CleanAir

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

CCR CHARGE HEATER STACK (14H8-9) CCR INTERHEATER STACK (14H1-4)

Client Reference No: 4100665755 CleanAir Project No: 13047 Revision 0: September 7, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

andrew Quichowski

Andy Obuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Scott Brown Quality Director sbrown@cleanair.com (800) 627-0033 ext. 4544

RPTv4_6_8.dot 13047_MPC Report_R0.doc 51072016 025100 13047

supporting enclosures are true, accurate and complete MPC Investment LLC. 1.0

	its General Partner	
David T. Roland	Deputy Assistant Secretary	313-843-9100
Name of Responsible Official (print or type)	Title	Phone Number
p)/u		9/9/2016
Signature of Responsible Official		Date

* Photocopy this form as needed.

EQP 5736 (Rev 11-04)

RECEIVED

SEP 1 3 2016

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

AIR QUALITY DIVISION

must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Environmental Quality. Air Quality Division upon request.

Source Name Marathon Petroleum Company LP Source Address 1300 South Fort Street AQD Source ID (SRN) Please check the appropriate box(es): Annual Compliance Certification (Pursuant to Rule 213(4)(c)) Reporting period (provide inclusive dates): 1. During the entire reporting period, this source was in compliance with ALL terms and conditions contained in the ROP, each term and condition of which is identified and included by this reference. The method(s) used to determine compliance is/are the 2. During the entire reporting period this source was in compliance with all terms and conditions contained in the ROP, each term and condition of which is identified and included by this reference, EXCEPT for the deviations identified on the enclosed deviation report(s). The method used to determine compliance for each term and condition is the method specified in the ROP. Semi-Annual (or More Frequent) Report Certification (Pursuant to Rule 213(3)(c)) Reporting period (provide inclusive dates): 1. During the entire reporting period, ALL monitoring and associated recordkeeping requirements in the ROP were met and no 2. During the entire reporting period, all monitoring and associated recordkeeping requirements in the ROP were met and no ☑ Other Report Certification Reporting period (provide inclusive dates): Additional monitoring reports or other applicable documents required by the ROP are attached as described:

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

Client Reference No: 4100665755 CleanAir Project No: 13047

REVISION HISTORY

İİ

REPORT ON RATA & COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	08/22/16	All	Draft version of original document.

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments	
0	09/07/16			

Revision 0, Final Report

Client Reference No: 4100665755 CleanAir Project No: 13047

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit refinery for relative accuracy test audit (RATA) and compliance purposes.

Testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan Department of Environmental Quality, Air Quality Division Permit to Install No. 63-08D, issued May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Chad Eilering – CleanAir

Test Program Parameters

Testing was performed at the CCR Charge Heater (Heater ID 14H8-9, Emission Unit ID EU14-CCRPLCHARHTR-S1, Stack ID SV14-H6) on July 12, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- nitrogen oxides (NO_X)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate

Testing was performed at the CCR Interheater (Heater ID 14H1-4, Emission Unit ID EU14-CCRPLINTHTR-S1, Stack ID SV14-H4A) on July 13 and 14, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- nitrogen oxides (NO_x)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

	Table 1-1: Schedule of Activities						
Run Number	Location	Method	Analyte	Date	Start Time	End Time	
1	CCR Charge Heater Stack	USEPA Method 5	FPM	07/12/16	10:00	12:13	
2	CCR Charge Heater Stack	USEPA Method 5	FPM	07/12/16	12:59	15:14	
3	CCR Charge Heater Stack	USEPA Method 5	FPM	07/12/16	16:00	18:08	
1	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	09:55	10:16	
2	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	10:23	10:44	
3	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	10:53	11:14	
4	CCR Charge Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/12/16	11:21	11:42	
5	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	11:50	12:11	
6	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	12:19	12:40	
7	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	12:48	13:09	
8	CCR Charge Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/12/16	13:22	13:43	
9	CCR Charge Heater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/12/16	13:53	14:14	
10	CCR Charge Heater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/12/16	14:24	14:45	
1	CCR Interheater Stack	USEPA Method 5	FPM	07/13/16	14:37	16:46	
2	CCR Interheater Stack	USEPA Method 5	FPM	07/14/16	09:14	11:47	
3	CCR Interheater Stack	USEPA Method 5	FPM	07/14/16	12:24	14:30	
1	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	09:05	09:26	
2	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	09:33	09:54	
3	CCR Interheater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/14/16	10:02	10:23	
4	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	10:31	10:52	
5	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	11:06	11:27	
6	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	11:36	11:57	
7	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	12:05	12:26	
8	CCR Interheater Stack	USEPA Method 3A/7E	O2/CO2/NOX	07/14/16	12:39	13:00	
9	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	13:53	14:14	
10	CCR Interheater Stack	USEPA Method 3A/7E	O ₂ /CO ₂ /NO _X	07/14/16	14:25	14:46	

082216165606

1-2

Client Reference No: 4100665755

CleanAir Project No: 13047

Client Reference No: 4100665755 CleanAir Project No: 13047

PROJECT OVERVIEW

Results Summary

Tables 1-2 and 1-3 summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-10.

Table 1-2: Summary of Emission Compliance Test Results					
Source Constituent (Units)	Sampling Method	Average Emission	Permit Limit ¹		
CCR Charge Heater Stack PM (lb/MMBtu)	USEPA 5	0.0015	0.0019		
CCR Interheater Stack PM (Ib/MMBtu)	USEPA 5	0.0015	0.0019		

¹ Permit limits obtained from MDEQ Permit To Install No. 63-08D.

Table 1-3: Summary of RATA Results

	······································						
<u>Source</u> Constituent (Units)	Reference Method (USEPA)	Applicable Specification	Relative Accuracy ¹	Standard Used	Specification Limit		
CCR Charge Heater Stack							
O ₂ (% dv)	3A	PS3	0.17	abs. diff.	$\pm 1.0\%^{2}$		
NO _x (lb/MMBtu)	7E	PS2	2.8	% of RM	20% ²		
CCR Interheater Stack							
O ₂ (% dv)	3A	PS3	0.50	abs. diff.	$\pm 1.0\%^{2}$		
NO _x (lb/MMBtu)	7E	PS2	0.009	abs. diff.	±0.02 lb/MMBtu ³		

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.).

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

³ Alternative specification per Table 16 in the Plain English Guide to the Part 75 Rule.

082216 155606

082216 165606

Client Reference No: 4100665755 CleanAir Project No: 13047

PROJECT OVERVIEW

Discussion of Test Program

FPM Testing - USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. FPM testing occurred over two separate mobilizations.

Three (3) 120-minute Method 5 test runs were performed on July 12, at the CCR Charge Heater Stack. The final result was expressed as the average of three (3) valid runs.

Three (3) 120-minute Method 5 test runs were performed on July 13 and 14, at the CCR Interheater Stack. The final result was expressed as the average of three (3) valid runs.

O₂ and NO_X RATA Testing - USEPA Methods 3A and 7E; Performance Specifications 2 and 3

Minute-average data points for O_2 and NO_X (dry basis) were collected over a period of 21 minutes for each RATA reference method run. The average result for each reference method run was calculated and compared to the average result from the facility's CEMS over an identical time interval in order to calculate relative accuracy (RA).

Ten (10) RATA test runs were performed at the CCR Charge Heater Stack on July 12.

Ten (10) RATA test runs were performed at the CCR Interheater Stack on July 14.

The facility CEMS results as lb/MMBtu were calculated and provided by MPC, along with all other applicable RATA and process data, and can be found in Appendix H of this report.

The NO_X lb/MMBtu RATA on the CCR Interheater stack utilized the alternative specification outlined in Table 16 of the Plain English Guide to the Part 75 Rule. The alternative specification is allowable based on:

- The NO_X lb/MMBtu limit on this unit is not regulated by Part 60
- The NO_X lb/MMBtu emissions on this unit meets the low emitter conditions of ≤ 0.200 lb/MMBtu

MPC verified the requirements of this alternative specification with Thomas Maza from MDEQ. Email transmissions can be found in Appendix L.

Client Reference No: 4100665755 CleanAir Project No: 13047

PROJECT OVERVIEW

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by calculating an oxygenbased fuel factor (F_d) for refinery gas per USEPA Method 19 specifications. The heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC for each test day and tabulated heating values for each of the measured constituents.

End of Section 1 – Project Overview

Client Reference No: 4100665755 CleanAir Project No: 13047

2-1

RES	ULTS				
	Tab CCP Charge Heater Stack	le 2-1: EPM Emission		5)	
Run N				3	Average
Null IN		1	-		Arcruge
Date (2	2016)	Jul 12	Jul 12	Jul 12	
Start II	ime (approx.)	10:00	12:59	16:00	
Stop 1	me (approx.)	12:13	15:14	18:08	
Proces	ss Conditions				
P ₁	Fuel gas flow rate (Mscf/day)	2,203	2,206	2,151	2,187
P ₂	Charge rate (bpd)	18,002	18,001	17,999	18,001
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,346	8,346	8,346	8,346
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas C	onditions				
O2	Oxygen (dry volume %)	7.2	6.9	7.1	7.1
CO2	Carbon dioxide (dry volume %)	7.7	7.8	8.0	7.8
Τs	Sample temperature (°F)	349	349	348	349
8 _w	Actual water vapor in gas (% by volume)	13.8	14.7	14.5	14.3
Gas Fl	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	50,400	46,100	52,600	49,700
Qs	Volumetric flow rate, standard (scfm)	32,100	29,400	33,600	31,700
Q _{std}	Volumetric flow rate, dry standard (dscfm)	27,700	25,100	28,700	27,200
Q,	Volumetric flow rate, actual (acf/hr)	3,020,000	2,770,000	3,150,000	2,980,000
Qs	Volumetric flow rate, standard (scf/hr)	1,930,000	1,770,000	2,010,000	1,900,000
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	1,660,000	1,510,000	1,720,000	1,630,000
Sampli	ing Data				
V _{mstd}	Volume metered, standard (dscf)	74.07	68.80	77.66	73.51
%I	Isokinetic sampling (%)	97.7	100.2	98.9	98.9
Labora	itory Data				
mn	Total FPM (g)	0.00440	0.00335	0.00375	
DLC	Detection level classification	ADL	ADL	ADL	
FPM R	esuits				
C _{sd}	Particulate Concentration (lb/dscf)	1.31E-07	1.07E-07	1.06E-07	1.15E-07
Elb/hr	Particulate Rate (lb/hr)	0.218	0.162	0.183	0.188
E _{T/vi}	Particulate Rate (Ton/yr)	0.953	0.708	0.803	0.821
EFd	Particulate Rate - F _d -based (lb/MMBtu)	0.00167	0.00134	0.00135	0.00145

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Client Reference No: 4100665755 CleanAir Project No: 13047

2	-	2	

			Ta	ble 2-2:			
		CCR Charge He	eater Stack	Uncertainty – FP	M (USEPA	5)	
		FPM Results	- <u></u>	FPM Results		FPM Results	
		(Ib/MMBtu)		(lb/hr)		(Ton/yr)	
Method		5		5		5	
Run No.	1	0.00167	1	0.218	1	0.953	
	2	0.00134	2	0.162	2	0.708	
	3	0.00135	3	0.183	3	0.803	
SD		1 88F-04		0.0282		0.124	505506520
ΔVG		0.00145		0.188		0.821	
RSD		13.0%		15.1%		15.1%	
N		3		3		3	
SE		1.09E-04		0.0163		0.0714	
RSE		7.5%		8.7%		8.7%	
Р		95.0%		95.0%		95.0%	
TINV		4.30		4.30		4.30	
CI +		0.00192		0.258		1.13	
AVG		0.00145		0.188		0.821	
CI -		0.00098		0.117		0.514	
TB+		0.00289		0.404		1.77	

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 13047

2-3

RES	ULTS				
	Tab CCR Interheater Stack –	le 2-3: FPM Emissions	USEPA 5)	
Run N	0.	1	2	3	Average
Date (2	2016)	Jul 13	Jul 14	Jul 14	
Start Ti	me (approx.)	14:37	09:14	12:24	
Stop Ti	me (approx.)	16:46	11:47	14:30	
Proces	s Conditions				
P1	Fuel das flow rate (Mscf/dav)	2.132	2,180	2.214	2.175
P ₂	Charge rate (bpd)	17,999	18,005	18,448	18,151
Fa	Oxygen-based F-factor (dscf/MMBtu)	8,328	8,330	8,330	8,329
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O2	Oxygen (dry volume %)	6.1	6.3	5.9	6.1
CO_2	Carbon dioxide (dry volume %)	8.6	8.5	8.8	8.6
Ts	Sample temperature (°F)	481	480	482	481
Bw	Actual water vapor in gas (% by volume)	16.0	14.9	15.1	15.3
Gas Fl	ow Rate				
$\mathbf{Q}_{\mathbf{a}}$	Volumetric flow rate, actual (acfm)	33,700	39,400	36,900	36,700
Q_s	Volumetric flow rate, standard (scfm)	18,500	21,600	20,200	20,100
Q _{std}	Volumetric flow rate, dry standard (dscfm)	15,500	18,400	17,100	17,000
Qa	Volumetric flow rate, actual (acf/hr)	2,020,000	2,360,000	2,220,000	2,200,000
Q_s	Volumetric flow rate, standard (scf/hr)	1,110,000	1,300,000	1,210,000	1,210,000
G ^{aq}	Volumetric flow rate, dry standard (dscf/hr)	932,000	1,100,000	1,030,000	1,020,000
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	60.27	69.78	65.77	65.28
%1	lsokinetic sampling (%)	100.2	98.2	99.1	99.1
Labora	tory Data				
mn	Total FPM (g)	0.00445	0.00325	0.00361	
DLC	Detection level classification	ADL	ADL	ADL	
FPM R	esults				
C_{sd}	Particulate Concentration (lb/dscf)	1.63E-07	1.03E-07	1.21E-07	1.29E-07
E _{Ib/ht}	Particulate Rate (lb/hr)	0.152	0.113	0.125	0.130
Ет/уг	Particulate Rate (Ton/yr)	0.665	0.496	0.545	0.569
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00191	0.00122	0.00140	0.00151

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

Client Reference No: 4100665755 CleanAir Project No: 13047

2-4	2	-4
-----	---	----

		· · · · ·	Tal	ble 2-4:		•	
		CCR Interhea	ter Stack U	Incertainty – FPM	USEPA 5)	_
		FPM Results (Ib/MMBtu)		FPM Results (lb/hr)		FPM Results (Ton/yr)	
Method		5		5		5	
Run No.	1	0.00191	1	0.152	1	0.665	
	2	0.00122	2	0.113	2	0.496	
	3	0.00140	3	0.125	3	0.545	
SD		3.58E-04		0.0198		0.0869	
AVG		0.00151		0.130		0.569	
RSD		23.6%		15.3%		15.3%	
N		3		3		3	
SE		2.07E-04		0.0115		0.0502	
RSE		13.6%		8.8%		8.8%	
Р		95.0%		95.0%		95.0%	
TINV		4.30		4.30		4.30	
CI +		0.00240		0.179		0.784	
AVG		0.00151		0.130		0.569	
CI -		0.000625		0.0805		0.353	
тв +		0.00425		0.282		1.23	

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distrubution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 13047

RESULTS

2-5

Table 2-5: CCR Charge Heater Stack – NOv Emissions (USEPA 75)															
Run No		1	2	3	4	5	6								
Date (2016) Start Time (approx.) Stop Time (approx.)		Jul 12 09:55 10:16	Jul 12 10:23 10:44	Jul 12 10:53 11:14	Jul 12 11:21 11:42	Jul 12 11:50 12:11	Jul 12 12:19 12:40								
								Process	s Conditions						
								Fa	Oxygen-based F-factor (dscf/MMBtu)	8,346	8,346	8,346	8,346	8,346	8,346
Gas Co	nditions														
0,	Oxygen (dry volume %)	6.6	6.7	6.6	6.6	6.4	6.5								
CO₂	Carbon dioxide (dry volume %)	8.3	8.3	8.3	8.4	8.5	8.4								
Nitroge	n Oxides Results														
Carl	Concentration (ppmdv)	21.2	21.0	21.1	20.7	20.7	21.0								
Certa	Concentration @ 0% O ₂ (ppmdv)	31.0	30.9	30.9	30.1	30.0	30.4								
C.	Concentration (lb/dscf)	2.53E-06	2,51E-06	2,52E-06	2.47E-06	2.48E-06	2.50E-06								
E _{Fd}	Emission Rate - Fd-based (Ib/MMBtu)	0.0309	0.0308	0.0308	0.0300	0.0299	0.0303								
Run No.			7	8	9	10	Average								
Date (2016)			Jul 12	Jul 12	Jul 12	Jul 12									
Start Time (approx.)			12:48	13:22	13:53	14:24									
Stop Time (approx.)			13:09	13:43	14:14	14:45									
Process	s Conditions														
Fd	Oxygen-based F-factor (dscf/MMBtu)		8,346	8,346	8,346	8,346	8,346								
Gas Co	nditions														
O ₂	Oxygen (dry volume %)		6.5	6.6	6.4	6.3	6.5								
CO_2	Carbon dioxide (dry volume %)		8.4	8.3	8.4	8.5	8.4								
Nitroge	n Oxides Results														
Csd	Concentration (ppmdv)		20.9	20.3	20.4	20.7	20.8								
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)		30.4	29.7	29.4	29.8	30.3								
C_{sd}	Concentration (lb/dscf)		2.49E-06	2.42E-06	2.44E-06	2.48E-06	2.48E-06								
E_{Fd}	Emission Rate - F _d -based (lb/MMBtu)		0.0303	0.0296	0.0293	0.0297	0.0302								

Average includes 10 runs.

Client Reference No: 4100665755 CleanAir Project No: 13047

RESULTS

2-6

Table 2-6: CCR Interheater Stack – NO _X Emissions (USEPA 7E)															
Run No. Date (2016) Start Time (approx.) Stop Time (approx.)		1 Jul 14 09:05 09:26	2 Jul 14 09:33 09:54	3 Jul 14 10:02 10:23	4 Jul 14 10:31 10:52	5 Jul 14 11:06 11:27	6 Jul 14 11:36 11:57								
								Process	s Conditions						
								Fa	Oxygen-based F-factor (dscf/MMBtu)	8,330	8,330	8,330	8,330	8,330	8,330
								Gas Co	nditions						
O_2	Oxygen (dry volume %)	6.2	6.1	6.0	5.9	6.0	6.0								
CO_2	Carbon dioxide (dry volume %)	8.7	8.7	8.8	8.9	8.8	8.9								
Nitroge	n Oxides Results														
C _{sd}	Concentration (ppmdv)	23.1	23.0	22.8	22.8	22.9	22.9								
C _{sd-x}	Concentration @ 0% O2 (ppmdv)	32.8	32.6	31.9	31.8	32.1	32.1								
Csd	Concentration (lb/dscf)	2.75E-06	2.75E-06	2.72E-06	2.72E-06	2.73E-06	2.74E-06								
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0326	0.0325	0.0318	0.0316	0.0320	0.0319								
Run No.			7	8	9	10	Average								
Date (2016)			Jul 14	Jul 14	Jul 14	Jul 14									
Start Time (approx.)			12:05	12:39	13:53	14:25									
Stop Time (approx.)			12:26	13:00	14:14	14:46									
Process	s Conditions														
Fď	Oxygen-based F-factor (dscf/MMBtu)		8,330	8,330	8,330	8,330	8,330								
Gas Co	nditions														
O_2	Oxygen (dry volume %)		6.0	6.0	5.4	4.7	5.8								
CO_2	Carbon dioxide (dry volume %)		8.9	8.9	9.2	9.6	8.9								
Nitroge	n Oxides Results														
C_{sd}	Concentration (ppmdv)		23.0	22.9	21.9	20.8	22.6								
\mathbf{C}_{ad-x}	Concentration @ 0% O ₂ (ppmdv)		32.3	32.1	29.4	26.8	31.4								
C_{ad}	Concentration (lb/dscf)		2.75E-06	2.74E-06	2.61E-06	2.48E-06	2.70E-06								
Erd	Emission Rate - F _d -based (lb/MMBtu)		0.0321	0.0320	0.0293	0.0267	0.0312								

Average includes 10 runs.

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13047

Client Reference No: 4100665755 CleanAir Project No: 13047

CleanAir

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 13047

Client Reference No: 4100665755 CleanAir Project No: 13047

2-10

End of Section 2 – Results