CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4925 800-627-0033 www.clean3ir.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

CRUDE/VACUUM HEATER STACK (SV04-H1-05-H1)

Client Reference No: 4100048779 CleanAir Project No: 12497-1 Revision 0: August 11, 2014

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

'Un

Andy Obuchowski Project Manager abuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Scott Lehmann Engineering Group Business Leader slehmann@cleanair.com (800) 627-0033 ext. 4660

RPTv4_6_8.dot 12497-1_Report_R0_ltrhd.doc 18122014 101500 12497-1

Copyright © 2014 Clean Air Engineering, Inc., Palatine, Illinois. All rights reserved.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

li

REVISION HISTORY

REPORT ON RATA & COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Date	Pages	Comments
07/25/14	All	Draft version of original document.
}		

FINAL REPORT REVISION HISTORY

Revision :	Date	Pages	Comments
0	08/11/14	All	Final version of original document.

Revision 0, Final Report

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit refinery for relative accuracy test audit (RATA) and compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Thomas Gasloli – DEQ Ken Sullivan – CleanAir

Test Program Parameters

The testing was performed at the Crude/Vacuum Heater Stack (Emission Unit ID No. EG05-CRUDEHTR and EG04-VACHTR; Common Stack ID No. SV04-H1-05-H1) on June 24 and 25, 2014, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THCs) minus the following constituents:
 - methane (CH₄)
 - ethane (C_2H_6)
 - nitrogen oxides (NO_X)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate

1-1

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/24/14	11:50	16:27
2	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/24/14	17:05	19:47
3	Crude/Vacuum Heater Stack	USEPA Method 5	FPM	06/25/14	11:20	13:45
1	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/24/14	11:19	11:40
2	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/24/14	12:10	12:31
3	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/24/14	12:43	13:04
4	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/24/14	13:14	13:35
5	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/24/14	13:48	14:09
6	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/24/14	15:37	15:58
7	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/24/14	16:13	16:34
8	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	06/24/14	17:01	17:22
9	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	08/24/14	17:43	18:04
10	Crude/Vacuum Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	06/24/14	18:19	18:40
1	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O2/CO2/CH4/C2H6/THC	06/24/14	12:10	13:35
2	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O2/CO2/CH4/C2H6/THC	08/24/14	13:48	16:34
3	Crude/Vacuum Heater Stack	USEPA Method 3A/18/25A	O2/CO2/CH4/C2H6/THC	06/24/14	17:01	18:40

072214 104018

1-2

Client Reference No: 4100048779 CleanAir Project No: 12497-1

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

1-3

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-6.

<u>Source</u>			Average	
Constituent	(Units)	Sampling Method	Emission	Permit Limit ¹
Crude/Vacuum He	eater Stack			
PM	(lb/MMBtu)	USEPA 5	0.0007	0.0019
VOC	(lb/MMBtu)	USEPA 25A / 18	<0.0007	0.0055
NO _X	(Ib/MMBtu)	USEPA 7E	0.03	0.05
¹ Permit limits of	obtained from M	DEQ Permit To Install No. 63	3-08D.	072214 1040

	Ouninary 0	I INALA INGGUI	.3	
<u>Source</u> Constituent (Units)	Reference Method (USEPA)	Applicable Specification	Relative Accuracy (%)	Specification Limit ¹
Crude/Vacuum Heater Stack				
O ₂ (% dv)	3A	PS3	0.1	±1.0% dv
NOx (ppmdv)	7E	PS2	6.4	20% of RM

¹ Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

072214 104018

Discussion of Test Program

FPM Testing - USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. Three (3) 120-minute Method 5 test runs were performed on June 24 and 25. The final result was expressed as the average of three valid runs and was below the permit limit for PM.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

PROJECT OVERVIEW

O₂ and NO_X Emissions / RATA Testing - USEPA Methods 3A and 7E; Performance Specifications 2 and 3

Minute-average data points for O_2 , CO_2 and NO_X (dry basis) were collected over a period of 21 minutes for each RATA Reference Method (RM) run. The average result for each RM run was calculated and compared to the average result from the facility CEMS over an identical time interval in order to calculate relative accuracy (RA).

- For O₂, RA is expressed as the average absolute difference between the RM and facility CEMS runs. The final result was below the limit of $\pm 1.0\%$ dv set by PS3.
- For NOx, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- CO₂ data was collected only as supplemental information.

NO_X results from the RATA were converted from units of dry volume-based concentration (ppmdv) to mass-based emission rate units (lb/MMBtu) to demonstrate compliance with permit limits. The final result was expressed as the average of all 10 RATA runs. The final result was below the permit limit.

VOC Testing - USEPA Methods 25A and 18

VOC testing was performed concurrently with the RATA testing. Nine (9) 21-minute Method 25 test runs for THCs were performed concurrently with three (3) Method 18 bag collections for CH_4 and C_2H_6 , with each Method 18 sample collected over a period of about 63 minutes. The Method 18 samples were collected as follows:

- Method 18 Run 1: Collected during Method 25A Runs 2, 3 and 4,
- Method 18 Run 2: Collected during Method 25A Runs 5, 6 and 7,
- Method 18 Run 3: Collected during Method 25A Runs 8, 9 and 10.

Following the first 21-minute test run, the THC analyzer failed the bias test. The analyzer was re-calibrated before Run 2 started. The THC data from the first 21-minute test run was not used to calculate the final results. The raw data from this run can be found in Appendix G of the report.

1-4

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

PROJECT OVERVIEW

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (lb/MMBtu for all constituents).

- For THC, the drift-corrected concentration was below the assumed detection limit of 1% of the instrument calibration span for Runs 1 through 3. The worst-case concentration results used to calculate mass-based emissions for these runs is defined as some number "less than" 1% of the calibration span.
- For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction made to the THC results.

Therefore, VOC emissions are equivalent to THC emissions. The final results were expressed as the average of three (3) valid runs and were below the permit limit.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by calculating an oxygenbased fuel factor (F_d) for refinery gas per USEPA Method 19 specifications. The heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC and tabulated heating values for each of the measured constituents.

Two fuel gas analyses were performed by MPC on each test day (3:30 and 15:30, respectively). The analysis used to calculate the emissions results for each test run was selected by choosing the analysis performed nearest to each emissions test run interval.

General Considerations

The total time it took to complete Method 5 Run 1 and Method 25A/18 Run 2 was significantly greater than the other test runs. This was a result of an approximately 90-minute extreme weather delay. During this time period, the test crew paused the testing in order to seek shelter. The pause in testing occurred just following the completion of Method 3A/7E/25A Run 5, which coincided with approximately the 85th minute of Method 5 Run 1. When the facility issued the all-clear notice, testing resumed.

End of Section 1 – Project Overview

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

		le 2-1:			
	Crude/Vacuum Heater Stack	– FPM Emission	ns (USEPA	M-5)	
Run No	• • • • • • • • • • • • • • • • • • •	1	2	3	Average
Date (2)	014)	Jun 24	Jun 24	Jun 25	
Start Tir	ne (approx.)	11:50	17:05	11:20	
Stop Tir	ne (approx.)	16:27	19:47	13:45	
Proces	s Conditions				
Fd	Oxygen-based F-factor (dscf/MMBtu)	7,889	7,889	7,884	7,887
Hi	Actual heat input (MMBtu/hr)	291	285	273	283
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	5.7	6.1	5.9	5.9
CO ₂	Carbon dioxide (dry volume %)	8.8	8.4	8.6	8.6
Ts	Sample temperature (°F)	288	289	291	289
Bw	Actual water vapor in gas (% by volume)	16.2	16.1	15.2	15.9
Gas Fic	w Rate				
Qa	Volumetric flow rate, actual (acfm)	114,000	116,000	110,000	113,000
Qs	Volumetric flow rate, standard (scfm)	77,600	78,300	75,200	77,000
Q _{std}	Volumetric flow rate, dry standard (dscfm)	65,000	65,700	63,800	64,800
Qa	Volumetric flow rate, actual (acf/hr)	6,850,000	6,930,000	6,570,000	6,790,000
Q_s	Volumetric flow rate, standard (scf/hr)	4,650,000	4,700,000	4,510,000	4,620,000
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	3,900,000	3,940,000	3,830,000	3,890,000
Samplii	ng Data				
V _{mstd}	Volume metered, standard (dscf)	80.01	80.75	83.13	81.30
%l	Isokinetic sampling (%)	99.7	99.6	105.5	101.6
Laborat	ory Data				
ш ^и	Total FPM (g)	0.00228	0.00248	0.00213	
m _{Part}	Total filterable particulate matter (g)	0.00228	0.00248	0.00213	
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A	
DLC	Detection level classification	ADL	ADL	ADL	

6.28E-08

0.245

1.07

0.0007

6.77E-08

0.267

1.17

0.0008

5.65E-08

0.216

0.947

0.0006

FPM Results Csd Particulate Concentration (lb/dscf)

E

Engr

Particulate Rate - Fd-based (lb/MMBtu) E_{Fd}

Particulate Rate (lb/hr)

Particulate Rate (Ton/yr)

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

072214 101723

6.24E-08

0.243

1.06 0.0007

2-1

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

RESUL	TS					
		Uncertain		le 2-2: is – FPM (USEF	PA M-5)	
		FPM Results (Ib/MMBtu)		FPM Results (lb/hr)		FPM Results (Ton/yr)
Method		5		5		5
Run No.	1	0.0007	1	0.2450	1	1.0732
	2	0.0008	2	0.2668	2	1.1687
	3	0.0006	3	0.2162	3	0.9470
SD		0.0001	111177	0.0254	t the second	0.1112
AVG		0.0007		0.2427		1.0630
RSD		9.8%		10.5%		10.5%
N		3		3		3
SE		0.0000		0.0147		0.0642
RSE		5.6%		6.0%		6.0%
P		95.0%		95.0%		95.0%
TINV		4.303		4.303		4.303
CI +		0.0009		0.3058		1.3393
AVG		0.0007		0.2427		1.0630
CI -		0.0005		0.1796		0.7866
TB +		0.0012		0.4371		1.9146

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

Cl (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (Cl- to Cl+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

MARATHON PETROLEUM COMPANY LP

Client Reference No: 4100048779 ct No: 12497-1

2-3

	JLTS				
Cru	Tabl ude/Vacuum Heater Stack – THC, CH₄,	e 2-3: C ₂ H ₆ & VOC Emis	ssions (U	SEPA M-2	5A/18)
Run No.	· · · · · · · · · · · · · · · · · · ·	1	2	3	Averag
Date (20	14)	Jun 24	Jun 24	Jun 24	
Start Tin	ae (approx.)	12:10	13:48	17:01	
Stop Tim	a (approx.)	13:35	16:34	18:40	
Process	Conditions				
۴a	Oxygen-based F-factor (dscf/MMBtu)	7,889	7,889	7,889	7,889
H,	Heat input (MMBtu/hr)	289	291	285	289
Gas Cor	nditions				
O2	Oxygen (dry volume %)	7.66	7.58	7.78	7.67
CO2	Carbon dioxide (dry volume %)	6.7	6.8	6.7	6.8
в"	Actual water vapor in gas (% by volume) ¹	16.2	16.2	16.1	16.2
THC Res	sults				
Csd	Concentration (ppmdv as C ₃ H ₈)	<0.498	<0.498	<0.497	<0.498
Csd	Concentration (ib/dscf)	<5.70E-08	<5.70E-08	<5.69E-08	<5.69E-08
EFd	Emission Rate - F _e -based (ib/MMBtu)	< 0.0007	< 0.0007	< 0.0007	< 0.0007
Methane	Results				
Ced	Concentration (ppmdv)	<0.108	<0.108	<0.108	<0.108
Csd	Concentration (Ib/dscf)	<4.50E-09	<4.50E-09	<4.50E-09	<4.50E-09
EFd	Emission Rate - F _c based (lb/MMBtu)	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ethane I	Results				
C_{sd}	Concentration (ppmdv)	<0.119	<0.119	<0.119	<0.119
C_{sd}	Concentration (lb/dscf)	<9.29E-09	<9.29E-09	<9.29E-09	<9.29E-09
E _{Fd}	Emission Rate - F _e -based (lb/MMBtu)	< 0.0001	< 0.0001	< 0.0001	< 0.0001
VOC Res	sults				
EFd	Emission Rate - F _e -based (lb/MMBlu)	<0.0007	<0.0007	<0.0007	< 0.0007

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5 runs.

For THC and VOC, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument

calibration span).

For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

2-4

RES	ULTS						
		Tab	le 2-4:				
	Crude/Vacuum Hea	ter Stack	NO _x Em	lissions (l	USEPA M	-7E)	
Run No	•	.1	2	3	4	5	6
Date (20	014)	Jun 24	Jun 24	Jun 24	Jun 24	Jun 24	Jun 24
Start Tin	ne (approx.)	11:19	12:10	12:43	13:14	13:48	15:37
Stop Tin	ne (approx.)	11:40	12:31	13:04	13:35	14:09	15:58
Process	Conditions						
Fd	Oxygen-based F-factor (dscf/MMBtu)	7,889	7,889	7,889	7,889	7,889	7,889
Hį	Heat input (MMBtu/hr)	290	289	289	290	289	293
Gas Co	nditions						
02	Oxygen (dry volume %)	7.8	7.6	7.7	7.7	7.7	7.5
CO2	Carbon dioxide (dry volume %)	6.7	6.8	6.7	6.7	6,8	6.8
Nitroger	n Oxides Results						
C_{sd}	Concentration (ppmdv)	21.6	20.7	21.1	21.5	21.6	21.1
C_{sd}	Concentration (Ib/dscf)	2.58E-06	2.48E-06	2.51E-06	2.57E-06	2.58E-06	2.52E-06
E _{Fd}	Emission Rale - F _d -based (lb/MMBlu)	0.0324	0.0307	0.0313	0.0321	0.0321	0.0310
Run No.			7	8	9	10	Average
Date (20			Jun 24	Jun 24	Jun 24	Jun 24	,
	ne (approx.)		16:13	17:01	17:43	18:19	
	le (approx.)		16:34	17:22	18:04	18:40	
•	Conditions						
Fa	Oxygen-based F-factor (dscf/MMBtu)		7,889	7,889	7,889	7,889	7,889
H,	Heat input (MMBtu/hr)		292	286	284	284	289
Gas Cor	ditions						
02	Oxygen (dry volume %)		7,6	7.7	7.8	7.8	7.7
CO₂	Carbon dioxide (dry volume %)		6,8	6.8	6.7	6.7	6,7
Nifroger	n Oxides Results						
C _{sd}	Concentration (ppmdv)		21.0	21.1	21.6	21.6	21.3
C _{sd}	Concentration (ib/dscf)		2.50E-06	2.52E-06	2.58E-06	2.58E-06	2.54E-06
EFd	Emission Rate - F _d -based (Ib/MMBtu)		0.0309	0.0315	0.0324	0.0326	0.0317

Average includes 10 runs.

080410 154528

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

Run No.	Start Time	Date (2014)	RM Data (%dv)	CEMS Data (%dv)	Difference (%dv)	Differer Perc
1	11:19	Jun 24	7.79	7.64	0.15	1.
2	12:10	Jun 24	7.62	7.45	0.17	2.
3	12:43	Jun 24	7.65	7.53	0.12	1.
4	13:14	Jun 24	7.71	7.59	0.12	1.
5	13:48	Jun 24	7.66	7.51	0.15	2.
6	15:37	Jun 24	7.53	7.38	0.15	2.0
7*	16:13	Jun 24	7.55	7.38	0.17	2.3
8	17:01	Jun 24	7.69	7.56	0.13	1.1
9	17:43	Jun 24	7.79	7.68	0.11	1.4
10	18:19	Jun 24	7.84	7.70	0.14	1.
	Average		-7.70	7.56	0.14	1.
			Relative A	Accuracy Test Audi	Results	
	Stan	dard Devia	tion of Differences	0.019		
		Confiden	ce Coefficient (CC)	0.015		
		t-Va	lue for 9 Data Sets	2.306		
					Limit	
		Method (C	/g. Abs. Diff. (%dv) ReanAir Data) ions Monitoring Sys	0.138 item (Marathon Petro	1.0 Ieum Company Data)	072214 1
CEMS	= Continu calculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys		leum Company Data)	
CEMS : RATA (= Continu calculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS RATA 6 9.00 8.00		Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS RATA 6 9.00 8.00 7.00		Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS - 2ATA c 9.00 8.00 7.00 6.00	= Continuccalculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
CEMS RATA C 9.00 8.00 7.00 6.00 5.00		Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS RATA (9,00 8.00 7.00 6.00 5.00 4.00	Continucalculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS 2ATA 2 9.00 8.00 7.00 6.00 5.00 4.00 3.00	Continue calculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
CEMS RATA c 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00	Continucalculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS 2ATA c 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00	Continucalculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
CEMS RATA c 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00	Continucalculation	Method (C ous Emiss	ReanAir Data) ions Monitoring Sys	item (Marathon Petro	leum Company Data)	
2EMS 2ATA c 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00	Continucalculation	Method (C ious Emiss is are base	ZeanAir Data) ions Monitoring Sys ed on 9 of 10 runs.	tem (Marathon Petro indicates the exclud	keum Company Data)	
2EMS 2ATA c 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00	Continucalculation	Method (C ious Emiss is are base	ZeanAir Data) ions Monitoring Sys ed on 9 of 10 runs.	tem (Marathon Petro indicates the exclud	keum Company Data)	

2-5

Revision 0, Final Report

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100048779 CleanAir Project No: 12497-1

2-6

Grua	ie/vac	adin Hour	er Stack – NO _X I	Relative Accura		
Run No.	Start Time	Date (2014)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	Difference Percen
1	11:19	Jun 24	21.58	22.69	-1.11	-5.1%
2	12:10	Jun 24	20.73	22.11	-1.38	-6.7%
3	12:43	Jun 24	21.06	22.27	-1.21	-5.7%
4	13:14	Jun 24	21.52	22.93	-1.41	-6.6%
5	13:48	Jun 24	21,57	22.74	-1.17	-5.4%
6	15:37	Jun 24	21.07	22.38	-1.31	-6.2%
7*	16:13	Jun 24	20.97	22.42	-1.45	-6.9%
8	17:01	Jun 24	21.11	22.34	-1.23	-5.8%
9	17:43	Jun 24	21.57	22.93	-1.36	-6.3%
10	18:19	Jun 24	21.60	22.90		<u>-6.0%</u>
A	verage		21,31	22.59	-1.28	-6.0%
			Relative Acc	uracy Test Audit Re	esults	
	Stan	dard Deviatio	n of Differences	0,102		
		Confidence	Coefficient (CC)	0.078		
			6			
		t-Value	for 9 Data Sets	2,306		
		t-Value	for 9 Data Sets	2.306	Limit	
EMS =	eference Continu	lative Accura Method (Clea ous Emission	cy (as % of RM)	6.4%	20.0%	072214 1627
EMS =	eference Continu alculatior	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System	6.4%	20.0%	072214 1627
EMS = ATA ca	eference Continu alculatior	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca	eference Continu alculation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00	eference Continu alculation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00	eference Continu alculation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00	eference Continu alculatior	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00 15.00	eference Continu alculation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00 15.00 5.00	eference Continual culation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00 15.00	eference Continual culation	lative Accura Method (Clea ous Emission	cy (as % of RM) anAir Data) os Monitoring System on 9 of 10 runs. * inc	6.4% n (Marathon Petroleu licates the excluded	20.0%	072214 1627
EMS = ATA ca 25.00 20.00 15.00 5.00	eference Continual alculation	lative Accura Method (Clea ous Emission is are based	cy (as % of RM) anAir Data) is Monitoring System on 9 of 10 runs. * inc	6.4%	20.0%	

End of Section 2 - Results

Revision 0, Final Report