APR 16 2018

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 800-627-0033 www.cleanair.com

AIR QUALITY DIVISION

13488-1_FCCU Report_R1_ltrkd.docx 41218 051100 13488-1

Marathon Petroleum Company LP Detroit Refinery Report on Compliance Testing CleanAir Project No. 13488-1 Revision O, Final Report

RECEIVED

Page 1

1. PROJECT OVERVIEW

APR 16 2018

AIR QUALITY DIVISION

Test Program Summary

Marathon Petroleum Company LP (MPC) contracted Clean Air Engineering (CleanAir) to perform emission measurements at the Detroit Refinery for compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). The permit limits are referenced in Michigan DEQ, Renewable Operating Permit No. MI-ROP-A9831-2012c.

A summary of the test program results is presented below. Section 2 Results provides a more detailed account of the test conditions and data analysis. Test program information, including the test parameters, on-site schedule and a project discussion, begins on page 4.

Table 1-1: Summary of NSFPM, CPM, and Total PM₁₀ Results (5F/202)

FCCU Regenerator Stack			NSFPM Rate	CPM Rate	Total PM ₁₀ Rate
			(lb/Mlb coke)	(lb/Mlb coke)	(lb/Mlb coke)
Test Dates: 2/13-14/18					
Coke Burn Rate (lb/hr)	24,383	Run 1	0.3	0.6	0.9
FCC Rate (bpd)	40,997	Run 2	0.4	0.6	0.9
Aqueous NH ₃ Injection (Ib/hr)	32.1	Run 3	0,3	0.7	1.0
ESP Operation	Both/LPR				
		Average	0.3	0.6	0.9
		Limit	0.8		1.1

Note: Average includes 3 runs for all parameters.

Table 1-2: Summary of NH₃ Results (CTM-027)

FCCU Regenerator Stack			NH ₃ Conc.	NH ₃ Slip	NH ₃ Slip
			(ppmdv)	(lb/hr)	(Ib/Mib coke)
Test Dates: 2/13-14/18					
Coke Burn Rate (lb /hr)	24,383	Run 1	15	3.2	0.13
FCC Rate (bpd)	40,997	Run 2	13	2.8	0.11
Aqueous NH ₃ Injection (lb/hr)	32.1	Run 3	16	3.3	0.14
ESP Operation	Both/LPR				
		Average	15	3.1	0.13

Note: Average includes 3 runs for all parameters.

3/8/2018 16:53

3/8/2018 15:24

Marathon Petroleum Company LP	CleanAir Project No. 13488-1
Detroit Refinery	Revision 0, Final Report
Report on Compliance Testing	Page 2
	y===y===

Table 1-3:

Summary of H₂SO₄ and VOC Results (Draft ASTM CCM & 18/25A)

nt (Units)	Sampling Method	Average Emission	Permit Limit ¹
erator Stack			
(lb/Mlb coke)	Draft ASTM CCM	0.034	N/A
(ppmdv)	Draft ASTM CCM	0.69	N/A
(Ton/yr)	USEPA25A/18	8.5	21
(lb/Mlb coke)	USEPA 25A / 18	0.080	N/A
	nt (Units) erator Stack (Ib/Mb coke) (ppmdv) (Ton/yr) (Ib/Mb coke)	nt (Units) Sampling Method erator Stack (Ib/Mlb coke) Draft ASTM CCM (ppmdv) Draft ASTM CCM (Ton/yr) USEPA 25A / 18 (Ib/Mlb coke) USEPA 25A / 18	nt (Units) Sampling Method Average Emission erator Stack (Ib/Mib coke) Draft ASTM CCM 0.034 (ppmdv) Draft ASTM CCM 0.69 (Ton/yr) USEPA 25A / 18 8.5 (Ib/Mib coke) USEPA 25A / 18 0.080

¹ Permit limit obtained from MDEQ Permit No. MI-ROP-A9831-2012c.

030918 155916

Figure 1-1: NSFPM, CPM, and Total PM₁₀ Results

Marathon Petroleum Company LP Detroit Refinery Report on Compliance Testing

Figure 1-2: CPM and NH₃ Results

Test Program Details

Parameters

The test program included the following measurements:

- particulate matter (PM), assumed equivalent to non-sulfate filterable particulate matter (NSFPM)
- total particulate matter less than or equal to 10 microns (μm) in diameter (Total PM₁₀), assumed equivalent to the sum of the following constituents:
 - o NSFPM
 - o condensable particulate matter (CPM)
- ammonia (NH₃)
- sulfuric acid (H₂SO₄)
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THCs) minus the following constituents:
 - o methane (CH₄)
 - o ethane (C₂H₆)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate
- flue gas velocity decay (wall-effects)

Marathon Petroleum Company LP	
Detroit Refinery	
Report on Compliance Testing	

Schedule

Testing was performed on February 13 and 14, 2018. The on-site schedule followed during the test program is outlined in Table 1-4.

Table 1-4: Test Schedule

Run					Start	End
Number	Location	Method	Analyte	Date	Time	Time
1	FCCU Regenerator Stack	USEPA Method 2/2H	Velocity Decay	02/13/18	10:35	10:50
1	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/13/18	14:29	14:40
1	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/13/18	15:25	16:37
1	FCCU Regenerator Stack	CTM-027	Ammonia	02/13/18	15:25	16:37
2	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/13/18	17:03	17:14
2	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/13/18	17:55	19:07
2	FCCU Regenerator Stack	CTM-027	Ammonia	02/13/18	17:58	19:06
3	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/13/18	19:27	19:36
4	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/14/18	7:40	07:48
3	FCCU Regenerator Stack	USEPA Method 5F/202	NSFPM/CPM	02/14/18	08:20	09:30
3	FCCU Regenerator Stack	CTM-027	Ammonia	02/14/18	08:20	09:30
5	FCCU Regenerator Stack	USEPA Method 2F	Cyclonic Flow	02/14/18	09:50	09:57
0	FCCU Regenerator Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	02/14/18	11:55	13:09
6	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/14/18	13:13	13:26
1	FCCU Regenerator Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	02/14/18	13:37	14:37
1	FCCU Regenerator Stack	3A/18/25A	$O_2 / CO_2 / CH_4 / C_2 H_{\theta} / THC$	02/14/18	13:39	14:41
7	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/14/18	16:01	16:10
2	FCCU Regenerator Stack	CTM-013 (mod) / Draft ASTM CCM	H₂SO₄	02/14/18	16:00	17:00
2	FCCU Regenerator Stack	3A/18/25A	$O_2/CO_2/CH_4/C_2H_6/THC$	02/14/18	16:22	17:23
8	FCCU Regenerator Stack	USEPA Method 2F	3-D Velocity & Flow Rate	02/14/18	17:27	17:34
3	FCCU Regenerator Stack	CTM-013 (mod) / Draft ASTM CCM	H ₂ SO ₄	02/14/18	17:25	18:25
3	FCCU Regenerator Stack	3A/18/25A	$O_2 / CO_2 / CH_4 / C_2 H_6 / THC$	02/14/18	17:39	18:39

030918 160324

Discussion

Flow Rate Measurements

A wall-effects adjustment factor (WAF) was determined per EPA Method 2H prior to the start of the first test run.

3-D flow traverses per EPA Method 2F were performed before and after each EPA Method 5F/202 and CTM-027 test run and during each EPA Method 18/25A and Draft ASTM CCM test run.

Marathon Petroleum Company LP Detroit Refinery Report on Compliance Testing

NSFPM and CPM Testing

Three (3) 60-minute Method 5F/202 test runs were performed on February 13 and 14.

For this test program, PM emission rate is assumed equivalent to NSFPM emission rate and PM₁₀ emission rate is assumed equivalent to the sum of NSFPM and CPM emission rates (units of lb/hr, ton/yr, or lb/Mlb coke for all constituents). For emissions inventory purposes, MPC applies a correction factor to NSFPM to eliminate particles with a diameter less than 10 microns. Application of that correction factor is not included in this test report.

NH₃ Testing

Three (3) 60-minute CTM-027 test runs were performed on February 13 and 14. Each test run was performed concurrently with Method 5F/202 testing.

The integrated gas sample (IGS) bag from CTM-027 Run 1 became compromised following testing and was unable to be analyzed for O_2 and CO_2 . Instead, the O_2 and CO_2 results from the concurrently operated Method 5F/202 test run were used for resultant calculations.

H₂SO₄ Testing

Prior to the first official test run, a 60-minute sample conditioning run (Run 0) was performed in order to minimize the absorption capacity of the front-half components of the sample train (upstream of the H₂SO₄- collecting portion of the sample train). The conditioning run was recovered in the same manner as the official test runs, but was not included in the final results.

Following the conditioning run on February 14, three (3) official 60-minute test runs were performed. The results were expressed as the average of three official runs.

VOC Testing

Three (3) approximately 60-minute Method 25A test runs for THC were performed concurrently with three (3) approximately 60-minute Method 18 IGS collections for CH_4 and C_2H_6 .

VOC emission rate is normally equivalent to THC emission rate, minus CH_4 and C_2H_6 emission rate (units of lb/hr, Ton/yr, or lb/Mlb coke for all constituents). For CH_4 and C_2H_6 , a result less than the limit of quantitation was obtained for Runs 1 through 3, so no correction was made to the THC results. Therefore, VOC emissions for Runs 1 through 3 were equivalent to THC emissions only. The final VOC results were expressed as the average of three runs.

Marathon Petroleum Company LP
Detroit Refinery
Report on Compliance Testing

Calculation of Final Results

Sample flow rates measured during the run, as determined by EPA Method 2 without the WAF corrections factor, were used to calculate isokinetic sampling conditions.

Mass-based emission rates in units of pounds per hour (lb/hr) for Method 5F/202 and CTM-027 were calculated using the applicable average pre-run and post-run flow rate determined by Method 2F combined with the respective WAF correction factor. Mass-based emission rates in units of lb/hr for Method 18/25A and Draft ASTM CCM were calculated using the applicable concurrent flow rate determined by Method 2F combined with the respective WAF correction factor.

Emission rates in units of tons per year (Ton/yr) were calculated using an assumed capacity factor of 8,760 operating hours per year. Emission rates in units of pounds per 1,000 pounds of coke burn (Ib/MIb coke) were calculated using coke burn rate data provided by MPC.

NH₃ injection rates shown in Tables 2-1 and 2-2 are the aqueous NH₃ (11FC2032) multiplied by a factor of 0.2.

End of Section

Marathon Petroleum Company LP Detroit Refinery Report on Compliance Testing

2. RESULTS

This section summarizes the test program results. Additional results are available in the report appendices, specifically Appendix C Parameters.

Table 2-1: NSFPM, CPM, and Total PM₁₀ (5F/202)

Run No	· · · · · · · · · · · · · · · · · · ·	1	2	3	Average
Date (2	018)	Feb 13	Feb 13	Feb 14	
Start Ti	me (approx.)	15:25	17:55	08:20	
Stop Ti	me (approx)	16:37	19:07	09:30	
Proces	s Conditions				
R _P	Production rate (Mb coke/hr)	24.4	24.3	24.5	24.4
P;	FCC charge rate (bpd)	41,001	40,990	4 1,000	40,997
P ₂	Ammonia Injection (Ib/hr)	6.4	6.4	6.4	6.4
P3	ESP Operation	Both/LPR	Both/LPR	Both/LPR	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O_2	Oxygen (dry volume %)	2.9	5.3	4.5	4.2
CO_2	Carbon dioxide (dry volume %)	15.2	15.4	14.1	14,9
Ts	Sample temperature (°F)	496	496	496	496
B₩	Actual water vapor in gas (% by volume)	8.9	8.5	8.9	8.8
Gas Flo	w Rate ¹				
$\mathbf{Q}_{\mathbf{a}}$	Volumetric flow rate, actual (acfm)	155,000	154,000	153,000	154,000
Q_s	Volumetric flow rate, standard (scfm)	85,500	85,000	83,700	84,700
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	78,000	77,800	76,200	77,300
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscl)	41.34	42.24	40.87	41,48
%	lsokinetic sampling (%) ²	101.2	101.2	102.7	101.7
Labora	tory Data				
mo	Total NSFPM(g)	0.03075	0.03542	0.02789	
m _{cP№}	Total CPM(g)	0.05937	0.05675	0.06772	
NSFPM	Results				
C_{sd}	Particulate Concentration (lb/dscf)	1.64E-06	1.85E-06	1.50E-06	1.66E-06
Eibhr	Particulate Rate (lb/hr)	7.67	8.63	6.88	7.73
E _{T/yr}	Particulate Rate (Ton/yr)	33.6	37.8	30.2	33.9
E_{R_P}	Particulate Rate - Production-based (Ib/Mb coke)	0.315	0.355	0.282	0.317
CPM R	esuits				
C_{sd}	Particulate Concentration (lb/dscf)	3.17E-06	2.96E-06	3.65E-06	3.26E-06
E _{lb/hr}	Particulate Rate (lb/hr)	14.8	13.8	16.7	15.1
ETAr	Particulate Rate (Ton/yr)	64.9	60.6	73.2	66.2
E _{Rp}	Particulate Rate - Production-based (lb/Mb coke)	0.608	0.568	0.684	0.620
Total P	articulate (as PM10) Results				
$\rm C_{sd}$	Particulate Concentration (Ib/dscf)	4.81E-06	4.81E-06	5.16E-06	4.93E-06
E _{lb/hr}	Particulate Rate (lb/hr)	22.5	22.5	23.6	22.8
E _{T/yr}	Particulate Rate (Ton/yr)	98.5	98.4	103	100
E _{RP}	Particulate Rate - Production-based (lb/Mb coke)	0.923	0.922	0.965	0.937

Average includes 3 runs.

1

030918 161446

¹ Gas flow rates obtained from concurrent or bracketing Method 2F test runs combined with the WAF determined by Method 2H.

² Sample flow rates as determined by EPA Method 2 were used to calculate isokinetic sampling conditions.

Marathon Petroleum Company LP Detroit Refinery Report on Compliance Testing

Table 2-2: NH₄ (CTM-027)

Run No	······································	1	2	3	Average
Date (2	018)	Feb 13	Feb 13	Feb 14	
Start Ti	me (approx.)	15:25	17:58	08:20	
Stop Ti	me (approx.)	16:37	19:06	09:30	
Proces	s Conditions				
R _P	Production rate - (Mlb coke/hr)	24.4	24.3	24.5	24.4
P ₁	FCC charge rate - (bpd)	41,001	40,990	41,000	40,997
P ₂	Ammonia Injection - (Ib/hr)	6.4	6.4	6.4	6.4
P ₃	ESP Operation	Both/LPR	Both/LPR	Both/LPR	
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	2.9	3.0	2.7	2.9
CO_2	Carbon dioxide (dry volume %)	15.2	15.2	15.8	15.4
Τs	Sample temperature (°F)	491	493	489	491
Bw	Actual water vapor in gas (% by volume)	9.62	9.72	9.04	9.46
Gas Fic	ow Rate ¹				
Qa	Volumetric flow rate, actual (acfm)	155,000	154,000	153,000	154,000
Q_s	Volumetric flow rate, standard (scfm)	85,500	85,000	83,700	84,700
Q _{std}	Volumetric flow rate, dry standard (dscfm)	78,000	77,800	76,200	77,300
Sampli	ing Data				
V _{mstd}	Volume metered, standard (dscf)	37.13	38.07	41.08	38.76
%I	lsokinetic sampling (%) ²	102.8961	98.564 7	105.2206	102.2271
Labora	itory Data				
m _n	Total NH ₃ collected (mg)	11.43256	1 0.2047 7	13.49298	
Ammo	nia (NH ₃) Results				
\mathbf{C}_{sd}	Ammonia Concentration (Ib/dscf)	6.79E-0 7	5.91E-07	7.24E-07	6.65E-07
C_{sd}	Ammonia Concentration (ppmdv)	15.4	13.4	16.4	15.0
Eliphr	Ammonia Rate (lb/hr)	3.18	2.76	3.31	3.08
E _{T/y} r	Ammonia Rate (Ton/yτ)	13.9	12.1	14.5	13.5
ERD	Ammonia Rate - Production-based (Ib/Mlb coke)	0.130	0.113	0.136	0.126

Average includes 3 runs.

04 12 18 09 15 18

¹ Gas flow rates obtained from concurrent or bracketing Method 2F test runs combined with the WAF determined by Method 2H.

² Sample flow rates as determined by EPA Method 2 were used to calculate isokinetic sampling conditions.

CleanAir Project No. 13488-1 Revision 1, Final Report Page 8 Marathon Petroleum Company LP

Detroit Refinery

Report on Compliance Testing

Table 2-3: H₂SO₄ (Draft ASTM CCM)

Run No		1	2	3	Average
Null NO	•		- -		y .
Date (2	018)	Feb 14	Feb 14	Feb 14	
Start Ti	me (approx.)	13:37	16:00	17:25	
Stop Ti	me (approx.)	14:37	17:00	18:25	
Proces	s Conditions				
R_P	Coke burn rate (lb/hr)	24.2	24.2	24.1	24.2
P ₁	FCC charge rate (bpd)	40,996	40,983	40,997	40,992
P ₂	NH3 Injection (lb/hr)	6.42	6.31	6.24	6.33
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O_2	Oxygen (dry volume %)	2.8	3.1	2.8	2.9
CO_2	Carbon dioxide (dry volume %)	14.7	15.0	15.3	15.0
T _s	Sample temperature (°F)	494	496	495	495
В _w	Actual water vapor in gas (% by volume)	11.4	9.9	10.8	10.7
Gas Flo	w Rate ¹				
Q_a	Volumetric flow rate, actual (acfm)	161,000	158,000	156,000	158,000
Q_s	Volumetric flow rate, standard (scfm)	87,600	85,600	84,800	86,000
Q _{std}	Volumetric flow rate, drystandard (dscfm)	77,600	77,100	75,600	76,800
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	27.15	2 7 .12	27.03	27.10
Labora	tory Data (lon Chromatography)				
m _n	Total H2SO4 collected (mg)	3.3837	0.8252	2.2918	
Sulfuri	c Acid Vapor (H2SO4) Results				
C_{sd}	H2SO4 Concentration (lb/dscf)	2.75E-07	6.71E-08	1.87E-07	1.76E-07
C_{sd}	H2SO4 Concentration (ppmdv)	1.08	0.264	0.735	0.693
EThr	H2SO4 Rate (Ton/yr)	5.61	1.36	3.72	3.56
ERP	H2SO4 Rate - Production-based (Ib/Mb coke)	0.0530	0.0128	0.0353	0.0337

Average includes 3 runs.

030818 162817

¹ Gas flow rates obtained from concurrent Method 2F test runs combined with the WAF determined by Method 2H

Marathon Petroleum Company LP

Detroit Refinery

Report on Compliance Testing

Table 2-4:

THC, CH₄, C₂H₆, and VOC Emissions (USEPA 25A/18)

Run No.	an in a start and a start and a start a	1	2	3	Average
Date (20	018)	Feb 14	Feb 14	Feb 14	
Start Tin	ne (approx.)	13:39	16:22	17:39	
Stop Tin	ne (approx)	14:41	17:23	18:39	
Process	s Conditions				
RP	Coke burn rate (Mib/hr)	24.2	24.2	24.2	24.2
Р1	FCC charge rate (bpd)	40,999	40,986	41,001	40,995
Р2	NH ₃ injection (lb/hr)	6.4	6.3	6.2	6.3
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Coi	oditions				
0,	Oxvaen (dry volume %)	1.7	1.9	1.7	1.8
	Carbon dioxide (dry volume %)	16.9	16.9	16.9	16.9
B _w	Actual water vapor in gas (% by volume) ¹	11.4	9.9	10.8	10.7
Gan Flor	ut Bate ²				
0	Volumetric flow rate, actual (acfm)	161.000	158,000	156,000	158,000
0.	Volumetric flow rate, standard (scfm)	87,600	85,600	84,800	86,000
Quit	Volumetric flow rate, dry standard (dscfm)	77,600	77,100	75,600	76,800
	eulte				
C .	Concentration (comdy as C ₂ H ₂)	4.44	3.08	3.49	3.67
C.	Concentration (b/dscf)	5.08E-07	3.53E-07	3,99E-07	4.20E-07
- sa F	Emission Rate (Ib/br)	2,37	1.63	1.81	1.94
E-v	Emission Rate (Ton/vr)	10.37	7.15	7,93	8.48
Eso	Emission Rate - Production-based (lb/Mlb coke)	0.0979	0.0676	0.0749	0.0801
Methan	e Pesults				
C	Concentration (comdy)	<0.490	0.530	<0.490	<0.503
C .	Concentration (b/dscf)	<2.04E-08	2.21E-08	<2.04E-08	<2.10E-08
E	Emission Rate (Ib/br)	< 0.0950	0.10	< 0.0926	< 0.0966
E _{ntr}	Emission Rate (Top/yr)	< 0.416	0.447	< 0.406	< 0.423
ERn	Emission Rate - Production-based (Ib/MIb coke)	< 0.00393	0.0042	< 0.00383	< 0.00399
Ethana	Reculte				
C	Concentration (ppmdy)	<0.200	<0.200	<0.200	<0.200
C	Concentration (b/dscf)	<1.56E-08	<1.56E-08	<1.56E-08	<1.56E-08
E	Emission Rate (lb/br)	< 0.0727	< 0.0722	< 0.0708	< 0.0719
E	Emission Rate (Ton/vr)	< 0.318	< 0.316	< 0.310	< 0.315
En-	Emission Rate - Production-based (Ib/Mib coke)	< 0.00301	< 0.00299	< 0.00293	< 0.00297
-~+ VOC D-	eulte				
VUL Re	suns Emission Rate (lb/br)	2.37	1.63	1.81	1.94
⊫ib/m F⊸	Emission Rate (Ton/yr)	10.37	7.15	7.93	8.48
	Emission Rate - Production-based (Ib/MIb coke)	0.0979	0.0676	0.0749	0.0801
└-Rp		0.0010			

Average includes 3 runs.

¹ Moisture data used for ppmwv to ppmdv correction obtained from nearly-concurrent Draft ASTM CCM runs.

² Gas flow rates obtained from concurrent Method 2F test runs combined with the WAF determined by Method 2H.

For methane and ethane, '<' indicates a measured response below the analytical detection limit determined by the laboratory. For all calcuated averages, "<" values are treated as the entire value of the detection limit.

End of Section

080410 154528

3. DESCRIPTION OF INSTALLATION

Process Description

MPC's facility in Detroit, Michigan, produces refined petroleum products from crude oil. MPC must continue to demonstrate that select process units are in compliance with permitted emission limits.

The Fluid Catalytic Cracking Unit (EU11-FCCU-S1) utilizes a primary reactor, a distillation column and a catalyst regeneration unit to continuously generate light hydrocarbon products from heavy oil feeds. The FCCU is equipped with an ESP with two (2) bays and variable aqueous NH₃ injection to control emissions. Emissions are vented to the atmosphere via the FCCU Regenerator Stack (SVFCCU).

The testing described in this document was performed at the FCCU Regenerator Stack.

Test Location

EPA Methods 1 and 2H specifications determined the sample point locations. Table 3-1 presents the sampling information for the test location. The figures shown on pages 12 and 13 represent the layout of the test location.

Table 3-1: Sampling Information

Source Constituent	Method	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
FCCU Regenerator Stack	USEPA 2E	1-8	2	12	varied	varied	3-1
Velocity Decay	USEPA2H	1	2	6	varied	varied	3-2
NSFPM/CPM	USEPA 5F / 202	1-3	2	12	2.5	60	3-1
NH_3	USEPA CTM-027	1-3	2	12	2.5	60	3-1
H₂SO₄	Draft ASTM CCM	1-3	1	1	60	60	N/A ¹
O ₂ / CO ₂ / CH ₄ / C ₂ H ₆ / THC	USEPA 3A / 18 / 25A	1-3	1	1	60	60	N/A ¹

⁴ Sampling occured at a single point near the center of duct.

030818 163117

RECEIVED APR 16 2018 AIR QUALITY DIVISION

Marathon Petroleum Company LP	Clea
Detroit Refinery	
Report on Compliance Testing	

Page 12

Figure 3-1: FCCU Regenerator Stack Sample Point Layout (EPA Methods 2F, 5F/202, & CTM-027)

Traverse Point	% of Stack Diameter	Port to Point Distance (inches)
1	97.9	80.5
2	93.3	76.7
3	88.2	72.5
4	82.3	67.7
5	75.0	61.7
6	64.4	53.0
7	35.6	29.3
8	25.0	20.6
9	17.7	14.6
10	11.8	9.7
11	6.7	5.5
12	2.1	1.7

Duct diameters upstream from flow disturbance (A): 2.2Limit: 0.5Duct diameters downstream from flow disturbance (B): 3.4Limit: 2.0

Marathon Petroleum Company LP **Detroit Refinery Report on Compliance Testing**

CleanAir Project No. 13488-1 **Revision 0, Final Report** Page 13

Note: Ports on the lower plane were used for these points.

Traverse Point	Port to Point Distance (inches)	
1	81.25	
2	80.25	
3	79.25	
4	3.0	
5	2.0	
6	1.0	
Duct diame	ters upstream from flow disturbance (A): 2.2	Limit: 0.5

Duct diameters downstream from flow disturbance (B): 3.4	
--	--

End of Section

Limit: 2.0

4. METHODOLOGY

Procedures and Regulations

The test program sampling measurements followed procedures and regulations outlined by the United States Environmental Protection Agency (USEPA) and the Michigan DEQ. These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc.

Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery, and analytical procedures. Any modifications to standard test methods are explicitly indicated in this appendix.

In accordance with ASTM D7036 requirements, CleanAir included a description of any such modifications, along with the full context of the objectives and requirements of the test program in the test protocol submitted prior to the measurement portion of this project. Modifications to standard methods are not covered by the ISO 17025 and TNI portions of CleanAir's A2LA accreditation.

CleanAir follows specific QA/QC procedures outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods," EPA/600/R-94/038C. Appendix D contains additional QA/QC measures, as outlined in CleanAir's internal Quality Manual.

Title 40 CFR Part 60, Appendix A

Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 2F	"Determination of Stack Gas Velocity and Volumetric Flow Rate with Three-Dimensional Probes"
Method 2H	"Determination of Stack Gas Velocity Taking into Account Velocity Decay near the Stack Wall"
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"
Method 3A	"Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 4	"Determination of Moisture Content in Stack Gases"
Method 5F	"Determination of Nonsulfate Particulate Matter Emissions from Stationary Sources"
Method 18	"Measurement of Gaseous Organic Compound Emissions by Gas Chromatography"
Method 25A	"Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer"
Title 40 CFI Method 202	R Part 51, Appendix M "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary

Conditional Test Methods

Sources"

CTM-027 "Procedure for Collection and Analysis of Ammonia in Stationary Sources"

CTM-013 (Mod.)/Draft ASTM Controlled Condensation Method (Draft ASTM CCM)

"Determination of Sulfur Oxides Including Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid Vapor and Mist from Stationary Sources Using a Controlled Condensation Sampling Apparatus"

Methodology Discussion

USEPA Method 5F/202

PM and PM₁₀ emissions were determined using EPA Method 5F/202.

- For this test program, PM is assumed equivalent to NSFPM. Per 40 CFR Subpart Ja §60.104a, EPA Method 5F is permitted for measuring front-half PM emissions from FCCUs.
- PM₁₀ is equivalent to the sum of filterable particulate matter less than 10 micrometers (μm) in diameter (FPM₁₀) and (CPM. The Method 5F/202 sample train yields a front-half, non-sulfate FPM result and a back-half, CPM result. The total non-sulfate PM result (NSFPM plus CPM) from Method SF/202 can be used as a worst-case estimation of Total PM₁₀ since Method 5F will collect all NSFPM present in the flue gas (regardless of particle size).

The front-half (Method 5F portion) of the sampling train consisted of a glass nozzle, glass liner, and filter holder heated to 320°F, and a quartz fiber filter heated to 320°F. Flue gas samples were extracted isokinetically; nozzle and probe liner recoveries were performed using de-ionized water (DI H₂O) as the recovery solvent.

The back-half (Method 202 portion) of the sampling train is designed to mimic ambient conditions and collect only the particles that would truly form CPM in the atmosphere by minimizing the sulfur dioxide (SO₂) and nitrogen oxide (NO_x) interferences observed with earlier versions of the method, in which flue gas was bubbled through cold water, and SO₂ and NO_x were absorbed and partially oxidized before they could be purged out with nitrogen (N₂).

Flue gas exiting the front-half heated filter passed through a coiled condenser and dry impinger system jacketed by water continually circulated at ambient temperature. Moisture was removed from the flue gas without bubbling through the condensed water. Flue gas then passed through a tetrafluoroethane (TFE) membrane filter at ambient temperature. The temperature of the flue gas at the exit of the filter was directly measured with an in-line thermocouple and maintained in the temperature range of 65°F to 85°F.

After exiting the ambient filter, the flue gas passed through two (2) additional impingers surrounded by ice in a "cold" section of the impinger bucket. The moisture collected in these impingers was not analyzed for CPM and was only collected to determine the flue gas moisture and thoroughly dry the gas. The sample gas then flowed into a calibrated dry gas meter where the collected sample gas volume was determined.

The front-half portion of the sample train (nozzle, probe, and heated filter) was recovered per Method 5F requirements. The back-half of the sample train (heated filter outlet, condenser, dry impingers, and TFE membrane filter) was recovered per Method 202 requirements. The impinger train was purged with N₂ at a rate of 14 liters per minute (Ipm) for one (1) hour following each test run and prior to recovery.

Marathon Petroleum Company LP	CleanAir Project No. 13488-1
Detroit Refinery	Revision 0, Final Report
Report on Compliance Testing	Page 16

A field train blank was assembled, purged, and recovered as if it were an actual test sample; analysis of the field train blank was used to blank-correct the test run results. Reagent blanks were also collected to quantify background contamination. All samples and blanks were returned to CleanAir Analytical Services in Palatine, Illinois, for gravimetric analysis. Method 202 samples were maintained at a temperature < 85°F during transport to the laboratory.

The analytical procedures in EPA Method 202 include an ammonium titration of the inorganic sample fractions with pH less than 7.0 to neutralize acids with hygroscopic properties, such as H₂SO₄, that may be present in the sample. This step speeds up the sample desiccation process and allows the samples to reach a constant weight prior to weighing. The weight of ammonium added to the sample as a result of the titration is subtracted from the analytical result.

CleanAir Analytical Services performed the gravimetric analysis and has determined that only samples with an initial pH less than 4.5 require a significant amount of ammonium neutralization, resulting in a correction in excess of 0.5 mg. Based on this observation, the laboratory has altered its procedures. Only samples with a pH lower than 4.5 are titrated.

All of the inorganic sample fractions analyzed from Runs 1 through 3 had a pH less than 4.5 and were titrated. The field train reagent blanks had a pH above 4.5 and were not titrated. The train blanks were observed to reach a constant weight without having to titrate the sample.

USEPA CTM-027

NH₃ emissions were determined using a CTM-027 and an isokinetic, multi-point sample train. The sampling system consisted of a glass nozzle, in-stack quartz filter, glass-lined heated probe, impinger train (for NH₃ collection and H₂O removal and measurement), and a dry gas meter. The NH₃-collecting impingers were charged with 0.1 N H₂SO₄ solution.

The filter temperature, as noted on the raw data sheets, is actually the heated area between the probe outlet and impinger inlet of the sampling train. The actual filter was in-stack at stack temperature.

The sampling system traversed all of the Method 1 points during each run. A minimum volume of 0.9 dry standard cubic meters (dscm), or 31.8 dry standard cubic feet (dscf), were sampled during each 60-minute run.

The sample train was recovered per CTM-027 requirements. The front-half assembly (components prior to the in-stack filter) was not recovered or analyzed, as gaseous NH₃ passed through without reacting or changing state. The three (3) NH₃-collecting impingers were recovered separately per CTM-027 requirements. The back-half of the sample train prior to Impinger 1 (heated probe and connecting glassware) was rinsed into Impinger 1.

Samples were brought back to CleanAir Analytical Services in Palatine, Illinois, for ion chromatography (IC) analysis.

Draft ASTM Controlled Condensation Method

H₂SO₄ emissions were determined referencing the Draft ASTM Controlled Condensation Method (CCM).

A gas sample was extracted from the source at a constant flow rate using a quartz-lined probe maintained at a temperature of $650^{\circ}F \pm 25^{\circ}F$ (depending on the required probe length) and a quartz fiber filter (to remove particulate matter) maintained at the same temperature as the probe. The sample then passed through a glass coil condenser for collection of sulfuric acid vapor and/or mist. A second quartz fiber filter (referred to as the sulfuric acid mist (SAM) filter) is located at the condenser outlet for the collection of residual SAM not collected by the condenser. The condenser temperature is regulated by a water jacket and the SAM filter is regulated by a closed oven. Both the water jacket and SAM filter oven were maintained at 140°F \pm 9°F plus 2°F for each 1% moisture above 16% flue gas moisture (above the water dew point, which eliminates the oxidation of dissolved SO₂ into the H₂SO₄-collecting fraction of the sample train).

After exiting the SAM filter, the sample gas then continued through a series of four (4) glass knock-out jars; two (2) containing water, one (1) empty and one (1) containing silica gel for residual moisture removal. The exit temperature from the knock-out jar set is maintained below 68°F. The sample gas then flowed into a dry gas meter, where the collected sample gas volume is determined by means of a calibrated, dry gas meter or an orifice-based flow meter.

The H₂SO₄-collecting portion of the sample train (condenser and SAM filter) was recovered into a single fraction using DI H₂O as the recovery/extraction solvent; any H₂SO₄ disassociates into sulfate ion (SO₄²⁻) and was stabilized in the H₂O matrix until analysis.

Samples and blanks were returned to CleanAir Analytical Services in Palatine, Illinois, for IC analysis.

USEPA Methods 3A, 18, and 25A

Oxygen (O₂) and carbon dioxide (CO₂) emissions were determined using a paramagnetic/NDIR analyzer per EPA Method 3A. VOC emissions were determined using EPA Method 25A to quantify THC emissions and EPA Method 18 to quantify CH₄ and C₂H₆ emissions. VOC emissions are equivalent to THC emissions, minus CH₄ and C₂H₆ emissions.

The Method 3A/18/25A sampling system consisted of a heated probe, heated filter, and heated sample line. Flue gas was extracted at a constant rate and delivered at approximately 250°F to a tee at the end of the heated sample line.

- One leg of the tee was connected to a flame ionization analyzer (FIA), which continuously measured minute-average THC concentration expressed in terms of propane (C₃H₈) on an actual (wet) basis.
- The other leg of the tee was connected to a gas conditioner which removed moisture before delivering the gas to a flow panel, and the O₂/CO₂ analyzers which measured concentration on a dry basis (units of %dv or ppmdv).
- The Method 18 gas sample was collected by pulling a slipstream from the flow panel and delivered it
 into a FlexFoil bag at a constant rate. The moisture condensate was not collected for analysis as CH₄ and
 C₂H₆ are insoluble in water. Each bag was filled over a period of approximately one hour for each test
 run.

Marathon Petroleum Company LP	CleanAir Project No. 13488-1
Detroit Refinery	Revision 0, Final Report
Report on Compliance Testing	Page 18

THC analyzer calibration was performed by introducing zero air, high, mid-, and low range C_3H_8 calibration gases to the inlet of the sampling system's heated filter. Bias checks were performed before and after each sampling run in a similar manner.

O₂/CO₂ calibration error checks were performed by introducing zero N₂, high range and mid-range calibration gases to the inlet of each analyzer during calibration error checks. Bias checks were performed before and after each sampling run by introducing calibration gas to the inlet of the sampling system's heated filter. Per Method 3A, the average results for each run were drift-corrected.

Analysis for CH_4 and C_2H_6 was performed off-site by CleanAir Analytical Services using gas chromatography (GC). Since moisture was removed from the sample prior to collection and GC analysis, the concentration results were on a dry basis. At least three (3) sample injections were analyzed for each run.

GC calibration was performed by generating a calibration curve from triplicate injections of three (3) distinct CH_4 and C_2H_6 concentrations introduced directly into the GC. Upon completion of calibration, a recovery study was performed by spiking two of the bag samples with a known concentration of CH_4 and C_2H_6 , storing the bags for the same period of time prior to analysis as the field samples and analyzing the bags to determine percent recovery.

General Considerations

A traditional verification of the absence of cyclonic flow following Method 1 specifications was not performed. However, absence of cyclonic flow was demonstrated by measuring the resultant angle of flow during each Method 2F flow traverse, which yielded a resultant angle of flow less than 20° in all instances. Data is included in Appendix G of this report.

H₂O data used for moisture correction of concentration data was obtained (when required) for Method 5F/202, CTM-027, and Draft ASTM CCM by Method 4 measurements incorporated into the sampling and recovery procedures. For Method 3A/18/25A, H₂O data was obtained from most concurrently-operated Draft ASTM CCM sample trains.

O₂, CO₂, and H₂O data used for Methods 2H and 2F flow calculations were obtained from the most concurrentlyoperated Method 5F/2O2 sample trains.

End of Section