CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, Pennsylvania 18195 AIR QUALITY DIV.

REPORT ON MEASUREMENT SERVICES

Performed for: AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

HYDROGEN PLANT HEATER STACK

Client Reference No: 4503676698 CleanAir Project No: 12915 Revision 0: April 28, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Øbuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Scott Lehmann Engineering Group Business Leader slehmann@cleanair.com (800) 627-0033 ext. 4660

RPTv4_6_9.dot 12915-Report_R0.docx 22272016 042200 12915

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

REVISION HISTORY

REPORT ON MEASUREMENT SERVICES

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	04/21/16	All	Draft version of original document.

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	04/28/16	All	Final version of original document.
		······································	
	<u> </u>		

ii

Client Reference No: 4503676698 CleanAir Project No: 12915

1-1

PROJECT OVERVIEW

INTRODUCTION

Air Products and Chemicals, Inc. (Air Products) contracted Clean Air Engineering (CleanAir) to perform emission compliance measurements at the Detroit Hydrogen

CleanAir) to permit Plant in Detroit, Michigan. All testing was conducted in accordance with the regulations see ... States Environmental Protection Agency (USEPA) and the Michigan Department Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

- S. Young Air Products and Chemicals, Inc.

M. Dziadosz – DEQ

A. Obuchowski - CleanAir

M. Cendana – CleanAir

Test Program Parameters

The testing was performed at the Hydrogen (H_2) Plant Heater Stack on March 15 through 18, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- total particulate matter less than 10 microns (μ m) in diameter (Total PM₁₀), • assumed equivalent to the sum of the following constituents:
 - FPM о
 - condensable particulate matter (CPM) o
- sulfuric acid (H_2SO_4)
- volatile organic compounds (VOC), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - methane (CH₄) 0
 - ethane (C_2H_6)
- nitrogen oxides (NO_X)
- carbon monoxide (CO) •
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate (Q_a)

Client Reference No: 4503676698 CleanAir Project No: 12915

1-2

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

	Table 1-1: Schedule of Activities									
Run Number	Location	Method	Analyte	Date	Start Time	End Time				
1	H ₂ Plant Heater Stack	USEPA Method 25A/18	VOC	03/15/16	15:01	16:01				
2	H ₂ Plant Heater Stack	USEPA Method 25A/18	VOC	03/15/16	16:11	17:11				
3	H ₂ Plant Heater Stack	USEPA Method 25A/18	VOC	03/16/16	08:39	10:14				
4	H ₂ Plant Heater Stack	USEPA Method 25A/18	VOC	03/16/16	10:27	11:27				
1	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/15/16	15:18	17:28				
2	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/16/16	09:37	12:28				
3	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/17/16	08:23	10:47				
4	H ₂ Plant Heater Stack	USEPA Method 5/202	FPM/CPM	03/18/16	08:05	10:19				
0	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/18/16	12:35	13:35				
1	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/18/16	14:30	15:30				
2	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/18/16	16:14	17:14				
3	H ₂ Plant Heater Stack	Draft ASTM CCM	Sulfuric Acid	03/18/16	18:00	19:00				
1	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O₂/NOx/CO	03/18/16	12:36	12:57				
2	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	13:09	13:30				
3	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O₂/NOx/CO	03/18/16	13:57	14:18				
4	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	14:30	14:51				
5	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	15:05	15:26				
6	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O₂/NOx/CO	03/18/16	15:36	15:57				
7	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	16:14	16:35				
8	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	16:46	17:07				
9	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O₂/NOx/CO	03/18/16	17:17	17:38				
10	H ₂ Plant Heater Stack	USEPA Methods 3A/7E/10	O ₂ /NOx/CO	03/18/16	17:57	18:18				
1	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	12:35	12:53				
2	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	13:10	13:21				
3	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	13:57	14:05				
4	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	14:32	14:41				
5	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	15:05	15:15				
6	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	15:38	15:48				
7	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	16:14	16:20				
8	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	16:45	16:56				
9	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	17:17	17:27				
10	H ₂ Plant Heater Stack	USEPA Method 2	Velocity & Flow Rate	03/18/16	18:00	18:09				

04 13 16 120303

Client Reference No: 4503676698 CleanAir Project No: 12915

041916 144651

PROJECT OVERVIEW

Results Summary

Table 1-2 and Table 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-15.

Table 1-2:

Source			Average	
Constituent	(Units)	Sampling Method	Emission	Permit Limit ¹
H 2 Plant Heater	Stack			
PM	(Ib/MMBtu)	USEPA M-5	0.00068	0.0034
PM	(Ton/yr)	USEPA M-5	1.78	6.86
PM ₁₀	(Ib/MMBtu)	USEPA M-5 / 202	0.0024	0.010
H_2SO_4	(Ib/MMBtu)	Draft ASTM CCM	0.00011	N/A
VOC	(Ib/MMBtu)	USEPAM-25A/18	< 0.000779	0.0055
NOx	(lb/MMBtu)	USEPA M-7E	0.0073	0.013
NOx	(ppmdv @ 0% O ₂)	USEPA M-7E	6.0	60
со	(Ton/yr)	USEPAM-10	< 1.1	13

¹ Permit limits obtained from MDEQ Permit to Install No. 63-08D.

Table 1-3: Summary of RATA Results

Source Constituent (Units)	Reference Method (USEPA)	Relative Accuracy ¹	Units	Applicable Specification	Specification Limit ²				
H 2 Plant Heater Stack									
Flow rate (dscfh)	M-2	12.3	% of RM	PS6	20% of RM				
O ₂ (% dv)	M-3A	0.1	%dv	PS3	± 1.0% dv				
H ₂ O (% wv)	M-4	11.4	% of RM	N/A	N/A				
NOx (ppmdv)	M-7E	2.2	% of RM	PS2	20% of RM				
NOx (lb/MMBtu)	M-7E	13.8	% of RM	PS2	20% of RM				
NOx (ppmdv @ 0%O2)	M-7E	1.9	% of RM	PS2	20% of RM				
CO (ppmdv)	M-10	0.4	ppmdv	PS4A ³	± 5 ppmdv				
CO (lb/hr)	M-10	0.4	% of Std.	PS4A ³	5% of Standard				

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.), equivalent to the permit limit in Table 1-2. The specific expression used depends on the specification limit.

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications, unless otherwise noted.

³ For any sources emitting less than 200 ppmv of CO, PS4A applies. The PS4A RA limit is either < 10% of RM, <5% of Standard, or ± 5 ppmv (abs. average difference plus 2.5 x confidence coefficient).</p>

⁴ CO Standard = 13 Ton/yr = 56.9 lb/hr (assuming 8,760 operating hours/year)

Revision 0, Final Report

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

1-4

PROJECT OVERVIEW

Discussion of Test Program

FPM and CPM Testing – USEPA Method 5/202

For this test program, the PM emission rate is assumed equivalent to FPM emission rate. The PM_{10} emission rate is assumed equivalent to the sum of FPM and CPM emission rates (units of lb/hr, Ton/yr, or lb/MMBtu for all constituents).

The analytical procedures in EPA Method 202 include an ammonium titration of the inorganic sample fractions with pH less than 7.0 to neutralize acids with hygroscopic properties such as H_2SO_4 that may be present in the sample. This step speeds up the sample desiccation process and allows the samples to come to a constant weight prior to weighing. The weight of ammonium added to the sample as a result of the titration is subtracted from the analytical result.

The laboratory performing the gravimetric analysis (Clean Air Analytical Services) has determined that only samples with an initial pH less than 4.5 require a significant amount of ammonium neutralization, resulting in a correction in excess of 0.5 mg. Based on this observation, the laboratory has altered their procedures to read that a sample must have a pH lower than 4.5 in order to be titrated.

Since none of the inorganic sample fractions collected during this test program had a pH less than 4.5, they were not titrated per Clean Air Analytical Services' modified procedure. The sample fraction was observed to come to a constant weight without having to titrate the sample.

Four test runs were performed for a duration of 120 minutes each. Following Run 2, the wind gusts became a safety concern, and the test crew was removed from the test location. The Run 2 sampling train remained on the stack and was retrieved the following day which disallowed a prompt sample train purge and recovery following sampling. Run 2 velocity, flow and moisture measurements are shown in the appendices of the report, but no laboratory analysis was performed. Run 4 was performed to constitute three valid runs.

The final results for each parameter were expressed as the average of three valid runs (Runs 1, 3 and 4) and were below the permit limits for both PM and PM_{10} .

H₂SO₄ Testing – Draft ASTM Controlled Condensation Method

Prior to the first official test run, a 60-minute sample conditioning run was performed on March 18, 2016, in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H_2SO_4 -collection portion of the sample train). The conditioning run was recovered in the same manner as the official test runs, but is not included in the results.

Client Reference No: 4503676698 CleanAir Project No: 12915

PROJECT OVERVIEW

Three 60-minute test runs were performed on March 18, 1016. The final result was expressed as the average of three valid runs (Runs 1, 2 and 3).

VOC Testing – USEPA Method 25A and Method 18

Four 60-minute Method 25A test runs for THC were performed concurrently with four 60-minute Method 18 bag collections for CH_4 and C_2H_6 on March 15 and 16, 2016. Run 3 was paused during the test run for approximately 35 minutes because of equipment trouble shooting on a separate sample train. Run 3 was not used in the final results because of the discontinuation in operation. The final results for each parameter were expressed as the average of three valid runs (Run 1, 2 and 4).

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (units of lb/hr, Ton/yr, or lb/MMBtu for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for all runs, so no correction was made to the THC results. Therefore, VOC emissions are equivalent to THC emissions.

Flow Rate, Moisture, O₂, NO_X, and CO RATA Testing – USEPA Methods 2, 3A, 4, 7E and 10; Performance Specifications 2, 3, 4A and 6

Minute-average data points for O_2 , CO_2 , NO_X and CO (dry basis) were collected over a period of 21 minutes for each relative accuracy test audit (RATA) reference method (RM) run.

The average result for each RM run was calculated and compared to the average result from the facility continuous emissions monitoring system (CEMS) over identical time intervals in order to calculate relative accuracy (RA).

- For O_2 (%dv), RA is expressed as the average absolute difference between the RM and facility CEMS runs. The final result was below the limit of $\pm 1.0\%$ dv set by PS3.
- For NO_X (ppmdv) concentration, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- For NO_X (lb/MMBtu) diluent, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.
- For NO_X (ppmdv @ 0% O₂) diluent, RA is expressed as the percent difference between RM and facility CEMS runs. The final result was below the limit of 20% of the RM set by PS2.

1-6

PROJECT OVERVIEW For CO (ppmdv) concentration, the RA limit is expressed as the average • absolute difference between the RM and facility CEMS runs, plus 2.5 times the confidence coefficient. The final result was below the limit of \pm 5 ppmdv set by PS4A, which is applicable to sources that emit less than 200 ppmv of CO. For CO (lb/hr) diluent, RA is expressed as the percent difference between RM and facility CEMs runs. The final result was below the limit of 5% of the standard (permit limit listed in Table 1-3) set by PS4A. CO₂ data was collected only as supplemental information. Facility flow rate CEMS were evaluated using Method 2 as the reference method. A complete flow and temperature traverse was performed during each 21-minute RATA run, converted to units of dry standard cubic feet per hour (dscfh) and then compared to facility CEMS results over the corresponding 21-minute intervals. For flow rate, RA is expressed as the percent difference between RM and facility CEMS data. The final results were below the limit of 20% of the RM set by PS6. Moisture data was used to convert flow rate from dry basis to wet basis and was obtained from concurrently operated Draft ASTM CCM test runs: For RATA Runs 1, 2 and 3, H₂O data was obtained from Draft ASTM CCM • Run 0. For RATA Runs 4, 5 and 6, H₂O data was obtained from Draft ASTM CCM Run 1. For RATA Runs 7, 8 and 9, H₂O data was obtained from Draft ASTM CCM Run 2. For RATA Run 10, H₂O data was obtained from Draft ASTM CCM Run 3. NO_X and CO results from the RATA were converted from units of dry volume-based concentration (ppmdv) to mass-based emission rate units (lb/hr, Ton/yr, and lb/MMBtu) to demonstrate compliance with permit limits. The final results for each parameter were expressed as the average of all 10 RATA runs. The final results were below the permit limits.

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

PROJECT OVERVIEW

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of lb/MMBtu by first calculating mass-based emissions in units of lb/hr, and then applying the total heat input to the unit over each test interval (MMBtu/hr). Heat input data was provided by Air Products. Flow rates used in calculating lb/hr emissions were obtained in the following manner:

- For Method 5/202, flow rate measurements are incorporated into the sampling procedures.
- For Method 18/25A, flow rate measurements from the most nearly concurrent Method 5/202 test runs were used.
- For Draft ASTM CCM, two flow rate measurements, per Method 2 specifications, was performed concurrently with each test run. An average of the two flow measurements was used with the exception of Run 3, which only used the final flow measurement, Run 10.
- For Method 7E/10, a flow rate measurement, per Method 2 specifications, was performed concurrently with each test run.

General Considerations

All run times listed throughout this report correspond to the plant time utilized by Air Products. Plant time is the time of the Air Products CEMS and data acquisition systems. The plant time is 60 minutes earlier than actual Eastern Time.

End of Section 1 - Project Overview

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

	R	ES		L	ГS
--	---	----	--	---	----

2-1

	Ta FPM, CPM and Total PM	able 2-1: In Emission	s (USEPA	M-5/202)	
Run No.		1	3	4	Average
Date (201	6)	Mar 15	Mar 17	Mar 18	
Start Time	(approx.)	15:18	08:23	08:05	
Stop Time	(approx.)	17:28	10:47	10:19	
Process (Conditions				
P₁ H	ydrogen production (Mscf/day)	59.8	58.0	59.5	59.1
P ₂ A	queous NH3 feed to SCR (lb/hr)	36.0	36.5	37.9	36.8
P ₃ S	CR Inlet temperature (°F)	642.5	633.4	640.7	638.9
H _t A	ctual heat input (MMBtu/hr)	592.7	591.6	605.3	596.5
Cap C	apacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Condi	itions				
O2 0	xygen (dry volume %)	3.2	3.3	3.9	3.5
CO₂ C	arbon dioxide (dry volume %)	18.5	18.5	17.7	18.2
	ample temperature (°F)	322	317	320	320
B _w A	ctual water vapor in gas (% by volume)	15.4	14.9	14.2	14.8
Gas Flow	Rate				
Q _a Ve	olumetric flow rate, actual (acfm)	229,000	225,000	227,000	227,000
Q _s V	olumetric flow rate, standard (scfm)	151,000	148,000	150,000	149,000
Q _{std} V	olumetric flow rate, dry standard (dscfm)	127,000	126,000	129,000	127,000
Sampling	Data				
V _{mski} Vi	olume metered, standard (dscf)	81.35	79.40	81.77	80.84
%I Is	okinetic sampling (%)	102.9	101.8	102.4	102.3
Laborator	y Data				
m _n Te	otal FPM (g)	0.00161	0.00281	0.00144	
т _{орм} Та	otal CPM (g)	0.00468	0.00518	0.00504	
m _{Part} Te	otal particulate (expressed as PM-10) (g)	0.00630	0.00799	0.00648	
n _{MDL} N	umber of non-detectable fractions	N/A	N/A	N/A	
DLC D	etection level classification	ADL	ADL	ADL	•
FPM Resu	lts				
C _{sd} Pa	articulate Concentration (lb/dscf)	4.37E-08	7.80E-08	3.88E-08	5.35E-08
E _{lb/br} Pr	articulate Rate (Ib/hr)	0.334	0,588	0.300	0.407
E _{t/y} Pa	articulate Rate (Ton/yr)	1.46	2.58	1.31	1.78
E _{Hi} Pa	articulate Rate - Heat Input-based (Ib/MMBtu)	5.63E-04	9.94E-04	4.95E-04	6.84E-04
CPM Resu	lts				
C _{sd} Pa	articulate Concentration (lb/dscf)	1.27E-07	1.44E-07	1.36E-07	1.36E-07
E _{lb/ter} Pa	articulate Rate (Ib/hr)	0.971	1.08	1.05	1.03
E _{T/y} Pa	articulate Rate (Ton/yr)	4.25	4.75	4.59	4.53
E _{Hi} Pi	articulate Rate - Heat Input-based (Ib/MMBtu)	1.64E-03	1.83E-03	1.73E-03	1.73 E- 03
Total Parti	culate (as PM10) Results				
C _{sd} Pa	articulate Concentration (lb/dscf)	1.71E-07	2.22E-07	1.75E-07	1.89E-07
Elb/hr Pa	articulate Rate (ib/hr)	1.30	1.67	1.35	1.44
E _{T/y} Pa	articulate Rate (Ton/yr)	5.71	7.32	5.91	6.31
E _{HI} Pa	articulate Rate - Heat Input-based (Ib/MMBtu)	2,20E-03	2.83E-03	2.23E-03	2.42E-03

041316 141403

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

DLL = Detection Level Limited - some fractions are below detection limit

BDL = Below Detection Limit - all fractions are below detection limit

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

2-2

Table 2-2: Uncertainty Analysis – FPM, CPM and Total PM₁₀ (USEPA M-5/202)										
		FPM Results	11 m, 01	CPM Results		PM (as PM10) Results				
		(ib/MMBtu)		(lb/MMBtu)		(lb/MMBtu)				
Nethod		5		202		5/202				
Run No.	1	0.0006	1	0.0016	1	0.0022				
	3	0.0010	3	0.0018	3	0.0028				
	4	0.0005	4	0.0017	4	0.0022				
5D		0.0003		0.0001		0.0004				
VG		0.0007		0.0017		0.0024				
RSD		39.5%		5.6%		14.6%				
1		3		3		3				
ε		0.0002		0.0001		0.0002				
RSE		22.8%		3.2%		8.4%				
,		95.0%		95.0%		95,0%				
NV		4.303		4.303		4.303				
; +		0.0014		0.0020		0.0033				
VG		0.0007		0.0017		0.0024				
CI -		0.0000		0.0015		0.0015				
г в +		0.0028		0.0025		0.0051				

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

041916 133950

2-3

	Table				
	H ₂ SO ₄ Emissions	(Draft ASTM CCM	l)		
Run No	•	1	2	3	Averag
Date (2	016)	Mar 18	Mar 18	Mar 18	
Start Ti	me (approx.)	14:30	16:14	18:00	
Stop Ti	me (approx.)	15:30	17:14	19:00	
Proces	s Conditions				
P ₁	Hydrogen production (Mscf/day)	59.0	57.8	58.0	58.
P ₂	Aqueous NH ₃ feed to SCR (lb/hr)	37.2	36.0	36.2	36.
P ₃	SCR Inlet temperature (°F)	638.6	633.2	634.4	635.
Hi	Actual heat input (MMBtu/hr)	600.2	590.0	594.2	594.
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,76
Gas Co	nditions				
O2	Oxygen (dry volume %)	3.9	3.5	3.5	3.
CO_2	Carbon dioxide (dry volume %)	17.8	18.4	18.4	18.
Тs	Sample temperature (°F)	329	327	328	32
В _w	Actual water vapor in gas (% by volume)	16.05	15.61	15.99	15.8
Gas Flo	w Rate				
$\mathbf{Q}_{\mathrm{std}}$	Volumetric flow rate, dry standard (dscfm) ¹	119,000	119,000	120,000	119,00
Sampli	ng Data				
V_{mstd}	Volume metered, standard (dscf)	25.36	25.30	25.47	25.3
Labora	tory Data (Ion Chromatography)				
mn	Total H2SO4 collected (mg)	0.0760	0.1345	0.1095	
r Sulfuria	Acid Vapor (H2SO4) Results				
C_{sd}	H2SO4 Concentration (lb/dscf)	6.61E-09	1.17E-08	9.48E-09	9.27E-0
\mathbf{C}_{sd}	H2SO4 Concentration (pprndv)	0.0260	0.0461	0.0373	0.036
Elbhr	H2SO4 Rate (lb/hr)	0.0472	0.0836	0.0680	0.066
ETA	H2SO4 Rate (Ton/yr)	0.207	0,366	0.298	0.29
E _{Hi}	H2SO4 Rate - Heat Input-based (Ib/MMBtu)	7.87E-05	1.42E-04	1.14E-04	1.12E-0

Average includes 3 runs.

¹ Flow rate obtained from the average of the concurrently operated Method 2 test run(s).

Revision 0, Final Report

Client Reference No: 4503676698 CleanAir Project No: 12915

2-4

RESULTS						
		Table 2- Uncertainty Analysis – H₂S		MA)		
· · · · · · · · · · · · · · · · · · ·		H2SO4 Results	H2SO4 (Brait Aorin Conn) H2SO4 Results			
		(ppmdv)		(Ib/MMBtu)		
Viethod		ССМ		ССМ		
Run No.	1	0.0260	1	7.87E-05		
	2	0.0461	2	1.42E-04		
	3	0.0373	3	1.14E-04		
5D		0.0101		3.16E-05		
AVG		0.0364		1.12E-04		
RSD	27.6%			28.3%		
1		3		3		
θE		0.0058		1.82E-05		
RSE		16.0%	16.3%			
c		95.0%		95.0%		
ſINV		4.303		4.303		
C1 +		0.0615		1.90E-04		
AVG		0.0364		1.12E-04		
CI -		0.0114		3.31E-05		
ТВ +		0.114		3.53E-04		

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4503676698 CleanAir Project No: 12915

080410 154528

RESULTS

2-5

	Ta THC, CH₄, C₂H₅, and VOC	able 2-5: CEmissions (USEPA N	1-25A/18)		
Run No.		1	2	3*	4	Average
Date (20	16)	Mar 15	Mar 15	Mar 16	Mar 16	
•	ne (approx.)	15:01	16:11	08:39	10:27	
	ie (approx.)	16:01	17:11	10:14	11:27	
Process	s Conditions					
P ₁	Hydrogen Production (Mscf/day)	59.8	57.1	56.0	55.8	57.6
P ₂	Aqueous NH ₃ feed to SCR (lb/hr)	36.0	35.5	32.3	32.4	34.6
Pa	SCR Inlet Temperature	642.5	634.1	625.8	624.7	633.8
H,	Actual heat input (MMBtu/hr)	588.5	581.0	571.8	571.6	580.4
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	8,760
Gas Cor	ditions					
O ₂	Oxygen (dry volume %)	3.1	3.3	3.2	3.2	3.2
CO2	Carbon dioxide (dry volume %)	18.6	18.3	18.7	18.7	18.6
Bw	Actual water vapor in gas (% by volume) ¹	15.4	15.4	15.3	15.3	15.3
Gas Flov	v Rate ²					
Q _{std}	Volumetric flow rate, dry standard (dscfm)	127,000	127,000	118,000	118,000	124,000
THC Res	ults ³					
C_{sd}	Concentration (ppmdvas C ₃ H ₈)	<0.531	<0.531	<0.530	<0.530	<0.530
C_{sd}	Concentration (Ib/dscf)	<6.07E-08	<6.07E-08	<6.06E-08	<6.06E-08	<6.07E-08
Eibhr	Emission Rate (lb/hr)	< 0.464	< 0.464	< 0.429	< 0.429	< 0.452
E _{TAr}	Emission Rate (Ton/yr)	< 2.03	< 2.03	< 1.88	< 1.88	< 1.98
E _{HI}	Emission Rate - Heat input-based (Ib/MMBtu)	<7.89E-04	<7.99E-04	<7.50E-04	<7.50E-04	<7.79E-04
Methane	e Results ⁴					
C_{sd}	Concentration (ppmdv)	<0.134	<0.134	<0.134	<0.134	<0.134
C _{sd}	Concentration (lb/dscf)	<5.58E-09	<5.58E-09	<5.58E-09	<5.58E-09	<5.58E-09
Ellow	Emission Rate (lb/hr)	< 0.0427	< 0.0427	< 0.0394	< 0.0394	< 0.0416
E _{T/y}	Emission Rate (Ton/yr)	< 0.187	< 0.187	< 0.173	< 0.173	< 0.182
EH	Emission Rate - Heat input-based (Ib/MMBtu)	<7.25E-05	<7.34E-05	<6.90E-05	<6.90E-05	<7.16E-05
Ethane F	Results⁴					
C_{sd}	Concentration (ppmdv)	<0.107	<0.107	<0.107	<0.107	<0.107
C_{sd}	Concentration (lb/dscf)	<8.34E-09	<8.34E-09	<8.34E-09	<8.34E-09	<8.34E-09
Elb/w	Emission Rate (lb/hr)	< 0.0638	< 0.0638	< 0.0590	< 0.0590	< 0.0622
ETAY	Emission Rate (Ton/yr)	< 0.279	< 0.279	< 0.258	< 0.258	< 0.272
EH	Emission Rate - Heat input-based (Ib/MMBtu)	<1.08E-04	<1.10E-04	<1.03E-04	<1.03E-04	<1.07E-04
VOC Res	sults					
Einn	Emission Rate (Ib/hr)	< 0.464	< 0.464	< 0.429	< 0.429	< 0.452
E _{T/yr}	Emission Rate (Ton/yr)	< 2.03	< 2.03	< 1.88	< 1.88	< 1.98
EHI	Emission Rate - Heat input-based (Ib/MMBtu)	<7.89E-04	<7.99E-04	<7.50E-04	<7.50E-04	<7.79E-04

Average includes 3 runs, * indicates run not included in average.

.

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent M-5/202 runs.

 $^2\,$ Flow data used in lb/hr calculations was obtained from nearly-concurrent Method 5/202 runs .

³ For THC, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

⁴ For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

Client Reference No: 4503676698 CleanAir Project No: 12915

RESULTS

2-6

	NO _x and CO I	Table : Emission	-	A M-7E/1	0)		
Run No.		1	2	3	4	5	6
Date (20	016)	Mar 18	Mar 18	Mar 18	Mar 18	Mar 18	Mar 18
-	ne (approx.)	12:36	13:09	13:57	14:30	15:05	15:36
	ne (approx.)	12:57	13:30	14:18	14:51	15:26	15:57
Proces	s Conditions						
P1	Hydrogen Production (Mscf/day)	58.5	58.5	58.5	58.5	58.5	58.5
P ₂	Aqueous NH ₃ feed to SCR (lb/hr)	36.7	36.7	36.7	36.7	36,7	36.7
P ₃	SCR Inlet Temperature	635.9	635.9	635.9	635.9	635.9	635.9
H	Actual heat input (MMBtu/hr)	594.5	594.5	594.5	594.5	594.5	594.5
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	8,760	8,760
Gas Co	nditions						
O_2	Oxygen (dry volume %)	3.17	3.21	3.23	3.24	3.27	3.26
CO2	Carbon dioxide (dry volume %)	18.4	18.4	18.4	18.4	18.3	18.4
B,,	Actual water vapor in gas (% by volume) ¹	13.0	13.0	13.0	16.0	16.0	16.0
Gas Flor	w Rate ²						
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	120,666	122,475	121,765	118,568	119,537	117,755
Nitroge	n Oxides Results						
C _{sd}	Concentration (ppmdv)	5.11	5.38	5.06	4.90	5.15	4.69
Csd-x	Concentration @ 0% O ₂ (ppmdv)	6.03	6.36	5.99	5.80	6.11	5.55
C_{sd}	Concentration (lb/dscf)	6.11E-07	6.42E-07	6.04E-07	5.85E-07	6.15E-07	5.60E-07
E _{ib/m}	Emission Rate (lb/hr)	4.42	4.72	4.41	4.16	4.41	3.95
Етлу	Emission Rate (Ton/yr)	19.4	20.7	19.3	18.2	19.3	17.3
E _{Hi}	Emission Rate - Heat input-based (lb/MMBtu)	7.44E-03	7.94E-03	7.42E-03	7.00E-03	7.42E-03	6.65E-03
Carbon	Monoxide Results ³						
C_{sd}	Concentration (ppmdv)	<0.478	<0.478	<0.478	<0.478	<0.478	<0.478
C_{sd-x}	Concentration @ 0% O_2 (ppmdv)	< 0.563	< 0.565	< 0.565	< 0.566	< 0.567	< 0.566
C_{sd}	Concentration (lb/dscf)	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08
Elbhr	Emission Rate (lb/hr)	< 0.252	< 0.255	< 0.254	< 0.247	< 0.249	< 0.246
Entyr	Emission Rate (Ton/yr)	< 1.102	< 1.118	< 1.112	< 1.083	< 1.092	< 1.075
E _{HI}	Emission Rate - Heat input-based (lb/MMBtu)	<4.23E-04	<4.30E-04	<4.27E-04	<4,16E-04	<4.19E-04	<4.13E-04

¹ Moisture data obtained from nearly-concurrent Draft ASTM CCM runs.

² Flow data used in lb/hr calculations was obtained from nearly-concurrent Method 2 runs.

³ For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

RESULTS

2-7

Table 2-6 (Continued):NOx and CO Emissions (USEPA M-7E/10)									
Run No.	· · · · · · · · · · · · · · · · · · ·	7	8	9	10	Average			
Date (20	016)	Mar18	Mar 18	Mar 18	Mar 18				
Start Tin	ne (approx.)	16:14	16:46	17:17	17:57				
Stop Tin	ne (approx.)	16:35	17:07	17:38	18:18				
Process	s Conditions								
P ₁	Hydrogen Production (Mscf/day)	58.5	58.5	58.5	58.5	58.5			
P ₂	Aqueous NH₃ feed to SCR (lb/hr)	36.7	36.7	36.7	36.7	36.7			
P ₃	SCR Inlet Temperature	635.9	635,9	635.9	635.9	635.9			
Hi	Actual heat input (MMBtu/hr)	594.5	594.5	594.5	594.5	594.5			
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	8,760			
Gas Cor	nditions								
O ₂	Oxygen (dry volume %)	3.29	3.30	3.24	3.25	3.25			
CO2	Carbon dioxide (dry volume %)	18.4	18,3	18.3	18.3	18.4			
Bw	Actual water vapor in gas (% by volume) ¹	15.6	15.6	15.6	16.0	15.0			
Gas Flow	w Rate ²								
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	119,687	117,947	118,612	119,576	120,000			
Nitroger	n Oxides Results								
C _{sd}	Concentration (ppmdv)	4.76	5.08	5.06	5.12	5.03			
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	5.65	6.03	5.99	6.06	5.96			
C_{sd}	Concentration (Ib/dscf)	5.69E-07	6.06E-07	6.04E-07	6.11E-07	6.01E-07			
Elio/hr	Emission Rate (Ib/hr)	4.08	4.29	4.30	4.39	4.31			
ETAY	Emission Rate (Ton/yr)	17.9	18.8	18.8	19.2	18.9			
E _{Hi}	Emission Rate - Heat input-based (lb/MMBtu)	6.87E-03	7.22E-03	7.23E-03	7.38E-03	7.26E-03			
Carbon	Monoxide Results ³								
\mathbf{C}_{sd}	Concentration (ppmdv)	<0.478	<0.478	<0.478	<0.478	<0.478			
C _{ad-x}	Concentration @ 0% O ₂ (ppmdv)	< 0.567	< 0.567	< 0.566	< 0.566	<0.566			
C_{sd}	Concentration (Ib/dscf)	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08	<3.47E-08			
Ether	Emission Rate (lb/hr)	< 0.250	< 0.246	< 0.247	< 0.249	< 0.249			
E _{T/y}	Emíssion Rate (Ton/yr)	< 1.093	< 1.077	< 1.083	< 1.092	< 1.093			
E _{Hi}	Emission Rate - Heat input-based (lb/MMBtu)	<4.20E-04	<4.14E-04	<4.16E-04	<4.19E-04	<4.20E-04			

Average includes 10 runs.

¹ Moisture data obtained from nearly-concurrent Draft ASTM CCM runs.

² Flow data used in lb/hr calculations was obtained from nearly-concurrent Method 2 runs.

³ For CO, '<' indicates a measured response below the detection limit (assumed to be 1% of the instrument calibration span).

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

2-8

		DIYU	andard i low Mac	e RATA (USEP	A WEZ / F 30/	
Run No.	Start Time	Date (2016)	RM Flow (dscfh)	CEMS Data	Difference	Difference Perce
1	12:36	Mar 18	7,239,973	6,326,032	913,941	12.6
2 *	13:09	Mar 18	7,348,479	6,350,470	998,009	13.6
3	13:57	Mar 18	7,305,904	6,377,463	928,441	12.7
4	14:30	Mar 18	7,114,089	6,385,676	728,413	10.2
5	15:05	Mar 18	7,172,209	6,391,806	780,402	10.9
6	15:36	Mar 18	7,065,282	6,308,943	756,339	10,7
7	16:14	Mar 18	7,181,198	6,271,290	909,909	12.7
8	16:46	Mar 18	7,076,810	6,292,113	784,697	11.1
9	17:17	Mar 18	7,116,696	6,329,823	786,873	11.1
10	17:57	Mar 18	7,174,539	6,339,291	835,248	11.6
	Average		7,160,744	6,335,826	824,918	11.5
			tion of Differences e Coefficient (CC)	75,030 57,673		
	•	Jonnaena	e Coemclent (CC)	57,673		
		43/-1		0.000		
		t-Val	ue for 9 Data Sets	2.306	• i •	
	Referenc	ative Accu e Method	ue for 9 Data Sets Iracy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3%	Limit 20.0% Data)	041316 143
CEMS	Referenc = Contir	ative Accu e Method wous Em	racy (as % of RM) (CleanAir Data)	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA	Referenc = Contir calculatio	ative Accu e Method wous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS	Referenc = Contir calculatio	ative Accu e Method wous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 142
CEMS RATA	Referenc = Contir calculatio	ative Accu e Method wous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA	Reference = Contir calculatio	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 145
CEMS RATA 8,000 7,000	Reference = Contir calculation ,000,000,000	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA 8,000 7,000 6,000	Reference = Contir calculatio ,000	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA 8,000 7,000 6,000 5,000	Reference = Contir calculation ,000	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA 8,000 7,000 6,000 5,000 4,000	Reference = Contir calculation ,000	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143
CEMS RATA 8,000 7,000 6,000 5,000 4,000 3,000	Reference = Contir calculation ,000	ative Accu e Method uous Em	racy (as % of RM) (CleanAir Data) issions Monitoring Sy	12.3% stem (Air Products	20.0%	041316 143

RM Flow (dscfh) -B--- CEMS Data

Revision 0, Final Report

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

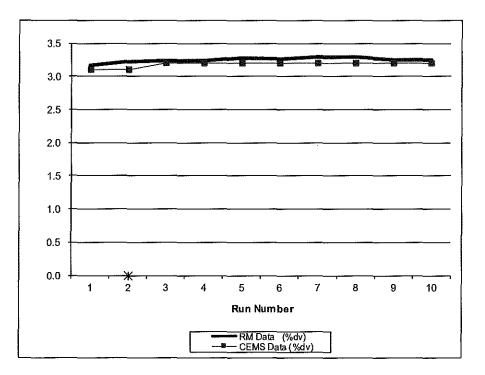
Client Reference No: 4503676698 CleanAir Project No: 12915

	<u></u>			entration RAT		Diff
Run No.	Start Time	Date (2016)	RM Data (‱v)	CEMS Data (‱v)	Difference (‱v)	Difference Percen
1	12:36	Mar 18	13.0	16.0	-3.0	-22.6%
2 *	13:09	Mar 18	13.0	16.0	-3.0	-22.6%
3	13:57	Mar 18	13.0	16.0	-3.0	-22.6%
4	14:30	Mar 18	16.0	16.0	0.0	0.3%
5	15:05	Mar 18	16.0	16.0	0.0	0.3%
6	15:36	Mar 18	16.0	16.0	0.0	0.3%
7	16:14	Mar 18	15.6	16.0	-0.4	-2.5%
8	16:46	Mar 18	15.6	16.0	-0.4	-2.5%
9 10	17:17 17:57	Mar18 Mar18	15.6 16.0	16.0 16.0	-0.4 0.0	-2.5% -0.1%
	Average		15.2	16.0	-0.8	-0.17
			Bolotivo Ao		it Deculto	
~	landard I			curacy Test Aud	il Results	
	tanoaro i		f Differences	1.250269 0.961040		
3	Conf	Idanaa Car				
3	Conf	idence Coa				
0	Conf		9 Data Sets	2.306		
RM=I CEMS	Relative Referenc = Contin	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin		•	
RM=I CEMS	Relative Referenc = Contin	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	041316 1630
RM = I CEMS RATA	Relative Referenc = Contin	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = 1 CEMS RATA 16 14 12 10	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA 18 16 14 12 10 8	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA 18 16 14 12 10 8 6	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA 18 16 14 12 10 8 6	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM = I CEMS RATA 18 14 14 14 14 14 14 14 14 14 14 14 14 14	Relative Referenc = Contin calculatio	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	
RM=1 CEMS RATA 18 14 14 12 10 8 6 6 2	Relative Referenc = Contin calculation 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	t-Value for Accuracy (e Method (C uous Emis	9 Data Sets as % of RM) CleanAir Data) sions Monitorin	2.306 11.4% ng System (Air Pr	•	

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

2-10


Run No.	Start Time	Date (2016)	RM Data (%dv)	<u>(USEPA M-34</u> CEMS Data (%dv)	Difference (%dv)	Difference Percent
1	12:36	Mar 18	3.2	3.1	0.1	2.1%
2 *	13:09	Mar 18	3.2	3.1	0.1	3.6%
3	13:57	Mar 18	3.2	3.2	0.0	1.0%
4	14:30	Mar 18	3.2	3.2	0.0	1.2%
5	15:05	Mar 18	3.3	3.2	0.1	2.2%
6	15:36	Mar 18	3.3	3.2	0.1	1.9%
7	16:14	Mar 18	3.3	3.2	0.1	2.7%
8	16:46	Mar 18	3.3	3.2	0.1	2.9%
9	17:1 7	Mar 18	3.2	3.2	0.0	1.4%
10	17:57	Mar 18	3.3	3.2	0.1	1.7%
	Average		3.3	3.2	0.1	1.9%
	- R			curacy Test Aud	it Results	
s			Differences	0.021584		
	Con	fidence Coe	efficient (CC)	0.016591		

Avg. Abs. Diff. (%dv)	0.062	1.0	
		Limit	
t-Value for 9 Data Sets	2.306		
Confidence Coefficient (CC)	0.016591		

RM = Reference Method (CleanAir Data)

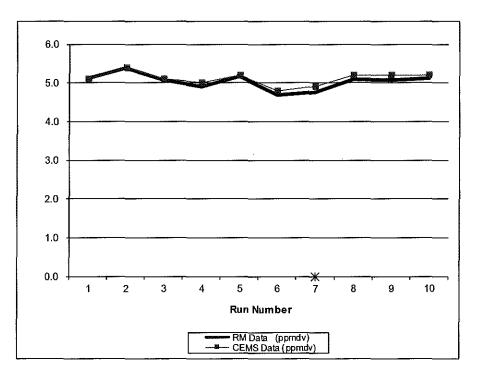
041316 163038

CEMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on 9 of 10 runs. * indicates the excluded run.

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

2-11


	Table 2-10: NO _x (ppmdv) Concentration RATA (EPA 7E / PS2)								
Run No.	Start Time	Date (2016)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	Difference Percent			
1	12:36	Mar 18	5.1	5.1	0.0	0.3%			
2	13:09	Mar18	5.4	5.4	0.0	-0.4%			
3	13:57	Mar18	5.1	5.1	0.0	-0.8%			
4	14:30	Mar18	4.9	5.0	-0.1	-2.0%			
5	15:05	Mar 18	5.2	5.2	0.0	-0.9%			
6	15:36	Mar 18	4.7	4.8	-0.1	-2.4%			
7 *	16:14	Mar 18	4.8	4.9	-0.1	-2.9%			
8	16:46	Mar 18	5.1	5.2	-0.1	-2.4%			
9	17:17	Mar 18	5.1	5.2	-0.1	-2.8%			
10	17:57	Mar 18	5.1	5.2	-0.1	-1.6%			
/	Average		5.1	5.1	-0.1	-1.4%			
			Relative Acc	uracy Test Audi	t Results				

Relative Accuracy (as % of R	M) 2.2%	20.0%	
		Limit	
t-Value for 9 Data Se	ets 2.306		
Confidence Coefficient (C	C) 0.039643		
Standard Deviation of Difference	es 0.051575		

RM = Reference Method (CleanAir Data)

041316 163038

CEMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on 9 of 10 runs.* indicates the excluded run.

Revision 0, Final Report

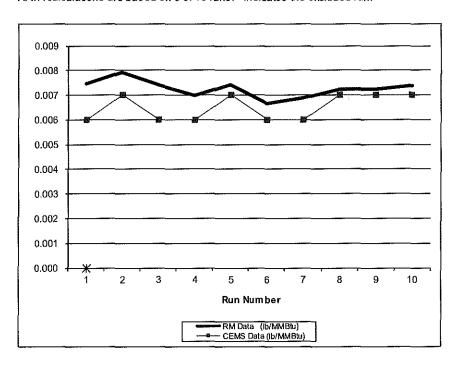
AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

RESULTS

2-12

Run No.	Start Time	Date (2016)	RM Data (Ib/MMBtu)	CEMS Data (Ib/MMBtu)	Difference (Ib/MMBtu)	Difference Percent
1 *	12:36	Mar 18	0.007	0.006	0.001	19.3%
2	13:09	Mar 18	0.008	0.007	0.001	11.8%
3	13:57	Mar 18	0.007	0.006	0.001	19.2%
4	14:30	Mar 18	0.007	0.006	0.001	14.3%
5	15:05	Mar 18	0.007	0.007	0.000	5.7%
6	15:36	Mar 18	0.007	0.006	0.001	9.8%
7	16:14	Mar 18	0.007	0.006	0.001	12.7%
8	16:46	Mar 18	0.007	0.007	0.000	3.0%
9	17:1 7	Mar 18	0.007	0.007	0.000	3.2%
10	17:57	Mar 18	0.007	0.007	0.000	5.1%
	Average		0.007	0.007	0.001	9.4%


Relative Accuracy Test Audit Results

Standard Deviation of Differences	0.000408	
Confidence Coefficient (CC)	0.000314	
t-Value for 9 Data Sets	2.306	
		Limit
Relative Accuracy (as % of RM)	13.8%	20.0%
Relative Accuracy (as % of Appl. Std.)	7.7%	10.0%
Appl. Std. = 0.013 lb/MMBtu		

RM = Reference Method (CleanAir Data)

042516 154653

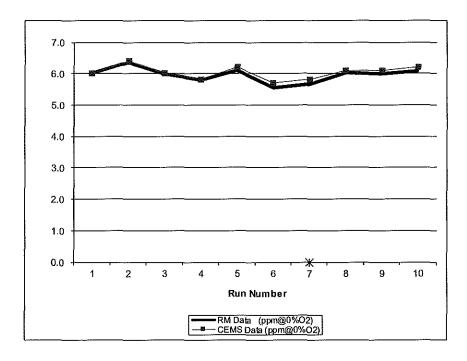
CEMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on 9 of 10 runs, * indicates the excluded run,

Revision 0, Final Report

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

2-13


Run	Start	Date	RM Data	CEMS Data	TA (USEPA M- Difference	Difference
No.	Time	(2016)	(ppm@0%O2)	(ppm@0%O2)	(ppm@0%O2)	Percent
1	12:36	Mar 18	6.0	6.0	0.03	0.5%
2	13:09	Mar18	6.4	6.4	-0.04	-0.7%
3	13:57	Mar18	6.0	6.0	-0.01	-0.2%
4	14:30	Mar 18	5.8	5.8	0.00	0.0%
5	15:05	Mar 18	6.1	6.2	-0.09	-1.5%
6	15:36	Mar 18	5.6	5.7	-0.15	-2.6%
7*	16:14	Mar18	5.7	5.8	-0.15	-2.6%
8	16:46	Mar 18	6.0	6.1	-0.07	-1.2%
9	17:17	Mar 18	6.0	6.1	-0.11	-1.8%
10	17:57	Mar 18	6.1	6.2	-0.14	-2.2%
	Average	1	6.0	6.1	-0.06	-1.1%
			Relative A	curacy Test Au	dit Results	
	Standard	Deviatio	n of Differences	0,061054	un Nesuns	
	Cor	nfidence (Coefficient (CC)	0.046930		
		t-Value	for 9 Data Sets	2,306		

t-Value for 9 Data Sets	2,306		
		Limit	
Relative Accuracy (as % of RM)	1.9%	20.0%	
Relative Accuracy (as % of Appl. Std.)	0.2%	10.0%	
Appl. Std. = 60 ppm @0%O2			

RM = Reference Method (CleanAir Data)

041316 163038

CEMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on 9 of 10 runs.* indicates the excluded run.

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

	CO .	(nnmdy) (ole 2-13: on RATA (USE	EPA M-10 / PS	4 A)
Run No.	Start	Date (2016)	RM Data (ppmdv)	CEMS Data (ppmdv)	Difference (ppmdv)	<u></u>
1	12:36	Mar 18	0.0	0.4	-0.4	
2	13:09	Mar 18	0.0	0.4	-0.4	
3	13:57	Mar 18	0.0	0.4	-0.4	
4	14:30	Mar 18	0.0	0.4	-0.4	
5	15:05	Mar 18	0.0	0.4	-0.4	
6	15:36	Mar 18	0.0	0.4	-0.4	
7	16:14	Mar 18	0.0	0.4	-0.4	
8	16:46	Mar 18	0.0	0.4	-0.4	
9	17:17	Mar 18	0.0	0.4	-0.4	
10	17:57	Mar 18	0.0	0.4	-0.4	
	Average	•	0.0	0.4	-0.4	
			Relative Acc	curacy Test Aud	it Results	
.9	tandard	Deviation o	fDifferences	0.000		
			efficient (CC)	0.000		
			10 Data Sets	2.262		
					Limit	
EMS	Referenc = Contin	e Method (0 uous Emis		0.4	5.0	041316 16303
CEMS	Referenc = Contin	e Method (0 uous Emis	CleanAir Data)	ng System (Air Pr	5.0	041316 16303
CEMS	Referenc = Contin	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	04 13 16 16 30 3
CEMS	Referenc = Contin calculatio	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	04 13 16 16 30 3
CEMS RATA	Reference = Contin calculation	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	04 13 16 16 30 3
CEMS RATA ((Reference = Contin calculatio	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	04 13 16 16 30 3
CEMS RATA ((((Reference = Contin calculatio	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	041316 16303
CEMS RATA ((((((((((((((((())))))	Reference = Contin calculation	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	041316 16303
CEMS RATA	Reference = Contin calculation	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	041316 16303
CEMS RATA ((((((((((((((((((Reference = Contin calculation	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	041316 16303
CEMS RATA ((((((((((((((((((Reference = Contin calculation 0.5 0.4 0.4 0.3 0.3 0.2	e Method (0 uous Emis	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0	041316 16303
CEMS RATA ((((((((((((((((((Reference = Contin calculation 0.5 0.4 0.4 0.3 0.2 0.2 0.2	e Method ((nuous Emis ons are bas	CleanAir Data) sions Monitorir	ng System (Air Pr	5.0 oducts Data)	04 13 16 16 30 3

AIR PRODUCTS AND CHEMICALS, INC. DETROIT HYDROGEN PLANT

Client Reference No: 4503676698 CleanAir Project No: 12915

CO (lb/hr) Emission Rate RATA (USEPA M-10 / PS4A) Run Start Date RM Data CEMS Data Difference No. Time (2016) (lb/hr) (lb/hr) (lb/hr) 1 12:36 Mar 18 0.0 0.2 -0.2 3 13:57 Mar 18 0.0 0.2 -0.2 3 13:57 Mar 18 0.0 0.2 -0.2 5 15:05 Mar 18 0.0 0.2 -0.2 5 15:05 Mar 18 0.0 0.2 -0.2 5 15:05 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 Confidence Coefficient (CC) 0.000 Limit Mar 18 0.4% 5.0% Appl. Std. = 56.94 lb/hr 0.4% 5.0% Appl. Std. = 50.94 lb/hr 0.4%					ole 2-14:		
No. Time (2016) (lb/hr) (lb/hr) (lb/hr) 1 12:36 Mar 18 0.0 0.2 -0.2 2 13:09 Mar 18 0.0 0.2 -0.2 3 13:57 Mar 18 0.0 0.2 -0.2 4 14:30 Mar 18 0.0 0.2 -0.2 5 15:05 Mar 18 0.0 0.2 -0.2 6 15:36 Mar 18 0.0 0.2 -0.2 7 16:14 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 Average 0.0 0.2 -0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 Confidence Coefficient (CC) 0.000 -0.2 -0.2 Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% -0.4 Q2		_CO (I	lb/hr) Em	ission Rate	<u>∋ RATA (USE</u>	<u>PA M-10 / PS</u>	4A)
2 13:09 Mar 18 0.0 0.2 -0.2 3 13:57 Mar 18 0.0 0.2 -0.2 4 14:30 Mar 18 0.0 0.2 -0.2 5 15:05 Mar 18 0.0 0.2 -0.2 6 15:36 Mar 18 0.0 0.2 -0.2 7 16:14 Mar 18 0.0 0.2 -0.2 8 16:46 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 10 17:57 Mar 18 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 10/hr 04335 50927 Continuous Emissions Monitoring System (Air Products Data) 0.2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
5 15:05 Mar 18 0.0 0.2 -0.2 6 15:36 Mar 18 0.0 0.2 -0.2 7 16:14 Mar 18 0.0 0.2 -0.2 8 16:46 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 10 17:57 Mar 18 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. 5.04% 5.0% Appl. Std. 5.04% O4356 5007 EMES = Continuous Emissions Monitoring System (Air Products Data) August colspan="3">August colspan="3"August colspan="3"August colspan="3"August co							
6 15:36 Mar 18 0.0 0.2 -0.2 7 16:14 Mar 18 0.0 0.2 -0.2 8 16:46 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 9 17:57 Mar 18 0.0 0.2 -0.2 Average 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 Confidence Coefficient (CC) 0.000 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 1b/hr 0.4% 5.0% Continuous Emissions Monitoring System (Air Products Data) Attacalculations are based on all 10 runs.							
7 16:14 Mar 18 0.0 0.2 -0.2 8 16:46 Mar 18 0.0 0.2 -0.2 9 17:17 Mar 18 0.0 0.2 -0.2 10 17:57 Mar 18 0.0 0.2 -0.2 Average 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 COUDO Limit Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 COUDO Limit Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 lb/hr O4356 5007 Continuous Emissions Monitoring System (Air Products Data) 0.2 O 0.3 O 0.4 O O							
9 17:17 Mar 18 0.0 0.2 -0.2 10 17:57 Mar 18 0.0 0.2 -0.2 Average 0.0 0.2 -0.2 Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 t-Value for 10 Data Sets 2.262 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 Ib/hr CM = Reference Method (Clean Air Data) CEMS = Continuous Emissions Monitoring System (Air Products Data) ATA calculations are based on all 10 runs. 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1							
1017:57Mar 180.00.2-0.2Average0.00.2-0.2Relative Accuracy Test Audit ResultsStandard Deviation of Differences0.000Confidence Coefficient (CC)0.000LimitRelative Accuracy (as % of Appl. Std.)0.4%5.0%Appl. Std. = 56.94 lb/hrOdt336 16997CEMS = Continuous Emissions Monitoring System (Air Products Data)Continuous Emissions Monitoring System (Air Products Data)Odt336 16997Continuous Emissions Monitoring System (Air Products Data)Odt336 16997Continuous Emissions Monitoring System (Air Products Data)Odt336 16997Odt336 16997Continuous Emissions Monitoring System (Air Products Data)Odt336 16997Odt336 16997Odt33							
Average 0.0 0.2 -0.2 Relative Accuracy Test Audit ResultsStandard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 t-Value for 10 Data Sets 2.262 LimitRelative Accuracy (as % of Appl. Std.) 0.4% Appl. Std. = 56.94 lb/hrIM= Reference Method (CleanAir Data)EMS = Continuous Emissions Monitoring System (Air Products Data)RATA calculations are based on all 10 runs.0.30.40.40.40.40.40.40.40.40.40.50.60.712345678910							
Relative Accuracy Test Audit Results Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 t-Value for 10 Data Sets 2.262 Limit Relative Accuracy (as % of Appl. Std.) 0.4% Appl. Std. = 56.94 lb/hr CM= Reference Method (CleanAir Data) CM= Reference Method (CleanAir Data) CATA calculations are based on all 10 runs.	<u></u>		· · · · · · · · · · · · · · · · · · ·				
Standard Deviation of Differences 0.000 Confidence Coefficient (CC) 0.000 I-Value for 10 Data Sets 2.262 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 lb/hr RM = Reference Method (CleanAir Data) 04336 50007 EMS = Continuous Emissions Monitoring System (Air Products Data) CATA calculations are based on all 10 runs. 0.3 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4		Average	\$	0.0	0.2	-0.2	
Confidence Coefficient (CC) 0.000 t-Value for 10 Data Sets 2.262 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 lb/hr RM = Reference Method (CleanAir Data) 04336 50307 EMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on all 10 runs. 0.3 0.2 0.2 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4				Relative Acc	curacy Test Audi	t Results	
t-Value for 10 Data Sets 2.262 Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 lb/hr RM = Reference Method (CleanAir Data) RMTA calculations are based on all 10 runs. 0.3 0.2 0.2 0.1 0.4% 5.0% Appl. Std. = 56.94 lb/hr 0.4% 5.0% ATA calculations are based on all 10 runs. 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	S	tandard	Deviation of	Differences	0.000		
Limit Relative Accuracy (as % of Appl. Std.) 0.4% 5.0% Appl. Std. = 56.94 lb/hr RM = Reference Method (CleanAir Data) EMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on all 10 runs. 0.3 0.2 0.4% 5.0% Appl. Std. = 56.94 lb/hr 0.4% 5.0% 0.4% 5.0% 0.4		Con	fidence Coe	efficient (CC)	0.000		
Relative Accuracy (as % of Appl. Std.) Appl. Std. = 56.94 lb/hr Appl. Std. = 56.94 lb/hr Appl. Std. = 56.94 lb/hr $Appl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/hr Appl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/hr Appl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/hr Appl. Std. = 56.94 lb/hrAppl. Std. = 56.94 lb/$			t-Value for 1	10 Data Sets	2.262		
Appl. Std. = 56.94 lb/hr M = Reference Method (CleanAir Data) EMS = Continuous Emissions Monitoring System (Air Products Data) AATA calculations are based on all 10 runs. 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1						Limit	
$RA = Reference Method (CleanAir Data) 04336 50007$ $EMS = Continuous Emissions Monitoring System (Air Products Data) (Air Acalculations are based on all 10 runs).$ $0.3 \qquad 0.3 \qquad 0.2 \qquad 0.1 \qquad 0$	Rela	tive Accu					
EMS = Continuous Emissions Monitoring System (Air Products Data) RATA calculations are based on all 10 runs. 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		ave Accu	ıracy (as % ဖ	of Appl. Std.)	0.4%	5.0%	
CATA calculations are based on all 10 runs. 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1		Ap	pl. Std. = 56.	.94 lb/hr	0.4%	5.0%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ap Referenc	pl. Std. = 56. e Method (C	.94 lb/hr CleanAir Data)			041316 150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CEMS	Ap Reference = Contin	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CEMS	Ap Reference = Contin	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CEMS	Ap Reference = Contin	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.2 0.1 0.1 0.1 0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.2 0.1 0.1 0.1 0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.2 0.1 0.1 0.1 0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
$0.1 \\ 0.1 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	CEMS RATA d	App Reference = Contin calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
$0.1 \\ 0.1 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	CEMS RATA d	App Reference = Contin calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
$0.1 \\ 0.1 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	CEMS RATA d	App Reference = Contin calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
	CEMS RATA d	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
	CEMS RATA d	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
	CEMS RATA d	App Reference = Contin calculatio	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA d C	App Reference = Contir calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA d C	App Reference = Contir calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
0.0 1 2 3 4 5 6 7 8 9 10	CEMS RATA d C	App Reference = Contir calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
1 2 3 4 5 6 7 8 9 10		App Reference = Contin calculation 0.3	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
1 2 3 4 5 6 7 8 9 10		App Reference = Contin calculation 0.3	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
1 2 3 4 5 6 7 8 9 10		App Reference = Contin calculation 0.3	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
Run Number		App Reference = Contin calculation	pl. Std. = 56. ce Method (C nuous Emiss	.94 lb/hr CleanAir Data) sions Monitorir	ig System (Air Pr		041316 150
		App Reference = Contin calculation	pl. Std. = 56. The Method (Control of the second s	94 Ib/hr CleanAir Data) sions Monitorir ed on all 10 run	ng System (Air Pro	oducts Data)	
		App Reference = Contin calculation	pl. Std. = 56. The Method (Control of the second s	94 Ib/hr CleanAir Data) sions Monitorir ed on all 10 run	ng System (Air Pro	oducts Data)	
EMS Data (Ib/hr)	EMS ATA o C C O O O O	App Reference = Contin calculation	pl. Std. = 56. The Method (Control of the second s	94 Ib/hr CleanAir Data) sions Monitorir ed on all 10 run	ng System (Air Pro ns.	oducts Data)	

End of Section 2 - Results