
CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanair.com

RECEIVED

JUN 0 2 2017

AIR QUALITY DIV.

REPORT ON RATA & COMPLIANCE TESTING

Detroit Refinery B&W Boiler Stack (SV-B&WBoiler1)

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217 Client Reference No. 4101004604 CleanAir Project No. 13240-1
STAC Certificate No. 2007.002.0113.1217
Revision 0, Final Report
May 24, 2017

CleanAir

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

CleanAir Project No. 13240-1 Revision 0, Final Report Page ii

COMMITMENT TO QUALITY

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Chal D Eilering	May 24, 2017
Chad Eilering	Date
Field Test Leader	
ceilering@cleanair.com	
(800)-627-0033 ext. 4536	
1-//	May 24, 2017
Andy Obuchowski	Date
Midwest Engineering Group Leader	
aobuchowski@cleanair.com	
(800) 627-0033 ext. 4537	
I hereby certify that the information contained within each reviewed and, to the best of my ability, verified as accurate	
Duth Karfin	May 24, 2017
Peter Kaufmann, QSTI	Date
Project Manager	
pkaufmann@cleanair.com	
(847) 778-8172	

Marathon Petroleum Company LP

Detroit Refinery

1. PROJECT OVERVIEW

Test Program Summary

Marathon Petroleum Company LP contracted Clean Air Engineering (CleanAir) to successfully complete testing on the B&W Boiler Stack at the Detroit Refinery. The test program included the following objectives:

- Perform particulate matter (PM), sulfuric acid mist (H₂SO₄), and volatile organic compound (VOC) testing to demonstrate compliance with the MDEQ Permit No. MI-ROP-A9831-2012c;
- Perform a relative accuracy test audit (RATA) on the facility continuous emissions monitoring system (CEMS) for oxygen (O₂) and nitrogen oxides (NO_x).

A summary of the test program results is presented below. Section 2 Results provides a more detailed account of the test conditions and data analysis. Test program information, including the test parameters, on-site schedule and a project discussion, begins on page 2.

Table 1-1: Summary of Results - Compliance

Source		Average	
Constituent (Units)	Sampling Method	Emission	Permit Limit ¹
B&W Boiler Stack			
PM (lb/MMBtu)	USEPA5	0.0012	0.0019
$H_2SO_4(ppmdv)$	Draft ASTM CCM	0.10	N/A
H ₂ SO ₄ (Ib/MMBtu)	Draft ASTM CCM	0.00030	N/A
VOC (lb/MMBtu)	USEPA 25A / 18	< 0.00065	0.0055

¹ Permit limits obtained from MDEQ Permit No: MI-ROP-A9831-2012c.

Table 1-2: Summary of Results – CEMS RATA

Source Constituent (Units)	Reference Method	Relative Accuracy (%) ¹	Applicable Specification	Standard Used	Specification Limit
B&W Boiler Stack					
O ₂ (% dv)	USEPA3A	0.06	40 CFR 75, APP. A	abs. diff.	± 1.0%
NO_x (lb/MMBtu)	USEPA7E	4.7	40 CFR 75, APP. A	% of RM	10%

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or avg. absolute difference. The specific expression used depends on the specification limit cited.

CleanAir Project No. 13240-1 Revision 0, Final Report

Page 2

Test Program Details

Parameters

The test program included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- nitrogen oxide (NO_x)
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THCs) minus the following constituents:
 - o methane (CH₄)
 - o ethane (C₂H₆)
- sulfuric acid mist (H₂SO₄)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas temperature
- flue gas flow rate

Schedule

The on-site schedule followed during the test program is outlined in Table 1-3.

Table 1-3: Test Schedule

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	B&W Boiler Stack	USEPA Method 5	FPM	04/03/17	13:54	15:58
2	B&W Boiler Stack	USEPA Method 5	FPM	04/03/17	17:40	19:59
3	B&W Boiler Stack	USEPA Method 5	FPM _.	04/04/17	08:40	10:59
1	B&W Boiler Stack	USEPA Method 3A and 25A	O ₂ /THC	04/03/17	13:54	14:54
2	B&W Boiler Stack	USEPA Method 3A and 25A	O ₂ /THC	04/03/17	15:16	16:16
3	B&W Boiler Stack	USEPA Method 3A and 25A	O ₂ / THC	04/03/17	17:42	18:42
1	B&W Boiler Stack	USEPA Method 3A and 7E	O ₂ /NO _X	04/04/17	09:00	10:00
2	B&W Boiler Stack	USEPA Method 3A and 7E	O ₂ /NO _X	04/04/17	11:00	12:00
3	B&W Boiler Stack	USEPA Method 3A and 7E	O ₂ / NO _X	04/04/17	12:00	13:00
4	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/04/17	13:00	14:00
5	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/04/17	15:00	16:00
6	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/04/17	16:00	17:00
7	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/04/17	18:00	19:00
8	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/05/17	09:00	10:00
9	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/05/17	10:00	11:00
10	B&W Boiler Stack	USEPA Method 3A and 7E	O_2/NO_X	04/05/17	11:00	12:00
0	B&W Boiler Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	04/04/17	12:48	13:49
1	B&W Boiler Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	04/04/17	14:25	15:25
2	B&W Boiler Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	04/04/17	15:56	16:56
3	B&W Boiler Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	04/04/17	17:23	18:23

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

CleanAir Project No. 13240-1 Revision O, Final Report Page 3

Discussion

Project Synopsis

FPM Testing – USEPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. Three (3) 120-minute Method 5 test runs were performed on April 3 and 4, 2017. The result was expressed as the average of three valid runs.

H₂SO₄ Testing – Draft ASTM Controlled Condensation Method

Four (4) 60-minute test runs, one conditioning test (Run 0) followed by three official tests (Runs 1-3) were performed on April 4. The result was expressed as the average of three valid runs.

<u>VOC Testing – USEPA Methods 25A and 18</u>

Three (3) 60-minute Method 25A test runs for total hydrocarbons (THCs) were performed concurrently with three (3) 60-minute Method 18 bag collections for CH_4 and C_2H_6 . The results for each parameter were expressed as the average of three valid runs.

The VOC emission rate is considered to be equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate. For Run 1, after subtracting the emission rate of CH_4 and C_2H_6 , the result was below the calibration span of the THC instrument. Therefore, VOC emissions are reported as a value "less than" 1% of the calibration span of THC instrument.

For Run 2, the calculated emission rate of CH_4 and C_2H_6 detected through analysis of each Method 18 sample bag exceeded the amount of THCs measured by the online THC analyzer. This is likely due to variations in the calibration standards, measurement and analytical technique. The VOC emissions are reported as a value "less than" 1% of the calibration span of the THC instrument.

For Run 3, the non-detect result for C_2H_6 was considered zero when calculating the VOC concentration. The resultant VOC concentration is reported as "less than" the difference of THCs and CH_4 .

RATA Testing – USEPA Methods 3A, 7E, and 10

Minute-average data points for O_2 , carbon dioxide (CO_2), and NOx (dry basis) were collected over a period of 60 minutes for each RATA Reference Method (RM) run. The average result for each RM run was calculated and compared to the average result from the facility CEMS over an identical time interval in order to calculate relative accuracy (RA). (Note: The facility CEMS is not on daylight saving time.)

The final result was expressed as the average of nine (9) of the 10 RATA runs performed.

The RATA for NO_X and O₂ was conducted per 40 CFR Part 75.

Prior to conducting the RATA, MPC performed a linearity test which will be reported separately.

All tests were completed while the facility CEMS was operated in a "hands-off" manner. The boiler was operated at its normal steam load, as that term is defined in 40 CFR Part 75, Appendix A. The "normal" load is the mid-range of operation, or a steam production rate between 50,000 and 152,000 pounds per hour.

The facility CEMS data acquisition system used for NO_X (Cirrus System) is different than the "normal" data acquisition systems. The Cirrus System is restricted to taking a reading every hour on the hour.

CleanAir

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

CleanAir Project No. 13240-1 Revision 0, Final Report

Page 4

In lieu of performing a stratification test, sampling was performed at the three points along the "long measurement line", as described in 40 CFR 60, Appendix B, PS2, §8.1.3 (16.7, 50.0 and 83.3% of the way across the stack), for each test run.

Bias tests were performed on all of the NO_X RATA data sets. The CEMS data was found to be biased high in comparison to the RM data in all instances. Since the mean difference between the RM and CEMS data was less than or equal to the absolute value of the confidence coefficient for all runs, the CEMS passed the bias test and a bias adjustment factor (BAF) was not applied to any of the emissions results. Per 40 CFR Part 75, bias is only applicable when the CEMS data is biased low in relation to the RM data.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) by calculating a combination oxygen-based fuel factor (F_d) for natural gas and refinery gas per USEPA Method 19 specifications.

- For natural gas, the volume-based gross heat content (GCV_V) was obtained from a gas analysis report
 provided by MPC. The natural gas F_d factor was obtained from 40 CFR Part 75, Appendix F, Table 1. This
 approach should yield worst-case calculated emission results.
- For refinery gas, the heat content and F_d factor were calculated from percent volume composition analytical data provided by MPC and tabulated heating values for each of the measured constituents.

End of Section

RECEIVED

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

JUN 0 2 2017

CleanAir Project No. 13240-1 Revision 0, Final Report

AIR QUALITY DIV.

Page 5

2. RESULTS

This section summarizes the test program results. Additional results are available in the report appendices, specifically Appendix C Parameters.

Table 2-1:
B&W Boiler Stack – FPM Emissions (USEPA Method 5)

Run No).	1	2	3	Average
Date (2	2017)	Apr 3	Apr 3	Apr 4	
Start Ti	me (approx.)	13:54	17:40	08:40	
Stop Ti	me (approx.)	15:58	19:59	10:59	
Proces	ss Conditions				
R_P	Steam production (Mlb/hr)	107	112	141	120
P_1	Fuel gas flow rate (Mscf/day)	2,731	2,873	3,650	3,085
P_2	Natural gas flow rate (Mscf/day)	154	154	155	154
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,311	8,310	8,337	8,319
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O_2	Oxygen (dry volume %)	6.8	6.6	6.2	6.5
CO ₂	Carbon dioxide (dry volume %)	8.1	8.2	8.8	8.4
T_s	Sample temperature (°F)	318	316	334	323
B_{w}	Actual water vapor in gas (% by volume)	15.4	15.5	15.3	15.4
Gas Flo	ow Rate		1		
Q_a	Volumetric flow rate, actual (acfm)	57,500	57,100	73,000	62,500
Q_s	Volumetric flow rate, standard (scfm)	37,900	38,200	46,300	40,800
Q_{std}	Volumetric flow rate, dry standard (dscfm)	32,100	32,300	39,300	34,600
Q_a	Volumetric flow rate, actual (acf/hr)	3,450,000	3,420,000	4,380,000	3,750,000
Q_s	Volumetric flow rate, standard (scf/hr)	2,270,000	2,290,000	2,780,000	2,450,000
Q_{std}	Volumetric flow rate, dry standard (dscf/hr)	1,920,000	1,940,000	2,360,000	2,070,000
Sampli	ng Data				
V_{mstd}	Volume metered, standard (dscf)	77.40	77.31	94.63	83.11
%I	Isokinetic sampling (%)	103.0	102.1	102.9	102.7
Labora	tory Data				
m_{filter}	Matter collected on filter(s) (g)	0.00119	0.00155	0.00140	
m_s	Matter collected in solvent rinse(s) (g)	0.00262	0.00196	0.00217	
$\mathbf{m}_{\mathbf{n}}$	Total FPM(g)	0.00381	0.00351	0.00357	
FPM Re	esults				
C_{sd}	Particulate Concentration (lb/dscf)	1.09E-07	1.00E-07	8.32E-08	9.73E-08
E _{lb/hr}	Particulate Rate (lb/hr)	0.21	0.19	0.20	0.20
E _{T/yr}	Particulate Rate (Ton/yr)	0.91	0.85	0.86	0.87
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.0013	0.0012	0.0010	0.0012

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

Table 2-2: B&W Boiler Stack – Sulfuric Acid Mist Emissions (Draft ASTM CCM)

Run No).	1	2	3	Average
Date (2	2017)	Apr 4	Apr 4	Apr 4	
Start Ti	me (approx.)	14:25	15:56	17:23	
Stop Ti	me (approx.)	15:25	16:56	18:23	
Proces	ss Conditions				
R_P	Steam Production (Mlb/hr)	149	170	138	152
P_1	Fuel gas flow rate (Mscf/day)	3,810	4,238	3,266	3,771
P_2	Natural gas flow rate (Mscf/day)	155	309	411	291
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,338	8,350	8,368	8,352
Gas Co	enditions				
O_2	Oxygen (dry volume %)	6.0	6.0	6.0	6.0
CO_2	Carbon dioxide (dry volume %)	9.0	9.0	9.0	9.0
T_s	Sample temperature (°F)	341	358	333	344
B_{w}	Actual water vapor in gas (% by volume)	15.5	16.1	15.9	15.8
Sampli	ing Data				
V_{mstd}	Volume metered, standard (dscf)	27.36	27.53	27.06	27.32
Labora	itory Data (ion Chromatography)				
m_{n}	Total H ₂ SO ₄ collected (mg)	0.2663	0.3815	0.2968	
Sulfurio	c Acid Vapor (H₂SO₄) Results				
C_{sd}	H ₂ SO ₄ Concentration (lb/dscf)	2.15E-08	3.06E-08	2.42E-08	2.54E-08
C_{sd}	H ₂ SO ₄ Concentration (ppmdv)	0.084	0.12	0.095	0.10
E_{Fd}	H ₂ SO ₄ Rate - Fd-based (lb/MMBtu)	0.00025	0.00036	0.00028	0.00030

Page 7

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

Table 2-3: B&W Boiler Stack – VOC Emissions (USEPA Methods 25A & 18)

Run No		1	2	3	Average
Date (2	017)	Apr 3	Apr 3	Apr 3	
Start Ti	me (approx.)	13:54	15:16	17:42	
Stop Ti	me (approx.)	14:54	16:16	18:42	
Proces	s Conditions				
R_{P}	Steam Production (Mlb/hr)	111	102	103	105
P_1	Fuel gas flow rate (Mscf/day)	2,818	2,612	2,632	2,687
P_2	Natural gas flow rate (Mscf/day)	154	154	154	154
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,310	8,312	8,312	8,311
Gas Co	nditions				
O_2	Oxygen (dry volume %)	6.4	6.5	6.8	6.6
CO_2	Carbon dioxide (dry volume %)	8.6	8.6	8.4	8.5
B_w	Actual water vapor in gas (% by volume) ¹	15.4	15.5	15.3	15.4
THC Re	sults				
$C_{\sf sd}$	Concentration (ppmdv as C ₃ H ₈)	2.1	1.4	1.2	1.6
C_{sd}	Concentration (lb/dscf)	2.4E-07	1.6E-07	1.4E-07	1.8E-07
E_{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0029	0.0019	0.0018	0.0022
Methan	ne Results				
C_{sd}	Concentration (ppmdv)	3.7	2.9	2.2	2.9
C_{sd}	Concentration (lb/dscf)	1.5E-07	1.2E-07	9.2E-08	1.2E-07
E_{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0018	0.0014	0,0011	0.0015
Ethane	Results				
C_{sd}	Concentration (ppmdv)	1.1	0.78	<0.22	<0.71
C_{sd}	Concentration (lb/dscf)	8.9E-08	6.1E-08	<1.7E-08	<5.6E-08
E_{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.0011	0.00074	< 0.00021	< 0.00067
VOC Re	esults				
C_{sd}	Concentration (ppmdv as C ₃ H ₈)	<0.45	<0.45	< 0.50	< 0.47
E_Fd	Emission Rate - F _d -based (lb/MMBtu)	<0.00061	<0.00062	<0.00071	<0.00065

¹ Moisture data used for ppmw v to ppmdv correction obtained from nearly-concurrent M-5 runs.

For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory.

For VOCs, '<' indicates either at least one non-detectable fraction was used in the calculations or the difference between THC and the sum of methane and ethane was less than 1% of the THC instrument span. In those cases, VOC is reported as less than 1% of the THC instrument span.

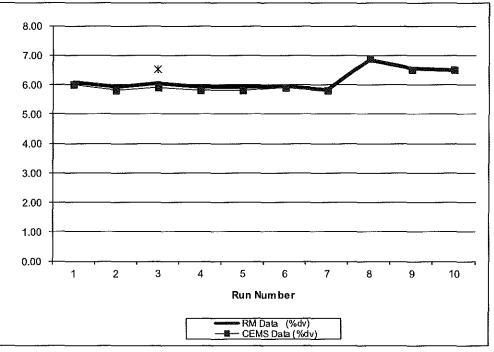
For all calcuated averages, "<" values are treated as the entire value of the detection limit.

For methane and ethane, "<" values are treated as zero when calculating VOC.

Table 2-4: B&W Boiler Stack - O₂ (%dv) Relative Accuracy (USEPA Method 3A)

Run No.	Start Time	Date (2017)	RM Data (%dv) CEMS Data (%dv)	Difference (%dv)	Difference Percent
1	09:00	Apr 4	6.07	6.00	0.07	1.2%
2	11:00	Apr 4	5.92	5.80	0.12	2.0%
3 *	12:00	Apr 4	6.04	5.90	0.14	2.3%
4	13:00	Apr 4	5.91	5.80	0.11	1.9%
5	15:00	Apr 4	5.91	5.80	0.11	1.9%
6	16:00	Apr 4	5.94	5.90	0.04	0.7%
7	18:00	Apr 4	5.83	5.80	0.03	0.5%
8	09:00	Apr 5	6.86	6.90	-0.04	-0.6%
9	10:00	Apr 5	6.55	6.50	0.05	0.8%
10	11:00	Apr 5	6.51	6.50	0.01	0.2%
	Average		6.17	6.11	0.06	1.0%

Relative Accuracy Test Audit Results


Standard Deviation of Differences 0.05294 Confidence Coefficient (CC) 0.04069 t-Value for 9 Data Sets 2.306

> Limit Avg. Abs. Diff. (%dv) 0.06 1.0

RM = Reference Method (CleanAir Data)

050317 105112 CEMS = Continuous Emissions Monitoring System (MPC Data)

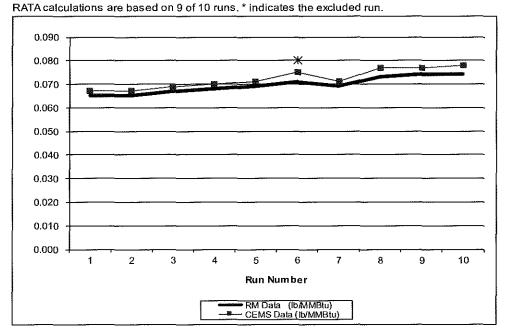
RATA calculations are based on 9 of 10 runs. * indicates the excluded run.

Page 9

Table 2-5: B&W Boiler Stack - NOX (lb/MMBtu) Relative Accuracy (USEPA Method 7E)

Run No.	Start Time	Date (2017)	RM Data (lb/MMBtu)	CEMS Data (lb/MMBtu)	Difference (lb/MMBtu)	Difference Percent
1	09:00	Apr 4	0.065	0.067	-0.002	-3.1%
2	11:00	Apr 4	0.065	0.067	-0.002	-3.1%
3	12:00	Apr 4	0.067	0.069	-0.002	-3.0%
4	13:00	Apr 4	0.068	0.070	-0.002	-2.9%
5	15:00	Apr 4	0.069	0.071	-0.002	-2.9%
6 *	16:00	Apr 4	0.071	0.075	-0.004	-5.6%
7	18:00	Apr 4	0.069	0.071	-0.002	-2.9%
8	09:00	Apr 5	0.073	0.077	-0.004	-5.5%
9	10:00	Apr 5	0.074	0.077	-0.003	-4.1%
10	11:00	Apr 5	0.074	0.078	-0.004	-5.4%
	Average	-	0.069	0.072	-0.003	-3.8%

Relative Accuracy Test Audit Results


Standard Deviation of Differences	0.0008819	
Confidence Coefficient (CC)	0.0006779	
t-Value for 9 Data Sets	2.306	
		Limit
Relative Accuracy (as % of RM)	47%	10.0%

10.0% Avg. Abs. Diff. (lb/MMBtu) 0.003 0.020

 $-0.003 \le 0.001$ Bias Test Bias Test Status **Pass**

RM = Reference Method (CleanAlr Data)

CEMS = Continuous Emissions Monitoring System (MPC Data)

052417 143126

Clean Air.

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

CleanAir Project No. 13240-1 Revision O, Final Report

Page 10

RECEIVED

JUN 0 2 2017

3. DESCRIPTION OF INSTALLATION

Process Description

AIR QUALITY DIV.

MPC's facility in Detroit, Michigan, produces refined petroleum products from crude oil. MPC must continue to demonstrate that select process units are in compliance with permitted emission limits.

The B&W Boiler (EU27-B&WBOILER1-S1) generates steam required by other refinery process components. The unit is fired by natural gas and refinery fuel gas. Emissions are vented to the atmosphere via the B&W Boiler Stack (SV-B&WBOILER1).

Test Locations

Sampling point locations were determined via EPA Method 1 and Performance Specification 2. Table 3-1 presents the sampling information for the test locations. The figures shown on pages 11 and 12 represent the layout of the test locations.

Table 3-1: Sampling Information

Source Constituent	Method (USEPA)	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
B&W Boiler Stack		4.6		10		400	0.4
FPM	5	1-3	2	12	5	120	3-1
H ₂ SO ₄	Draft ASTM CCM	1-3	1	1	60	60	N/A ¹
$O_2/CO_2/CH_4/C_2H_6/THC$	3A/18/25A	1-3	1	3	20	60	3-2
O ₂ / NO _X (RATA)	3A/ 7E	1-10	1	3	7	21	3-2

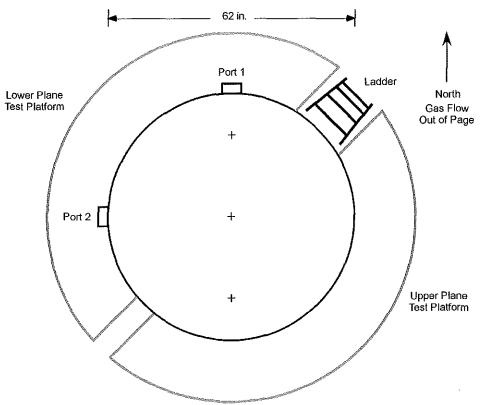
¹ Sampling occured at a single point near the center of duct.

050117 151552

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

Page 11

Figure 3-1: B&W Boiler Stack Sample Point Layout (EPA Method 1)



Sampling Point	% of Stack Diameter	Port to Point Distance (inches)
1	97.9	60.7
2	93.3	57.8
3	88.2	54.7
4	82.3	51.0
5	75.0	46.5
6	64.4	39.9
7	35.6	22.1
8	25.0	15.5
9	17.7	11.0
10	11.8	7.3
11	6.7	4.2
12	2.1	1.3

Duct diameters upstream from flow disturbance (A): 9.5 Duct diameters downstream from flow disturbance (B): 2.3 Limit: 0.5

Limit: 2.0

Figure 3-2:
B&W Boiler Stack Sample Point Layout (EPA Performance Specification 2)

Note: RM test port selection may vary

Sampling Point	% of Stack Diameter	Port to Point Distance (inches)
1	83.3	51.6
2	50.0	31.0
3	16.7	10.4

Duct diameters upstream from flow disturbance (A): 9.5 Duct diameters downstream from flow disturbance (B): 2.3 Limit: 0.5

Limit: 2.0

4. METHODOLOGY

Procedures and Regulations

The test program sampling measurements followed procedures and regulations outlined by the USEPA and the Michigan Department of Environmental Quality (DEQ). These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc. Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery and analytical procedures.

CleanAir follows specific QA/QC procedures outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods," EPA/600/R-94/038C. Appendix D contains additional QA/QC measures, as outlined in CleanAir's internal Quality Manual.

Title 40 CFR Part 60, Appendix A

Method 25A

THE TO CIT	it i are oo, repetiaix it
Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"
Method 3A	"Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 3B	"Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air"
Method 4	"Determination of Moisture Content in Stack Gases"
Method 5	"Determination of Particulate Matter Emissions from Stationary Sources"
Method 7E	"Determination of Nitrogen Oxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 18	"Measurement of Gaseous Organic Compound Emissions by Gas Chromatography"
Method 19	"Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide and Nitrogen Oxide Emission Rates"

Title 40 CFR Part 60, Appendix B Performance Specifications

PS2	"Specifications and Test Procedures for SO ₂ and NOx Continuous Emission Monitoring Systems
	in Stationary Sources"

"Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer"

PS3 "Specifications and Test Procedures for O₂ and CO₂ Continuous Emission Monitoring Systems in Stationary Sources"

CTM-013 (Mod.)/Draft ASTM Controlled Condensation Method (Draft ASTM CCM)

"Determination of Sulfur Oxides Including Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid Vapor and Mist from Stationary Sources Using a Controlled Condensation Sampling Apparatus"

CleanAir Project No. 13240-1 Revision 0, Final Report Page 14

rage.

Methodology Discussion

PM Testing - EPA Method 5

The front-half of the sampling train consisted of a glass nozzle, glass liner and filter holder heated to 248°F ±25°F, and a quartz fiber filter. Flue gas samples were extracted isokinetically per Method 5 requirements.

After exiting the filter, the flue gas passed through a Teflon line into a series of knockout jars surrounded by ice. The purpose of the knockout jars was to determine the flue gas moisture and thoroughly dry the gas. The sample gas then flowed into a calibrated dry gas meter where the collected sample gas volume was determined.

The front-half portion of the sample train (nozzle, probe and heated filter) was recovered per Method 5 requirements, using acetone as the recovery solvent.

VOC Testing - EPA Method 25A and Method 18

VOC emissions were determined using EPA Method 25A to quantify THC emissions and EPA Method 18 to quantify methane ($C_{1}H_{0}$) and ethane ($C_{2}H_{0}$) emissions.

The Method 25A sampling system consisted of a heated probe, heated filter and heated sample line. Flue gas was extracted near the centroid of the duct or at a point no closer than one (1) meter to the duct wall at a constant rate and delivered at 250° F to a flame ionization analyzer (FIA) which continuously measured minute-average THC concentration expressed in terms of propane (C_3H_8) on an actual (wet) basis.

FIA calibration was performed by introducing zero air, high, mid- and low range C₃H₈ calibration gases to the inlet of the sampling system's heated filter. Drift checks were performed before and after each sampling run in a similar manner.

The Method 18 sampling system consisted of a gas conditioner (for moisture removal), TFE sample lines, TFE-coated diaphragm pump, and a mass flow meter ("Direct Pump Sampling Procedure"). This system pulled a slipstream of the flue gas from the Method 25A sample delivery system to be delivered into a FlexFoil® bag at a constant rate. The moisture condensate was not collected for analysis as CH_4 and C_2H_6 are insoluble in water. Three (3) sample bags were filled over a period of 60-minutes for each test run.

Analysis for CH_4 and C_2H_6 was performed off-site by CleanAir Analytical Services using gas chromatography (GC). Since moisture was removed from the sample prior to collection, the GC analyzer measured concentration on a dry basis. At least five (5) sample injections was analyzed for each run.

Analyzer calibration was performed by generating a calibration curve from triplicate injections of three (3) distinct CH_4 and C_2H_6 concentrations introduced directly into the GC. Upon completion of calibration, a recovery study was performed by spiking one (1) of the bag samples with a known concentration of CH_4 and C_2H_6 , storing the bags for the same period of time prior to analysis as the field samples, and analyzing the bags to determine percent recovery.

CleanAir Project No. 13240-1 Revision O, Final Report

Page 15

H₂SO₄ Testing - Draft ASTM Controlled Condensation Method H₂SO₄ emissions were determined referencing the Draft ASTM Controlled Condensation Method.

A gas sample was extracted at a constant flow rate from the source using a quartz-lined probe maintained at a temperature of 650°F ±25°F (depending on the required probe length) and a quartz fiber filter maintained at the same temperature as the probe to remove particulate matter.

The sample was then passed through a glass coil condenser for collection of sulfuric acid vapor and/or mist. A second quartz fiber filter (referred to as the sulfuric acid mist (SAM) filter) was located at the condenser outlet for the collection of residual SAM not collected by the condenser. The condenser temperature was regulated by a water jacket and the SAM filter was regulated by a closed oven. Both the water jacket and SAM filter oven were maintained at $140^{\circ}F \pm 9^{\circ}F$ plus $2^{\circ}F$ for each 1% moisture above 16% flue gas moisture (above the water dew point, which eliminates the oxidation of dissolved SO_2 into the H_2SO_4 -collecting fraction of the sample train).

After exiting the SAM filter, the sample gas continued through a series of four (4) glass knock-out jars; two (2) containing water, one (1) empty, and one (1) containing silica gel for residual moisture removal. The exit temperature from the knock-out jar set was maintained below 68°F. The sample gas then flowed into a dry gas meter, where the collected sample gas volume is determined by means of a calibrated, dry gas meter or an orifice-based flow meter.

The H_2SO_4 -collecting portion of the sample train (condenser and SAM filter) was recovered into a single fraction using DI H_2O as the recovery/extraction solvent; any H_2SO_4 disassociates into sulfate ion (SO_4^2 -) and is stabilized in the H_2O matrix until analysis.

Prior to the first official test run, a 60-minute sample conditioning run was performed in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H_2SO_4 -collecting portion of the sample train). The sample conditioning run is referred to as run zero (0). The conditioning run was recovered in the same manner as the official test runs; however, the condenser rinse and SAM filter were not analyzed.

Samples and blanks were returned to CleanAir Analytical Services for ion chromatography (IC) analysis.

 O_2 and NO_X 40 CFR 75 RATA Testing - EPA Methods 3A and 7E The RATA for NO_X and O_Z was conducted per 40 CFR 75, Appendix A specifications.

Prior to conducting the RATA, MPC performed a linearity test which will be reported separately.

CleanAir.

Marathon Petroleum Company LP
Detroit Refinery
Report on RATA & Compliance Testing

CleanAir Project No. 13240-1 Revision 0, Final Report

Page 16

The following tests were performed by CleanAir on the applicable CEMS:

- RATA (NO_X and O₂ CEMS)
 - The RATA was performed while the unit was combusting the normal primary or back-up fuel.
 - o The RM instrument span was set equivalent to the facility CEMS span for each constituent.
 - The four (4) required range levels of calibration gas ("high-level" 80% to 100% of span; "mid-level" 50% to 60% of span; "low-level" 20% to 30% of span; "zero-level" 0% to 20% of span) was utilized during calibration error checks. For pre- and post-test system bias checks, the calibration gas that had a concentration closest to, but greater than, the actual flue gas concentration of the constituent was utilized.
 - o Minute-average data points for O_2 and NO_X (dry basis) was collected over a period of 60 minutes for each RM run.
 - A total of 10 RM runs were performed. However, nine (9) of the best fit runs were used to determine the RA.
 - The average result for each RM has been calculated and compared to the average result from the facility CEMS over an identical time interval in order to calculate RA.
- Bias Test (NO_x CEMs) This is a calculation performed on the RATA results to determine whether the
 CEMS is biased low compared to the RM. If low bias is found, a bias adjustment factor (BAF) is calculated
 and applied to the emissions results.

RM O_2 emissions were determined using a paramagnetic analyzer per EPA Method 3A. NO_X emissions were determined using a chemiluminescent analyzer per EPA Method 7E.

Sample gas was extracted at a constant rate, conditioned to remove moisture and delivered to an analyzer bank, which measures concentration on a dry basis (units of %dv or ppmdv).

Calibration error checks were performed by introducing "high-level", "mid-level", "low-level" and "zero-level" calibration gases to the inlet of each analyzer during calibration error checks. Bias checks were performed before the first run and after at least every third run thereafter by introducing calibration gas to the inlet of the sampling system's heated filter. Documentation of interference checks and NO₂ converter efficiency checks are included in the report.

Minute-average data points for O_2 and NO_X (dry basis) were collected over a period of 60 minutes for each RATA run. Each RATA run began at the top of the hour so that it could be synchronized with MPC's Cirrus data acquisition system.

Per EPA Methods 3A and 7E, the average results for each run were drift-corrected. The average results for each run was converted to identical units of measurement as the facility CEMS and compared for RA.