CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195

RECEIVED

MAY 0 1 2015

AIR QUALITY DIV.

REPORT ON MEASUREMENT SERVICES

Performed for: AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

HYDROGEN PLANT HEATER STACK

Client Reference No: 4503337956 CleanAir Project No: 12678 Revision 0: April 29, 2015

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

(

(

<u>Andy Obuchowski</u>

Andy Obuchowski Project Manager abuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Ken Sullivan

Project Manager ksullivan@cleanair.com (800) 627-0033 ext. 4527

RPTv4_6_8.dot 12678_Report_R0.doc 49292015 104900 12878

Client Reference No: 4503337956 CleanAir Project No: 12678

PROJECT OVERVIEW

INTRODUCTION

Air Products and Chemicals, Inc. (Air Products) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit Hydrogen Plant in Detroit, Michigan.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (MDEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Jennifer Creitz – Air Products Sondra Klipp – Air Products Nathaniel Hude – MDEQ Andy Obuchowski – CleanAir

Test Program Parameters

The testing was performed at the Hydrogen (H_2) Plant Heater Stack on March 17 through 19, 2015, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- total particulate matter less than 10 microns (μ m) in diameter (Total PM₁₀), assumed equivalent to the sum of the following constituents:
 - filterable particulate matter (FPM)
 - condensable particulate matter (CPM)
- sulfuric acid (H_2SO_4)
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - methane (CH₄)
 - ethane (C_2H_6)
- nitrogen oxides (NO_X)
- carbon monoxide (CO)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate

RECEIVED

MAY 0 1 2015

AIR QUALITY DIV.

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

ĺ

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1: Schedule of Activities

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/17/15	15:37	18:19
2	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/18/15	07:53	10:16
3	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/18/15	11:25	13:50
1	H ₂ Plant Heater Stack	USEPA Method 18/25A	voc	03/18/15	11:25	12:2
2	H₂ Plant Heater Stack	USEPA Method 18/25A	VOC	03/18/15	12:37	13:3
3	H ₂ Plant Heater Stack	USEPA Method 18/25A	VOC	03/18/15	16:09	17:0
0	H₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/18/15	16:10	17:1
1	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/19/15	08:32	09:3
2	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/19/15	10:18	11:1
3	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/19/15	12:07	13:0
1	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O₂/NO _x /CO	03/19/15	08:32	08:5
2	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	09:03	09:2
3	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O₂/NO _X /CO	03/19/15	10:19	10:4
4	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	10:49	11:1
5	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	12:07	12 <u>:2</u>
6	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _x /CO	03/19/15	12:37	12:5
7	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	13:43	14:0
8	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	14:12	14:3
9	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _x /CO	03/19/15	14:42	15:0
10	H ₂ Plant Heater Stack	USEPA Method 3A/7E/10	O ₂ /NO _X /CO	03/19/15	15:11	15:3
1	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/15	16:20	16:4
2	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	08:33	08:4
3	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	09:03	09:1
4	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	10:20	10:3
5	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	10:50	11:0
6	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	12:08	12:2
7	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	12:38	12:4
8	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	13:43	13:5
9	H2 Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	14:12	14:2
10	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	14:45	14:5
11	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/19/15	15:14	15:2
1	H ₂ Plant Heater Stack	USEPA Method 4	H₂O	03/19/15	13:43	15:3

042015 132352

1-2

Client Reference No: 4503337956

CleanAir Project No: 12678

Client Reference No: 4503337956 CleanAir Project No: 12678

1-3

PROJECT OVERVIEW

Results Summary

ĺ

(

Table 1-2 and Table 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-15.

	Summary o	Table 1-2: f Emission Complianc	e Test Results	
<u>Source</u> Constituent	(Units)	Sampling Method	Average Emission	Permit Limit
H ₂ Plant Heater St	tack			
PM	(Ib/MMBtu)	USEPA M-5	0.0020	0.0034
PM	(Ton/yr)	USEPA M-5	3.33	6.86
PM ₁₀	(lb/MMBtu)	USEPA M-5 / 202	0.0034	0.010
H₂SO₄	(ppmdv)	Draft ASTM CCM	0.02	N/A
H₂SO₄	(Ib/MMBtu)	Draft ASTM CCM	0.0001	N/A
voc	(lb/MMBtu)	USEPA M-25A / 18	<7.30E-04	0.0055
NOx	(lb/MMBtu)	USEPA M-7E	0.010	0.013
NO _X	(ppmdv @ 0% O ₂)	USEPA M-7E	9.1	60
co	(Ton/yr)	USEPA M-10	< 0.71	13

¹ Permit limits obtained from MDEQ Permit To Install No. 63-08D.

042315 105348

Client Reference No: 4503337956 CleanAir Project No: 12678

PROJECT OVERVIEW

	Sumr	Table 1-3 nary of RATA	-		
Source Constituent (Units)	Reference Method (USEPA)	Relative Accuracy ¹	Units	Applicable Specification	Specification Limit ²
H2 Plant Heater Stack					
Flow rate (dscfm)	M-2	5.5	% of RM	PS6	20% of RM
O ₂ (% dv)	M-3A	0.2	%dv	PS3	±1.0% dv
H ₂ O (% wv)	M-4	3.8	% of RM	N/A	N/A
NOx (ppmdv)	M-7E	2.2	% of RM	PS2	20% of RM
NOx (lb/MMBtu)	M-7E	5.0	% of RM	PS2	20% of RM
NOx (ppmdv @ 0%O2)	M-7E	1.1	% of RM	PS2	20% of RM
CO (ppmdv)	M-10	0.4	ppmdv	PS4A ³	±5 ppmdv
CO (lb/hr)	M-10	0.2	% of Std.	PS4A ³	5% of Standard ⁴

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.), equivalent to the permit limit in Table 1-2. The specific expression used depends on the specification limit.

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications, unless otherwise noted.

³ For any sources emitting less than 200 ppmv of CO, PS4A applies. The PS4A RA limit is either < 10% of

RM, < 5% of Standard, or \pm 5 ppmv (abs. average difference plus 2.5 x confidence coefficient). ⁴ CO Standard = 13 Ton/yr = 56.9lb/hr (assuming 8,760 operating hours/year)

042315 121535

Discussion of Test Program

FPM and CPM Testing - USEPA Method 5/202

For this test program, PM emission rate is assumed equivalent to FPM emission rate and PM_{10} emission rate is assumed equivalent to the sum of FPM and CPM emission rates (units of lb/hr, Ton/yr, or lb/MMBtu for all constituents).

The analytical procedures in EPA Method 202 include an ammonium titration of the inorganic sample fractions with pH less than 7.0 to neutralize acids with hygroscopic properties such as H_2SO_4 that may be present in the sample. This step speeds up the sample desiccation process and allows the samples to come to a constant weight prior to weighing. The weight of ammonium added to the sample as a result of the titration is subtracted from the analytical result.

The laboratory performing the gravimetric analysis (Clean Air Analytical Services) has determined that only samples with an initial pH less than 4.5 require a significant amount of ammonium neutralization, resulting in a correction in excess of 0.5 mg. Based on this observation, the laboratory has altered their procedures to read that a sample must have a pH lower than 4.5 in order to be titrated.

PROJECT OVERVIEW

Since none of the inorganic sample fractions collected during this test program had a pH less than 4.5, they were not titrated per Clean Air Analytical Services' modified procedure. The sample fraction was observed to come to a constant weight without having to titrate the sample.

Three (3) 120-minute Method 5/202 test runs were performed. Run 1 was performed on March 17; Runs 2 and 3 were performed on March 18.

The final results for each parameter were expressed as the average of three (3) valid runs and were below the permit limits for both PM and PM_{10} . Individually, Run 1 exceeded the permit limit for both PM and PM_{10} .

H₂SO₄ Testing - Draft ASTM Controlled Condensation Method

Prior to the first official test run, a 60-minute sample conditioning run was performed on March 18 in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H_2SO_4 -collection portion of the sample train). The conditioning run was recovered in the same manner as the official test runs, but is not included in the results.

Three (3) 60-minute test runs were performed on March 19. The final result was expressed as the average of three (3) valid runs.

VOC Testing - USEPA Method 25A and Method 18

Three (3) 60-minute Method 25 test runs for THC were performed concurrently with three (3) 60-minute Method 18 bag collections for CH_4 and C_2H_6 on March 18. The final results for each parameter were expressed as the average of three (3) valid runs.

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (units of lb/hr, Ton/yr, or lb/MMBtu for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction was made to the THC results. Therefore, VOC emissions are equivalent to THC emissions.

Flow Rate, Moisture, O₂, NO_X, and CO RATA Testing - USEPA Methods 2, 3A, 4,7E, and 10; Performance Specifications 2, 3, 4/4A, and 6

Minute-average data points for O_2 , CO_2 , NO_X and CO (dry basis) were collected over a period of 21 minutes for each Relative Accuracy Test Audit (RATA) Reference Method (RM) run.

PROJECT OVERVIEW

The average result for each RM run was calculated and compared to the average result from the facility continuous emissions monitoring system (CEMS) over identical time intervals in order to calculate relative accuracy (RA).

- For O_2 (%dv), RA is expressed as the average absolute difference between the RM and facility CEMS runs. The final result was below the limit of $\pm 1.0\%$ dv set by PS3.
- For NO_X (ppmdv) concentration, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- For NO_X (lb/MMBtu) diluent, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- For NO_X (ppmdv @ 0% O₂) diluent, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- For CO (ppmdv) concentration, the RA limit is expressed as the average absolute difference between the RM and facility CEMS runs, plus 2.5 times the confidence coefficient. The final result was below the limit of ± 5 ppmdv set by PS4A, which is applicable to sources that emit less than 200 ppmv of CO.
- For CO (lb/hr) diluent, RA is expressed as the percent difference between RM and facility CEMs runs. The final result was below the limit of 5% of the standard (permit limit listed in Table 1-3) set by PS4A.
- CO₂ data was collected only as supplemental information.

Facility flow rate CEMS were evaluated using Method 2 as the reference method. A complete flow and temperature traverse was performed during each 21-minute RATA run, converted to units of dry standard cubic feet per hour (dscfh), and then compared to facility CEMS results over the corresponding 21-minute intervals.

For flow rate, RA is expressed as the percent difference between RM and facility CEMS data. The final results were below the limit of 20% of the RM set by PS6.

Moisture data was used to convert flow rate from dry basis to wet basis and was obtained from concurrently operated Draft ASTM CCM test runs or Modified Method 4 test runs:

- For RATA Run 1 and 2, H₂O data was obtained from Draft ASTM CCM Run 1.
- For RATA Run 3 and 4, H₂O data was obtained from Draft ASTM CCM Run 2.
- For RATA Run 5 and 6, H₂O data was obtained from Draft ASTM CCM Run 3.
- For RATA Runs 7, 8, 9 and 10, H₂O data was obtained from modified Method 4 Run 1.

PROJECT OVERVIEW

 NO_X and CO results from the RATA were converted from units of dry volume-based concentration (ppmdv) to mass-based emission rate units (lb/hr, Ton/yr, and lb/MMBtu) to demonstrate compliance with permit limits. The final results for each parameter were expressed as the average of all ten (10) RATA runs. The final results were below the permit limits.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by first calculating massbased emissions in units of pounds per hour (lb/hr), and then applying the total heat input to the unit over each test interval (MMBtu/hr). Heat input data was provided by Air Products. Flow rates used in calculating lb/hr emissions were obtained in the following manner:

- For Method 5/202, flow rate measurements are incorporated into the sampling procedures.
- For Method 18/25A, flow rate measurements from the most nearly concurrent Method 5/202 test run or Method 2 test run were used.
- For Draft ASTM CCM, two (2) flow rate measurements, per Method 2 specifications, was performed concurrently with each test run. An average of the 2 flow measurements was used.
- For Method 7E/10, a flow rate measurement, per Method 2 specifications, was performed concurrently with each test run.

General Considerations

All run times listed throughout this report correspond to the plant time utilized by Air Products. Plant time is the time of the Air Products CEMS and data acquisition systems. The plant time is 60 minutes earlier than actual Eastern Time.

End of Section 1 – Project Overview

1-7

Client Reference No: 4503337956

CleanAir Project No: 12678

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

042315 112123

RESULTS

(

2-1

	FPM, CPM and Total PM ₁₀ En				
Run No.		1	2	3	Average
Date (20	15)	Mar 17	Mar 18	Mar 18	
Start Tim	e (approx.)	15:37	07:53	11:25	
Stop Tim	e (approx.)	18:19	10:16	13:50	
Process	Conditions				
Pi	Hydrogen production (Mscf/day)	46.6	45.7	45.7	46.0
P ₂	Aqueous NH ₃ feed to SCR (lb/hr)	20.1	19.5	19.5	19.7
P ₃	SCR Inlet temperature (°F)	574.8	571.9	571.9	572.9
H_i	Actual heat input (MMBtu/hr)	393.4	374.6	374.6	380.9
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	ditions				
O ₂	Oxygen (dry volume %) ¹	3.0	2.9	3.0	2,9
CO ₂	Carbon dioxide (dry volume %) ¹	18.8	19.0	18.8	18.9
Ts -	Sample temperature (°F)	316	317	317	317
B _w	Actual water vapor in gas (% by volume)	14.8	15.9	15.1	15.3
Gas Flow	N Rate				
Q _{std}	Volumetric flow rate, dry standard (dscfm)	89,700	83,300	82,700	85,200
Samplin					
V _{mstd}	Volume metered, standard (dscf)	55.36	53.27	52.73	53.78
vimstd %l	Isokinetic sampling (%)	98.0	101.6	101.3	100.3
		00.0	107.0	101.0	10010
Laborate	•	0.00492	0.00299	0.00293	
m _n	Total FPM (g)	0.00492	0.00299	0.00293	
М _{СРМ}		0.00402	0.00217	0.00150	
m _{Part}	Total particulate (expressed as PM-10) (g)	0.00894 N/A	0.00510 N/A	1 out of 2	
n _{MDL} DLC	Number of non-detectable fractions Detection level classification	ADL	ADL	DLL	
		AUL	ADL	DEC	
FPM Res		4 005 07	4 045 07	1.23E-07	1.47E-07
C _{sd}	Particulate Concentration (lb/dscf)	1.96E-07 1.05	1.24E-07 0.618	0.608	0.76
E _{lb/hr}	Particulate Rate (Ib/hr)	4.62	2,71	2,66	3,33
E _{T/yr}	Particulate Rate (Ton/yr)	4.62 0.0027	0.0017	0.0016	0.0020
EH:	Particulate Rate - Heat Input-based (lb/MMBtu)	0.0027	0.0017	0.0010	0.002
CPM Re					
C_{sd}	Particulate Concentration (Ib/dscf)	1.60E-07	8.97E-08	6.59E-08	1.05E-01
E _{lb/hr}	Particulate Rate (lb/hr)	0.862	0.448	0.327	0.54
ETA	Particulate Rate (Ton/yr)	3.78	1.96	1.43	2.39
E _{Hi}	Particulate Rate - Heat Input-based (lb/MMBtu)	0.0022	0.0012	0.0009	0.0014
Fotal Pa	rticulate (as PM ₁₀) Results				
$C_{\rm sd}$	Particulate Concentration (lb/dscf)	3.56E-07	2.13E-07	1.88E-07	2.53E-07
E _{lb/hr}	Particulate Rate (lb/hr)	1.92	1.07	0.935	1.31
E _{T/yr}	Particulate Rate (Ton/yr)	8.40	4.67	4.09	5.72
E _{Hi}	Particulate Rate - Heat Input-based (lb/MMBtu)	0.0049	0.0028	0.0025	0.0034

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

DLL = Detection Level Limited - some fractions are below detection limit

¹ O₂/CO₂ data obtained from concurrently operated Method 3A CEMS testing.

Ĺ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

|--|

RESUL	TS					
	Ur	ncertainty Analysis		ble 2-2: PM and Total PM ₁	10 (USEPA I	M-5/202)
		FPM Results (lb/MMBtu)	,	CPM Results (lb/MMBtu)	Total	PM (as PM10) Results (Ib/MMBtu)
Method		5/202		5/202		5/202
Run No.	1	0.0027	1	0.0022	1	0.0049
	2	0.0017	2	0.0012	2	0.0028
	3	0.0016	3	0.0009	3	0.0025
SD	38485MS	0.0006		0.0007		0.0013
AVG		0.0020		0.0014		0.0034
RSD		30.4%		48.4%		37.7%
N		3		3		3
SE		0.0003		0.0004		0.0007
RSE		17.5%		27.9%		21.8%
Р		95.0%		95.0%		95.0%
TINV		4.303		4.303		4.303
CI +		0.0035		0.0031		0.0066
AVG		0.0020		0.0014		0.0034
CI -		0.0005		-0.0003		0.0002
TB +		0.0066		0.0067		0.0132

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs. P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom). CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

RESULTS

2-3

	Table H₂SO₄ Emissions	e 2-3: (Draft ASTM CCI	VI)		
Run No.		1	2	3	Average
Date (20	15)	Mar 19	Mar 19	Mar 19	
Start Tim	пе (арргох.)	08:32	10:18	12:07	
Stop Tim	ne (approx.)	09:32	11:18	13:07	
Process	Conditions				
P ₁	Hydrogen production (Mscf/day)	45.0	45.0	45.0	45.0
P ₂	Aqueous NH ₃ feed to SCR (lb/hr)	16.8	16.8	16.8	16.8
P3	SCR Inlet temperature (°F)	569.7	569.7	569.7	569.7
H_i	Actual heat input (MMBtu/hr)	421.9	421.9	421.9	421.9
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	iditions				
O2	Oxygen (dry volume %) ¹	3.0	3.0	3.0	3.0
CO_2	Carbon dioxide (dry volume %) ¹	18.7	18.8	18.9	18.8
T _s	Sample temperature (°F)	328	327	328	328
В"	Actual water vapor in gas (% by volume)	16.3	16.8	16.7	16.6
Gas Flov	w Rate				
Q _{std}	Volumetric flow rate, dry standard (dscfm) ²	78,000	75,200	80,000	77,754
Samplin	g Data				
V _{mstd}	Volume metered, standard (dscf)	25.14	25.02	25.02	25.06
Laborate	ory Data (Ion Chromatography)				
ma	Total H2SO4 collected (mg)	0.0648	0.0410	0.0626	
Sulfuric	Acid Vapor (H2SO4) Results				
C_{sd}	H2SO4 Concentration (lb/dscf)	5.68E-09	3.61E-09	5.52E-09	4.94E-09
C_{sd}	H2SO4 Concentration (ppmdv)	0.0223	0.0142	0.0217	0.0194
E _{æ/hr}	H2SO4 Rate (lb/hr)	0.0266	0.0163	0.0265	0.0231
E _{7/yr}	H2SO4 Rate (Ton/yr)	0.117	0.0714	0.116	0.101
EHi	H2SO4 Rate - Heat Input-based (Ib/MMBtu)	6.31E-05	3.86E-05	6.28E-05	5.48E-05

Average includes 3 runs.

 1 O₂/CO₂ data obtained from concurrently operated Method 3A CEMS testing.

 $^2\,$ Flow rate obtained from the average of the concurrently operated Method 2 test run(s).

042315 120602

ţ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

2-4

	H2SO4 Results (ppmdv)		
	ССМ	сс	M
1	0.0223	1 6.318	-05
2	0.0142	2 3.865	-05
3	0.0217	3 6.28	-05
	0.0045	1 405	-05
	3	3	
	0.0026	8.108	-06
	13.5%		
	95.0%	95.0)%
	4.303	4.3	03
	0.0307	8.975	-05
	0.0194	5.488	-05
	0.0082	2.008	-05
	0.054	1.628	-04
	1 2	Table 2 Uncertainty Analysis – H ₂ SC H2SO4 Results (ppmdv) CCM 1 0.0223 2 0.0142 3 0.0217 0.0045 0.0194 23.3% 3 0.0026 13.5% 95.0% 4.303 0.0307 0.0194 0.0307 0.0194 0.0082 0.0082	Table 2-4: Uncertainty Analysis – H ₂ SO ₄ (Draft ASTM CCM) H2SO4 Results (ppmdv) H2SO4 F (lb/MM CCM CC 1 0.0223 1 6.31E 2 0.0142 2 3.86E 3 0.0217 3 6.28E 0.0045 1.40E 0.0194 5.48E 23.3% 25.6 3 0.0026 8.10E 13.5% 14.8 95.0% 95.0 0.0307 8.97E 0.0194 5.48E 0.0307 8.97E 0.0194 5.48E 0.0082 2.00E

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution. TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

RESULTS

2-5

Run No.	n Para	1	2	3	Average
Date (20	15)	Mar 18	Mar 18	Mar 18	
•	e (approx.)	11:25	12:37	16:09	
Stop Tim	e (approx.)	12:25	13:37	17:09	
Process	Conditions				
P ₁	Hydrogen Production (Mscf/day)	45.7	45.7	45.7	45.7
P_2	Aqueous NH ₃ feed to SCR (lb/hr)	19.5	19.5	19.5	19.5
P3	SCR Inlet Temperature	571.9	571.9	571.9	571.9
H,	Actual heat input (MMBtu/hr)	374.6	374.6	374.6	374.6
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	iditions				
O ₂	Oxygen (dry volume %)	2.94	2.99	2.92	2.95
CO2	Carbon dioxide (dry volume %)	18.9	18.8	19.1	18.9
B _w	Actual water vapor in gas (% by volume)1	15.1	15.1	16.0	15.4
Gas Flor	w Rate ²				
Q _{std}	Volumetric flow rate, dry standard (dscfm)	82,700	82,700	76,900	80,700
THC Res	suits ³				
C _{sd}	Concentration (ppmdv as C_3H_8)	<0.491	<0,491	<0.496	<0.493
C _{sd}	Concentration (Ib/dscf)	<5.62E-08	<5.62E-08	<5.68E-08	<5.64E-08
Elen	Emission Rate (lb/hr)	< 0.279	< 0.279	< 0.262	< 0.273
ETAT	Emission Rate (Ton/yr)	< 1.22	< 1.22	< 1.147	< 1.20
E _{Hi}	Emission Rate - Heat input-based (lb/MMBtu)	<7.45E-04	<7.45E-04	<6.99E-04	<7.30E-04
Methane	Results ⁴				
C_{sd}	Concentration (ppmdv)	<0.0880	<0.0880	<0.0880	<0.0880
C _{sd}	Concentration (ib/dscf)	<3.66E-09	<3.66E-09	<3.66E-09	<3.66E-09
Elphr	Emission Rate (lb/hr)	< 0.0182	< 0.0182	< 0.0169	< 0.0178
ETAT	Emission Rate (Ton/yr)	< 0.0796	< 0.0796	< 0.0740	< 0.0777
E _{Hi}	Emission Rate - Heat input-based (Ib/MMBtu)	<4.85E-05	<4.85E-05	<4.51E-05	<4.74E-05
Ethane f	Results ⁴				
C_{sd}	Concentration (ppmdv)	<0.0920	<0.0920	<0.0920	<0.0920
C _{sd}	Concentration (lb/dscf)	<7.18E-09	<7.18E-09	<7.18E-09	<7.18E-09
Elphy	Emission Rate (lb/hr)	< 0.0356	< 0.0356	< 0.0331	< 0.0348
E _{T/yr}	Emission Rate (Ton/yr)	< 0.156	< 0.156	< 0.145	< 0.152
E _{Hi}	Emission Rate - Heat input-based (Ib/MMBtu)	<9.51E-05	<9.51E-05	<8.84E-05	<9.29E-05
VOC Res	sults				
E _{lb/br}	Emission Rate (lb/hr)	< 0.279	< 0.279	< 0.262	< 0.273
Ε _{τλτ}	Emission Rate (Ton/yr)	< 1.22	< 1.22	< 1.147	< 1.20
E _{Hi}	Emission Rate - Heat input-based (lb/MMBtu)	<7.45E-04	<7.45E-04	<6.99E-04	<7.30E-04

Average includes 3 runs.

080410 154528

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5/202 or Draft ASTM CCM runs.

² Flow data used in Ib/hr calculations was obtained from nearly-concurrent Method 5/202 or Method 2 runs.

³ For THC, '<' indicates a measured response below the detection limit (assumed to be 1% of the Instrument calibration span).

⁴ For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

Client Reference No: 4503337956 CleanAir Project No: 12678

080410 154528

RESULTS

(

2-6

	NO _x and CO	Table 2 Emission		M-7E/10))		
Run No	······	1	2	3	4	5	(
Date (20	015)	Mar 19	Mar 19	Mar 19	Mar 19	Mar 19	Mar 19
Start Tin	ne (approx.)	08:32	09:03	10:19	10:49	12:07	12:37
Stop Tin	ne (approx.)	08:53	09:24	10:40	11:10	12:28	12:58
Process	s Conditions						
P ₁	Hydrogen Production (Mscf/day)	45.0	45.0	45.0	45.0	45.0	45.0
P2	Aqueous NH ₃ feed to SCR (lb/hr)	16.8	16.8	16.8	16.8	16.8	16.8
P3	SCR Inlet Temperature	569.7	569,7	569.7	569.7	569.7	569.7
ң	Actual heat input (MMBtu/hr)	415.8	415.7	415.8	417.8	423.2	428.4
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	8,760	8,760
Gas Co	nditions						
O2	Oxygen (dry volume %)	2.99	2.97	3.03	2.95	2.92	3.01
CO2	Carbon dioxide (dry volume %)	18,7	18,7	18.7	18,9	18,9	18,8
Bw	Actual water vapor in gas (% by volume)	16.3	16.3	16.8	16.8	16.7	16.7
Gas Flo	w Rate ²						
Qstd	Volumetric flow rate, dry standard (dscfm)	78,300	77,700	76,700	73,700	80,100	79,900
Nitroger	n Oxides Results						
Csd	Concentration (ppmdv)	8.12	7.72	7.68	7.67	7.80	7.98
C _{ad-x}	Concentration @ 0% O ₂ (ppmdv)	9.47	9.00	8.98	8.93	9.07	9.29
Csd	Concentration (lb/dscf)	9.7E-07	9.2E-07	9.2E-07	9.2E-07	9.3E-07	9.5E-07
Ethn	Emission Rate (lb/hr)	4.55	4.30	4.22	4.05	4.48	4.55
ETAT	Emission Rate (Ton/yr)	19.9	18.8	18.5	17.7	19.6	19.9
EH	Emission Rate - Heat input-based (Ib/MMBtu)	0.0109	0.0103	0.0102	0.0097	0.0106	0.0108
Carbon	Monoxide Results ³						
C_{sd}	Concentration (ppmdv)	<0.478	<0.478	<0.478	<0.478	<0.478	<0.478
C _{sd-x}	Concentration @ 0% O2 (ppmdv)	< 0.558	< 0.557	< 0.559	< 0.556	< 0.556	< 0.558
Csd	Concentration (lb/dscf)	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08
Ean	Emission Rate (Ib/hr)	< 0.163	< 0.162	< 0.160	< 0.154	< 0.167	< 0.167
ETAT	Emission Rate (Ton/yr)	< 0.715	< 0.710	< 0.701	< 0.673	< 0.732	< 0.730
Ен	Emission Rate - Heat input-based (Ib/MMBtu)	<3.92E-04	<3.90E-04	<3.85E-04	<3.68E-04	<3.95E-04	<3.89E-04

¹ Moisture data obtained from nearly-concurrent Draft ASTM CCM or Method 4 runs.

² Flow data used in lb/hr catculations was obtained from nearly-concurrent Method 2 runs.

³ For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

Revision 0, Final Report

ł

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

080410 154528

RESULTS

(

2-7

	Table 2 NO _x and CO Emi	-6 (Continued) issions (USEP/	: A M-7E/10)		
Run No		7	8	9	10	Average
Date (20	015)	Mar 19	Mar 19	Mar 19	Mar 19	
Start Tin	ne (approx.)	13:43	14:12	14:42	15:11	
Stop Tin	ne (approx.)	14:04	14:33	15:03	15:32	
Process	s Conditions					
P۱	Hydrogen Production (Mscf/day)	45.0	45.0	45.0	45.0	45.0
P ₂	Aqueous NH₃ feed to SCR (lb/nr)	16.8	16.8	16.8	16.8	16.8
P₃	SCR Inlet Temperature	569.7	569.7	569.7	569.7	569.7
H,	Actual heat input (MM8tu/hr)	426.3	422.7	430.8	429.7	422.6
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	8,760
Gas Co	nditions					
O2	Oxygen (dry volume %)	3.08	3.06	2.99	2.96	2.99
CO ₂	Carbon dioxide (dry volume %)	18.7	18.8	18.8	18.9	18.8
В,	Actual water vapor in gas (% by volume) ¹	16.4	16.4	16.4	16.4	16.5
Gas Flo	w Rate ²					
Q _{sM}	Volumetric flow rate, dry standard (dscfm)	76,200	78,200	80,700	78,900	78,100
Nitroger	n Oxides Results					
Csd	Concentration (ppmdv)	7.97	7.76	7.88	7.69	7.82
Csd-x	Concentration @ 0% O2 (ppmdv)	9.35	9.09	9.19	8.96	9.13
Csd	Concentration (lb/dscf)	9.5E-07	9.3E-07	9.4E-07	9.2E-07	9.3E-07
Entry	Emission Rate (lb/hr)	4.35	4.35	4.55	4.35	4.38
Etht	Emission Rate (Ton/yr)	19.1	19.0	19.9	19.0	19.2
Ењ	Emission Rate - Heat input-based (Ib/MMBtu)	0.0102	0.0103	0.0106	0.0101	0.0104
Carbon	Monoxide Results ³					
Csd	Concentration (ppmdv)	<0.478	<0.478	<0.478	<0.478	<0.478
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	< 0.560	< 0.560	< 0.558	< 0.557	<0.558
C_{sd}	Concentration (ib/dscf)	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08
Eatr	Emission Rate (lb/hr)	< 0.159	< 0.163	< 0.168	< 0.165	< 0.163
ETAT	Emission Rate (Ton/yr)	< 0.695	< 0.714	< 0.737	< 0.721	< 0.713
EH	Emission Rate - Heat input-based (Ib/MMBtu)	<3.72E-04	<3.86E-04	<3.90E-04	<3.83E-04	<3.85E-04

Average includes 10 runs. ¹ Molsture data obtained from nearly-concurrent Draft ASTM CCM or Method 4 runs.

² Flow data used in lb/hr calculations was obtained from nearly-concurrent Method 2 runs.

³ For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

RESULTS

(

2-8

Run	Start	Date		CEMS Data		Difference
No.	Time	(2015)	RM Data (dscfh)		ference (dscfh)	Percent
1	08:32	Mar 19	4,696,223.5	4,440,768.7	255454.8	5.4%
2	09:03	Mar 19	4,663,411.6	4,439,821.2	223590.4	4.8%
3	10:19	Mar 19	4,603,750.3	4,462,455.9	141294.4	3.1%
4	10:49	Mar 19	4,423,664.8	4,454,120.2	-30455.4	-0.7%
5 *	12:07	Mar 19	4,808,571.5	4,505,797.3	302774.2	6.3%
6	12:37	Mar 19	4,808,571.5	4,578,555.8	230015.7	4.8%
7	13:43	Mar 19	4,569,202.9	4,555,492.1	13710.8	0.3%
8	14:12	Mar 19	4,694,200.4	4,498,468.1	195732.3	4.2%
9	14:42	Mar 19	4,840,709.5	4,551,715.1	288994.4	6.0%
10	15:11	Mar 19	4,735,163.2	4,519,096.6	216066.6	4.6%
	Average		4670544.2	4500054.9	170489.3	3.7%
			Relative Ac	curacy Test Audit F	Results	
	Stands	ard Devia	lion of Differences	109630.5		
			e Coefficient (CC)	84269.3		
			ue for 9 Data Sets	2.306		
		t-var		2.500	Limit	
EMS	eference = Continu	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	•	042315 1215
EMS : RATA d	eference = Continu alculation	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data)	5.5% em (Air Products Da	20.0%	042315 1215
CEMS RATA c 6,000,0	eference = Continu alculation	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	042315 1215
CEMS RATA c 6,000,0	eference = Continu alculation	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	042315 1215
CEMS RATA c 6,000,0 5,000,0	eference = Continu calculation 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	042315 1215
CEMS	eference = Continu calculation 00.0 00.0 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	042315 1215
CEMS RATA c 6,000,0 5,000,0 4,000,0	eference = Continu calculation 00.0 00.0 00.0 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	042315 1215
CEMS RATA c 6,000,0 5,000,0 4,000,0 3,000,0 2,000,0	eference = Continu calculation 00.0 00.0 00.0 00.0 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	
CEMS RATA c 6,000,0 5,000,0 4,000,0 3,000,0	eference = Continuation ealculation 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) sions Monitoring Syst	5.5% em (Air Products Da	20.0%	
CEMS RATA c 6,000,0 5,000,0 4,000,0 3,000,0 2,000,0	eference = Continuation 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	tive Accu Method (ious Emis	racy (as % of RM) CleanAir Data) soions Monitoring Syst sed on 9 of 10 runs. *	5.5% em (Air Products Da indicates the exclude	20.0%	9 10

ĺ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

				₂ 0 Cor			
Run No,	Start Time	Date (2015)	RM Data	(%wv)	CEMS Data (%wv)	Difference (%wv)	Difference Percen
1	08:32	Mar 19		16.3	16.0	0.3	1.9%
2	09:03	Mar 19		16.3	16.0	0.3	1.9%
3	10:19	Mar 19		16.8	16.0	0.8	4.8%
4 *	10:49	Mar 19		16.8	16.0	0.8	4.8%
5	12:07	Mar 19		16.7	16.0	0.7	4.1%
6	12:37	Mar 19		16.7	16.0	0.7	4.1%
7	13:43	Mar 19		16.4	16.0	0.4	2.3%
8	14:12	Mar 19		16.4	16.0	0.4	2.3%
9	14:42	Mar 19		16.4	16.0	0.4	2.3%
10	15:11	Mar 19		16.4	16.0	0.4	2.3%
	Average			16.5	16.0	0.5	2.9%
			R	elative	Accuracy Test Audif	Results	
	Star	idard Devi	ation of Diffe		0.188		
		Confiden	ce Coefficie	nt (CC)	0.144		
				• •			
		t-Va	alue for 9 Da	ita Sets	2.306		
	Reference	lative Acc Method (0	uracy (as % CleanAir Dat	of RM) ta)	3.8%	ita)	042115 132
EMS : ATA c	Reference = Continu calculation	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys		•	042115 132
EMS : ATA c	Reference = Continu	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 132
EMS : ATA c	Reference = Continu calculation	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 1323
EMS : ATA c 1	Reference = Continu calculation	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 132:
EMS : ATA c 1 1	Reference = Continu calculation 18.0	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 132
EMS : RATA c 1 1 1 1	Reference = Continu- calculation 18.0 16.0	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 132
EMS = 2ATA c 1 1 1 1 1	Reference = Continu- calculation 18.0 16.0 14.0	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	042115 132
EMS = ATA c 1 1 1 1 1	Reference = Continu- calculation (8.0 (14.0 (12.0 (10.0)	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	
EMS : RATA c 1 1 1 1 1 1	Reference = Continu- calculation (8.0 (4.0 (2.0 (0.0 (8.0) (0.0	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	
EMS : ATA c 1 1 1 1 1 1	Reference = Continucation (a.0)	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito	of RM) ta) pring Sys	3.8%	•	
EMS : ATA c 1 1 1 1 1 1	Reference = Continucation (a.0) (a.0)	elative Acc Method (C lous Emiss	uracy (as % CleanAir Dat sions Monito ed on 9 of 1	of RM) ta) pring Sys	3.8%	ed run.	042115 1323

Revision 0, Final Report

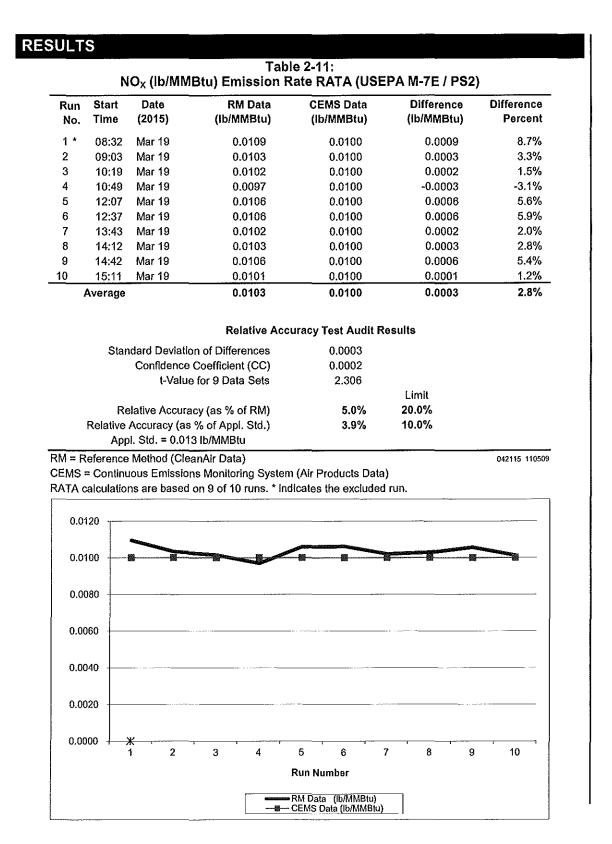
ĺ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

Run No.	Start Time	Date (2015)	RM Data	(%dv)	CEMS Data (%dv)	Difference (%	%dv)	Difference Percen
1	08:32	Mar 19		3.0	3.3	-	-0.3	-10.5%
2	09:03	Mar 19		3.0	3.3		-0.3	-11.0%
3 *	10:19	Mar 19		3.0	3.4	-	-0.4	-12.2%
4	10:49	Mar 19		2.9	3.2	-	0.3	-8.7%
5	12:07	Mar 19		2.9	3.2	-	-0.3	-9.7%
6	12:37	Mar 19		3.0	3.3	-	-0.3	-9.6%
7	13:43	Mar 19		3.1	3.3	-	0.2	-7.3%
8	14:12	Mar 19		3.1	3.2	-	0.1	-4.7%
9	14:42	Mar 19		3.0	3.1	-	0.1	-3.7%
10	15:11	Mar 19		3.0	3.0		0.0	-1.2%
	Average			3.0	3.2	•	-0.2	-7.4%
			Re	ative /	Accuracy Test Audi	Results		
					-			
	Stan	dard Devia	ation of Diffe	rences	0.101			
	Stan				0.101 0.078			
	Stan	Confiden	ation of Diffe ce Coefficier lue for 9 Dat	nt (CC)	0.078			
	Stan	Confiden	ce Coefficier	nt (CC)		Limit		
	eference	Confiden t-Va Av Method (C	ce Coefficier lue for 9 Dat /g. Abs. Diff. CleanAir Dat	nt (CC) ta Sets . (%dv) a)	0.078	Limit 1.0		042115 1108
CEMS : RATA c	Reference = Continu calculation	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220	1.0		042115 1105
CEMS = RATA c	Reference = Continu calculation 4.0	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS = RATA c	Reference = Continu calculation	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS =	Reference = Continu calculation 4.0	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS : RATA c	teference = Continu calculation 4.0 3.5	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS =	teference = Continu alculation 4.0 3.5	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS =	Reference = Continu :alculation 4.0 3.5 3.5 2.5	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS RATA C	Reference = Continu :alculation 4.0 3.5 3.5 2.5 2.0	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS RATA C	Reference = Continue calculation 4.0 3.5 3.0 2.5 2.0 1.5	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		042115 1105
CEMS =	Reference = Continue calculation 4.0 3.5 3.0 2.5 2.0 1.5 1.0	Confiden t-Va Av Method (C ous Emiss	ce Coefficier lue for 9 Dat vg. Abs. Diff. CleanAir Data ions Monitor	nt (CC) ta Sets . (%dv) a) ring Sys	0.078 2.306 0.220 stem (Air Products Da	1.0		

Ĺ


AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

Run No.	Start Time	Date (2015)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	Difference Percent
1	08:32	Mar 19	8.1	8.1	0.0	0.2%
2	09:03	Mar 19	7.7	7.6	0.1	1.5%
3 *	10:19	Mar 19	7.7	7.5	0.2	2.3%
4	10:49	Mar 19	7.7	7.5	0.2	2.2%
5	12:07	Mar 19	7.8	7.7	0.1	1.3%
6	12:37	Mar 19	7.9	7.8	0.1	1.9%
7	13:43	Mar 19	8.0	7.8	0.2	2.2%
8	14:12	Mar 19	7.8	7.6	0.2	2.1%
9	14:42	Mar 19	7.9	7.7	0.2	2.2%
10	15:11	Mar 19	7.7	7.6	0.1	1.2%
/	Average		7.8	7.7	0.1	1.6%
			Relative Acc	uracy Test Audit R	esults	
				-		
	Stan	idard Deviatior	n of Ufferences	0.002		
	Stan	dard Deviatior		0.052 0.040		
	Stan	Confidence C	Coefficient (CC)	0.040		
		Confidence (t-Value	Coefficient (CC) for 9 Data Sets	0.040 2.306	Limit	
	Re	Confidence C t-Value lative Accurac Method (Clea	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data)	0.040 2.306 2.2%	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306	20.0%	042115 11050
EMS = ATA c	Re eference = Continu	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation 9.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation 9.0 8.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation 9.0 8.0 7.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS =	Re eference = Continu alculation 9.0 8.0 7.0 6.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation 9.0 8.0 7.0 6.0 5.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	042115 11050
EMS = ATA c	Re eference = Continu alculation 9.0 8.0 7.0 6.0 5.0 4.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	
EMS = ATA c	Re eference = Continu alculation 9.0 8.0 7.0 6.0 5.0 4.0 3.0	Confidence C t-Value lative Accurac Method (Clea lous Emissions	Coefficient (CC) for 9 Data Sets cy (as % of RM) nAir Data) s Monitoring System	0.040 2.306 2.2% n (Air Products Data)	20.0%	

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

ĺ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

	NOx	(ppmdv @	Ta 0% O₂) Emiss	ble 2-12: Ion Rate RATA (USEPA M-7E / I	PS2)
Run No.	Start Time	Date (2015)	RM Data (ppm@0%O2)	CEMS Data (ppm@0%O2)	Difference (ppm@0%O2)	Differenc Percer
1	08:32	Mar 19	9.5	9.6	-0.1	-1.3%
2	09:03	Mar 19	9.0	9.0	0.0	0.0%
3	10:19	Mar 19	9.0	8.9	0.1	0.9%
4	10:49	Mar 19	8.9	8.9	0.0	0.39
5	12:07	Mar 19	9.1	9.0	0.1	0.8%
6	12:37	Mar 19	9.3	9.2	0.1	0.9%
7*	13:43	Mar 19	9.3	9.2	0.1	1.69
8	14:12	Mar 19	9.1	9.0	0.1	1.09
9	14:42	Mar 19	9.2	9.1	0.1	1.09
10	15:11	Mar 19	9.0	8.9	0.1	0.7%
	Average		9.1	9.1	0.0	0.59
			Relative Ac	curacy Test Audit I	Results	
	Star	idard Deviat	ion of Differences	0.071		
			e Coefficient (CC)	0.054		
			le for 9 Data Sets	2.306		
					Limit	
	Re	lative Accur	acy (as % of RM)	1.1%	20.0%	
			s % of Appl. Std.)	0.2%	10.0%	
			• • • •			
	Арр	i. Sia. = ou j	opm@0%O2			
<u></u> λΜ = R						042115 110
	eference	Method (Cl	eanAir Data) ons Monitoring Syste	m (Air Products Dat	a)	042115 110
CEMS	eference = Continu	Method (Cl rous Emissio	eanAir Data)		•	042115 110
CEMS	eference = Continu	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA C	eference = Continu	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA C	eference = Continu alculation	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
EMS RATA c	2.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA c	eference = Continu alculation	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA c	2.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA d 1	2.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
EMS ATA c	2.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA d 1	2.0 0.0 8.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA d 1	2.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA d 1	2.0 0.0 8.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA c 1	2.0 0.0 8.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA c	eference = Continue calculation 2.0 0.0 8.0 6.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA C	ceference = Continue calculation 2.0 0.0 8.0 6.0 4.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA C	eference = Continue calculation 2.0 0.0 8.0 6.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA C	ceference = Continue calculation 2.0 0.0 8.0 6.0 4.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	042115 110
CEMS RATA c	Reference = Continue calculation 2.0 0.0 8.0 6.0 4.0 2.0 0.0	Method (Ch ious Emissio ns are based	eanAir Data) ons Monitoring Syste d on 9 of 10 runs. * I	ndicates the exclude		
EMS RATA d	Reference = Continue calculation 2.0 0.0 8.0 6.0 4.0 2.0 0.0	Method (Cl rous Emissio	eanAir Data) ons Monitoring Syste		•	

2-13

í

ĺ

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

2-14

	Table 2-13: CO (ppmdv) Concentration RATA (USEPA M-10 / PS4A)							
Run No.	Start Time	Date (2015)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)			
1	08:32	Mar 19	0.0	0.4	-0.4			
2	09:03	Mar 19	0.0	0.3	-0.3			
3	10:19	Mar 19	0.0	0.4	-0.4			
4	10:49	Mar 19	0.0	0.4	-0.4			
5	12:07	Mar 19	0.0	0.4	-0.4			
6	12:37	Mar 19	0.0	0.4	-0.4			
7	13:43	Mar 19	0.0	0.4	-0.4			
8	14:12	Mar 19	0.0	0.4	-0.4			
9	14:42	Mar 19	0.0	0.4	-0.4			
10	15:11	Mar 19	0.0	0.4	-0.4			
	Average		0.0	0.4	-0.4			
			Relative Acc	uracy Test Audit R	esults			
	Stan	dard Deviation	of Differences	0.032				
		Confidence C	Coefficient (CC)	0.023				
		t-Value fo	or 10 Data Sets	2.262				
					Limit			
		Avg. Abs. Diff.	+ CC (ppmdv)	0.413	5.0			
RM = R	eference	Method (Clea	nAir Data)	· · · · · ·		042115 1105		

Revision 0, Final Report

I

(

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503337956 CleanAir Project No: 12678

2-15

Run No.	Start Time	Date (2015)	RM Data (lb/hr)	CEMS Data (lb/hr)	Difference (lb/hr)	
1	08:32	Mar 19	0.0	0.1	-0.1	
2	09:03	Mar 19	0.0	0.1	-0.1	
3	10:19	Mar 19	0.0	0.1	-0.1	
4	10:49	Mar 19	0.0	0.1	-0.1	
5	12:07	Mar 19	0.0	0.1	-0.1	
6	12:37	Mar 19	0.0	0.1	-0.1	
7	13:43	Mar 19	0.0	0.1	-0.1	
8	14:12	Mar 19	0.0	0.1	-0.1	
9	14:42	Mar 19	0.0	0.1	-0.1	
10	15:11	Mar 19	0.0	0.2	-0.2	
1	Average		0.0	0.1	-0.1	
			Relative A	ccuracy Test Audit	t Results	
	Star	dard Devi	ation of Differences	0.032		
		Confiden	ce Coefficient (CC)	0.023		
		t-Val	ue for 10 Data Sets	2.262		
					Limit	
	Relative		as % of Appl. Std.) . = 56.94 lb/hr	0.2%	5.0%	

End of Section 2 - Results

Ę