CleanAir

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, Michigan 48217

RECEIVED

JUN 1 0 2016

AIR QUALITY DIV.

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

B&W BOILER STACK (SV-B&WBOILER1)

Client Reference No: 4100665755 CleanAir Project No: 12964-1 Revision 0: June 2, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Obuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537

Reviewed by

Dan Pearson Project Engineer dpearson@cleanair.com (800) 627-0033 ext. 4674

RPTv4_6_9.dot 12964-1-Report_R0.docx 43022016 104300 12964-1

Client Reference No: 4100665755 CleanAir Project No: 12964-1

REVISION HISTORY

REPORT ON RATA & COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	05/26/16	All	Draft version of original document.
	l		

FINAL REPORT REVISION HISTORY

Revision :	Date	Pages	Comments
0	06/02/16	All	Final version of original document.

ΪÍ

Client Reference No: 4100665755 CleanAir Project No: 12964-1

PROJECT OVERVIEW

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emissions measurements at the Detroit Refinery as part of a relative accuracy test audit (RATA) and for compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in the DEQ, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Andy Obuchowski – CleanAir Medel Cendana – CleanAir

Test Program Parameters

The testing was performed at the B&W Boiler Stack (Emission Unit ID No. EU27-B&WBOILER1-S1; Stack ID No. SV-B&WBoiler1) on April 11 and 12, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- sulfuric acid (H₂SO₄)
- volatile organic compounds (VOC), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - methane (CH₄)
 - ethane (C_2H_6)
- nitrogen oxide (NO_X)
- carbon monoxide (CO)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate

RECEIVED

JUN 1 0 2016

AIR QUALITY DIV.

Client Reference No: 4100665755 CleanAir Project No: 12964-1

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1: Schedule of Activities							
Run Number	Location	Method	Analyte	Date	Start Time	End Tíme	
1	B&W Boiler Stack	USEPA Method 5	FPM	04/11/16	13:48	15:56	
2	B&W Boiler Stack	USEPA Method 5	FPM	04/11/16	17:06	19:11	
3	B&W Boiler Stack	USEPA Method 5	FPM	04/12/16	08:15	10:24	
1	B&W Boiler Stack	USEPA Methods 3A/7E/10	O ₂ /CO ₂ /NO ₂ /CO	04/11/16	12:40	13:01	
2	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO2/CO	04/11/16	13:15	13:36	
3	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO/CO	04/11/16	13:45	14:06	
4	B&W Boiler Stack	USEPA Methods 3A/7E/10	02/CO2/NO2/CO	04/11/16	14:16	14:37	
5	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO/CO	04/11/16	14:49	15:10	
6	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO/CO	04/11/16	15:19	15:40	
7	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO2/CO	04/11/16	15:50	16:11	
8	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO2/CO	04/11/16	16:20	16:41	
9	B&W Boiler Stack	USEPA Methods 3A/7E/10	O2/CO2/NO2/CO	04/11/16	16:56	17:17	
10	B&W Boiler Stack	USEPA Methods 3A/7E/10	O ₂ /CO ₂ /NO ₂ /CO	04/11/16	17:29	17:50	
1	B&W Boiler Stack	USEPA Methods 3A/18/25A	O₂/CO₂/CH₄/C₂H₅/THC	04/12/16	09:44	10:20	
2	B&W Boiler Stack	USEPA Methods 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	04/12/16	12:06	13:09	
3	B&W Boiler Stack	USEPA Methods 3A/18/25A	O2/CO2/CH4/C2H9/THC	04/12/16	14:09	15:12	
4	B&W Boiler Stack	USEPA Methods 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	04/12/16	16:20	17;23	
0	B&W Boiler Stack	Draft ASTM CCM	Sulfuric Acid	04/12/16	12:20	13:20	
1	B&W Boiler Stack	Draft ASTM CCM	Sulfuric Acid	04/12/16	14:21	15:21	
2	B&W Boiler Stack	Draft ASTM CCM	Sulfuric Acid	04/12/16	16:20	17:20	
3	B&W Boiler Stack	Draft ASTM CCM	Sulfuric Acid	04/12/16	18:04	19:04	

052416143411

Client Reference No: 4100665755 CleanAir Project No: 12964-1

052416 144915

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-11.

Table 1-2: Summary of Emission ComplianceTest Results					
Source Constituent	(Units)	Sampling Method	Average Emission	Permit Limit ¹	
B&W Boiler Stack					
PM	(Ib/MMBtu)	USEPA 5	0.0011	0.0019	
H₂SO₄	(ppmdv)	Draft ASTM CCM	0.14	N/A	
H_2SO_4	(Ib/MMBtu)	Draft ASTM CCM	0.00047	N/A	
VOC	(Ib/MMBtu)	USEPA 25A / 18	<0.00064	0.0055	
NO _X	(lb/MMBtu)	USEPA7E	0.06	0.20	
co	(lb/MMBtu)	USEPA 10	0.04	0.04	

¹ Permit limits obtained from MDEQ Permit to Install No. 63-08D.

Table 1-3: Summary of RATA Results

Source Constituent (Units)	Reference Method	Relative Accuracy (%) ¹	Applicable Specification	Standard Used	Specificatior Limit
B&W Boiler Stack					
O ₂ (% dv)	USEPA 3A	0.1	40 CFR 75, APP. A	abs.diff.	± 1.0%
NO _x (Ib/MMBtu)	USEPA7E	6.5	40 CFR 75, APP. A	% of RM	10%
CO (Ib/MMBtu)	USEPA 10	6.0	40 CFR 60, APP. B PS4A	% of RM	10%

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or avg. absolute difference. The specific expression used depends on the specification limit cited.

Client Reference No: 4100665755 CleanAir Project No: 12964-1

PROJECT OVERVIEW

Discussion of Test Program

FPM Testing - USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. Three 120-minute Method 5 test runs were performed on April 11 and 12, 2016. The final result was expressed as the average of three valid runs.

H₂SO₄ Testing - Draft ASTM Controlled Condensation Method

Three 60-minute test runs were performed on April 12, 2016. The final result was expressed as the average of three valid runs.

VOC Testing – USEPA Methods 25A and 18

During Method 25A/18 Run 1 the flame on the analyzer switched off causing the run to be aborted. Run 1 was not used in the final result calculations.

Subsequently three 63-minute Method 25A test runs for THC were performed concurrently with three 63-minute Method 18 bag collections for CH_4 and C_2H_6 . The final results for each parameter were expressed as the average of three valid runs.

The VOC emission rate is normally equivalent to THC emission rate, minus CH₄ and C_2H_6 emission rate. The calculated emission rate of CH₄ and C_2H_6 detected through analysis of each Method 18 sample bag exceeded the amount of THC measured by the on-line THC analyzer.

This is likely due to variations in the calibration standards, measurement and analytical technique. Therefore, VOC emissions are reported as a value "less than" 1% of the calibration span of THC instrument. The final results were calculated using the average of three valid test runs, all using a concentration of 1% of the instrument span and reported as "less than" the amount.

CEMS RATA System Overview

The B&W Boiler is capable of operating at a maximum heat input capacity greater than 250 MMBtu/hour. Boilers with a heat input capacity greater than 250 MMBtu/hour are required to operate in compliance with the Clean Air Interstate Rule (CAIR). CAIR requires monitoring and reporting of NO_X emissions using continuous emissions monitoring systems (CEMS) operated in accordance with the requirements of 40 CFR Part 75.

ĺ

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-1

PROJECT OVERVIEWThe RATA for NOX and O2 was conducted per 40 CFR, Part 75.	1-5
The RATA for CO was conducted per 40 CFR 60, Appendix B Performance Specification 4A.	
<i>Pre-RATA QA/QC</i> Prior to conducting the RATA, MPC performed a linearity test which will be reported separately.	
RATA Testing – USEPA Methods 3A, 7E and 10 All tests were completed while the facility CEMS was operated in a 'hands off' manner. The boiler was operated at its normal steam load, as that term is defined in 40 CFR part 75 Appendix A. The 'normal' load is the mid-range of operation, or a steam production rate between 50,000 and 152,000 pounds per hour.	
Minute-average data points for O_2 , NO_X and CO (dry basis) were collected over a period of 21 minutes for each RATA reference method (RM) run. The average CO result for each RM run was calculated and compared to the average CO result from the facility CEMS over identical intervals in order to calculate relative accuracy (RA).	
The facility CEMS data acquisition system used for NO_X (Cirrus System) is different than the "normal" data acquisition system used for CO. Following testing, CleanAir was notified that the Cirrus system is restricted to taking a reading every hour on the hour. This disallowed comparing the facility and RM NO_X results over identical intervals. As advised by MPC, CleanAir compared the respective 21-minute RM runs to the most concurrent facility hour data set.	
In addition, the facility Cirrus System does not use daylight savings time while all other times referenced in the report do use daylight savings time. This was taken into consideration when comparing RM results and facility results.	
A total of 10 RATA runs were performed. In lieu of performing a stratification test, sampling was performed at the three points along the "long measurement line" described in 40 CFR 60, Appendix B, PS2, §8.1.3 (16.7, 50.0 and 83.3% of the way across the stack) for each test run.	

Client Reference No: 4100665755 CleanAir Project No: 12964-1

PROJECT OVERVIEW

Bias tests were performed on all of the NO_x RATA data sets. The CEMS data was found to be biased high in comparison to the RM data in all instances. Since the mean difference between the RM and CEMS data was less than or equal to the absolute value of the confidence coefficient for all runs, the CEMS passed the bias test and a bias adjustment factor (BAF) was not applied to any of the emissions results. Per 40 CFR Part 75, bias is only applicable when the CEMS data is biased low in relation to the RM data.

RM NO_X and CO RATA results were also presented to demonstrate compliance with permit limits. The final result was expressed as the average of all 10 RATA runs.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by calculating a combination oxygen-based fuel factor (F_d) for natural gas and refinery gas per USEPA Method 19 specifications.

- For natural gas, the volume-based gross heat content (GCV_V) was obtained from a gas analysis report provided by MPC. The natural gas F_d factor was obtained from 40 CFR Part 75, Appendix F, Table 1. This approach should yield worst-case calculated emission results.
- For refinery gas, the heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC and tabulated heating values for each of the measured constituents.

End of Section 1 – Project Overview

Client Reference No: 4100665755 CleanAir Project No: 12964-1

	R	ES	U	LT	S
--	---	----	---	----	---

2-1

Table 2-1: B&W Boiler Stack – FPM Emissions (USEPA 5)						
Run No		1	2	3	Average	
Date (2016)		Apr 11	Арг 11	Apr 12		
Start Ti	me (approx.)	13:48	17:06	08:15		
Stop Ti	me (approx)	15:56	19:11	10:24		
Proces	s Conditions					
R _P	Steam production (Mlb/hr)	117	117	116	117	
P ₁	Fuel gas flow rate (Mscf/day)	3,357	3,401	3,578	3,445	
P ₂	Natural gas flow rate (Mscf/day)	289	302	391	327	
Fa	Oxygen-based F-factor (dscf/MMBtu)	8,380	8,380	8,376	8,379	
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760	
Gas Co	onditions					
O ₂	Oxygen (dry volume %)	8.6	8.7	8.7	8.7	
CO_2	Carbon dioxide (dry volume %)	7.1	7.0	7.0	7.0	
T,	Sample temperature (°F)	335	337	338	337	
Bw	Actual water vapor in gas (% by volume)	14.3	14.1	14.1	14.2	
Gas Flo	ow Rate					
Qa	Volumetric flow rate, actual (acfm)	71,800	70,500	70,100	70,800	
Q_s	Volumetric flow rate, standard (scfm)	46,100	45,100	45,600	45,600	
Q _{std}	Volumetric flow rate, dry standard (dscfm)	39,500	38,800	39,200	39,100	
Q_a	Volumetric flow rate, actual (acf/hr)	4,310,000	4,230,000	4,210,000	4,250,000	
Q,	Volumetric flow rate, standard (scf/hr)	2,760,000	2,710,000	2,730,000	2,740,000	
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	2,370,000	2,330,000	2,350,000	2,350,000	
Sampli	ng Data					
V _{mstd}	Volume metered, standard (dscf)	65.97	64,95	67.12	66.02	
%I	lsokinetic sampling (%)	99.5	99.7	102.1	100.4	
Labora	tory Data					
m _{filter}	Matter collected on filter(s) (g)	0.00104	0.00078	0.00118		
ms	Matter collected in solvent rinse(s) (g)	0.00132	0.00126	0.00118		
m	Total FPM (g)	0.00236	0.00204	0.00236		
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A		
DLC	Detection level classification	ADL	ADL.	ADL		
FPM Re	sults					
C_{sd}	Particulate Concentration (lb/dscf)	7.89E-08	6.93E-08	7.75E-08	7.52E-08	
E _{lb/hr}	Particulate Rate (Ib/hr)	0.187	0.161	0.182	0.177	
E _{T/yr}	Particulate Rate (Ton/yr)	0.818	0.706	0.798	0.774	
EFd	Particulate Rate - F _d -based (lb/MMBtu)	1.12E-03	9.94E-04	1.11E-03	1.08E-03	

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

DLL = Detection Level Limited - some fractions are below detection limit

BDL = Below Detection Limit - all fractions are below detection limit

052416 155352

Client Reference No: 4100665755 CleanAir Project No: 12964-1

2-2

Table 2-2: Uncertainty Analysis – FPM (USEPA 5)							
		FPM Results		FPM Results		FPM Results	
		(lb/MMBtu)		(lb/hr)		(Ton/yr)	
Method		5		5		5	
Run No.	1	1.12E-03	1	0.187	1	0.818	
	2	9.94E-04	2	0.161	2	0.706	
	3	1.11E-03	3	0.182	3	0.798	
SD		7.15E-05		0.0137		0.0599	
AVG		1.08E-03		0.1767		0.7740	
RSD		6,6%		7.7%		7.7%	
N		3		3		3	
SE		4.13E-05		0.0079		0.0346	
RSE		3.8%		4.5%		4.5%	
P		95.0%		95.0%		95.0%	
TINV		4.303		4.303		4.303	
CI +		1.25E-03		0.2107		0.9227	
AVG		1.08E-03		0.1767		0.7740	
CI -		8.99E-04		0.1428		0.6253	
TB+		1.62E-03		0.2814		1.2323	

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distribution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 12964-1

R	ES	U	Lī	٢S
---	----	---	----	----

2-3

				Table 2-3: B&W Boiler Stack – H ₂ SO ₄ Emissions (Draft ASTM CCM)									
	B&W Boiler Stack – H ₂ SO ₄	missions (Dra	ft ASTM CO	<u>CM)</u>									
Run No	o.	1	2	3	Average								
Date (2	2016)	Apr 12	Apr 12	Арг 12									
Start Ti	ime (approx.)	14:21	16:20	18:04									
Stop Ti	ime (approx.)	15:21	17:20	19:04									
Proces	ss Conditions												
R _P	Steam Production (Mlb/hr)	117	123	126	122								
P1	Fuel gas flow rate (Mscf/day)	3,548	3,530	3,528	3,535								
P ₂	Natural gas flow rate (Mscf/day)	365	358	352	359								
F_{d}	Oxygen-based F-factor (dscf/MMBtu)	8,374	8,373	8,373	8,373								
Gas Co	onditions												
O ₂	Oxygen (dry volume %)	7.9	7.9	7.7	7.8								
CO_2	Carbon dioxide (dry volume %)	7.6	7.6	7.7	7.6								
Τs	Sample temperature (°F)	315	320	322	319								
Bw	Actual water vapor in gas (% by volume)	14.8	14.1	15.0	14.6								
Sampl	ing Data												
V _{mstd}	Volume metered, standard (dscf)	26.00	27.53	25.06	26.19								
_abora	atory Data (Ion Chromatography)												
m _n	Total H2SO4 collected (mg)	0.3675	0.5490	0.3317									
Sulfuri	c Acid Vapor (H2SO4) Results												
$\mathbf{C}_{\mathbf{sd}}$	H2SO4 Concentration (lb/dscf)	3.12E-08	4.40E-08	2.92E-08	3.48E-08								
$C_{\rm sd}$	H2SO4 Concentration (ppmdv)	0.123	0.173	0.115	0.137								
EFd	H2SO4 Rate - Fd-based (lb/MMBtu)	4.20E-04	5.92E-04	3.87E-04	4.66E-04								

Average includes 3 runs.

051116 124923

Client Reference No: 4100665755 CleanAir Project No: 12964-1

2-4

		Table 2	-4:	
	Ur	<u>ncertainty Analysis – H₂S</u>	O ₄ (Draft ASTM	CCM)
-		H2SO4 Results		H2SO4 Results
		(ppmdv)		(Ib/MMBtu)
Method		CCM		CCM
Run No.	1	0.1225	1	4.20E-04
	2	0.1728	2	5.92E-04
	3	0.1147	3	3.87E-04
SD		3.15E-02		1.10E-04
AVG		0.1367		4.66E-04
RSD		23.1%		23.6%
N		3		3
SE		1,82E-02		6.36E-05
RSE		13.3%		13.6%
Р		95.0%	•	95.0%
TINV		4.303		4.303
CI +		0.2150		7.40E-04
AVG		0.1367		4.66E-04
Ci -		0.0584		1.93E-04
TB+		0.378		1.31E-03

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distribution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 12964-1

080410 154528

RESULTS

2-5

	Table	e 2-5:			
	B&W Boiler Stack – THC, CH ₄ , C ₂ H ₆ a	Ind VOC Emissio	ns (USEP/	<u>A 25A / 18)</u>	!
Run No. ¹	· · · · · · · · · · · · · · · · · · ·	2	3	- 4	Average
Date (20	16)	Apr 12	Apr 12	Арг 12	
Start Tim	ne (approx.)	12:06	14:09	16:20	
Stop Tim	e (approx.)	13:09	15:12	17:23	
Process	s Conditions				
R _P	Steam Production (Mlb/hr)	118	118	123	120
P ₁	Fuel gas flow rate (Mscf/day)	3,545	3,553	3,529	3,542
P ₂	Natural gas flow rate (Mscf/day)	372	365	358	365
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,374	8,374	8,373	8,374
Gas Con	ditions				
O ₂	Oxygen (dry volum e %)	8.0	7.9	7.8	7.9
CO2	Carbon dioxide (dry volume %)	7.5	7.6	7.8	7.6
В"	Actual water vapor in gas (% by volume) ²	13.8	14.8	14.1	14.2
THC Res	uits				
C _{sd}	Concentration (ppmdv as C ₃ H ₈)	2.71	2.43	2,21	2.45
C_{sd}	Concentration (Ib/dscf)	3.11E-07	2.78E-07	2.53E-07	2.80E-07
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	4.21E-03	3.74E-03	3.38E-03	3.78E-03
Methane	e Results				
Cad	Concentration (ppmdv)	6.05	5.37	4.66	5.36
C _{sd}	Concentration (Ib/dscf)	2.52E-07	2.24E-07	1.94E-07	2.23E-07
E _{Fd}	Emission Rate - F _e -based (Ib/MMBtu)	3.41E-03	3.01E-03	2.59E-03	3.00E-03
Ethane F	Results				
Csd	Concentration (ppmdv)	<0.0875	<0.0875	<0.0875	<0.0875
C _{sd}	Concentration (lb/dscf)	<6.83E-09	<6.83E-09	<6.83E-09	<6.83E-09
EFd	Emission Rate - F _d -based (Ib/MMBtu)	<9.25E-05	<9.20E-05	<9.12E-05	<9.19E-05
VOC Res	ults				
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)	<6.46E-04	<6.43E-04	<6.38E-04	<6.42E-04

Average includes 3 runs,

¹ Run 1 was invalidated 20 minutes into the test run when the flame went out in the JUM 3-500 FID analyzer.

² Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent CCM runs.

For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory. For VOCs, '<' indicates a measured/calculated response below the detectiono limit (assumed to be 1% of the instrument calibration span).

Client Reference No: 4100665755 CleanAir Project No: 12964-1

080410 154528

REJULIJ	-	EC	U		FC
	R	ES	U.	-	

2-6

		Tab	le 2-6:				
	B&W Boiler Stack -			sions (US	EPA 7E, 1	10)	
Run No.		1	2	3	4	5	6
Date (20	(16)	Apr 11	Apr 11	Apr 11	Apr 11	Apr 11	Apr 11
Start Tim	e (approx.)	12:40	13:15	13:45	14:16	14:49	15:19
Stop Tim	e (approx.)	13:01	13:36	14:06	14:37	15:10	15:40
Process	Conditions						
R _P	Steam Production (klb/hr)	115	117	117	116	116	117
P ₁	Fuel gas flow rate (kscf/hr)	140	140	140	140	140	140
P ₂	Natural gas flow rate (kscf/hr)	11.8	11.8	11.8	11.8	11.8	11.8
Fď	Oxygen-based F-factor (dscf/MMBtu)	8,379	8,379	8,379	8,379	8,379	8,379
Gas Con	ditions						
O ₂	Oxygen (dry volume %)	8.5	8.6	8.6	8.6	8.6	8.6
CO₂	Carbon dioxide (dry volume %)	7.4	7.3	7.3	7.2	7.2	7.3
Nitrogen	Oxides Results						
C _{sd}	Concentration (ppmdv)	33.9	33.2	33.3	33.5	33.6	34.1
Csd	Concentration (lb/dscf)	4,05E-06	3.96E-06	3.97E-06	4.00E-06	4.01E-06	4.07E-06
E _{Fd}	Emíssion Rate - F _e -based (Ib/MMBtu)	0.0571	0.0564	0.0565	0.0570	0.0572	0.0580
	Monoxide Results						
Carbon w C _{sd}	Concentration (ppmdv)	33.2	35.0	33.7	34,4	34.0	31.8
C _{sd}	Concentration (Ib/dscf)	2.41E-06	2.55E-06	2.45E-06	2.50E-06	2.47E-06	2.31E-06
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0340	0.0362	0.0349	0.0356	0.0352	0.0330
	_						080410 154528
Run No.			7	8	9	10	Average
Date (201	16)		Apr 11	Apr 11	Apr 11	Apr 11	
Start Tim	ie (approx.)		15:50	16:20	16:56	17:29	
Stop Tim	e (approx.)		16:11	16:41	17:17	17:50	
Process	Conditions						
RP	Steam Production (Klb/hr)		117	116	115	115	116
P1	Fuel gas flow rate (kscf/hr)		140	140	141	141	140
P ₂	Natural gas flow rate (kscf/hr)		11.8	11.8	11.9	11.9	11.8
Fd	Oxygen-based F-factor (dscf/MMBtu)		8,379	8,379	8,379	8,379	8,379
Gas Cond	ditions						
O_2	Oxygen (dry volume %)		8.7	8.7	8.9	8.7	8.7
CO2	Carbon dioxide (dry volume %)		7.2	7.2	7.1	7.2	7.2
Nitrogen	Oxides Results						
			33.7	34.1	33.9	34.2	33.7
C_{sd}	Concentration (ppmdv)						
C _{sd} C _{sd}	Concentration (ppmdv) Concentration (lb/dscf)		4.03E-06	4.07E-06	4.04E-06	4.08E-06	4.03E-06
			4.03E-06 0.0579	4.07E-06 0.0586	4.04E-06 0.0588	4.08E-06 0.0585	4.03E-06 0.0576
C _{sd} E _{Fd}	Concentration (lb/dscf)						
C _{sd} E _{Fd}	Concentration (Ib/dscf) Emission Rate - F _d -based (Ib/MMBtu)						
C _{ed} E _{Fd} Carbon N	Concentration (lb/dscf) Emission Rate - F _d -based (lb/MMBtu) Monoxide Results		0.0579	0.0586	0.0588	0.0585	0.0576

Average includes 10 runs.

Revision 0, Final Report

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-1

2-7

RESULTS Table 2-7: B&W Boiler Stack – O₂ Relative Accuracy (USEPA 3A) Start Date **RM Data CEMS** Data Difference Difference Run Percent Time (2016)(%dv) (%dv) (%dv) No. 1 12:40 Apr 11 8.5 8.4 0.1 1.1% 2 13:15 8.6 0.1 1.0% Apr 11 8.5 3 13:45 Apr 11 8.6 8.5 0.1 1.2% 4 14:16 Apr 11 8.6 8.5 0.1 0.8% 5 8.6 0.1 0.7% 14:49 Apr 11 8.5 6 15:19 Apr 11 8.6 8.5 0.1 1.3% 7 15:50 8.7 8.5 0.2 2.4% Apr 11 8 16:20 Apr 11 8.7 8.6 0.1 1.1% 9 * 16:56 0.3 3.3% Apr 11 8.9 8.6 10 17:29 Apr 11 8.7 8.6 0.1 1.3% 1.2% 8.6 0.1 Average 8.5 **Relative Accuracy Test Audit Results** Standard Deviation of Differences 0.043 Confidence Coefficient (CC) 0.033 t-Value for 9 Data Sets 2.306 Limit Avg. Abs. Diff. (%dv) 0.104 1.0 RM = Reference Method (CleanAir Data) 051816 083851 CEMS = Continuous Emissions Monitoring System (Marathon Pertroleum Corporation Data) RATA calculations are based on 9 of 10 runs. * indicates the excluded run. 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 7 1 2 3 4 5 6 8 9 10 Run Number RM Data (%dv) CEMS Data (%dv)

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-1

BOAN	V Boil	er Stack	i ai – NO _X (Ib/MM	ble 2-8: Btu) Relative	Accuracy (U	ISEPA 7
Run No.	Start Time ¹	Date (2016)	RM Data (Ib/MMBtu)	CEMS Data (Ib/MMBtu)	Difference (lb/MMBtu)	Differenc Percer
1 *	12:40	Apr 11	0.057	0.058	-0.001	-1.89
2	13:15	Apr 11	0.056	0.060	-0.004	-7.19
3	13:45	Apr 11	0.056	0.060	-0.004	-7.19
4	14:16	Apr 11	0.057	0.060	-0.003	-5.39
5	14:49	Apr 11	0.057	0.061	-0.004	-7.09
6	15:19	Apr 11	0.058	0.061	-0.003	-5.29
7	15:50	Apr 11	0.058	0.061	-0.003	-5.29
8	16:20	Apr 11	0.059	0.061	-0.002	-3.49
9	16:56	Apr 11	0.059	0.062	-0.003	-5.19
10	17:29	Apr 11	0.059	0.062	-0.003	-5.19
	Average	•	0.058	0.061	-0.003	-5.6
			Relative Acc	uracy Test Audit F	Results	
	Stand	ard Deviatio	n of Differences	0.001		
			Coefficient (CC)	0.001		
			for 9 Data Sets	2,306		
		. varac		21000	Limit	
	Re	lative Accura	icy (as % of RM)	6.5%	10.0%	
			Diff. (Ib/MMBtu)	0.003	0.020	
		-	as Test	-0.003 ≤ 0.001		
		E	Bias Test Status	Pass		
			erence method onl	у		· · · · · · · · · · · · · · · · · · ·
		Method (Clear	-			052616 145
			Monitoring System (M			
RAIAC	alculation	is are based (on 9 of 10 runs. * indic	cates the excluded ru	n	
0.0	070 					
					19	as
0.0	100					
	100					24' 688 2
0.0	50					
0.0						
0.0 0.1						
0.0 0.1	050					
0.0	050					
0.0 0.0	050					
0.0 0.0 0.0	050 040 030					
0.0 0.0 0.0	050					
0.0	050 040 030 020					
0.0	050 040 030					
0.0 0.0 0.0 0.0 0.0	050					
0.0 0.0 0.0 0.0 0.0	050 040 030 020	× , 2	3 4	5 6	7 8 5	9 10
0.0 0.0 0.0 0.0 0.0	050	× ,		5 6 Run Number	7 8 9	3 10

CleanAir.

MARATHON PETROLEUM COMPANY LP, DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-1

2-9

Run Start	Date	<u>c – CO (Ib/MME</u> RM Data	CEMS Data	Difference	Differenc
No. Time	(2016)	(Ib/MMBtu)	(Ib/MMBtu)	(Ib/MMBtu)	Percer
1 12:40	Apr 11	0.034	0.032	0.002	5.9%
2* 13:15	Apr 11	0.036	0.033	0.003	8.3%
3 13:45	Apr 11	0.035	0.033	0.002	5.7%
4 14:16	Apr 11	0.036	0.034	0.002	5.6%
5 14:49	Apr 11	0.035	0.034	0.001	2.9%
6 15:19	Apr 11	0.033	0.032	0.001	3.0%
7 15:50	Apr 11	0.034	0.032	0.002	5.9%
8 16:20 9 16:56	Apr 11	0.037	0.035	0.002 0.002	5.4%
9 16:56 10 17:29	Apr 11 Apr 11	0.037 0.037	0.035 0.035	0.002	5.4% 5.4%
Average		0.035	0.034	0.002	5.0%
		Relative Acc	uracy Test Audit R	esults	
Stand	ard Deviatio	n of Differences	0.000		
(Confidence	Coefficient (CC)	0.000		
	t-Value	for 9 Data Sets	2.306		
				Limit	
Rel		icy (as % of RM)	6.0%	10.0%	
RM = Referenc CEMS = Contin	Avg. Abs e Method (C uous Emiss	Diff. (Ib/MMBtu)	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	051916 1711 tion Data)
RM = Referenc CEMS = Contin	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.035 0.030 0.025	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025 0.020	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025 0.020 0.015	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Pe	10.0% 0.04 rtroleum Corpora	
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000	Avg. Abs. e Method (C uous Emiss ons are base	. Diff. (Ib/MMBtu) cleanAir Data) sions Monitoring Sy ed on 9 of 10 runs. 1	0.002 stem (Marathon Pe ' indicates the exclu-	10.0% 0.04 rtroleum Corpora ided run.	tion Data)
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000	Avg. Abs e Method (C uous Emiss	, Diff. (Ib/MMBtu) IleanAir Data) sions Monitoring Sy	0.002 stem (Marathon Per indicates the exclu-	10.0% 0.04 rtroleum Corpora	tion Data)
RM = Referenc CEMS = Contin RATA calculatio 0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.015 0.010	Avg. Abs. e Method (C uous Emiss ons are base	. Diff. (Ib/MMBtu) cleanAir Data) sions Monitoring Sy ed on 9 of 10 runs. 1	0.002 stem (Marathon Pe ' indicates the exclu-	10.0% 0.04 rtroleum Corpora ided run.	tion Data)

End of Section 2 – Results