CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

RECEIVED

NOV 0 2 2015

REPORT ON COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

FCCU REGENERATOR STACK (SVFCCU)

Client Reference No: 4100356132 CleanAir Project No: 12806 Revision 0: October 28, 2015

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Øbuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Scott Lehmann Engineering Group Business Leader slehmann@cleanair.com (800) 627-0033 ext. 4660

RPTv4_6_8.dot 12806_Report_R0.doc 22272015 032200 12806 (_____

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

PROJECT OVERVIEW	1-1
INTRODUCTION Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit Refinery for compliance purposes.	
All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.	
Key Project Participants	
Individuals responsible for coordinating and conducting the test program were:	
Crystal Davis – MPC	
Joe Reidy – MPC Thomas Gasloli – Michigan DEQ	
Chad Eilering – CleanAir	
Test Program Parameters	
The testing was performed at the FCCU Regenerator Stack (Emission Unit ID No.	
EU11-FCCU-S1; Stack ID No. SVFCCU) on August 11-12, 2015 and September 1, 2015, and included the following emissions measurements:	
• particulate matter (PM), assumed equivalent to non-sulfate filterable particulate	
 matter (NSFPM) total particulate matter less than or equal to 10 microns (μm) in diameter (Total 	
 PM₁₀), assumed equivalent to the sum of the following constituents: non-sulfate filterable particulate matter (NSFPM) 	
 non-sulfate filterable particulate matter (NSFPM) condensable particulate matter (CPM) 	
 sulfuric acid (H₂SO₄) ammonia (NH₃) 	
• volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons	
 (THC) minus the following constituents: methane (CH₄) 	
• ethane (C_2H_6)	
 flue gas composition (e.g., O₂, CO₂, H₂O) flue gas flow rate 	
flue gas velocity decay (wall effects) RECEIVED	
NOV 0 2 2015	
AIR QUALITY DIV.	

Client Reference No: 4100356132 CleanAir Project No: 12806

1-2

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1:

Run Number	Location	Method	Analyte	Date	Start Time	End <u>Ti</u> me
1	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	08/11/15	14:36	15:53
2	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	08/11/15	18:31	19:47
3	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	08/12/15	09:20	10:38
1	FCCU Regenerator Stack	USEPA CTM-027	NH ₃	08/11/15	14:36	15:53
2	FCCU Regenerator Stack	USEPA CTM-027	NH3	08/11/15	18:31	19:47
3	FCCU Regenerator Stack	USEPA CTM-027	NH_3	08/12/15	09:20	10:38
0	FCCU Regenerator Stack	Draft ASTM CCM	Sulfuric Acid	08/12/15	14:26	15:26
1	FCCU Regenerator Stack	Draft ASTM CCM	Sulfuric Acid	08/12/15	16: 1 8	17:24
2	FCCU Regenerator Stack	Draft ASTM CCM	Sulfuric Acid	08/12/15	18:14	19:14
3	FCCU Regenerator Stack	Draft ASTM CCM	Sulfuric Acid	08/12/15	19:51	20:5
1	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O2/CO2/CH4/C2H6/THC	08/11/15	14:37	15:5:
2	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₅ /THC	08/11/15	18:32	19:49
3	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	08/12/15	09:17	10:3
1	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/11/15	10:35	10:4
2	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/11/15	16:32	16:50
3	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/11/15	20:17	20:34
4	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/12/15	08:17	08:3
5	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/12/15	11:06	11:2
6	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/12/15	16:41	17:00
7	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/12/15	18:28	18:48
8	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	08/12/15	19:56	20:10
4	FCCU Regnerator Stack	USEPA Method 5F/202	NSFPM/CPM	09/01/15	09:37	11.0
5	FCCU Regnerator Stack	USEPA Method 5F/202	NSFPM/CPM	09/01/15	13:01	14:12
6	FCCU Regnerator Stack	USEPA Method 5F/202	NSFPM/CPM	09/01/15	16:07	17:2
4	FCCU Regenerator Stack	USEPA CTM-027	NH ₃	09/01/15	09:37	11:0
5	FCCU Regenerator Stack	USEPA CTM-027	NH ₃	09/01/15	13:01	14:1
6	FCCU Regenerator Stack	USEPA CTM-027	NH3	09/01/15	16:07	17:23
9	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	09/01/15	07:54	08:11
10	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	09/01/15	11:40	12:0:
11	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	09/01/15	14:40	15:0
12	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	09/01/15	17:41	18:0

100115 163118

Client Reference No: 4100356132 CleanAir Project No: 12806

PROJECT OVERVIEW

Results Summary

Tables 1-2 through 1-4 and Figures 1-1 through 1-2 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-5.

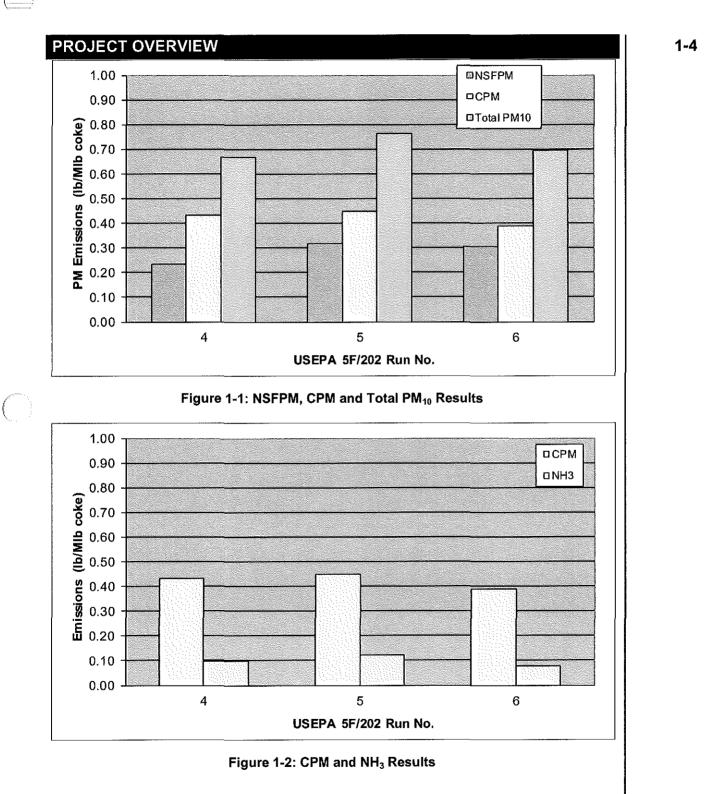
Table 1-2:

FCCU Regenerator Stack			NSFPM Rate	CPM Rate	Total PM ₁₀ Rate
			(lb/Mib coke)	(lb/Mlb coke)	(ib/MIb coke)
Mobilization 2: 9/1/15					
Coke Burn Rate (Ib/hr)	22,835	Run 4	0.233	0.433	0.666
FCC Rate (bpd)	40,990	Run 5	0.316	0.448	0.764
Aqueous NH ₃ Injection (lb/hr)	29.1	Run 6	0.306	0.388	0.695
ESP Operation	Both/LPR	Average	0.285	0.423	0.708
		Limit	0.8		1.1

Note: Results from Runs 1-3 can be found in Appendix C.

Table 1-3: Summary of NH₃ Results (USEPA CTM-027)

FCCU Regenerator Stack		_	NH ₃ Conc.	NH ₃ Slip	NH₃ Slip
			(ppmdv)	(lb/hr)	(Ib/Mib coke)
Mobilization 2: 9/1/15				-	
Coke Burn Rate (Ib /hr)	22,835	Run 4	12.0	2.20	0.096
FCC Rate (bpd)	40,990	Run 5	14.5	2.72	0.120
Aqueous NH ₃ Injection (lb/hr)	29.1	Run 6	8.94	1.74	0.076
ESP Operation	Both/LPR	Average	11.8	2.22	0.097


Note: Results from Runs 1-3 can be found in Appendix C.

10/27/2015 14:5B

10/27/2015 14:58

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

Client Reference No: 4100356132 CleanAir Project No: 12806

100915 125937

PROJECT OVERVIEW

Table 1-4: Summary of H ₂ SO ₄ and VOC Results (Draft ASTM CCM & USEPA 18/25A)								
Source Constituent	(Units)	Sampling Method	Average Emission	Permit Limit ¹				
FCCU Regenerato H₂SO₄	<u>or Stack</u> (lb/Mlb coke)	Draft ASTM CCM	0.011	N/A				
VOC VOC	(Ton/yr) (Ib/MIb coke)	USEPA 25A / 18 USEPA 25A / 18	4.8 0.048	21 N/A				

¹ Permit limit obtained from MDEQ Permit To Install No. 63-08D.

Discussion of Test Program

Flow Rate Measurements

A wall-effects correction factor (WEF) was determined per Method 2H prior to the start of the first test run for each mobilization.

3-D flow traverses per Method 2F were performed before and after each Method 5F/202, Method 3A/18/25A, and CTM-027 test runs and during each Draft ASTM CCM test runs.

The data acquisition system did not accurately record the temperature readings for Method 2F traverses 1 through 8. Instead, the temperature measurements from the respective traverse points were obtained from the nearest Method 5F/202 test run.

NSFPM and CPM Testing - USEPA Method 5F/202

For this test program, PM emission rate is assumed equivalent to NSFPM emission rate and PM_{10} emission rate is assumed equivalent to the sum of NSFPM and CPM emission rates (units of lb/hr, Ton/yr, or lb/Mlb coke for all constituents). For emissions inventory purposes, MPC applies a correction factor to NSFPM to eliminate particles with a diameter less than 10 microns. Application of that correction factor is not included in this test report.

Three (3) 60-minute Method 5F/202 test runs were performed during the first mobilization on August 11-12, 2015. Following Run 3, the front half of the Method 5F filter holder was inadvertently rinsed into a sample container which already contained the probe liner rinse from the Run 3 CTM-027 sample train. The reagent used for both of these rinses was deionized water.

1-5

Client Reference No: 4100356132 CleanAir Project No: 12806

PROJECT OVERVIEW

During analysis, the laboratory performed an additional gravimetric analysis on this "combined" sample. The "combined" sample results were added to the results of the remaining front half rinse (probe liner and nozzle) which was recovered properly. This approach would yield a worst-case scenario as it would also contain particulate present in the CTM-027 liner rinse sample.

The Method 202 Run 3 inorganic rinse was found to contain a foreign object which is believed to be a glass chip. This object became introduced into the sample during the recovery of the sample train glassware while on-site. The final analysis weight used to calculate the results included the foreign object. This would yield a worst-case scenario as it would contain a fragment that was not representative of the flue gas sampled.

The final results from the first mobilization, Runs 1 through 3, can be found in Appendix C.

Based on the above occurrences, a second mobilization followed in which three (3) 60minute Method 5F/202 test runs were performed on September 1, 2015. A fourth Method 5F/202 test run was started on September 2, 2015; however, it was aborted after approximately 30-minutes because the FCCU was unable to maintain the necessary operating rate. The contents of this sample train were recovered, and the samples were archived without analysis.

The final results from the second mobilization were expressed as the average of three (3) test runs, Runs 4 through 6.

The analytical procedures in EPA Method 202 include an ammonium titration of the inorganic sample fractions with pH less than 7.0 to neutralize acids with hygroscopic properties such as H_2SO_4 that may be present in the sample. This step speeds up the sample desiccation process and allows the samples to come to a constant weight prior to weighing. The weight of ammonium added to the sample as a result of the titration is subtracted from the analytical result.

The laboratory performing the gravimetric analysis (Clean Air Analytical Services) has determined that only samples with an initial pH less than 4.5 require a significant amount of ammonium neutralization, resulting in a correction in excess of 0.5 mg. Based on this observation, the laboratory has altered their procedures. Only samples with a pH lower than 4.5 are titrated.

All of the inorganic sample fractions from Runs 1 through 6 had a pH less than 4.5 and were titrated. The field train reagent blanks had a pH above 4.5 and were not titrated. The sample fractions were observed to come to a constant weight without having to titrate the sample.

1-6

Client Reference No: 4100356132 CleanAir Project No: 12806

PROJECT OVERVIEW

NH₃ Testing – USEPA CTM-027 - Stack

Three (3) 60-minute CTM-027 test runs were performed during the first mobilization on August 8-11, 2015. Each test run was performed concurrently with Method 5F/202 testing.

While removing the sample probe from the duct following Run 1, the sample probe liner cracked. The Run 1 post-test leak rate exceeded the allowable limit because the cracked liner disallowed for a leak-tight seal. Based on the consistent O_2/CO_2 and moisture measured during the test run it is believed that the results from Run 1 are accurate.

The final results from the first mobilization, Runs 1 through 3, can be found in Appendix C.

A portion of the sample from Run 3 became compromised when it was combined with a portion of the Run 3 Method 5F samples as outlined earlier. The final result for CTM-027 Run 3 does not include the probe liner rinse which was instead analyzed and evaporated with the combined Run 3 Method 5F sample.

Three (3) 60-minute CTM-027 test runs were performed during the second mobilization on September 1, 2015. A fourth CTM-027 test run was started on September 2, 2015, however, it was aborted after approximately 30-minutes because the FCCU was unable to maintain the necessary operating rate. The contents of this sample train were recovered, and the samples were archived without analysis.

The final results from the second mobilization were expressed as the average of three (3) test runs, Runs 4 through 6.

H₂SO₄ Testing - Draft ASTM Controlled Condensation Method

Prior to the first official test run on August 12, 2015, a 60-minute sample conditioning run was performed in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H_2SO_4 -collecting portion of the sample train). The conditioning run was recovered and analyzed in the same manner as the official test runs, but was not included in the final results.

Following the conditioning run on August 12, 2015, three (3) official 60-minute test runs were performed. The final results were expressed as the average of three (3) official runs.

1-7

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

PROJECT OVERVIEW

VOC Testing - USEPA Method 25A and Method 18

Three (3) approximately 60-minute Method 25 test runs for THC were performed concurrently with three (3) approximately 60-minute Method 18 bag collections for CH_4 and C_2H_6 . Two (2) test runs were performed on August 11, 2015, and one (1) test run was performed on August 12, 2015.

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 , and C_2H_6 emission rate (units of lb/hr, Ton/yr, or lb/MMBtu for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction was made to the THC results. Therefore, VOC emissions are equivalent to THC emissions. The final VOC results were expressed as the average of three (3) runs.

Calculation of Final Results

Sample flow rates as determined by EPA Method 2 without the WEF corrections factor were used to calculate isokinetic sampling conditions.

Mass-based emission rates in units of pounds per hour (lb/hr) for Method 5F/202, Method 18/25A, and CTM-027 were calculated using the average (pre-run and post run) flow rate determined by Method 2F combined with the respective WEF correction factor. Mass-based emission rates in units of pounds per hour (lb/hr) for Draft ASTM CMM were calculated using the concurrently measured flow rate determined by Method 2F combined with the respective WEF correction factor.

Emission rates in units of tons per year (Ton/yr) were calculated using an assumed capacity factor of 8,760 operating hours per year. Emission rates in units of pounds per 1,000 pounds of coke burn (lb/Mlb coke) were calculated using coke burn rate data provided by MPC.

Ammonia (NH_3) injection rates shown in Tables 2-1 through 2-4 and Tables 2-6 through 2-7 is the aqueous ammonia, (11FC2032), times 0.2.

End of Section 1 – Project Overview

Revision 0, Final Report

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

RESULTS

2-1

	NSFPM, CPM and Total PM_{10} (Ly Rans	- v	
Run No		4	5	6	Average
Date (2	015)	Sep 1	Sep 1	Sep 1	
Start Ti	me (approx.)	09:37	13:01	16:07	
Stop Ti	me (approx.)	11:03	14:12	17:23	
Proces	s Conditions				
Rp	Coke burn rate (lb/hr)	22,856	22,729	22,919	22,835
P ₁	FCC charge rate (bpd)	40,996	40,999	40,975	40,990
P ₂	NH3 Injection (lb/hr)	5.81	5.82	5.83	5.82
P_3	ESP Operation	Both/LPR	Both/LPR	Both/LPR	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	1.7	2.1	1.9	1.9
CO₂	Carbon dioxide (dry volume %)	15.7	14.4	14.7	14.9
Тs	Sample temperature (°F)	533	533	534	534
Bw	Actual water vapor in gas (% by volume)	12.9	13.1	12.7	12.9
Gas Flo	ow Rate ¹				
Qa	Volumetric flow rate, actual (acfm)	148,000	151,000	153,000	151,000
Q,	Volumetric flow rate, standard (scfm)	79,100	81,200	84,200	81,500
Q _{std}	Volumetric flow rate, dry standard (dscfm)	68,900	70,600	73,500	71,000
Sampli	ng Data				
Vmstd	Volume metered, standard (dscf)	42.68	46.77	47,45	45.63
%1	Isokinetic sampling (%) ²	101.8	104.8	105.3	104.0
.abora	tory Data				
mn	Total NSFPM (g)	0.02494	0.03601	0.03427	
т т		0.04629	0.05094	0.04345	
m _{Part}	Total particulate (expressed as PM-10) (g)	0.07123	0.08695	0.07772	
DLC	Detection level classification	ADL	ADL	ADL	
ISEPM	Results				
C _{sd}	Particulate Concentration (lb/dscf)	1.29E-06	1.70E-06	1.59E-06	1.53E-06
E _{ib/br}	Particulate Rate (lb/hr)	5.33	7.19	7.02	6.51
E _{T/vr}	Particulate Rate (Ton/yr)	23.3	31.5	30.7	28.5
ERP	Particulate Rate - Production-based (Ib/Mlb coke)	0.233	0.316	0.306	0.285
PM Re	esuits				
C _{sd}	Particulate Concentration (lb/dscf)	2.39E-06	2.40E-06	2.02E-06	2.27E-06
Elb/hr	Particulate Rate (lb/hr)	9.89	10.2	8.90	9.65
E _{¥/yr}	Particulate Rate (Ton/yr)	43.3	44.6	39.0	42.3
E _{Rp}	Particulate Rate - Production-based (lb/Mlb coke)	0.433	0.448	0.388	0.423
	articulate (as PM10) Results				
C _{sd}	Particulate Concentration (lb/dscf)	3.68E-06	4.10E-06	3.61E-06	3.80E-06
⊖so E _{lb/hr}	Particulate Rate (lb/hr)	15.2	17.4	15.9	16.2
E _{T/vr}	Particulate Rate (Ton/yr)	66.7	76.1	69.7	70.8
E _{Rp}	Particulate Rate - Production-based (lb/Mlb coke)	0.666	0.764	0.695	0.708

Average includes 3 runs.

102615 155239

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

¹ Gas flow rates obtained from bracketing Method 2F test runs combined with the WAF determined by Method 2H.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

RESULTS

2-2

	Table 2-2: NH₃ (USEPA CTM-027) – Runs 4-6									
Run No).	- 4	5	6	Average					
Date (20	015)	Sep 1	Sep 1	Sep 1						
Start Tir	me (approx.)	09:37	13:01	16:07						
Stop Tir	ne (approx.)	11:03	14:12	17:23						
Proces	s Conditions									
Rp	Coke burn rate (lb/hr)	22,856	22,729	22,919	22,835					
Pı	FCC charge rate (bpd)	41,000	41,000	41,000	41,000					
P ₂	NH3 injection (lb/hr)	5.81	5.82	5.83	5.82					
P ₃	ESP operation	Both/LPR	Both/LPR	Both/LPR						
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760					
Gas Co	nditions									
O2	Oxygen (dry volume %)	1.7	1.9	1.8	1.8					
CO2	Carbon dioxide (dry volume %)	15.6	14.7	14.8	15.0					
T,	Sample temperature (°F)	533	533	534	533					
Bw	Actual water vapor in gas (% by volume)	13.7	13.7	13.4	13.6					
Gas Flo	ow Rate ¹									
Q_a	Volumetric flow rate, actual (acfm)	148,000	151,000	153,000	151,000					
Q_s	Volumetric flow rate, standard (scfm)	79,100	81,200	84,200	81,500					
Q _{std}	Volumetric flow rate, dry standard (dscfm)	68,900	70,600	73,500	71,000					
Sampli	ng Data									
V _{mstd}	Volume metered, standard (dscf)	43.90	44.13	46.37	44.80					
%I	Isokinetic sampling (%) ²	99.6	100.1	101.1	100.3					
Laborat	tory Data									
ma	Total NH ₃ collected (mg)	10.58182	12.83736	8.30756						
Ammor	iia (NH ₃) Results									
C_{sd}	Ammonia Concentration (lb/dscf)	5.31E-07	6.41E-07	3.95E-07	5.23E-07					
C_{sd}	Ammonia Concentration (ppmdv)	12.0	14.5	8.94	11.8					
E _{lb/hr}	Ammonia Rate (ib/hr)	2.20	2.72	1.74	2.22					
E _{T/yr}	Ammonia Rate (Ton/yr)	9.63	11.9	7.63	9.72					
ERp	Ammonia Rate - Production-based (lb/Mlb coke)	0.0962	0.120	0.0760	0.0972					

Average includes 3 runs.

102615 155806

¹ Gas flow rates obtained from bracketing Method 2F test runs combined with the WEF determined by Method 2H.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

2-3

_		NSFPM Results		CPM Results	Total	PM (as PM10) Result
		(Ib/MIb coke)		(lb/Mlb coke)		(lb/Mlb coke)
Method		5F/202		5F/202		5F/202
Run No.	1	0.233	1	0.433	1	0.666
	2	0.316	2	0.448	2	0.764
	3	0.306	3	0.388	3	0.695
SD		0.0454		0.0308		0.0504
AVG		0.285		0.423		0.708
RSD		15.9%		7.3%		7.1%
N		3		3		3
SE		0.0262		0.0178		0.0291
RSE		9.2%		4.2%		4.1%
Р		95.0%		95.0%		95.0%
TINV		4.30		4.30		4.30
CI +		0.398		0.499		0.833
AVG		0.285		0.423		0.708
CI -		0.172		0.346		0.583
TB +		0.633		0.659		1.09

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs. P (probability) is the confidence level associated with the two-tailed Student's t-distribution. TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100356132 CleanAir Project No: 12806

RESULTS

2-4

	Table 2-4: H ₂ SO ₄ Emissions (Draft ASTM CCM)								
Run No).	1	2	3	Average				
Date (2	015)	Aug 12	Aug 12	Aug 12					
Start Ti	me (approx.)	16:18	18:14	19:51					
Stop Til	ne (approx.)	17:24	19:14	20:51					
Proces	s Conditions								
R _P	Coke burn rate (lb/hr)	20,882	20,820	20,836	20,836				
P ₁	FCC charge rate (bpd)	37,998	38,010	38,000	38,003				
P ₂	NH3 Injection (Ib/hr)	4.95	4.91	4.88	4.91				
P_3	ESP Operation	Both/LPR	Both/LPR	Both/LPR					
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760				
Gas Co	nditions								
O ₂	Oxygen (dry volume %)	3.0	2.2	2.8	2.7				
CO_2	Carbon dioxide (dry volume %)	14.6	15.7	15.0	15.1				
Τs	Sample temperature (°F)	521	520	520	520				
Bw	Actual water vapor in gas (% by volume)	12.6	12.4	12.2	12.4				
Gas Flo	ow Rate								
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm) ¹	66,526	64,696	64,811	65,344				
Sampli	ng Data								
V_{mstd}	Volume metered, standard (dscf)	23.50	23.45	23.22	23.39				
Labora	tory Data (Ion Chromatography)								
ma	Total H2SO4 collected (mg)	0.5840	0.9356	0.4104					
Sulfurio	c Acid Vapor (H2SO4) Results								
C_{sd}	H2SO4 Concentration (lb/dscf)	5.48E-08	8.80E-08	3.90E-08	6.06E-08				
C_{sd}	H2SO4 Concentration (ppmdv)	0.215	0.346	0.153	0.238				
E _{lb/hr}	H2SO4 Rate (lb/hr)	0.219	0.342	0.152	0.237				
E _{T/yr}	H2SO4 Rate (Ton/yr)	0.958	1.50	0.664	1.04				
E _{Rp}	H2SO4 Rate - Production-based (Ib/MIb coke)	0.0105	0.0164	0.00727	0.0114				

Average includes 3 runs (Run 0 not included in the average).

102615 160037

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100356132 CleanAir Project No: 12806

080410 154528

RESULTS

2-5

	Table :				
Run No.	THC, CH_4 , C_2H_6 , and VOC Er	nissions (USI 	EPA 25A/18	3) 	
					Average
Date (20	•	Aug 11	Aug 11	Aug 12	
	ie (approx.)	14:37	18:32	09:17	
Stop Tim	e (approx.)	15:53	19:49	10:38	
Process	Conditions				
R۶	Coke burn rate (lb/hr)	22,953	22,847	23,010	22,937
P ₁	FCC charge rate (bpd)	40,929	40,981	40,981	40,963
P ₂	NH ₃ injection (lb/hr)	5.64	5.63	5.65	5.64
P ₃	ESP operation	Both/LPR	Both/LPR	Both/LPR	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	oditions				
O2	Oxygen (dry volume %)	1.51	1.82	1.88	1.74
CO2	Carbon dioxide (dry volume %)	16.7	16.4	16.3	16.5
8 _w	Actual water vapor in gas (% by volume) ¹	10.5	12.7	12.9	12.0
Gas Flov	w Rate ²				
Q _{std}	Volumetric flow rate, dry standard (dscfm)	71,700	69,900	71,500	71,000
THC Res	suits				
C_{sd}	Concentration (ppmdv as C ₃ H ₈)	2.37	2.25	2.16	2.26
C_{sd}	Concentration (lb/dscf)	2.71E-07	2.57E-07	2.47E-07	2.58E-07
E _{lb/hr}	Emission Rate (lb/hr)	1.17	1.08	1.06	1.10
E _{T/vr}	Emission Rate (Ton/yr)	5.10	4.72	4.65	4.82
ERP	Emission Rate - Production-based (lb/Mlb coke)	0.0508	0.0471	0.0461	0.0480
Methane	Results ³				
Csd	Concentration (ppmdv)	<0.133	<0.133	<0.133	<0.133
Csd	Concentration (lb/dscf)	<5.54E-09	<5.54E-09	<5.54E-09	<5.54E-09
E _{lb/hr}	Emission Rate (lb/hr)	< 0.0238	< 0.0232	< 0.0238	< 0.0236
E _{T/yr}	Emission Rate (Ton/yr)	< 0.104	< 0.102	< 0.104	< 0.103
ERP	Emission Rate - Production-based (Ib/MIb coke)	< 0.00104	< 0.00102	< 0.00103	< 0.00103
Ethane F	Results ³				
C _{sd}	Concentration (ppmdv)	<0.0946	<0.0946	<0.0946	<0.0946
C _{sd}	Concentration (lb/dscf)	<7.38E-09	<7.38E-09	<7.38E-09	<7.38E-09
E _{łb/hr}	Emission Rate (lb/hr)	< 0.0318	< 0.0309	< 0.0317	< 0.0315
ET/vr	Emission Rate (Ton/yr)	< 0.139	< 0.136	< 0.139	< 0.138
E _{Rp}	Emission Rate - Production-based (Ib/Mib coke)	< 0.00138	< 0.00135	< 0.00138	< 0.00137
VOC Res	sults				
E _{lb/hr}	Emission Rate (lb/hr)	1.17	1.08	1.06	1.10
ET/yr	Emission Rate (Ton/yr)	5.10	4.72	4.65	4.82
E _{RP}	Emission Rate - Production-based (lb/Mlb coke)	0.0508	0.0471	0.0461	0.0480

Average includes 3 runs.

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5F/202 runs.

² Flow data used in lb/hr calculations was obtained from the average of the Method 2F traverses that bracket each run combined with the WEF determined by Method 2H.