CleanAir

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 www.cleanair.com

Marathon Petroleum Company LP 1001 Oakwood Detroit, MI 48217

RECEIVED

APR 1 2 2017

AIR QUALITY DIV.

REPORT ON COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

FCCU REGENERATOR STACK (SVFCCU)

Client Reference No: 4101004604 CleanAir Project No: 13181-2 Revision R0: April 5, 2017

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Obuchowski Midwest Engineering Group Business Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537

Reviewed by.

Bill Ansell Midwest Engineering Group Technical Leader bansell@cleanair.com (800) 627-0033 ext. 4545

RPTv4_6_8.dot 13181-2 Final Report R0.doc 22052017 022200 13181-2

Client Reference No: 4101004604 CleanAir Project No: 13181-2

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit Refinery for compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEO). The permit limits are referenced in Michigan Department of Environmental Quality, Renewable Operating Permit No. MI-ROP-A9831-2012c.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – MPC Joe Reidy – MPC Chad Eilering – CleanAir

Test Program Parameters

The testing was performed at the FCCU Regenerator Stack (Emission Unit ID No. EU11-FCCU-S1; Stack ID No. SVFCCU) on February 28 and March 1, 2017, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to non-sulfate filterable particulate • matter (NSFPM)
- total particulate matter less than or equal to 10 microns (µm) in diameter (Total PM₁₀), assumed equivalent to the sum of the following constituents:
 - non-sulfate filterable particulate matter (NSFPM)
 - condensable particulate matter (CPM)
- ammonia (NH₃) ٠
- sulfuric acid (H₂SO₄)
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - methane (CH₄) 0
 - ethane (C_2H_6) 0
- flue gas composition (e.g., O_2 , CO_2 , H_2O)
- flue gas flow rate
- flue gas velocity decay (wall-effects)

APR 1 2 2017

RECEIVED

AIR QUALITY DIV.

Revision 0, Final Report

1-1

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1: Schedule of Activities								
Run Number	Location	Method	Analyte	Date	Start Time	End Time		
1	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/28/17	10:35	12:11		
2	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/28/17	13:33	14:45		
3	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/28/17	15:57	17:08		
1	FCCU Regenerator Stack	CTM-027	NH ₃	02/28/17	10:35	12:11		
2	FCCU Regenerator Stack	CTM-027	NH ₃	02/28/17	13:33	14:45		
3	FCCU Regenerator Stack	CTM-027	NH ₃	02/28/17	15:57	17:08		
1	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O₂/CO₂/CH₄/C₂H₅/THC	03/01/17	11:00	12:04		
2	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	03/01/17	12:24	13:26		
3	FCCU Regenerator Stack	USEPA Method 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	03/01/17	13:53	14:55		
1	FCCU Regenerator Stack	Draft ASTM CCM	H₂SO₄	03/01/17	10:53	11:53		
2	FCCU Regenerator Stack	Draft ASTM CCM	H ₂ SO₄	03/01/17	12:19	13:26		
3	FCCU Regenerator Stack	Draft ASTM CCM	H ₂ SO ₄	03/01/17	13:46	14:46		
1	FCCU Regenerator Stack	USEPA Method 2H	Wall Effects	02/27/17	13:40	13:59		
1	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/28/17	07:37	07:53		
2	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/28/17	12:24	12:40		
3	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/28/17	14:54	15:04		
4	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/28/17	17:25	17:42		
5	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	03/01/17	10:50	11:03		
6	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	03/01/17	12:14	12:27		
7	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	03/01/17	13:43	13:54		

032117 163107

Client Reference No: 4101004604

CleanAir Project No: 13181-2

1-2

PROJECT OVERVIEW

Results Summary

Tables 1-2 through 1-4 and Figures 1-1 and 1-2 (on the following pages) summarize the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-4.

Summary of NSFPM, CP	Table 1-2: M and Total PM ₁₀ Results	(USEPA 5F/2	02)
enerator Stack	NSFPM Rate	CPM Rate	Total

FCCU Regenerator Stack			NSFPM Rate	CPM Rate	Total PM ₁₀ Rate
			(lb/Mib coke)	(lb/Mlb coke)	(lb/Mlb coke)
Test Dates: 2/28/17					
Coke Burn Rate (lb/hr)	24,666	Run 1	0.2	0.6	0.8
FCC Rate (bpd)	40,998	Run 2	0.2	0.6	0.8
Aqueous NH ₃ Injection (lb/hr)	31.0	Run 3	0.2	0.6	0.8
ESP Operation	Both/LPR				
		Average	0.2	0.6	0.8
		Limit	0.8		1.1

Note: Average includes 3 runs for all parameters.

Table 1-3:

FCCU Regenerator Stack			NH₃ Conc.	NH₃ Slip	NH ₃ Slip
			(ppmdv)	(lb/hr)	(lb/Mlb coke)
Test Dates: 2/28/17					
Coke Burn Rate (Ib /hr)	24,666	Run 1	17	3.4	0.14
FCC Rate (bpd)	40,998	Run 2	16	3.3	0.13
Aqueous NH ₃ Injection (lb/hr)	31.0	Run 3	16	3.2	0.13
ESP Operation	Both/LPR				
-		Average	16	3.3	0.13

Note: Average includes 3 runs for all parameters.

Table 1-4:

Summary of H₂SO₄ and VOC Results (Draft ASTM CCM & USEPA 18/25A)

Source Average									
Constituent	t (Units)	Sampling Method	Emission	Permit Limit ¹					
FCCU Regenera	tor Stack								
H₂SO₄	(lb/Mlb coke)	Draft ASTM CCM	9.3E-03	N/A					
H_2SO_4	(ppmdv)	Draft ASTM CCM	0.20	N/A					
VOC	(Ton/yr)	USEPA 25A / 18	5.4	21					
VOC	(lb/Mlb coke)	USEPA 25A / 18	0.050	N/A					

¹ Permit limit obtained from MDEQ Permit No. MI-ROP-A9831-2012c.

032117 165723

3/21/2017 16:57

3/23/2017 16:5B

1-3

Revision 0, Final Report

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4101004604 CleanAir Project No: 13181-2

Client Reference No: 4101004604 CleanAir Project No: 13181-2

PROJECT OVERVIEW

1-5

......

Discussion of Test Program

Flow Rate Measurements

A wall-effects adjustment factor (WAF) was determined per EPA Method 2H prior to the start of the first test run.

3-D flow traverses per EPA Method 2F were performed before and after each EPA Method 5F/202 and CTM-027 test run and during each EPA Method 18/25A and Draft ASTM CCM test run.

NSFPM and CPM Testing - USEPA Method 5F/202

Three 60-minute Method 5F/202 test runs were performed on February 28.

For this test program, PM emission rate is assumed equivalent to NSFPM emission rate and PM_{10} emission rate is assumed equivalent to the sum of NSFPM and CPM emission rates (units of lb/hr, ton/yr, or lb/Mlb coke for all constituents). For emissions inventory purposes, MPC applies a correction factor to NSFPM to eliminate particles with a diameter less than 10 microns. Application of that correction factor is not included in this test report.

The analytical procedures in EPA Method 202 include an ammonium titration of the inorganic sample fractions with pH less than 7.0 to neutralize acids with hygroscopic properties such as H_2SO_4 that may be present in the sample. This step speeds up the sample desiccation process and allows the samples to reach a constant weight prior to weighing. The weight of ammonium added to the sample as a result of the titration is subtracted from the analytical result.

CleanAir Analytical Services performed the gravimetric analysis and has determined that only samples with an initial pH less than 4.5 require a significant amount of ammonium neutralization, resulting in a correction in excess of 0.5 mg. Based on this observation, the laboratory has altered its procedures. Only samples with a pH lower than 4.5 are titrated.

All of the inorganic sample fractions analyzed from Runs 1 through 3 had a pH less than 4.5 and were titrated. The field train reagent blanks had a pH above 4.5 and were not titrated. The train blanks were observed to reach a constant weight without having to titrate the sample.

NH₃ Testing – USEPA Conditional Test Method (CTM)-027 - Stack

Three 60-minute CTM-027 test runs were performed on February 28. Each test run was performed concurrently with Method 5F/202 testing.

Client Reference No: 4101004604 CleanAir Project No: 13181-2

PROJECT OVERVIEW

H₂SO₄ Testing – Draft ASTM Controlled Condensation Method

Prior to the first official test run, a 60-minute sample conditioning run (Run 0) was performed in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H_2SO_4 -collecting portion of the sample train). The conditioning run was recovered in the same manner as the official test runs, but was not analyzed or included in the final results.

Following the conditioning run on March 1, three official 60-minute test runs were performed. The results were expressed as the average of three official runs.

VOC Testing – USEPA Method 25A and Method 18

Three approximately 60-minute Method 25A test runs for THC were performed concurrently with three approximately 60-minute Method 18 integrated gas sample (IGS) collections for CH_4 and C_2H_6 .

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (units of lb/hr, Ton/yr, or lb/Mlb coke for all constituents). For CH_4 and C_2H_6 , a non-detectable result was obtained for Runs 1 through 3, so no correction was made to the THC results. Therefore, VOC emissions for Runs 1 through 3 were equivalent to THC emissions only. The final VOC results were expressed as the average of three runs.

Calculation of Final Results

Sample flow rates as determined by EPA Method 2, which is incorporated into Method 5F/202 and CTM-027, without the WAF corrections factor were used to calculate isokinetic sampling conditions.

Mass-based emission rates in units of pounds per hour (lb/hr) for Method 5F/202 and CTM-027 were calculated using the applicable average pre-run and post-run flow rate determined by Method 2F combined with the respective WAF correction factor. Mass-based emission rates in units of pounds per hour (lb/hr) for Method 18/25A and Draft ASTM CCM were calculated using the applicable concurrent flow rate determined by Method 2F combined with the respective WAF correction factor.

Emission rates in units of tons per year (Ton/yr) were calculated using an assumed capacity factor of 8,760 operating hours per year. Emission rates in units of pounds per 1,000 pounds of coke burn (lb/Mlb coke) were calculated using coke burn rate data provided by MPC.

Ammonia (NH₃) injection rates shown in Section 2 tables are the aqueous NH₃ (11FC2032) times a factor of 0.2.

1-6

Client Reference No: 4101004604 CleanAir Project No: 13181-2

2-1

RESL	JLTS				
	Table 2-1:				
Dun Ni	NSFPM, CPM, and Total P	<u>'M₁₀ (USEPA</u>	M5F/202)	2	A
Run No).	1	Z	3	Average
Date (2	2017)	Feb 28	Feb 28	Feb 28	
Start Ti	me (approx.)	10:35	13:33	15:57	
Stop Ti	me (approx.)	12:11	14:45	17:08	
Proces	ss Conditions				
Rp	Production rate (Mb coke/hr)	24.7	24.6	24.7	24.7
P ₁	FCC charge rate (bpd)	40,992	40,997	41,006	40,998
P ₂	Ammonia Injection (Ib/hr)	6.2	6.2	6.2	6.2
P_3	ESP Operation	Both/LPR	Both/LPR	Both/LPR	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	2.5	1.9	1. 9	2.1
CO_2	Carbon dioxide (dry volume %)	15.7	16.3	16.2	16.1
Ts	Sample temperature (°F)	522	523	522	522
Bw	Actual water vapor in gas (% by volume)	9.9	9.9	1 1 .5	10.4
Gas Flo	bw Bate ¹				
Q	Volumetric flow rate, actual (acfm)	161,000	162,000	161,000	162,000
Q	Volumetric flow rate, standard (scfm)	85,100	85,700	84,900	85,200
Q _{std}	Volumetric flow rate, dry standard (dscfm)	76,700	77,300	75,100	76,300
Samnl	ing Data				
Vanta	Volume metered, standard (dscf)	40.29	40.82	40.45	40.52
%1	lsokinetic sampling (%) ²	98.9	98.9	100.3	99.4
ahora	itony Data				
_abora m.	Total NSEPM(g)	0.01517	0.01475	0.02174	
Men	· Total CPM (g)	0.06006	0.06111	0.05985	
		0.00000	0.00111	5.00000	
VSEPN	Results	8 305 07	7 075-07	1 105-06	0 275 07
∪ _{sd}	Particulate Bate (lb/hr)	0.00 - 07	7.872-07	E 24	9.37E-07 4 20
⊏íb/hr ⊏	Particulate Rate (Toplar)	3.02	3.09	0.04	4.20
⊏T/yr	Particulate Rate (101/yr)	0.7	0.150	23.4	10.0
ERP	Particulate Rate - Production-based (ib/wib coke)	0.155	0.150	0.210	0.174
CPM R	esuits				
C _{sd}	Particulate Concentration (lb/dscf)	3.29E-06	3.30E-06	3.26E-06	3.28E-06
Elixhr	Particulate Rate (lb/hr)	15.1	15.3	14.7	15.0
E _{T/yr}	Particulate Rate (Ton/yr)	66.2	67.0	64.4	65.9
E _{Rp}	Particulate Rate - Production-based (lb/Mb coke)	0.612	0.622	0.595	0.610
Fotal P	articulate Matter Results				
\mathbf{C}_{sd}	Particulate Concentration (Ib/dscf)	4.12E-06	4.10E-06	4.45E-06	4.22E-06
Eliphr	Particulate Rate (lb/hr)	18.9	19.0	20.0	19.3
E _{T/yr}	Particulate Rate (Ton/yr)	82.9	83.2	87.8	84.7
E _{Rp}	Particulate Rate - Production-based (lb/Mb coke)	0.767	0.772	0.812	0.784

040517 125809

¹ Gas flow rates obtained from bracketing Method 2F test runs combined with the WAF determined by Method 2H.

² Sample flow rates as determined by EPA Method 2 were used to calculate isokinetic sampling conditions.

Average includes 3 runs.

Client Reference No: 4101004604 CleanAir Project No: 13181-2

2-2

RESI	JLTS							
Table 2-2: NH₃ (USEPA CTM-027)								
Run No).	1	2	3	Average			
Date (2	017)	Feb 28	Feb 28	Feb 28				
Start Ti	me (approx.)	10:35	13:33	15:57				
Stop Ti	me (approx.)	12:11	14:45	17:08				
Proces	s Conditions							
R _P	Production rate - (Mlb coke/hr)	24.7	24.6	24.7	24.7			
P ₁	FCC charge rate - (bpd)	40,992	40,997	41,006	40,998			
P ₂	Ammonia Injection - (Ib/hr)	6.2	6.2	6.2	6.2			
P ₃	ESP Operation	Both/LPR	Both/LPR	Both/LPR				
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760			
Gas Co	onditions							
O ₂	Oxygen (dry volume %)	2.4	3.2	3.8	3.1			
CO_2	Carbon dioxide (dry volume %)	15.8	15.1	14.2	15.0			
Τ _s	Sample temperature (°F)	523	523	523	523			
Bw	Actual water vapor in gas (% by volume)	10.35	10.36	10.29	10.33			
Gas Flo	ow Rate ¹							
Qa	Volumetric flow rate, actual (acfm)	161,000	162,000	161,000	162,000			
Q_s	Volumetric flow rate, standard (scfm)	85,100	85,700	84,900	85,200			
Q _{std}	Volumetric flow rate, dry standard (dscfm)	76,700	77,300	75,100	76,300			
Sampli	ng Data							
V _{restd}	Volume metered, standard (dscf)	40.91	41.83	40.21	40.98			
%1	Isokinetic sampling (%) ²	100.7	101.3	102.1	101.3			
Labora	tory Data							
mn	Total NH ₃ collected (mg)	13.77	13.59	13.00				
Ammor	nia (NH₃) Results							
C_{sd}	Ammonia Concentration (lb/dscf)	7.42E-07	7.17E-07	7.13E-07	7.24E-07			
C_{sd}	Ammonia Concentration (ppmdv)	16.8	16.2	16.1	16.4			
E _{ib/hr}	Ammonia Rate (lb/hr)	3.42	3.32	3.21	3.32			
E _{T/yr}	Ammonia Rate (Ton/yr)	15.0	14.5	14.1	14.5			
E _{Rp}	Ammonia Rate - Production-based (Ib/MIb coke)	0.138	0.135	0.130	0.134			

Average includes 2 runs.

032317 165849

¹ Gas flow rates obtained from bracketing Method 2F test runs combined with the WAF determined by Method 2H.

² Sample flow rates as determined by EPA Method 2 were used to calculate isokinetic sampling conditions.

CleanAir.

MARATHON PETROLEUM COMPANY LP DETROIT REFINERY

Client Reference No: 4101004604 CleanAir Project No: 13181-2

2-3

RES	ULTS				
	Table	e 2-3:			
	H ₂ SO ₄ Emissions	(Draft ASTM C	CM)		
Run No	D.	1	2	3	Average
Date (2	017)	Mar 1	Mar 1	Mar 1	
Start Ti	me (approx.)	10:53	12:19	13:46	
Stop Ti	me (approx.)	11:53	13:26	14:46	
Proces	s Conditions				
RP	Coke burn rate (lb/hr)	24.6	24.6	24.7	24.6
P1	FCC charge rate (bpd)	40,995	40,989	41,010	40,998
P ₂	NH3 Injection (lb/hr)	6.2	6.1	6.0	6.1
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O_2	Oxygen (dry volume %)	2.2	2.8	2.1	2.4
CO₂	Carbon dioxide (dry volume %)	17.7	15.6	16.2	16.5
Τs	Sample temperature (°F)	522	521	519	520
Вw	Actual water vapor in gas (% by volume)	10.4	9.9	10.8	10.4
Gas Flo	ow Rate ¹				
Qa	Volumetric flow rate, actual (acfm)	158,000	165,400	164,000	162,500
Q_s	Volumetric flow rate, standard (scfm)	82,000	85,800	85,200	84,300
Q_{sld}	Volumetric flow rate, dry standard (dscfm)	73,500	77,300	75,900	75,600
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	25.66	25.82	25.51	25.66
Labora	tory Data (Ion Chromatography)				
m _n	Total H2SO4 collected (mg)	0.6757	0.3670	0.7298	
Sulfuri	c Acid Vapor (H2SO4) Results				
C _{sd}	H2SO4 Concentration (lb/dscf)	5.81E-08	3.13E-08	6.31E-08	5.08E-08
C _{sd}	H2SO4 Concentration (ppmdv)	0.228	0.123	0.248	0.200
E _{lb/br}	H2SO4 Rate (lb/hr)	0.256	0.145	0.287	0.230
E _{T/yr}	H2SO4 Rate (Ton/yr)	1.12	0.637	1,26	1.01
ERP	H2SO4 Rate - Production-based (lb/Mlb coke)	1.04E-02	5.91E-03	1.16E-02	9.32E-03

Average includes 3 runs.

032117 165556

¹ Gas flow rates obtained from concurrent Method 2F test runs combined with the WAF determined by Method 2H.

Client Reference No: 4101004604 CleanAir Project No: 13181-2

2-4

RESULTS								
Table 2-4: THC, CH4, CaHe, and VOC Emissions (USEPA 25A/18)								
Run No.		<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	2	3	Average			
Date (2)	017)	Mar 1	Mar 1	Mar 1				
Start Tin	ne (approx)	11:00	12:24	13:53				
Stop Tin	ne (approx.)	12:04	13:26	14:55				
Process	s Conditions							
R _P	Coke burn rate (Mlb/hr)	24.6	24.6	24.7	24.6			
Р1	FCC charge rate (bpd)	40,993	40,989	41,013	40,999			
P ₂	NH ₃ injection (lb/hr)	6,1	6.1	6.0	6.1			
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760			
Gas Cor	nditions							
O ₂	Oxygen (dry volum e %)	1.6	1.6	1.5	1.6			
CO ₂	Carbon dioxide (dry volume %)	16.6	16.5	16.5	16.5			
Bw	Actual water vapor in gas (% by volume) ¹	10.4	9.9	10.8	10.4			
Gas Flow	w Rate ²							
Q _a	Volumetric flow rate, actual (acfm)	158,000	165,000	164,000	162,000			
Qs	Volumetric flow rate, standard (scfm)	82,000	85,800	85,200	84,300			
Q _{std}	Volumetric flow rate, dry standard (dscfm)	73,500	77,300	75,900	75,600			
THC Res	sults							
C_{sd}	Concentration (ppmdvas C₃H₀)	3.17	1.98	2.00	2.38			
Csd	Concentration (lb/dscf)	3.62E-07	2.27E-07	2.29E-07	2.73E-07			
Eith	Emission Rate (Ib/hr)	1.60	1.05	1.04	1.23			
ETA	Emission Rate (Ton/yr)	7.00	4.61	4.57	5.39			
ERP	Emission Rate - Production-based (lb/Mb coke)	0.0650	0.0427	0.0422	0.0500			
Methan	e Results							
C _{sd}	Concentration (ppmdv)	<0.210	<0.210	<0.210	<0.210			
C_{sd}	Concentration (lb/dscf)	<8.74E-09	<8.74E-09	<8.74E-09	<8.74E-09			
Eibhr	Emission Rate (lb/hr)	< 0.0385	< 0.0406	< 0.0398	< 0.0397			
E _{T/y}	Emission Rate (Ton/yr)	< 0.169	< 0.178	< 0.174	< 0.174			
ERP	Emission Rate - Production-based (Ib/Mb coke)	< 0.00157	< 0.00165	< 0.00161	< 0.00161			
Ethane I	Results							
C_{sd}	Concentration (ppmdv)	<0.227	<0.227	<0.227	<0.227			
C_{sd}	Concentration (lb/dscf)	<1.77E-08	<1.77E-08	<1.77E-08	<1.77E-08			
Esthr	Emission Rate (lb/hr)	< 0.0781	< 0.0822	< 0.0807	< 0.0803			
Е _{тл}	Emission Rate (Ton/yr)	< 0.342	< 0.360	< 0.354	< 0.352			
ERP	Emission Rate - Production-based (Ib/Mb coke)	< 0.00318	< 0.00334	< 0.00327	< 0.00326			
VOC Re	VOC Results							
Elion	Emission Rate (lb/hr)	1.60	1.05	1.04	1.23			
E _{T/yr}	Emission Rate (Ton/yr)	7.00	4.61	4.57	5.39			
E _{Rp}	Emission Rate - Production-based (lb/Mb coke)	0.0650	0.0427	0.0422	0.0500			

Average includes 3 runs.

080410 154528

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent Draft ASTM CCM runs.

² Gas flow rates obtained from concurrent Method 2F test runs combined with the WAF determined by Method 2H. For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

For all calcuated averages, "<" values are treated as the entire value of the detection limit.

End of Section 2 - Results