, was valid notwithstanding the methodology issues identified by EGLE. None of the methodology issues affected the quality of the collected data. It should be noted that the testing demonstrated compliance with all applicable permit limits. Second, there is ambiguity in the permit testing terms, and the permit can be interpreted such that testing was timely since the re-test was completed prior to the end of the calendar year. Both of these are discussed in detail below.

EGLE's Rejection of Mercury Test Results

EGLE's reasons for not accepting the mercury test results were provided in an email dated December 8, 2022 (79 days after the report was mailed out), which is included as Attachment 1 to this response. EGLE provided the following reasons:

- For metals Runs 1, 2, and 3 on the ESP, the probe was maintained lower than the acceptable temperature of 248 ±25 °F during sampling for 8 out of 41 points (Run 1), 25 out of 41 points (Run 3), and 34 out of 36 points (Run 4). Additionally, the Run 1 filter exit temperature was maintained lower than the acceptable temperature of 248 ±25 °F during sampling for 5 out of 41 points.
- 2. For metals Run 4 on the SEC baghouse, the manganese emissions were higher than expected, resulting in the run combined SEC baghouse and ESP emissions exceeding the permitted limit. Cliffs suspected possible contamination from the potassium permanganate reagent present in the back half of the train for Hg measurement. This possible contamination would indicate issue with the sampling train preparation, sampling, and/or sample recovery.
- 3. The SEC Baghouse oxygen exceeded the calibrated range of the instrument for all runs. Per EPA method 7e, referenced in EPA method 3A, no valid run average concentration may exceed the calibration span.

Cleveland-Cliffs acknowledges that the firm hired to perform the stack testing experienced technical deviations of the test methods. However, there are strong technical arguments that the deviations did not affect the quality of the Mercury testing data.

Effects of Probe Temperature on Mercury Results

Montrose Air Quality Services, the vendor who performed the stack testing, analyzed the effects of probe temperature on data quality. This analysis is included as Attachment 2 to this response. The analysis demonstrates that solid state metals would be collected on the filter and in the pre-filter wash regardless of probe temperature. Vapor phase particles (which comprise the majority of the mercury collected) are primarily collected at chilled temperatures through the use of powerful oxidizers and are completely independent of sampling train temperature. Even if one were to assume that sample train temperature is critical for accurate mercury results, the probe temperature is not the appropriate temperature to use in making the evaluation. Probe temperature is measured at a point on the exterior of the probe and is not representative of the actual gas temperature passing through the train. The temperature of the filter is measured directly within the gas stream and would be the more appropriate temperature to use in evaluating the results. While EGLE indicated that Run 1 filter exit temperature for the ESP had 5 out of 41 points that were out of range, the data sheet is not consistent with EGLE's assessment. Cleveland-Cliffs believes that it is more likely that the indicated temperatures were between 260 and 269°F and that EGLE read "0" for the middle number when it was actually a "6." A copy of the data sheet is included as Attachment 3. If these numbers are a "6", then all filter temperatures measured and recorded during the test program were in accordance with method specifications.

In addition to the reasons stated above, Cleveland-Cliffs believes that it is appropriate to put the magnitude of the measured probe temperature differences in context. While several points were outside of the 248 +/ 25°F range, all measured probe temperatures were in excess of 200°F. Based on the highest measured stack gas moisture content of 18.37%, the dew point for the ESP stack gas falls between 130 and 140°F. Therefore, probe temperature was always a minimum of 60°F above the dew point. While the analysis by Montrose indicated that Mercury data quality is independent of train temperature and the actual temperature measured within the gas stream was within the method specifications, the fact that the probe was always far hotter than the gas dew point should be sufficient to show that the gas stream remained in a completely gaseous state while passing through the probe and that moisture droplets did not interfere with the test.

Measured Manganese Emissions for Run 4 on the SEC Baghouse

EGLE noted higher than expected Manganese results that were obtained on Run 4 for the SEC Baghouse and acknowledged Cleveland-Cliffs' suspicions of possible potassium permanganate contamination of the sampling train back half. EGLE then concluded that "this possible contamination would indicate issues with the sampling train preparation, sampling, and/or sample recovery." Cleveland-Cliffs believes that this is erroneous. First, EGLE's conclusion is speculative. Nothing in the test report supports this conclusion. Cleveland-Cliffs is unaware of any observations made by EGLE that would support this conclusion. In addition, cross contamination of this kind would have no effect on mercury data quality since mercury is not a component within any of the reagents. Cleveland-Cliffs proposed a possible explanation as to what might have contributed to an abnormally high manganese concentration within the back half of the sampling train. However, EGLE's conclusion that this possible explanation is indicative of sampling train problems is not supported by evidence.

SEC Baghouse Oxygen Exceeding Calibration Range of Instrument

EGLE noted that all SEC Baghouse oxygen readings exceeded the calibrated range of the instrument. However, there would be no effect on the data quality for any of the parameters tested. The SEC Baghouse is known to be an ambient source based on numerous previous tests and a knowledge of how the process works. Oxygen is used solely in the calculation of molecular weight. It is not used to correct any emissions or to calculate emission rate based on heat input. A single point grab sample for oxygen measurement on this source has been approved in the past and it is difficult to see how that method provides better data quality than a continuous measurement method where the technical range of the instrument was around 0.5% to 1% lower than the method requires.

In conclusion, it is Cleveland-Cliffs opinion that test deviations, to the extent they occurred, did not affect data quality. The reasons cited by EGLE for not accepting the mercury testing results are not supported by technical evidence.

Requirement to Test Every Three Years

The Violation Notice alleges that a violation occurred because an acceptable stack test was not conducted within three years of completion of the previous stack test. It should be noted that the Violation Notice states the "Facility failed to perform an acceptable stack test for total mercury (Hg) in accordance with the department requirements **within three years of the date** of the prior test." This is paraphrasing the requirement. The actual requirement is "Subsequent testing will be required once **every 3 years** from the completion of the previous stack test."

The previous stack test for mercury was conducted in August 2019. As noted above, the Dearborn Works ROP requires testing "once every three years" from the prior test. There is inherent ambiguity in the word "years." Based on a standard dictionary definition, "year" can mean either 365 days, or a calendar year. *See, e.g.*, Merriam-Webster (www.merriam-webster.com/dictionary/year). EGLE's position could be correct if the interpretation of "year" is 365 days. But if the interpretation is a calendar year, then Cleveland-Cliffs had until the end of the calendar year, December 31, 2022, to complete the test. Re-testing for mercury was completed on December 21, 2022.

The ROP does not define "year." Nor has Cleveland-Cliffs found any relevant provisions in EGLE's performance test regulations or guidance. However, Michigan's law on statutory construction does define "year," and it defines it to mean "calendar year." M.C.L.A. § 8.3j. Therefore, while there is ambiguity in the word, the only source that addresses the term defines it as "calendar year." In the absence of any other source to resolve the ambiguity, the Michigan law on statutory construction carries significant weight.

An interpretation of the word "year" to mean "calendar year" is also consistent with how EGLE otherwise defines timing considerations. For example, EGLE's performance test regulation allows the agency to require tests "if more than 36 months have expired since the date of the last performance test." R. 336.2001(1)(e). Use of "36 months" resolves any ambiguity inherent in the word "year." But EGLE chose to use the phrase "3 years" in the ROP and not "36 months." The choice by EGLE to use one phrase over another in the ROP can be presumed to be intentional.

Finally, Cleveland-Cliffs believes it is worthwhile to note the practical significance of EGLE's decision to issue a Violation Notice for this situation. In order to avoid the risk of this happening again, Cleveland-Cliffs would need to schedule a stack test sufficiently far in advance to ensure that if a test is rejected by EGLE for minor method issues, notwithstanding valid test data, the company has enough time to retest before the expiration of the time period. And that would mean scheduling a test *substantially* in advance, due to the time it takes to coordinate with testing companies, perform the test, get results, submit the test report to EGLE, and wait for a response from EGLE. EGLE's decision to issue a Violation Notice for this situation is a disincentive to the orderly administration of the stack testing program. Cleveland-Cliffs had no objection to conducting another performance test. Cleveland-Cliffs' issue is with EGLE's decision that this situation warranted a Violation Notice.

Specific Information requested by Violation Notice

Notwithstanding Cleveland-Cliffs disagreement with the Violation Notice, the company has already taken the necessary steps to resolve the issues alleged in the Violation Notice. The following is the specific information requested by the Violation Notice.

The dates the alleged violation occurred

The stack test was conducted July 26-27, 2022. The report was submitted to EGLE on September 20, 2022 and EGLE's rejection of the test results was received on December 8, 2022.

An explanation of the causes and duration of the violation

The reasons for EGLE rejecting the mercury stack test results are explained in detail above.

Whether the violation is ongoing

The alleged violation is not ongoing.

A summary of the actions that have been taken and are proposed to be taken to correct the violation and the dates by which these actions will take place

A re-test was completed for Mercury on December 21, 2022, within two weeks of receiving notification of EGLE's rejection of the test results.

Steps being taken to prevent a reoccurrence

While Cleveland-Cliffs believes that the testing data is valid, pre-test meetings will be conducted with the stack testing vendors to emphasize the importance of strictly following the test methods outside of what has previously been approved in the test plan.

If you have any questions regarding the provided information or require additional information, please contact David Pate at 313-323-1261.

Sincerely.

James E. Earl Area Manager Environmental Cleveland-Cliffs Dearborn Works

Attachment 1: EGLE Email dated 12/8/22

Attachment 2: Montrose Air Quality Services Analysis of Probe Temperature Effect on Mercury Data Quality

Attachment 3: ESP Run 1 Field Data Sheet

Attachment 1

EGLE Email dated 12/8/22

Pate, David J

From:	Koster, Katherine (EGLE) <kosterk1@michigan.gov></kosterk1@michigan.gov>
Sent:	Thursday, December 08, 2022 9:38 AM
To:	Pate, David J
Cc:	Angellotti Regina (EGLE): Earl James E
Subject:	[EXTERNAL] July 2022 BOF SEC BH and ESP stack test

Dave,

AQD Detroit office and TPU staff have reviewed the July 2022 BOF SEC baghouse and ESP stack test. TPU contacted Cliffs to inquire about certain conditions during the testing that were not compliant with the test methods; namely, the temperature requirement for the probe. We reviewed the November 30, 2022, response provided by Montrose via email. However, given the number of issues identified during the testing that did not comply with the methods, we are unable to accept the results of the July 2022 metals testing as valid. Below is a summary of the issues identified:

- For metals Runs 1, 2, and 3 on the ESP, the probe was maintained lower than the acceptable temperature of 248 ±25 °F during sampling for 8 out of 41 points (Run 1), 25 out of 41 points (Run 3), and 34 out of 36 points (Run 4). Additionally, the Run 1 filter exit temperature was maintained lower than the acceptable temperature of 248 ±25 °F during sampling for 5 out of 41 points.
- For metals Run 4 on the SEC baghouse, the Mn emissions were higher than expected, resulting in the run combined SEC baghouse and ESP emissions exceeding the permitted limit. Cliffs suspected possible contamination from the potassium permanganate reagent present in the back half of the train for Hg measurement. This possible contamination would indicate issue with the sampling train preparation, sampling, and/or sample recovery.
- The SEC Baghouse oxygen exceeded the calibrated range of the instrument for all runs. Per EPA method 7e, referenced in EPA method 3A, no valid run average concentration may exceed the calibration span.
- For PM Run 1 on the ESP, the probe was maintained lower than the acceptable temperature of 248 ±25 °F during sampling for 16 out of 41 points sampled. Note, as the issue was resolved for subsequent runs, we accepted the PM results in this instance.

As there is an upcoming test for Mn and Pb in the next couple of weeks, we are requesting the addition of Hg. Also, unfortunately, to my knowledge, the last time Hg was tested was in August 2019 so Cliffs will be outside of the three years from the completion of an acceptable test deadline as required in the ROP. AQD will be issuing a violation notice for non compliance with the testing deadline for Hg.

Please let us know if you would like to discuss further.

Thanks Katie Koster Environmental Engineer Air Quality Division Detroit District Office Michigan Department of Environment, Great Lakes, and Energy C: 313-418-0715 (New Number) |T: 313-456-4678 <u>kosterk1@michigan.gov</u>

Attachment 2

Montrose Air Quality Services Analysis of Probe Temperature Effect on Mercury Data Quality

November 22, 2022

Prepared by Montrose Air Quality Services

Regarding Testing Conducted on the basic oxygen furnace electrostatic precipitator stack – Cleveland Cliffs

Air Compliance Testing –July 2022

Discussion of Results

Montrose Air Quality Services completed a compliance test program on the basic oxygen furnace (BOF) electrostatic precipitator stack for metals and total particulate matter utilizing United States Environmental Protection Agency (USEPA) methods 29 and method 5/202 respectively. During the sampling program, probe temperatures were recorded outside of the nominal range of 248+/-25 degrees F as required by the method.

Concerning the Method 29 sampling train, metals are captured from the stack effluent in two primary phases, particulate and vapor phase. There would not be molten metal present at these locations and the heat necessary to facilitate the presence of molten globules suspended in the stack effluent would make sampling impossible. Solid state metals are captured in the front half of the sample train by a particulate filter. These metals exist in a variety of particulate sizes and are all accounted for in the front half laboratory analysis. Vapor phase metals must be captured and solubilized in the impinger solutions. These vapor phase metals exist independent of temperature in the stack effluent and the change in vapor pressure for these metals is negligible across hundreds of degrees at these temperature ranges. The mechanism of capture requires the use of powerful oxidizers, specifically acidic peroxide for manganese and lead. The sulfuric/permanganate is an even more powerful oxidizer and must be utilized to capture the vapor phase mercury. This reaction mechanism is evident in the Hg lab analysis, as the Hg passes through the chilled acidic peroxide impingers and it is not captured until it reacts with the sulfuric/permanganate impingers. These reactions occur independent of the sampling train temperature. Assuming the worst-case scenario that the effluent gas sampled was too low, emissions would remain consistent with what was sampled. This was discussed with Dr. William C. Anderson in association with Eurofins Laboratories.

After interviewing the test crew and reviewing the data, the sample trains were operated with a thermocouple in the filter exhaust as required by USEPA method 5. This provides a true temperature measurement for the effluent gas being sampled. This thermocouple is free floating in the effluent gas and provides a temperature reading via direct contact with the gas stream without any bias of external factors. This data shows that the gas within the train was collected within temperature range for the methodology. Since the effluent gas was directly measured utilizing a filter exhaust thermocouple and since the capture of metals is not temperature dependent, it is of the opinion of Montrose personnel that data accurately determines the emissions from the ESP. Please feel free to reach with any additional questions.

Attachment 3

ESP Run 1 Field Data Sheet

A		M	JTRC)SE
["]	ΦĽ	AIR QU	ALITY SEP	VICES

19 and

olact info	rmation			Sam	oling Cond	Itions						ALTO	1 T		mblent °E	Ref "F
ate 7	LAL LAL	Project #	18563	Statio	Pressure, i	in. H ₂ O 🕳	0,6	Ambient T	emp. °F	81		Stack	FI			
ustomer/Fa	acility		Deuchon	Mi Baro	metric Press	sure, in. Ha	29.99	Ref. Baror	meter ID	NWS	î.	Probe				
Init ID/Sam	ple Location	ESP	17,000 400	Wind	Speed / Di	rection \\	JAIW S	Precipitati	on, Y /19, ty	De	e 61 - 1	Filter E	lox			
Run # 🜔		Operator	VR	Prob	e / Filter Ter	mp Range, *F					an a	Fliter E			/	
Sampling E	quipment l	Da	Calibration	······································	Equipm	nent Checks	7 P	re	Mid	, F	ost	Meter	outiet	\mathbb{Z}		
Aeterbox ID	M	52	Meterbox Y	1.017	Pitot (+)), pass @ In. H		5.5 0	Q	/ 0/0	3.7	Imping	er Exit			
Imbilical ID	ù.	nb 9	Meterbox ∆H@, in	H20 1.75	Pitot (-)	, pass @ In. H	₂0 ⊈⁄@	3.5 0	@ /	d @	3:1	Other				
Nozzie ID	610057	FT-A	Nozzle diameter, I	Dn, In. 0.2.34	Pitot vis	sual inspection	n 🖉	pass	🗆 páss		pass	Ref. J	iermome	iter ID		
Pitat / Probe	ID1	FT-A	Pitot coefficient, C	P	Nozzle	visual inspecti	ion 🗖	pass	o/pass	Ē	-pass	Gontin	ulty Chec	k 🗆 Con	tinuity w/ Pro	oper Polarity
Manometer	10 <u>b</u>	AB2	Manometer zero a	nd level 🔍 yes	Meter, o	cfm @ in. Hg	0600	@15 /	0	Own	@11	Notes:				
Sensitivi	ty		K-Factor 2.	<u> </u>	Interme	diate leak che	ick volume, ft ³		1		1	L				
	Elapsed	Clock Time	DGM Reading,	Velocity Head,	Differe	rressure ential, ∆H	Stack Temp,	Probe Temp,	Filter 1	ſemp, °F	impinger	Exit	Temper	s meter ature, °F		Vacuum,
	INTE	2407	vm, tt ⁻		Target	Actual		4	Box	Exit	lemp,		Inlet	Outlet	1	in Hg
P 1-1	912	11 18	4db, 17/	• 55	1.2	1.4	d35	317		200	50		1	88.		R
	3		128:53	• 66	1.6	1.6	238	4 16		007	51			88	+	d
- 3	7.5		430: 8)	<u> </u>	1.1	1.1	ddy	214		202	51		+	88	+	5
-4	10		45340	.55	112	1.2	230	240		1992	52			<u> 88 ·</u>	+	5
)	1213		454.6	191	1.7	1.7	<u>a15</u>	201		264	53		-	38	+	3
<u> </u>	15		455 12	+ 1)	146	14.6	<u>ax></u>	<u>dào</u>		a61	24			80.	+	
<u>- 4 200</u>	14)		4 36:55		115	11-2-	284	1001		064	33			18	+	2
- 3	11.5		45/113	. 11	1.5	1.2	127	45)		1 - 105	1 35			XX	++-	2
- 4	25		440, 0)	10	1.5	1.5	185	124		230	1 27	-	-	ER .	+	3
. 5	d1.5		142 91	1.65	1.6	115	1012	129		165	55		1	181		3
• 6	30	Provise	445.43	166	1.3	13	2.00	229		158	60		-	189	11	5
82-1	52.5	145.)	448 \$ 8)	3 62	1.3	13	282	122		1442	EI			81	+	5
- 2	35	Resime	451102	. 44	,9	Dig	500	ANO		161	63	1		90		Ч
-5	27.5		453,31	.44	(4)	19	500	241		666	58			89		4
-4	40		454,94	× 4 5	<u>۸</u> 4	.9	500	ANV		260	54			90		5
	42.5		4 56.77	، <i>با</i> ک	.4	.9	289	a 38		259	52			1 90		3
• 6	45		458.91	142	4	<u>n9</u>	280	Ro		2.98	SI			90		પ
- i	17,5		400, 51	, 25	15	1.5	255	d31		28	50			90		L Y
لي ج	50		462.81	. 28	.5	INS .	25	d 38		1351	51			181		<u> </u>
~ 3	SLAS		464,10	,50	1.0	100	dSS	d36		255	50		<u> </u>	181	+	<u> </u>
-4	55		465.87	1 10	1.0	10	250	235		922	50			1 10	+	5
- 5	51.5		466.28	1-0.50	1.0	1 NO	2.54	1336	↓ [1254	40			HU CAN	+	<u> </u>
-6	60	Paise	468.29	1.2.67	1.2	1.4	22	236	<u> </u>	1261	50		4	- an	+	
13-1-	62.5	15.20	464.50				228	225		AND	1 99			1 11	<u></u>	13

Page 69 of 403

MW049AS-018563-RT-1074

ATR QUALITY SERVICES

EPA Method Field Datasheet (Isokinetic)

Pas Ror R

Project Info	rmation/			San	npling Cond	ltions						ALT 011	TC	D:	Ambient '	F Ref. F
Date 7	126/20	Project #	18563	Stat	ic Pressure, i	in. H₂O		Ambien	LTemp, *F			Stack				
Customer/Fa	acility Cl	eveland Cliff	s Dearborn	, MJ Bard	ometric Press	sure, in. Hg		Ref. Ba	rometer ID			Probe				
Unit ID/Sam	ple Locatio	n ESP		Win	d Speed / Dir	rection		Precipi	tation, Y / N, typ	pe		Filter Box	ĸ			X
Run # /		Operator	ja	Fjilte	r Temp Rang	je, °F 248 +	-/- 25					Filter Exi	t			
Sampling E	quipment	IDs	Calibration	~	Equipm	ent Checks	P	re	Mld	P	ost	Meter ou	tlet			
Meterbox ID	Print and a state of the state		Meterbox Y		Pitot (+)	, pass @ in. I	+₂0 □ @] @	00		Impinger	Exit	X	<u> </u>	
Umbilical ID			Meterbox AH@, in	n. H₂O	Pitot (-),	pass @ in. H	l₂O □@	E] @	□ @		Olher				
Nozzle ID			Nozzle diameter, I	Da, in	Pitot vis	ual inspection	<u>ا</u> ۱	pass	pass		pass	Ref. The	rmorpete	er ID _		
Pitot / Probe	10		Pitot coefficient, C	р <u>0.84</u>	Nozzle	visual inspect	ion 🖵	pass	🔲 pass		pass	Continuit	Check	Cor	tinulty w/	Proper Polarity
Manometer			Manometer zero a	ind level 🔲 yes	Meter, c	fm @ In. Hg		0	@		0	Notes: Fi	iter No.		Anton	
Sensitivi	ly		K-Factor		Interme	diate leak che	ck volume, ft ³		1		/	-				
Traverse	Elapsed	Clock Time	DGM Reading,Vm,ft ³	Velocity Head,	Orifice Differe	Pressure Intial. AH	Stack Temp,	Probe Temp	p, Filter To	emp, °F	Impinger E	xit T	it Dry Gas Meter Temperature. °F			Pump Vacuum.
Point #	Time	24hr		ΔP in H ₂ O	Target	Actual	*F	°F	Вох	Exit	Temp, "I	- In	let	Outlet		in. Hg
1.3	øs	Reavene	470,92	~65	1.4	1.1	a 50	248		251	44			90		3
-1	67.5	1527	171.46	. 70	1.5	15	249	246		\$51	90			90		<u> </u>
-1	70		473,26	•71	1.5	1.5	248	246		255	54		┞──┤	90		4
<u>+ 5</u>	72.5		171.55	.72	1.5	1.5	2.97	242		256	53			90		<u> </u>
-6	15		477.54	<u>•73</u>	1.5	1.5	296	240		260	55			89		<u> </u>
M4+1	77.5		479.51	.76	1.6	j. G	a 85	239		262	56			40		1 1
Py.d	80	Paras	440.26	,72	1.5	15	080	241		261	56	_		40		<u> </u>
~ 1	801)	1549	481.03	:65	1.5	1.5	271	242		265	56			70		
- 4	82	Russing	482,32	.45	: 88	. 58	254	246		258	57			11)
- 19	81.5	1558	485.28	. 40	187	184	554	346		259	58	_		71		
- 6	10		484,45	. 54	· 82	1.82	248	944	*******	200	57			71-	+	
	TUS		486.01	140	184	187	928	245		221	50			Yd		
	15		187, 96	+ >>	, 30	0	240	1244		256	60		╉──┼	Ja-		
	41.5		498.14	140	187	. 89	all	2 94		955	60			24-)
- 5-7	(00	0	440.14	+ 2 1	1 Bed	<u></u>	d. 4.1	1.54		25				dt	+	<u>د</u>
	10212	eny	491, 19	144	186	: 56	a 95	0.90		420	61			10	+	2
33.0	105	1616	415:110	17	300	- A OP	at			201						and the state of t
	101.2				4 d b			0.42		2003					+	
·,	1128														┼╴╂	
	11:24 3												╉─┼		+	
								-			1				+	
												-			+	
						<u></u>					1		t +			
Averages											1		↓			
	ck: Comple	teness J			ns Che	cked Bv ~	IGN	Tean	n Leader	Jau	1					AS-QMS-FM-22

Page 70 of 403

MW049AS-018563-RT-1074