

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP **DETROIT REFINERY**

CCR INTERHEATER STACK (14H1-4)

Client Reference No: 4100356132 CleanAir Project No: 12783-2 Revision 0: September 14, 2015

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Obuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537

Reviewed by,

Bill Ansell Midwest Engineering Group **Technical Leader** bansell@cleanair.com (800) 627-0033 ext. 4545

RPTv4_6_8.dot 12783-2_MPC Report_R0.do 47142015 014700 12783-2

MICHIGAN DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENT

SEP 21 2015

RENEWABLE OPERATING PERMIT

REPORT CERTIFICATION

AIR QUALITY DIVISION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Natural Resources and Environment, Air Quality Division upon request.

Source Name Maratl	hon Petroleum Company	<u>ьъ</u>			County Wayne	
Source Address 1300) South Fort Street			City	Detroit	
AQD Source ID (SRN)	A9831	ROP No.	MI-ROP-A9831- 2012b		ROP Section No.	01
Please check the appropr	iate box(es):	- Dula 242(4)	(0))			
Reporting period (pro	ovide inclusive dates): F re reporting period, this sour of which is identified and inc	rom ce was in com	To pliance with ALL term reference. The metho	s and cor d(s) used	nditions contained ir to determine comp	i the ROP, each liance is/are the
method(s) specified 2. During the ent term and condition deviation report(s). unless otherwise ir	d in the ROP. ire reporting period this sou of which is identified and i The method used to deter ndicated and described on th	rce was in co included by th mine compliant the enclosed de	mpliance with all terms is reference, EXCEPT ice for each term and viation report(s).	s and co for the c condition	nditions contained in deviations identified in is the method spec	n the ROP, each on the enclosed sified in the ROP,
🔲 Semi-Annual (or M	ore Frequent) Report Cert	ification (Pur	suant to Rule 213(3)(c))		
Reporting period (pr 1. During the entind deviations from the	ovide inclusive dates): F re reporting period, ALL mo se requirements or any othe	rom nitoring and as er terms or cor	To sociated recordkeepin ditions occurred.	g require	ements in the ROP v	vere met and no
2. During the entir deviations from the enclosed deviation	re reporting period, all monito se requirements or any othe report(s).	oring and asso er terms or cor	ciated recordkeeping ditions occurred, EXC	requirem EPT for t	ents in the ROP wer he deviations identif	re met and no fied on the
M Othor Bonort Cortifi						
Reporting period (pro Additional monitoring Submittal of t	ovide inclusive dates): F reports or other applicable the CCR Charge and In	rom 7/21/ documents rec terHeater (2015 To puired by the ROP are compliance Testin	8/25/20 attached g resul	as described: Lts.	
l certify that, based on ir supporting enclosures are	nformation and belief forme true, accurate and complet	d after reasor e MPC Invest its General	able inquiry, the state ment LLC, Partner	ements a	and information in t	his report and the
Dowid Dolond		—			232 0/	0100

	Veputy Assistant Secretary	272-042-2700
Name of Responsible Official (print or type)	/ Title	Phone Number
KAU		9/18/2015
Signature of Responsible Official		/ Date

Client Reference No: 4100356132 CleanAir Project No: 12783-2

1-1

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (Clean Air) to perform emission measurements at the Detroit refinery for relative accuracy test audit (RATA) and compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Chad Eilering – CleanAir

Test Program Parameters

Testing was performed at the CCR Interheater (Heater ID 14H1-4, Emission Unit ID EU14-CCRPLINTHTR-S1, Stack ID SV14-H4A) on July 23-24 and July 29, 2015, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THCs) minus the following constituents:
 - \circ methane (CH₄)
 - \circ ethane (C₂H₆)
 - $nitrogen oxides (NO_x)$
- carbon monoxide (CO)
- flue gas composition (e.g., O_2 , CO_2 , H_2O)
- flue gas flow rate

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1:

	Schedule of Activities									
Run Number	Location	Method	Analyte	Date	Start Time	End Time				
1	CCR Interheater Stack	USEPA Method 5	FPM	07/23/15	11:28	13:34				
2	CCR Interheater Stack	USEPA Method 5	FPM	07/23/15	14:38	17:21				
3	CCR Interheater Stack	USEPA Method 5	FPM	07/23/15	18:03	20:08				
1	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	11:28	11:49				
2	CCR Interheater Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO _X /CO	07/23/15	12:03	12:24				
3	CCR Interheater Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO _X /CO	07/23/15	13:18	13:39				
4	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	14:51	15:12				
5	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	15:24	15:45				
6	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	15:57	16:18				
7	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	16:28	16:49				
8	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	17:02	17:23				
9	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	17:41	18:02				
10	CCR Interheater Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO _x /CO	07/23/15	18:14	18:35				
11	CCR Interheater Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	07/23/15	18:58	19:19				
12	CCR Interheater Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO _X /CO	07/23/15	19:30	19:51				
1	CCR Interheater Stack	USEPA Method 3A/18/25A	O₂/CO₂/CH₄/C₂H₅/THC	07/23/15	11:28	13:39				
2	CCR Interheater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₈ /THC	07/23/15	14:51	16:18				
3	CCR Interheater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	07/23/15	16:28	18:02				
4	CCR Interheater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	07/23/15	18:14	19:51				
4	CCR Interheater Stack	USEPA Method 5	FPM	07/24/15	08:37	10:45				
5	CCR Interheater Stack	USEPA Method 5	FPM	07/24/15	11:25	13:30				
6	CCR Interheater Stack	USEPA Method 5	FPM	07/29/15	08:57	11:01				
7	CCR Interheater Stack	USEPA Method 5	FPM	07/29/15	11:43	13:46				
8	CCR Interheater Stack	USEPA Method 5	FPM	07/29/15	14:47	19:32				

083115 144811

1-2

Client Reference No: 4100356132 CleanAir Project No: 12783-2

Revision 0, Final Report

Client Reference No: 4100356132 CleanAir Project No: 12783-2

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-12.

Table 1-2: Summary of Emission Compliance Test Results					
<u>Source</u> Constituent (Units)	Sampling Method	Average Emission	Permit Limit ¹		
CCR Interheater Stack					
PM (lb/MMBtu) ²	USEPA 5	0.0033	0.0019		
PM (Ib/MMBtu) ³	USEPA 5	0.0011	0.0019		
VOC (Ib/MMBtu)	USEPA 18 / 25A	<6.0E-04	0.0055		
NO _x (lb/MMBtu)	USEPA 7E	0.03	0.05		
CO (lb/MMBtu)	USEPA 10	<3.9E-04	0.013		

¹ Permit limits obtained from MDEQ Permit To Install No. 63-08D.

² Includes the average of 5 test runs performed during mobilization 1 on July 23-24, 2015.

³ Includes the average of 3 test runs performed during mobilization 2 on July 29, 2015.

091415 114501

Table 1-3: Summary of RATA Results				
<u>Source</u> Constituent (Units)	Reference Method (USEPA)	Applicable Specification	Relative Accuracy ¹	Specification Limit ²
CCR Interheater Stack				
O ₂ (% dv)	3A	PS3	0.4	±1.0% dv
NO _X (Ib/MMBtu)	7E	PS2	0.0	20% of RM
CO (lb/MMBtu)	10	PS4A ³	0.0	5% of Standard

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.).

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

³ For any sources emitting less than 200 ppmv of CO, PS4A applies. The PS4A RA limit is either < 10% of RM, < 5% of Standard, or ± 5 ppmv (abs. average difference plus 2.5 x confidence coefficient).</p>

083115 144811

Client Reference No: 4100356132 CleanAir Project No: 12783-2

1-4

PROJECT OVERVIEV

Discussion of Test Program

FPM Testing - USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. FPM testing occurred over two separate mobilizations.

Five (5) 120-minute Method 5 test runs were performed during the first mobilization on July 23-24, 2015. The original plan outlined a total of three (3) tests to be performed however, following test Runs 1 and 2 there were visible fragments of particulate on the front half filter samples. Upon review of the samples on-site, MPC requested an additional two (2) test runs to be performed. The final result was expressed as the average of five (5) valid runs and was above the permit limit for PM.

Upon analysis, the laboratory found what is believed to be glass chips in the front half sample rinse of Run 2. The results as received were used to calculate the final results.

During and following the test program, MPC explored reasoning on why particulate levels were higher than expected for this gas-fired heater. MPC performed a purge of the system prior to the second mobilization.

Three (3) 120-minute Method 5 test runs were performed during the second mobilization on July 29, 2015. The final result was expressed as the average of three (3) valid runs and was below the permit limit for PM.

Method 5 Run 8 paused sampling approximately 74 minutes into the run because of severe weather warnings. The delay lasted approximately 60-minutes before testing was resumed. The metering console being used was switched out shortly after the test run re-started due to circuit malfunctioning causing another approximately 60 minute delay. The difference in the dry gas meter calibration factors from the change in meter consoles was accounted for during the final calculations.

O₂, NO_X, and CO Emissions / RATA Testing - USEPA Methods 3A, 7E, and 10; Performance Specifications 2, 3 and 4/4A

Minute-average data points for O_2 , NO_X and CO (dry basis) were collected over a period of 21 minutes for each RATA Reference Method (RM) run. The average result for each RM run was calculated and compared to the average result from the facility's CEMS over an identical time interval in order to calculate relative accuracy (RA).

PROJECT OVERVIEW

Twelve (12) RATA test runs were performed at the CCR Interheater Stack on July 23, 2015. RATA Run 2 is not considered valid because the heated sampling system malfunctioned during the test which led to a failed bias check following the test run. The problem was resolved, and the sampling system temperatures were allowed to stabilize prior to beginning Run 3. Run 2 was not used in any of the final calculations.

RATA Run 10 for CO is not considered valid because the bias check following the test run did not meet QA/QC criteria. During the upper level gas bias check the system did not record consecutive stable readings. Run 10 was not used in any of the final calculations for CO.

The final results for the RATA were expressed utilizing 9 or 10 valid best fit test runs and the results are as follows:

- For O_2 , RA is expressed as the average absolute difference between the RM and facility CEMS runs. The final result was below the limit of $\pm 1.0\%$ dv set by PS3.
- For NO_X (ppmdv), RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% (as % of RM) set by PS2.
- For NO_X (lb/MMBtu), RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% (as % of RM) set by PS2.
- For CO (ppmdv), the RA is expressed as the average absolute difference between the RM and facility CEMS runs, plus the 2.5% confidence coefficient. The final result was below the limit of ±5 ppmdv set by PS4A.
- For CO (lb/MMBtu), RA is expressed as the percent difference between RM and the facility CEMS. The final result was below the limit of 5% (as % of applicable emission standard) set by PS4A.

Reference method and facility RATA test run averages which were negative were treated as zero when calculating the relative accuracy.

The facility CEMS results as lb/MMBtu were calculated and provided by MPC along with all other applicable RATA and process data and can be found in Appendix H.

RM NO_X and CO results from the RATA were used to demonstrate compliance with permit limits. The final results were expressed as the average of 10 valid runs for CO and 11 valid runs for NO_X. The final results were below the permit limits for NO_X and CO.

PROJECT OVERVIEW

CleanAir measured CO drift-corrected concentrations which were negative and consequently below the assumed detection limit of 1% of the instrument calibration span for all test runs. The worst-case concentration results used to calculate mass-based emissions in regards to the emission compliance test is defined as some number "less than" 1% of the calibration span. The RM CO values utilized for the RATA were treated as zero.

VOC Testing - USEPA Methods 25A and 18

VOC testing was performed concurrently with the RATA testing. Twelve (12) 21minute Method 25 test runs for THCs were performed concurrently with four (4) Method 18 bag collections for CH_4 and C_2H_6 , with each Method 18 sample collected over a period of about 63 minutes.

The Method 18 samples on the CCR Interheater were collected as follows:

- Method 18 Run 1: Collected during Method 25A Runs 1, 2 and 3
- Method 18 Run 2: Collected during Method 25A Runs 4, 5 and 6
- Method 18 Run 3: Collected during Method 25A Runs 7, 8 and 9
- Method 18 Run 4: Collected during Method 25A Runs 10, 11 and 12

Method 18 Run 1, comprised of Method 25A Runs 1 through 3, was not used in the final results calculations because of the heated sample system issue which also invalidated Method 25A Run 2. Following Method 25A Run 3, the THC analyzer was recalibrated prior to starting Run 4.

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (lb/MMBtu for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction was made to the THC results. Therefore, VOC emissions are equivalent to THC emissions. The final results were expressed as the average of three (3) valid runs, Runs 2 through 4, and were below the permit limit.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by calculating an oxygenbased fuel factor (F_d) for refinery gas per USEPA Method 19 specifications. The heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC and tabulated heating values for each of the measured constituents.

Fuel gas analyses were performed by MPC on each test day and results were provided to CleanAir.

Client Reference No: 4100356132 CleanAir Project No: 12783-2

1-6

Revision 0, Final Report

Client Reference No: 4100356132 CleanAir Project No: 12783-2

RES	ULTS					2-1
	Tab	ole 2-1:				7 2
	CCR Interheater Stack – FPM	Emissions (USE	PA 5) – Rι	ıns 1-5	2	m
Run No).	1	2	3	TH TH	
Date (2	015)	Jul 23	Jul 23	Jul 23	Q Q	11
Start Ti	me (approx.)	11:28	14:38	18:03	E E	L
Stop Ti	ne (approx.)	13:34	17:21	20:08	5	2 11
Proces	s Conditions				~ ~ ~	E O
P ₁	Fuel gas flow rate (Mscf/day)	1,961	2,261	2,309	D	
P ₂	Charge rate (bpd)	18,067	20,720	21,001	Ę.	
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,315	8,315	8,315		
H,	Heat input (MMBtu/hr)	91.0	105	107		
Сар	Capacity factor (hours/year)	8,760	8,760	8,760		
Gas Co	nditions					
O ₂	Oxygen (dry volume %)	7.0	5.1	4.6		
CO2	Carbon dioxide (dry volume %)	7.9	9.0	9.3		
Ts	Sample temperature (°F)	533	540	542		
B _w	Actual water vapor in gas (% by volume)	14.3	15.9	16.4		
Gas Flo	ow Rate					
Q_a	Volumetric flow rate, actual (acfm)	51,800	46,100	49,200		
Qs	Volumetric flow rate, standard (scfm)	27,000	23,800	25,400		
Q _{std}	Volumetric flow rate, dry standard (dscfm)	23,100	20,000	21,200		
Q_a	Volumetric flow rate, actual (acf/hr)	3,110,000	2,760,000	2,950,000		
Q_s	Volumetric flow rate, standard (scf/hr)	1,620,000	1,430,000	1,520,000		
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscf/hr)	1,390,000	1,200,000	1,270,000		
Sampli	ng Data					
V _{mstd}	Volume metered, standard (dscf)	79.82	70.46	75.74		
%	Isokinetic sampling (%)	100.0	102.0	102.8		
Labora	tory Data					
mn	Total FPM (g)	0.01759	0.02017	0.00353		
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A		
DLC	Detection level classification	ADL	ADL	ADL		
FPM Re	esuits					
C _{sd}	Particulate Concentration (lb/dscf)	4.86E-07	6.31E-07	1.03E-07		
Elb/hr	Particulate Rate (lb/hr)	0.675	0.759	0.131		
E	Particulate Rate (Ton/yr)	2.96	3.32	0.573		
E _{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00607	0.00694	0.00110		1 I

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Client Reference No: 4100356132 CleanAir Project No: 12783-2

2-2

RES	JLTS						
	CCR Interheater Stack – FPM Emissions (USEPA 5) – Runs 1-5						
Run No	<u>,</u>	4	5	Average			
Date (2)	015)	Jul 24	Jul 24				
Start Time (approx.)		08:37	11:25				
Stop Tir	ne (approx.)	10:45	13:30				
Proces	s Conditions						
P ₁	Fuel gas flow rate (Mscf/day)	2,244	2,242	2,203			
P ₂	Charge rate (bpd)	20,999	20,998	20,357			
Fa	Oxygen-based F-factor (dscf/MMBtu)	8,316	8,316	8,316			
Hi	Heat input (MMBtu/hr)	104	104	102			
Сар	Capacity factor (hours/year)	8,760	8,760	8,760			
Gas Co	nditions						
O ₂	Oxygen (dry volume %)	5.0	5.0	5.3			
CO₂	Carbon dioxide (dry volume %)	9.2	9.2	8.9			
Ts	Sample temperature (°F)	542	539	539			
B _w	Actual water vapor in gas (% by volume)	15.9	16.2	15.7			
Gas Flo	ow Rate						
Qa	Volumetric flow rate, actual (acfm)	47,300	46,200	48,120			
Qs	Volumetric flow rate, standard (scfm)	24,400	23,900	24,900			
Q _{std}	Volumetric flow rate, dry standard (dscfm)	20,600	20,000	20,980			
Q_a	Volumetric flow rate, actual (acf/hr)	2,840,000	2,770,000	2,886,000			
Q_s	Volumetric flow rate, standard (scf/hr)	1,470,000	1,440,000	1,496,000			
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscf/hr)	1,230,000	1,200,000	1,258,000			
Sampli	ng Data						
V _{mstd}	Volume metered, standard (dscf)	73.54	71.30	74.17			
%	Isokinetic sampling (%)	103.1	102.5	102.1			
Labora	tory Data						
m _n	Total FPM (g)	0.00466	0.00322	0.00983			
n _{MDL}	Number of non-detectable fractions	N/A	N/A				
DLC	Detection level classification	ADL	ADL				
FPM Re	esults						
C_{sd}	Particulate Concentration (lb/dscf)	1.40E-07	9.96E-08	2.92E-07			
Eib/hr	Particulate Rate (lb/hr)	0.172	0.120	0.371			
E _{T/yt}	Particulate Rate (Ton/yr)	0.755	0.525	1.63			
E _{Ed}	Particulate Rate - F _r -based (Ib/MMBtu)	0.00153	0.00109	0.00335			

Average includes 5 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Client Reference No: 4100356132 CleanAir Project No: 12783-2

Run No).	6	7	8	Average
Date (2	015)	Jul 29	Jul 29	Jul 29	
Start Ti	ne (approx.)	08:57	11:43	14:47	
Stop Ti	ne (approx.)	11:01	13:46	19:32	
Proces	s Conditions				
Pi	Fuel gas flow rate (Mscf/day)	2,512	2,539	2,529	2,527
P ₂	Charge rate (bpd)	21,001	21,001	21,001	21,001
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,327	8,327	8,327	8,327
H,	Actual heat input (MMBtu/hr)	117	119	118	118
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	5.8	5.6	6.0	5.8
CO_2	Carbon dioxide (dry volume %)	8.4	8.5	8.3	8.4
T _s	Sample temperature (°F)	569	566	569	568
Bw	Actual water vapor in gas (% by volume)	15.0	15.6	15.8	15.5
Gas Flo	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	58,700	57,100	58,500	58,100
Q_s	Volumetric flow rate, standard (scfm)	29,400	28,800	29,300	29,200
Q _{std}	Volumetric flow rate, dry standard (dscfm)	25,000	24,300	24,700	24,700
Q_a	Volumetric flow rate, actual (acf/hr)	3,520,000	3,430,000	3,510,000	3,490,000
Q_s	Volumetric flow rate, standard (scf/hr)	1,770,000	1,730,000	1,760,000	1,750,000
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	1,500,000	1,460,000	1,480,000	1,480,000
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	70.01	68.12	69.19	69.11
%I	lsokinetic sampling (%)	102.4	102.7	102.6	102.6
Labora	tory Data				
mo	Total FPM (g)	0.00401	0.00260	0.00213	
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A	
DLC	Detection level classification	ADL	ADL	ADL	
FPM Re	sults				
C _{sd}	Particulate Concentration (lb/dscf)	1.26E-07	8.42E-08	6.79E-08	9.28E-08
Elb/hr	Particulate Rate (Ib/hr)	0,190	0.123	0.101	0.138
ET/v	Particulate Rate (Ton/yr)	0.830	0.537	0.440	0.603
Erd	Particulate Rate - F _d -based (Ib/MMBtu)	0.00146	0.000957	0.000793	0.00107

2-3

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Client Reference No: 4100356132 CleanAir Project No: 12783-2

080410 154528

KE3					
	CCR Interheater Stack – THC, CH ₄ , C	C_2H_6 & VOC Emissi	ions (USE	PA 25A/18	3)
Run No	، من المراجع ال • • • • • • • • • • • • • • • • • • •	2	3	4	Average
Date (20	915)	Jul 23	Jul 23	Jul 23	
Start Tir	ne (approx.)	14:51	16:28	18:14	
Stop Tin	ne (approx.)	16:18	18:02	19:51	
Process	s Conditions				
P ₁	Fuel gas flow rate (Mscf/day)	2,247	2,312	2,305	2,288
P ₂	Charge rate (bpd)	20,742	20,999	21,000	20,914
۴a	Oxygen-based F-factor (dscf/MMBtu)	8,315	8,315	8,315	8,315
H	Actual heat input (MMBtu/hr)	104	107	107	106
Gas Co	nditions				
O2	Oxygen (dry volume %)	4.8	4.4	4.3	4.5
CO₂	Carbon dioxide (dry volume %)	9.4	9.6	9.7	9,6
Bw	Actual water vapor in gas (% by volume) ¹	15.9	15.9	16.4	16.1
THC Re	suits				
C_{sd}	Concentration (ppmdv as C ₃ H ₈)	<0.496	<0.496	<0.499	<0.497
C_{sd}	Concentration (lb/dscf)	<5.67E-08	<5.67E-08	<5.71E-08	<5.69E-08
E_{F^d}	Emission Rate - F _d -based (lb/MMBtu)	<6.14E-04	<5.98E-04	<5.98E-04	<6.04E-04
Methan	e Results				
C_{sd}	Concentration (ppmdv)	<0.105	<0.105	<0.105	<0,105
Csd	Concentration (Ib/dscf)	<4.37E-09	<4.37E-09	<4.37E-09	<4.37E-09
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<4.73E-05	<4.61E-05	<4.58E-05	<4.64E-05
Ethane	Results				
C_{sd}	Concentration (ppmdv)	<0.0823	<0.0823	<0.0823	<0.08
C_{sd}	Concentration (lb/dscf)	<6.42E-09	<6.42E-09	<6.42E-09	<6.42E-09
Efd	Emission Rate - F _d -based (lb/MMBtu)	<6.95E-05	<6.77E-05	<6.73E-05	<6.82E-05
VOC Re	sults				
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	<6.14E-04	<5.98E-04	<5.98E-04	<6.04E-04

Average includes 3 runs.

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5 runs.

For THC '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span). For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory. For VOCs, '<' indicates at least one non-detectable fraction was used in the calculations. '<' values for methane and ethane are treated as the entire value of the analytical detection limit.

Client Reference No: 4100356132 CleanAir Project No: 12783-2

2-5

	Та	ble 2-4:			
	CCR Interheater Stack – CO	& NO _X Emission	ns (USEPA	7E/10)	
Run No.		1	3	4	5
Date (20	15)	Jul 23	Jul 23	Jul 23	Jul 23
Start Tim	ne (approx.)	11:28	13:18	14:51	15:24
Stop Tim	ne (approx.)	11:49	13:39	15:12	15:45
Process	Conditions				
P ₁	Fuel gas flow rate (Mscf/day)	1,950	2,001	2,144	2,280
P ₂	Charge rate (bpd)	17,998	18,374	19,972	21,007
Fď	Oxygen-based F-factor (dscf/MMBtu)	8,315	8,315	8,315	8,315
Hi	Actual heat input (MMBtu/hr)	90.5	92.8	99.5	106
Gas Cor	aditions				
O2	Oxygen (dry volume %)	6.9	6.5	5.5	4.6
CO_2	Carbon dioxide (dry volume %)	8.3	8.5	9.1	9.6
Nitroger) Oxides Results				
C_{sd}	Concentration (ppmdv)	23.1	23.4	20.9	19.7
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	34.6	34.1	28.3	25.2
C_{sd}	Concentration (lb/dscf)	2.76E-06	2.80E-06	2.50E-06	2.35E-06
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0343	0.0338	0.0281	0.0250
Carbon	Monoxide Results				
C_{sd}	Concentration (ppmdv)	<0.489	<0.489	<0.489	<0.489
C _{sd-x}	Concentration @ 0% O_2 (ppmdv)	<0.731	<0.712	<0.662	<0.626
\mathbf{C}_{sd}	Concentration (Ib/dscf)	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08
EFd	Emission Rate - F_d -based (Ib/MMBtu)	<4.42E-04	<4.30E-04	<4.00E-04	<3.78E-04

For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

RESU							
	Table 2-4 CCR Interheater Stack – CO	(Continued): & NO _X Emissior	ns (USEPA	7E/10)			
Run No	· · · · · · · · · · · · · · · · · · ·	6	7	8	9		
Date (20	915)	Jul 23	Jul 23	Jul 23	Jul 23		
Start Tin	ne (approx.)	15:57	16:28	17:02	17:41		
Stop Tin	ne (approx.)	16:18	16:49	17:23	18:02		
Process	S Conditions						
P ₁	Fuel gas flow rate (Mscf/day)	2,298	2,293	2,322	2,311		
P ₂	Charge rate (bpd)	20,999	21,000	20,993	20,996		
Fď	Oxygen-based F-factor (dscf/MMBtu)	8,315	8,315	8,315	8,315		
H _i	Actual heat input (MMBtu/hr)	107	106	108	107		
Gas Co	nditions						
O2	Oxygen (dry volume %)	4.5	4.5	4.4	4.4		
CO_2	Carbon dioxide (dry volume %)	9.6	9.6	9.6	9.6		
Nitroge	n Oxides Results						
C _{sd}	Concentration (ppmdv)	19.2	18.8	18.8	18.6		
C_{sd-x}	Concentration @ 0% O ₂ (ppmdv)	24.5	23,9	23.8	23.5		
C _{sd}	Concentration (lb/dscf)	2.29E-06	2.24E-06	2.24E-06	2.22E-06		
E _{F₫}	Emission Rate - F _d -based (lb/MMBtu)	0.0243	0.0238	0.0236	0.0233		
Carbon	Monoxide Results						
C_{sd}	Concentration (ppmdv)	<0.489	<0.489	<0.489	<0.489		
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	<0.623	<0.623	<0.618	<0.619		
C_{sd}	Concentration (lb/dscf)	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08		
E_{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<3.77E-04	<3.77E-04	<3.74E-04	<3.74E-04		

For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

Client Reference No: 4100356132 CleanAir Project No: 12783-2

RESU	Table 2-4 (Continued):							
	CCR Interheater Stack – CO	& NO _x Emission	ns (USEPA	7E/10)				
Run No.	, , , , , , , , , , , , , , , , , , ,	10*	11	12	Average			
Date (20	15)	Jul 23	Jul 23	Jul 23				
Start Tim	e (approx.)	18:14	18:58	19:30				
Stop Tim	e (approx.)	18:35	19:19	19:51				
Process	Conditions							
P ₁	Fuel gas flow rate (Mscf/day)	2,345	2,289	2,291	2,229			
P ₂	Charge rate (bpd)	21,000	20,999	21,004	20,395			
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,315	8,315	8,315	8,315			
H	Actual heat input (MMBtu/hr)	109	106	106	103			
Gas Cor	Iditions							
O2	Oxygen (dry volume %)	4.1	4.4	4.5	4.9			
CO_2	Carbon dioxide (dry volume %)	9.8	9.7	9.6	9.4			
Nitroger	Oxides Results							
C_{sd}	Concentration (ppmdv)	17.8	18.2	18.6	19.7			
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	22.1	23.0	23.6	26.1			
C_{sd}	Concentration (lb/dscf)	2.13E-06	2.17E-06	2.22E-06	2.36E-06			
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0220	0.0228	0.0234	0.0259			
Carbon	Monoxide Results							
C_{sd}	Concentration (ppmdv)	<0.489	<0.489	<0.489	<0.489			
C_{sd-x}	Concentration @ 0% O ₂ (ppmdv)	<0.607	<0.618	<0.622	<0.642			
C_{sd}	Concentration (lb/dscf)	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08			
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<3.67E-04	<3.74E-04	<3.76E-04	<3.88E-04			

Average for CO results includes 10 runs (runs 2 & 10 are not included in the average). Average includes 11 runs for all other data (run 2 is not included in the average).

For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

For all calcuated averages, "<" values are treated as the entire value of the detection limit.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

RESULTS

2-8

Run No.	Start Time	Date (2015)	RM Data (%dv)	CEMS Data (%dv)	Difference (%dv)	Difference Percent
1	11:28	Jul 23	6.93	7.29	-0.36	-5.2%
2 *	12:03	Jul 23	6.73	7.20	-0.47	-7.0%
3	13:18	Jul 23	6.54	6.91	-0.37	-5.7%
4	14:51	Jul 23	5.46	5.84	-0.38	-7.0%
5	15:24	Jul 23	4.58	5.00	-0.42	-9.2%
6	15:57	Jul 23	4.51	4.94	-0.43	-9.5%
7	16:28	Jul 23	4.50	4.92	-0.42	-9.3%
8	17:02	Jul 23	4.37	4.81	-0.44	-10.1%
9 *	17:41	Jul 23	4.38	4.85	-0.47	-10.7%
10 *	18:14	Jul 23	4.07	4.53	-0.46	-11.3%
11	18:58	Jul 23	4.37	4.79	-0.42	-9.6%
12	19:30	Jul 23	4.47	4.92	-0.45	-10.1%
-	Average		5.08	5.49	-0.41	-8.1%

Relative Accuracy Test Audit Results

Limit 1.0

090115 145237

Standard Deviation of Differences	0.032
Confidence Coefficient (CC)	0.025
t-Value for 9 Data Sets	2.306
Avg. Abs. Diff. (%dv)	0.41

RM = Reference Method (CleanAir Data)

CEMS = Continuous Emissions Monitoring System (Marathon Petroleum Company Data) RATA calculations are based on 9 of 12 runs. * indicates the excluded runs.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

No.	Start Time	Date (2015)	RM Data (ppmd∨)	CEMS Data (ppmdv)	Difference (ppmdv)	Difference Percent
1	11:28	Jul 23	23.12	22.12	1.00	4.3%
2 *	12:03	Jul 23	23.08	22.19	0.89	3.9%
3*	13:18	Jul 23	23.42	21.42	2.00	8.5%
4	14:51	Jul 23	20.93	20.04	0.89	4.3%
5	15:24	Jul 23	19.65	18.88	0.77	3.9%
6	15:57	Jul 23	19.21	18.45	0.76	4.0%
7	16:28	Jul 23	18.77	18.09	0.68	3.6%
8	17:02	JUI 23	18.79	17.73	1.06	5.6%
9 10	17:41	JUI 23	10.00	17.02	0.90	J.Z %
11	18.58	Jul 23	18.16	10.79	ייט.ו אא ה	3.6%
12 *	19:30	Jul 23	18.55	17.30	1 15	6.2%
	Average		19.45	18.58	0.87	4.5%
	Ra	Confidence C t-Value	Coefficient (CC) for 9 Data Sets	0.119 2.306 5.1%	Limit 20.0%	
M = R EMS = ATA c	Re eference = Continu alculatior	Confidence C t-Value lative Accurac Method (Clea ous Emission as are based o	coefficient (CC) for 9 Data Sets <u>y (as % of RM)</u> nAir Data) s Monitoring Systen n 9 of 12 runs. * ind	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS = ATA c 25	Re eference = Continu alculation	Confidence C t-Value lative Accurac Method (Clea ous Emission is are based o	Coefficient (CC) for 9 Data Sets y (as % of RM) nAir Data) s Monitoring Systen n 9 of 12 runs. * inc	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS : ATA c 25 20	Re eference = Continu alculation	Confidence C t-Value lative Accurac Method (Clea ous Emissions is are based o	coefficient (CC) for 9 Data Sets y (as % of RM) nAir Data) s Monitoring System n 9 of 12 runs. * inc	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS 25 20	Re reference = Continu calculation .00	Confidence C t-Value lative Accurac Method (Clea ous Emissions are based o	Coefficient (CC) for 9 Data Sets y (as % of RM) nAir Data) s Monitoring System in 9 of 12 runs. * inc	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS = 25 20 15	Re eference = Continu alculation .00	Confidence C t-Value lative Accurac Method (Clea ous Emissions as are based c	Coefficient (CC) for 9 Data Sets y (as % of RM) nAir Data) s Monitoring System in 9 of 12 runs. * ind	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS : 25 20 15	Re eference = Continu alculation .00	Confidence C t-Value lative Accurac Method (Clea ous Emissions are based c	Coefficient (CC) for 9 Data Sets y (as % of RM) nAir Data) s Monitoring System in 9 of 12 runs. * ind	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452
M = R EMS : 25 20 15 10	Re eference = Continu :alculation .00 .00 .00 .00 .00 .00 .00 .00 .00	Confidence C t-Value lative Accurac Method (Clea ous Emissions are based c	Coefficient (CC) for 9 Data Sets <u>y (as % of RM)</u> nAir Data) the Monitoring System in 9 of 12 runs. * int	0.119 2.306 5.1% n (Marathon Petroleu dicates the excluded	Limit 20.0% m Company Data) runs.	090115 1452

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

		nterheate	r Stack – NO _X (I	b/MMBtu) RAT	A (USEPA 7E /	PS2)
Run No.	Start Time	Date (2015)	RM Data (lb/MMBtu)	CEMS Data (lb/MMBtu)	Difference (Ib/MMBtu)	Difference Percent
1	11:28	Jul 23	0.03	0.03	0,00	0.0%
2 *	12:03	Jul 23	0.03	0.03	0.00	0.0%
3	13:18	Jul 23	0.03	0.03	0.00	0.0%
4	14:51	Jul 23	0.03	0.03	0.00	0.0%
5*	15:24	Jul 23	0.02	0.03	-0.01	-50.0%
6	15:57	Jul 23	0.02	0.02	0.00	0.0%
7	16:28	Jul 23	0.02	0.02	0.00	0.0%
8	17:02	Jul 23	0.02	0.02	0.00	0.0%
9	17:41	Jul 23	0.02	0.02	0.00	0.0%
10	18:14	Jul 23	0.02	0.02	0.00	0.0%
11	18:58	Jul 23	0.02	0.02	0.00	0.0%
12	19:30	Jul 23	0.02	0.02	0.00	0.0%
	Average		0.02	0.02	0.00	0.0%
			Relative Acc	uracy Test Audit R	esults	
	Stan	dard Deviatio	on of Differences	0.000		
	Otun	Confidence	Coefficient (CC)	0.000		
		t-Value	for 10 Data Sets	2 262		
		(-vaiue	IOI TO Data Octa	2.202	Limit	
	_				Carine	
	Re	lative Accurs	nov (se % of RM)	0.0%	20.0%	
	Re Relative	lative Accura Accuracy (as	ecy (as % of RM)	0.0% 0.0%	20.0% 10.0%	
	Relative . Ap	lative Accura Accuracy (as pl. Std. = 0.0	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu	0.0% 0.0%	20.0% 10.0%	
RM = F CEMS	Relative Relative Ap Reference = Continu calculation	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio as are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * ir	0.0% 0.0%	20.0% 10.0% um Company Data)	090115 1452
RM = F CEMS RATA	Relative Ap Reference = Continu calculation	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio is are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * in	0.0% 0.0% n (Marathon Petrole ndicates the exclude	20.0% 10.0% um Company Data) ed runs.	090115 1452
RM = F CEMS RATA (((((Relative Ap Reference = Continu calculation 0.04 0.03	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio is are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * in	0.0% 0.0% n (Marathon Petrole ndicates the exclude	20.0% 10.0% um Company Data) ad runs.	090115 1452
RM = F CEMS RATA (((((((((((Relative Ap Reference = Continu calculation 0.04 0.03	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio is are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * in	0.0% 0.0% n (Marathon Petrole ndicates the exclude	20.0% 10.0% um Company Data) ed runs.	090115 1452
RM = F CEMS RATA (((((((((((((((((((Relative Ap Reference = Continu calculation 0.04 0.03 0.03 0.02 0.02 0.01	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio is are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * in	0.0% 0.0%	20.0% 10.0% um Company Data) ed runs.	090115 1452
RM = F CEMS RATA (((((((((((((((((((Relative Ap Reference = Continu calculation 0.04 0.03 0.03 0.02 0.01 0.01	lative Accura Accuracy (as pl. Std. = 0.0 Method (Cle ous Emissio is are based	acy (as % of RM) % of Appl. Std.) 5 lb/MMBtu anAir Data) ns Monitoring System on 10 of 12 runs. * in	0.0% 0.0%	20.0% 10.0% um Company Data) ad runs.	090115 1452

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

2-11

Run No.	Start Time	Date (2015)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	
1	11:28	Jul 23	0.00	0.00	0.00	
2 *	12:03	Jul 23	N/A	0.00	N/A	
3	13:18	Jul 23	0.14	0.00	0.14	
4	14:51	Jul 23	0.16	0.00	0.16	
5	15:24	Jul 23	0.00	0.00	0.00	
6	15:57	Jul 23	0.00	0.00	0.00	
7	16:28	Jul 23	0.00	0.00	0.00	
8	17:02	Jul 23	0.00	0.00	0.00	
9	17:41	Jul 23	0.00	0.00	0.00	
10 *	18:14	Jul 23	0.00	0.00	0.00	
11 *	18:58	Jul 23	0.16	0.00	0.16	
12	19:30	Jul 23	0.00	0.00	0.00	
	Average		0.03	0.00	0.03	
			Relative Acc	uracy Test Audit Re	esults	
	Stan	dard Deviation	of Differences	0.066		
		Confidence C	coefficient (CC)	0.051		
		t-Value	for 9 Data Sets	2.306		

CEMS = Continuous Emissions Monitoring System (Marathon Petroleum Company Data) RATA calculations are based on 9 of 12 runs. * indicates the excluded runs.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12783-2

2-12

				ble 2-9:		
	CCRI	nterneate	Stack – CO (Ib	/MMBtu) RATA	USEPA 1	0 / PS4A)
Run No.	Start Time	Date (2015)	RM Data (Ib/MMBtu)	CEMS Data (lb/MMBtu)	Differen (Ib/MMBt	ce tu)
1	11:28	Jul 23	0.000	0.000	0.0	00
2 *	12:03	Jul 23	N/A	0.000	N	/A
3	13:18	Jul 23	0.000	0.000	0.0	00
4	14:51	Jul 23	0.000	0.000	0.0	00
5	15:24	Jul 23	0.000	0.000	0.0	00
6	15:57	Jul 23	0.000	0.000	0.0	00
7	16:28	Jul 23	0.000	0.000	0.0	00
8	17:02	Jul 23	0.000	0.000	0.0	00
9	17:41	Jul 23	0.000	0.000	0.0	00
0 *	18:14	Jul 23	0.000	0.000	0.0	00
1	18:58	Jul 23	0.000	0.000	0.0	00
2	19:30	Jul 23	0.000	0.000	0.0	00
	Average	_	0.000	0.000	0.0	00
			Relative Acc	uracy Test Audit R	esults	
	Stan	dard Deviatio	n of Differences	0.000		
		Confidence	Coefficient (CC)	0.000		
		t-Value	for 10 Data Sets	2.262		
					Limit	
	Relative App	Accuracy (as I. Std. = 0.01	% of Appl. Std.) 3 lb/MMBtu	0.0%	5.0%	

CEMS = Continuous Emissions Monitoring System (Marathon Petroleum Company Data) RATA calculations are based on 10 of 12 runs. * indicates the excluded runs.

End of Section 2 – Results