CleanAir.

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

RECEIVED OCT 0 5 2015 AIR QUALITY DIV.

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP FCCU CHARGE HEATER STACK (SV11-H1) DETROIT REFINERY

> Client Reference No: 4100356132 CleanAir Project No: 12799 Revision 0: September 29, 2015

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Obuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537

Reviewed by,

Scott Lehmann Engineering Group Business Leader slehmann@cleanair.com (800) 627-0033 ext. 4660

RPTv4_6_8.dot 12799_Report_R0.doc 50282015 035000 12799

MICHIGAN DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENT AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Natural Resources and Environment, Air Quality Division upon request.

Source Name Marathon Petroleum Company	/ LP			County Wayne
Source Address 1300 South Fort Street			City	Detroit
AQD Source ID (SRN) A9831	ROP No.	MI-ROP-A9831- 2012b		ROP Section No. 01
Please check the appropriate hov(es):				
Annual Compliance Certification (Pursuant t	o Rule 213(4)	(c))		
 Reporting period (provide inclusive dates): I. During the entire reporting period, this sour term and condition of which is identified and in method(s) specified in the ROP. 2. During the entire reporting period this sour term and condition of which is identified and deviation report(s). The method used to determ unless otherwise indicated and described on the second deviation for More Frequent) Report Cert Reporting period (provide inclusive dates): Semi-Annual (or More Frequent) Report Cert Reporting period (provide inclusive dates): During the entire reporting period, ALL modeviations from these requirements or any other deviations from the deviations from these requirements deviating the deviations from these requiremen	From ce was in com cluded by this urce was in co included by th mine complian the enclosed de ification (Pur from nitoring and asso toring and asso for terms or cor	To pliance with ALL terms reference. The method mpliance with all terms is reference, EXCEPT ice for each term and co viation report(s). Suant to Rule 213(3)(co To ssociated recordkeeping r iditions occurred, EXCE	and co (s) use and co for the condition ()) g require equirem EPT for	nditions contained in the ROP, each d to determine compliance is/are the onditions contained in the ROP, each deviations identified on the enclosed in is the method specified in the ROP, ements in the ROP were met and no tents in the ROP were met and no the deviations identified on the
Other Report Certification Reporting period (provide inclusive dates): F Additional monitoring reports or other applicable Submittal of the FCCU Charge Heate August 4 & 5, 2015.	rom _10/2/ documents rec r emissior	2015 To 1 uired by the ROP are a us compliance and	.0/2/2 attachec RATA	015 as described: testing performed
I certify that, based on information and belief forme	ed after reasor	able inquiry. the state	ments a	and information in this report and the
supporting enclosures are true, accurate and complet	e MPC Invest	ment LLC, Portnor		
Mr. Dave Roland Name of Responsible Official (print or type)	Deputy Ass	i stant Secretary Title		313-843-9100 Phone Number

Signature of Responsible Official

* Photocopy this form as needed.

EQP 5736 (Rev 2-10)

Date

Client Reference No: 4100356132 CleanAir Project No: 12799

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit Refinery for relative accuracy test audit (RATA) and compliance purposes. Additional emission measurements were also made for diagnostic purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (EPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Thomas Gasloli – DEQ Medel Cendana – CleanAir

Test Program Parameters

The testing was performed at the FCCU Charge Heater Stack (Emission Unit ID No. EU11-FCCUCHARHTR-S1; Stack ID No. SV11-H1) on August 4-5, 2015, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - \circ methane (CH₄)
 - ethane (C_2H_6)
- carbon monoxide (CO)
- flue gas composition (e.g. O₂, CO₂, H₂O)
- flue gas flow rate

RECEIVED

OCT 0 5 2015

AIR QUALITY DIV.

1-1

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

	Table 1-1: Schedule of Activities							
Run Number	Location	Method	Analyte	Date	Start Time	End Time		
1	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/04/15	10:42	13:15		
2	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/04/15	14:17	16:34		
3	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/04/15	17:09	19:21		
4	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/05/15	09:20	11:34		
5	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/05/15	12:15	14:26		
6	FCCU Charge Heater Stack	USEPA Method 5	FPM	08/05/15	14:54	17:16		
1	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	10:37	10:58		
2	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	11:07	11:28		
3	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	11:40	12:01		
4	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	12:10	12:31		
5	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	12:41	13:02		
6	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	13:10	13:31		
7	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	13:41	14:02		
8	FCCU Charge Heater Stack	USEPA Method 3A/10	O2/CO2/CO	08/04/15	14:18	14:39		
9	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	15:00	15:21		
10	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	15:36	15:57		
11	FCCU Charge Heater Stack	USEPA Method 3A/10	O ₂ /CO ₂ /CO	08/04/15	16:06	16:27		
1	FCCU Charge Heater Stack	USEPA Method 3A/18/25A	O2/CO2/CH4/C2H6/THC	08/04/15	10:37	12:01		
2	FCCU Charge Heater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	08/04/15	12:10	13:31		
3	FCCU Charge Heater Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	08/04/15	13:41	15:21		

091515 162457

1-2

Client Reference No: 4100356132

CleanAir Project No: 12799

Client Reference No: 4100356132 CleanAir Project No: 12799

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-9.

Source			Average	
Constituent (units)	Fuel type	Sampling Method	Emission	Permit Limit
CCU Heater Stack				
PM (lb/MMBtu)	Refinery gas & Disulfide off-gas	USEPA 5	0.0027	N/A
VOC (lb/MMBtu)	Refinery gas & Disulfide off-gas	USEPA 18/25A	<5.2E-04	0.0055
CO (lb/MMBtu)	Refinery gas & Disulfide off-gas	USEPA 10	<0.0004	0.02
PM (Ib/MMBtu)	Refinery gas	USEPA 5	0.0015	0.0019

Table 1-3: Summary of RATA Results

<u>Source</u> Constituent (Units)	Reference Method (USEPA)	Applicable Specification	Relative Accuracy ¹	Specification Limit ²
FCCU Charge Heater Stack				
O ₂ (% dv)	3A	PS3	0.3	±1.0% dv
CO (lb/MMBtu)	10	PS4A ³	0.0	5% of Standard

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.).

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

³ For any sources emitting less than 200 ppmv of CO, PS4A applies. The PS4A RA limit is either < 10% of RM, < 5% of Standard, or ± 5 ppmv (abs. average difference plus 2.5 x confidence coefficient).</p>

Client Reference No: 4100356132 CleanAir Project No: 12799

Client Reference No: 4100356132 CleanAir Project No: 12799

1-5

PROJECT OVERVIEW

Reference method and facility RATA test run averages which were negative were treated as zero when calculating the relative accuracy.

The facility CEMS results as lb/MMBtu were calculated and provided by MPC along with all other applicable RATA and process data and can be found in Appendix H.

RM CO results from the RATA were used to demonstrate compliance with the permit limit. The final results were expressed as the average of the 11 valid RM RATA runs for CO. The final results were below the permit limit.

CleanAir measured CO drift-corrected concentrations which were negative and consequently below the assumed detection limit of 1% of the instrument calibration span for all test runs. The worst-case concentration results used to calculate mass-based emissions in regards to the emission compliance test is defined as some number "less than" 1% of the calibration span.

VOC Testing - USEPA Methods 25A and 18

VOC testing was performed concurrently with the RATA testing. Nine (9) 21-minute Method 25 test runs for THCs were performed concurrently with three (3) Method 18 bag collections for CH_4 and C_2H_6 , with each Method 18 sample collected over a period of about 63 minutes.

The Method 18 samples on the FCCU Charge Heater were collected as follows:

- Method 18 Run 1: Collected during Method 25A Runs 1, 2 and 3
- Method 18 Run 2: Collected during Method 25A Runs 4, 5 and 6
- Method 18 Run 3: Collected during Method 25A Runs 7, 8 and 9

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (lb/MMBtu for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction was made to the THC results. Therefore, VOC emissions are equivalent to THC emissions. The final results were expressed as the average of three (3) valid runs and were below the permit limit.

PROJECT OVERVIEW

Fuel Analysis & Calculation of Final Results

Testing on August 5, 2015, occurred with the unit firing refinery gas only; MPC provided CleanAir with a refinery gas analysis corresponding to the date of testing. An oxygen-based fuel factor (F_d) for refinery gas was calculated per USEPA Method 19 specifications, from percent volume composition analytical data included in the fuel gas analysis and tabulated heating values for each of the measured constituents. The calculated F_d was used to convert emission results in units of dry volume-based concentration (lb/dscf) to units of pounds per million Btu (lb/MMBtu).

Testing on August 4, 2015, occurred with the unit firing refinery gas and disulfide offgas. When the unit utilizes both of these gases, natural gas must also be added to the fuel stream. MPC provided CleanAir with a gas analysis for refinery gas (sampled August 4, 2015), disulfide off-gas (sampled August 4, 2015), and natural gas (sampled August 13, 2015).

MPC also provided CleanAir with fuel flow rates for all 3 gases for the duration of each test run. The fuel flow rates for refinery gas and disulfide off-gas was corrected by MPC based on a meter correction factor, and the fuel flow rate for natural gas was estimated by MPC.

An F_d for refinery gas and disulfide off-gas was calculated in the same manner as outlined on the previous page. A default F_d for natural gas was utilized and obtained from USEPA Method 19, Table 19-2. Heat input was calculated using the respective F_d and fuel flow rate for each fuel. A combined F_d for each test run was calculated utilizing the fraction of total heat input for each fuel. The calculated combined F_d was used to convert emission results in units of dry volume-based concentration (lb/dscf and ppmdv) to units of lb/MMBtu.

End of Section 1 – Project Overview

Client Reference No: 4100356132 CleanAir Project No: 12799

Client Reference No: 4100356132 CleanAir Project No: 12799

RES	ULTS				
	Tal	ole 2-1:			
	FCCU Charge Heater Stack – Ru	uns 1-3 – FPM Em	nissions (U	ISEPA 5)	
Run No).	1	2	3	Average
Date (2	015)	Aug 4	Aug 4	Aug 4	
Start Ti	me (approx.)	10:42	14:17	17:09	
Stop Ti	me (approx.)	13:15	16:34	19:21	
Proces	s Conditions				
Rp	FCC charge rate (BPD)	38.003	37,986	38.000	37,996
P₁	Refinery gas flow rate (Mscf/day)	1,556	1,543	1,515	1,538
P ₂	Disulfide off-gas flow rate (Mscf/day)	111	110	111	110
P ₃	Natural gas flow rate (Mscf/day)	37	37	37	37
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,341	8,345	8,346	8,344
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O_2	Oxygen (dry volume %)	3.2	3.1	3.3	3.2
CO_2	Carbon dioxide (dry volume %)	10.2	10.6	10.6	10.5
Ts	Sample temperature (°F)	526	525	519	523
Bw	Actual water vapor in gas (% by volume)	16.5	16.8	16.2	16.5
Gas Flo	ow Rate				
Q_a	Volumetric flow rate, actual (acfm)	39,700	37,900	37,600	38,400
Q_s	Volumetric flow rate, standard (scfm)	20,700	19,900	19,800	20,100
Q_{std}	Volumetric flow rate, dry standard (dscfm)	17,300	16,500	16,600	16,800
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	64.01	61.96	61.52	62.50
%1	Isokinetic sampling (%)	98.8	100.3	99.3	99.4
Labora	tory Data				
mn	Total FPM (g)	0.00719	0.00825	0.00798	
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A	
DLC	Detection level classification	ADL.	ADL	ADL	
FPM Re	esults				
C_{sd}	Particulate Concentration (lb/dscf)	2.48E-07	2.94E-07	2.86E-07	2.76E-07
E _{lb/hr}	Particulate Rate (lb/hr)	0.257	0.291	0.284	0.278
Ет/уг	Particulate Rate (Ton/yr)	1.13	1.27	1.25	1.22
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00244	0.00288	0.00283	0.00272

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

092115 144637

2-1

Client Reference No: 4100356132 CleanAir Project No: 12799

2-2

FC	CU Ch	arge Heater Stack	Tal – Runs 1-	ble 2-2: 3 – Uncertainty A	nalysis – I	FPM (USEPA 5)
· · · · · · · · · · · · · · · · · · ·		FPM Results (lb/dscf)	FPM Results (lb/hr)			FPM Results (Ib/MMBtu)
Method		5		5		5
Run No.	1	2.48E-07	1	0.257	1	0.00244
	2	2.94E-07	2	0.291	2	0.00288
	3	2.86E-07	3	0.284	3	0.00283
SD		2.46E-08		0.0178		2.41E-04
٩VG		2.76E-07		0.278		0.00272
RSD		8.9%		6.4%		8.9%
N		3		3		3
SE		1.42E-08		0.0103		1.39E-04
RSE		5.2%		3.7%		5.1%
P		95.0%		95.0%		95.0%
TINV		4.303		4.30		4.303
CI +		3.37E-07		0.322		0.00331
AVG		2.76E-07		0.278		0.00272
CI -		2.15E-07		0.233		0.00212
TB +		4.64E-07		0.414		0.00456

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100356132 CleanAir Project No: 12799

RESULTS							
	Tab FCCU Charge Heater Stack – Ru	le 2-3: ns 4-6 – FPM En	nissions (U	SEPA 5)			
Run No	».	4	5	6	Average		
Date (2	015)	Aug 5	Aug 5	Aua 5			
Start Ti	me (approx.)	09:20	12:15	14:54			
Stop Ti	me (approx.)	11:34	14:26	17:16			
Proces	s Conditions						
P ₁	Refinery gas flow rate (Mscf/day)	1,552	1,561	1,550	1,554		
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,308	8,308	8,308	8,308		
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760		
Gas Co	nditions						
O ₂	Oxygen (dry volume %)	3.5	3.2	3.6	3.4		
CO2	Carbon dioxide (dry volume %)	10.4	10.4	10.2	10.3		
Ts	Sample temperature (°F)	528	527	525	527		
B _w	Actual water vapor in gas (% by volume)	16.6	16.5	16.4	16.5		
Gas Flo	ow Rate						
Qa	Volumetric flow rate, actual (acfm)	38,200	37,900	38,900	38,300		
Q_s	Volumetric flow rate, standard (scfm)	20,000	19,900	20,400	20,100		
Q _{std}	Volumetric flow rate, dry standard (dscfm)	16,700	16,600	17,100	16,800		
Sampli	ng Data						
Vmstd	Volume metered, standard (dscf)	63.00	62.11	63.51	62.87		
%	lsokinetic sampling (%)	100.8	100.1	99.4	100.1		
Labora	tory Data						
mo	Total FPM (g)	0.00453	0.00432	0.00393			
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A			
DLC	Detection level classification	ADL	ADL	ADL			
FPM R	esults						
C _{sd}	Particulate Concentration (lb/dscf)	1.59E-07	1.53E-07	1.36E-07	1.49E-07		
E _{lb/hr}	Particulate Rate (lb/hr)	0.159	0.153	0.140	0.151		
E _{T/yr}	Particulate Rate (Ton/yr)	0.696	0.669	0.613	0.659		
E _{Fd}	Particulate Rate - F _d -based (Ib/MMBtu)	0.00158	0.00150	0.00137	0.00149		

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Method

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12799

2-4

RESULTS Table 2-4: FCCU Charge Heater Stack – Runs 4-6 – Uncertainty Analysis – FPM (USEPA 5) **FPM Results FPM Results** FPM Results (lb/dscf) (lb/hr) (ib/MMBtu) 5 5 5 1 1.59E-07 1 0.159 1 0.00158 2 2 1.53E-07 0.153 2 3 1.36E-07 3 0.140 0.00137 3

Run No. 0.00150 SD 1.16E-08 0.0097 1.07E-04 AVG 1.49E-07 0.00148 0.151 RSD 7.7% 6.5% 7.2% N 3 3 3 SE 6.67E-09 0.0056 6.19E-05 RSE 4.5% 3.7% 4.2% 95.0% P 95.0% 95.0% TINV 4.303 4.303 4.30 CI + 1.78E-07 0.175 0.00175 AVG 1.49E-07 0.151 0.00148 CI -1.21E-07 0.126 0.00122 TB + 2.38E-07 0.225 0.00230

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100356132 CleanAir Project No: 12799

080410 154528

RESULTS

2-5

Table 2-5:
FCCU Charge Heater Stack – THC, CH ₄ , C ₂ H ₆ & VOC Emissions (USEPA 25A/18)

Run No	·		2	3	Average
Date (20	015)	Aug 4	Aug 4	Aug 4	
Start Tir	ne (approx.)	10:37	12:10	13:41	
Stop Tir	ne (approx.)	12:01	13:31	15:21	
Process	s Conditions				
R _P	FCC charge rate (BPD)	38,000	38,007	37,993	38,000
P ₁	Refinery gas flow rate (Mscf/day)	1,555	1,558	1,541	1,551
P_2	Disulfide off-gas flow rate (Mscf/day)	111	110	110	110
P ₃	Natural gas flow rate (Mscf/day)	37	37	37	37
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,341	8,345	8,345	8,344
Gas Co	nditions				
O_2	Oxygen (dry volume %)	2.9	2.8	2.9	2.9
CO2	Carbon dioxide (dry volume %)	10.7	10.8	10.8	10.8
Bw	Actual water vapor in gas (% by volume)1	16.5	16.5	16.8	16.6
THC Re	sults				
C_{sd}	Concentration (ppmdv as C ₃ H ₈)	<0.501	<0.417	<0.501	<0.473
C_{sd}	Concentration (lb/dscf)	<5.74E-08	<4.77E-08	<5.74E-08	<5.42E-08
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	<5.55E-04	<4.60E-04	<5.55E-04	<5.23E-04
Methan	e Results				
\mathbf{C}_{sd}	Concentration (ppmdv)	<0.124	<0.124	<0.124	<0.124
C_{sd}	Concentration (lb/dscf)	<5.16E-09	<5.16E-09	<5.16E-09	<5.16E-09
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	<5.00E-05	<4.97E-05	<5.00E-05	<4.99E-05
Ethane	Results				
C_{sd}	Concentration (ppmdv)	<0.0826	<0.0826	<0.0826	<0.0826
C_{sd}	Concentration (lb/dscf)	<6.45E-09	<6.45E-09	<6.45E-09	<6.45E-09
E_{Fd}	Emission Rate - F _d -based (lb/MMBtu)	<6.24E-05	<6.21E-05	<6.24E-05	<6.23E-05
VOC Re	sults				
EFđ	Emission Rate - F _d -based (lb/MMBtu)	<5.55E-04	<4.60E-04	<5.55E-04	<5.23E-04

Average includes 3 runs.

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5 runs.

For THC, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory. For VOCs, '<' indicates at least one non-detectable fraction was used in the calculations. '<' values for methane and ethane are treated as the entire value of the analytical detection limit.

For all calcuated averages, "<" values are treated as the entire value of the detection limit.

Client Reference No: 4100356132 CleanAir Project No: 12799

RESULTS

2-6

		Table	2-6:		Table 2-6:							
	FCCU Charge He	ater Stack ·	– CO Emi	ssions (L	ISEPA 10)						
Run No		1	2	3	4	5	6					
Date (20	15)	Aug 4	Aug 4	Aug 4	Aug 4	Aug 4	Aug 4					
Start Tin	ne (approx.)	10:37	11:07	11:40	12:10	12:41	13:10					
Stop Tin	ie (approx.)	10:58	11:28	12:01	12:31	13:02	13:31					
Process	Conditions											
R _P	FCC charge rate (BPD)	37,996	38,012	37,997	37,994	38,027	38,014					
P1	Refinery gas flow rate (Mscf/day)	1,561	1,554	1,552	1,557	1,564	1,558					
P2	Disulfide off-gas flow rate (Mscf/day)	111	111	111	111	111	109					
P3	Natural gas flow rate (Mscf/day)	37	37	37	37	37	37					
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,341	8,345	8,345	8,345	8,345	8,345					
Gas Co	nditions											
O ₂	Oxygen (dry volume %)	2.9	2.9	2.8	2.8	2.8	2.8					
CO2	Carbon dioxide (dry volume %)	10.7	10.7	10.8	10.8	10.8	10.8					
Carbon	Monoxide Results											
C _{sd}	Concentration (ppmdv)	<0.489	<0.489	<0.489	<0.489	<0.489	<0.489					
C _{sd-x}	Concentration @ 0% O2 (ppmdv)	< 0.568	< 0.567	< 0.566	< 0.564	< 0.564	< 0.564					
C_{sd}	Concentration (lb/dscf)	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08	<3.55E-08					
E _{₽d}	Emission Rate - F _d -based (lb/MMBtu)	<3.45E-04	<3.44E-04	<3.43E-04	<3.42E-04	<3.42E-04	<3.42E-04					
	······································											

Run No	·	7	8	9	10	11	Average
Date (20	015)	Aug 4	Aug 4	Aug 4	Aug 4	Aug 4	
Start Tin	ne (approx.)	13:41	14:18	15:00	15:36	16:06	
Stop Tin	ne (approx.)	14:02	14:39	15:21	15:57	16:27	
Process	s Conditions						
R _P	FCC charge rate (BPD)	38,004	37,953	38,017	37,986	37,991	37,999
P۱	Refinery gas flow rate (Mscf/day)	1,546	1,545	1,538	1,537	1,551	1,551
P ₂	Disulfide off-gas flow rate (Mscf/day)	110	110	110	110	110	110
P ₃	Natural gas flow rate (Mscf/day)	37	37	37	37	37	37
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,345	8,345	8,345	8,345	8,345	8,345
Gas Co	nditions						
O2	Oxygen (dry volume %)	2.9	2.9	2.8	2.8	2.9	2.8
CO_2	Carbon dioxide (dry volume %)	10.8	10.8	10.8	10.9	10.7	10.8
Carbon	Monoxide Results						
C _{sd}	Concentration (ppmdv)	<0.489	<0.489	1.19	<0.489	<0.489	<0.552
C _{sd-x}	Concentration @ 0% O2 (ppmdv)	< 0.567	< 0.568	1.37	< 0.564	< 0.567	<0.639
C_{sd}	Concentration (lb/dscf)	<3.55E-08	<3.55E-08	8.62E-08	<3.55E-08	<3.55E-08	<4.02E-08
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<3.44E-04	<3.45E-04	8.33E-04	<3,42E-04	<3.44E-04	<3.88E-04

Average includes 11 runs.

For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

For all calcuated averages, "<" values are treated as the entire value of the detection limit.

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12799

			-			
Run No.	Start Time	Date (2015)	RM Data (%dv)	CEMS Data (%dv)	Difference (%dv)	Differen Perce
4	10.37	Aug	2.02	2.21	0.20	12 /
י ר	11.07	Aug 4	2.92	3.31	-0.39	-10.4
2	11.07	Aug 4	2.09	3.20	-0.30	-12.0
4	12.10		2.05	3.10	-0.31	-10.8
5	12.10		2,79	3.14	-0.30	-12.0
6	13:10		2.79	3 14	-0.35	-12.0
7*	13:41		2.88	3.29	-0.30	-12.0
, 8	14.18	Aura 4	2.00	3.20	-0.28	-9.6
g *	15.00		2.84	3.31	-0.47	-16.5
10	15:36	Aug 4	2.78	3.15	-0.37	-13.3
11	16:06	Aug 4	2.86	3.21	-0.35	-12.2
	Average		2.84	3.19	-0.35	-12.2
			Relative A	ccuracy Test Audi	t Results	
	Stan	dard Devia	ation of Differences	0.033		
		Confiden	ce Coefficient (CC)	0.025		
		Confiden t-Va	ce Coefficient (CC) lue for 9 Data Sets	0.025 2.306		
		Confidend t-Va	ce Coefficient (CC) lue for 9 Data Sets	0.025 2.306	Limit	
RM = R CEMS	teference = Continu	Confidend t-Va Av Method (C ous Emiss	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) ZeanAir Data) iions Monitoring Syst	0.025 2.306 0.347 em (Marathon Petro	Limit 1.0 Dieum Company Data)	092215 11
RM = R CEMS RATA d	eference = Continu calculation	Confidence t-Va Av Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) cions Monitoring Syste ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 bleum Company Data) led runs.	092215 11
RM = R CEMS RATA d	Reference = Continu calculation	Confidence t-Va Au Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Systed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 11
RM = R CEMS RATA d 3 3	Reference = Continu calculation 3.50	Confidence t-Va Au Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) clons Monitoring Syst ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 oleum Company Data) ded runs.	092215 11
RM = R CEMS RATA d 3 3	Reference = Continu calculation 3.50	Confidence t-Va An Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) cions Monitoring Syst ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 17
RM = R CEMS RATA d 3 3 2	Reference = Continu calculation 3.50	Confidence t-Va Av Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) Sions Monitoring Syste ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Dleum Company Data) Jed runs.	092215 11
RM = R CEMS RATA d 3 3 2 2	Reference = Continu calculation 3.50 3.00	Confidence t-Va Au Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Systentiation of the set of t	0.025 2.306 0.347 em (Marathon Petro indicates the excluc	Limit 1.0 oleum Company Data) ded runs.	092215 11
RM = R CEMS RATA d 3 3 2 2 2	Reference = Continu calculation 3.50 3.00	Confidence t-Va An Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Syst ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 17
RM = R CEMS RATA o 3 3 2 2 2	Reference = Continu calculation 3.50 3.00 2.50	Confidence t-Va Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) cions Monitoring Syst ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 11
RM = R CEMS RATA c 3 3 2 2 2 1	Reference = Continu calculation 3.50 3.50 2.50 2.50 .50	Confidence t-Va Av Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Syste ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Dleum Company Data) Jed runs.	092215 11
RM = R CEMS RATA d 3 3 2 2 2 1 1	Reference = Continu calculation 3.50 3.00 2.50 2.00	Confidence t-Va Au Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Systed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the excluc	Limit 1.0 Delum Company Data) ded runs.	092215 11
RM = R CEMS RATA d 3 3 2 2 2 1 1	Reference = Continu calculation 3.50 3.00 2.50 .50 .50 .50	Confidence t-Va Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) ions Monitoring Syst ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 11
RM = R CEMS RATA o 3 2 2 2 1 1 1 0	Reference = Continu calculation 3.50 3.00 2.50 2.50 .50 .50 .50 .50 .50 .50 .50 .50	Confidence t-Va Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) Sions Monitoring Systed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) ded runs.	092215 11
RM = R CEMS RATA o 3 3 2 2 1 1 1 0	Reference = Continu calculation 3.50 3.60 2.50 .00 .50 .00 .50 .50	Confidence t-Va Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) cions Monitoring Systed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Deum Company Data) Jed runs.	092215 11
RM = R CEMS RATA d 3 3 3 2 2 2 1 1 1 0 0 0	Reference = Continu calculation 3.50 3.50 2.50 2.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .00 .50 .00	Confidence t-Va Method (C ous Emiss ns are base	ce Coefficient (CC) lue for 9 Data Sets /g. Abs. Diff. (%dv) CleanAir Data) isions Monitoring Syste ed on 9 of 11 runs. *	0.025 2.306 0.347 em (Marathon Petro indicates the exclud	Limit 1.0 Delum Company Data) ded runs.	092215 11

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12799

092215 114208

Table 2-8: FCCU Charge Heater Stack – CO (ppmdv) RATA (USEPA 7E / PS2)						
Run No.	Start Time	Date (2015)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	
1	10:37	Aug 4	0.00	2.67	-2.67	
2	11:07	Aug 4	0.00	2.74	-2.74	
3	11:40	Aug 4	0.00	2,69	-2.69	
4	12:10	Aug 4	0.00	2.70	-2.70	
5	12:41	Aug 4	0.00	2.83	-2.83	
6	13:10	Aug 4	0.00	2.82	-2.82	
7	13:41	Aug 4	0.00	2.67	-2.67	
8	14:18	Aug 4	0,00	2.79	-2.79	
9	15:00	Aug 4	1.19	2.85	-1.66	
0	15:36	Aug 4	0.00	2.74	-2.74	
1	16:06	Aug 4	0.00	2.66	-2.66	
-	Average		0.11	2.74	-2.63	
			Relative Acc	uracy Test Audit R	esults	
Standard Deviation of Differences				0.329		
Confidence Coefficient (CC)				0.221		
t-Value for 11 Data Sets			or 11 Data Sets	2.228		
					Limit	
		Avg. Abs. Diff.	+ CC (ppmdv)	2.85	5.0	

RM = Reference Method (CleanAir Data)

CEMS = Continuous Emissions Monitoring System (Marathon Petroleum Company Data) RATA calculations are based on all 11 runs. 2-8

CleanAir

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12799

2-9

Table 2-9:								
FCCU Charge Heater Stack – CO (lb/MMBtu) RATA (USEPA 7E / PS2)								
Run	Start	Date	RM Data	CEMS Data	Difference			
No.	Time	(2015)	(lb/MMBtu)	(lb/MMBtu)	(lb/MMBtu)			
1	10:37	Aug 4	0.00	0.00	0.00			
2	11:07	Aug 4	0.00	0.00	0.00			
3	11:40	Aug 4	0.00	0.00	0.00			
4	12:10	Aug 4	0.00	0.00	0.00			
5	12:41	Aug 4	0.00	0.00	0.00			
6	13:10	Aug 4	0.00	0.00	0.00			
7	13:41	Aug 4	0.00	0.00	0.00			
8	14:18	Aug 4	0.00	0.00	0.00			
9	15:00	Aug 4	0.00	0.00	0.00			
10	15:36	Aug 4	0.00	0.00	0.00			
11	16:06	Aug 4	0.00	0.00	0.00			
	Average		0.00	0.00	0.00			
			Relative Acc	uracy Test Audit R	esults			
Standard Deviation of Differences				0.000				
Confidence Coefficient (CC)				0.000				
t-Value for 11 Data Sets				2.228				
					Limit			
Relative Accuracy (as % of Appl. Std.)				0.0%	5.0%			
	Ap	pl. Std. = 0.0	2 lb/MMBtu					

RATA calculations are based on all 11 runs.

End of Section 2 - Results