CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 800-627-0033 cleanair.com

REPORT ON COMPLIANCE TESTING

Detroit Refinery
Crude/Vacuum Heater Stack

Marathon Petroleum Company LP 1300 South Fort Street Detroit, MI 48217 Client Reference No. 4101815470 CleanAir Project No. 13947
A2LA ISO 17025 Certificate No. 4342.01
A2LA / STAC Certificate No. 4342.02
Revision 0, Final Report
September 24, 2019

(800) 627-0033 ext. 4537

CleanAir Project No. 13947 Revision O, Final Report Page ii

COMMITMENT TO QUALITY

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Report Writer:	
	September 24, 2019
	_
Ken Sullivan	Date
Project Manager	
ksullivan@cleanair.com	
(800) 627-0033 ext. 4527	
I hereby certify that the information contained within my ability, verified as accurate.	in the final test report has been reviewed and, to the best of
Independent Report and Appendix Reviewer:	
L-//.	September 24, 2019
Andy Obuchowski	Date
Midwest Engineering Group Leader	
aobuchowski@cleanair.com	

CleanAir Project No. 13947 Revision 0, Final Report Page iii

REPORT REVISION HISTORY

Version	Revision	Date	Pages	Comments
Draft	D0a	09/16/19	All	Draft version of original document.
Final	0	09/24/19	All	Final version of original document.

PROJECT PERSONNEL

Name	Affiliation	Project Responsibility
Cody Spoon	Marathon Petroleum Company LP	Client/Site Contact
Ken Sullivan	CleanAir	Project Manager / Report Writer
Doug May	CleanAir	Project Field Leader
Andy Obuchowski	CleanAir	Independent Reviewer of Report
Nadia Lazzar	CleanAir	Report Coordinator
Josh Myers	CleanAir	Field Engineer
Mo Khatib	CleanAir	Field Engineer
Michael Kavulic	CleanAir	Field Engineer

TABLE OF CONTENTS

1.	Project Overview	1
	Test Program Summary	1
	Test Program Details	1
	Parameters	1
	Schedule	2
	Discussion	2
2.	Results	4
3.	Description of Installation	8
	Process Description	8
	Test Location	8
4.	Methodology	10
	Procedures and Regulations	10
	Title 40 CFR Part 60, Appendix A	10
	CTM-013 (Modified)	10
	Methodology Discussion	11
	FPM – USEPA Method 5	11
	H ₂ SO ₄ – CTM-013 (Modified)	11
	NSFPM – USEPA Method 5B	12
5.	Appendix	13
	Appendix A: Test Method Specifications	A
	Appendix B: Sample Calculations	В
	Appendix C: Parameters	C
	Appendix D: QA/QC Data	D
	Appendix E: Field Data	Е
	Appendix F: Field Data Printouts	F
	Appendix G: Facility Process Data	G
	Appendix H: Laboratory Data	Н
	Appendix I: DEQ Letter	1
	Appendix J: CleanAir Resumes and Certifications	J

CleanAir.

Marathon Petroleum Company LP

Detroit Refinery - Crude/Vacuum Heater

Report on Compliance Testing

CleanAir Project No. 13947 Revision 0, Final Report Page v

LIST OF TABLES

Table 1-1: Summary of Compliance Results	. 1
Table 1-2: Test Schedule	. 2
Table 2-1: Crude/Vacuum Heater – FPM Emissions	. 4
Table 2-2: Crude/Vacuum Heater – H ₂ SO ₄ Emissions	. 5
Table 2-3: Crude/Vacuum Heater – PM Emissions	. 6
Table 2-4: Crude/Vacuum Heater – NSFPM Emissions	. 7
Table 3-1: Sampling Point Information	. 8
LIST OF FIGURES	
Figure 3-1: FPM and NSFPM Sample Point Layout	. 9

1. PROJECT OVERVIEW

Test Program Summary

Marathon Petroleum Company LP (MPC) contracted CleanAir Engineering (CleanAir) to complete testing on the Crude/Vacuum Heater (EU05-CRUDEHTR-S1 & EU04-VACHTR-S-1) at the Detroit Refinery. The test program included the following objectives:

 Perform particulate matter (PM) and sulfuric acid mist (H₂SO₄) testing to demonstrate quarterly compliance with the Michigan Department of Environmental Quality (DEQ) Permit No. MI-ROP-A9831-2012c;

A summary of the test program results is presented below. Section 2 Results provides a more detailed account of the test conditions and data analysis.

Table 1-1: Summary of Compliance Results

Source Constituent	Sampling Method	Average Emission	Permit Limit ¹
Crude/Vacuum Heater Stac	<u>K</u>		
FPM (Ib/MMBtu)	USEPA 5	0.0022	N/A
H ₂ SO ₄ (lb/MMBtu)	CTM-013 (Mod)	0.0006	N/A
PM (lb/MMBtu) ²	USEPA 5 / CTM-013 (Mod)	0.0017	0.0019
NSFPM (lb/MMBtu)	USEPA 5B	0.0010	N/A

¹ Permit limits obtained from MDEQ Renew able Operating Permit No. MI-ROP-A9831-2012c.

Test Program Details

Parameters

The test program included the following emissions measurements:

- filterable particulate matter (FPM)
- H₂SO₄ conducted concurrently with FPM measurements
- PM assumed equivalent to FPM minus H₂SO₄
- nonsulfuric acid filterable particulate matter (NSFPM)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas temperature
- flue gas flow rate

 $^{^2}$ PM assumed equivalent to FPM less $\rm H_2SO_4$. The letter from MDEQ referenced in the appendices further outlines the correction of PM emission for $\rm H_2SO_4$ bias.

CleanAir Project No. 13947 Revision 0, Final Report Page 2

Schedule

Testing was performed on August 15, 2019. The on-site schedule followed during the test program is outlined in Table 1-2.

Table 1-2: Test Schedule

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Crude/Vacuum Heater	USEPA Method 5	FPM	08/15/19	09:00	10:10
2	Crude/Vacuum Heater	USEPA Method 5	FPM	08/15/19	11:03	12:17
3	Crude/Vacuum Heater	USEPA Method 5	FPM	08/15/19	13:25	14:42
4	Crude/Vacuum Heater	USEPA Method 5	FPM	08/15/19	15:31	16:54
1	Crude/Vacuum Heater	USEPA Method 5B	NSFPM	08/15/19	09:00	10:10
2	Crude/Vacuum Heater	USEPA Method 5B	NSFPM	08/15/19	11:03	12:17
3	Crude/Vacuum Heater	USEPA Method 5B	NSFPM	08/15/19	13:25	14:42
4	Crude/Vacuum Heater	USEPA Method 5B	NSFPM	08/15/19	15:31	16:54
1	Crude/Vacuum Heater	CTM-013 (mod)	H ₂ SO ₄	08/15/19	09:00	10:10
2	Crude/Vacuum Heater	CTM-013 (mod)	H_2SO_4	08/15/19	11:03	12:17
3	Crude/Vacuum Heater	CTM-013 (mod)	H ₂ SO ₄	08/15/19	13:25	14:42
4	Crude/Vacuum Heater	CTM-013 (mod)	H_2SO_4	08/15/19	15:31	16:54

Discussion

Project Synopsis

FPM Testing

A total of four (4) 60-minute EPA Method 5 test runs were performed. FPM emission results were calculated in units of pounds per million Btu (lb/MMBtu). The final results were expressed as the average of the four (4) valid runs.

H₂SO₄ Testing

 H_2SO_4 emissions were determined referencing Conditional Test Method 013 (CTM-013). Four (4) 60-minute CTM-013 test runs were performed concurrently with all Method 5 runs. H_2SO_4 emission results were calculated in units of lb/MMBtu. The H_2SO_4 final results were expressed as the average of four (4) valid runs.

PM Results

PM is assumed equivalent to the difference of FPM and H_2SO_4 emissions. This is recommended in a letter from the DEQ, dated December 18, 2017; "Marathon Petroleum, Crude/Vacuum Heater Stack, Request to Substitute Method 5B for Method 5, Permit: MI-ROP-A9831-2012c, SRN: A9831."

 H_2SO_4 emissions were determined concurrently with FPM emissions, converted to units of lb/MMBtu and subtracted from total FPM emissions from each respective run. The PM final results were expressed as the average of the three (3) highest runs.

CleanAir.

Marathon Petroleum Company LP

Detroit Refinery - Crude/Vacuum Heater

Report on Compliance Testing

CleanAir Project No. 13947 Revision 0, Final Report Page 3

NSFPM Testing

A total of four (4) 60-minute EPA Method 5B test runs were performed. NSFPM emission results were calculated in units of lb/MMBtu. The final results were expressed as the average of the four (4) valid runs. Method 5B testing was conducted for supplemental purposes only.

Fuel Factor

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted into units of lb/MMBtu by applying an oxygen-based fuel factor (F_d) provided by MPC for each test run.

Test Conditions

The unit was operated at the maximum normal operating capacity during each of the emissions compliance test runs. MPC was responsible for logging any relevant process-related data and providing it to CleanAir for inclusion in the test report.

End of Section

2. RESULTS

This section summarizes the test program results. Additional results are available in the report appendices, specifically Appendix C Parameters.

Table 2-1: Crude/Vacuum Heater – FPM Emissions

Run No).	1	2	3	4	Average
Date (2	(019)	Aug 15	Aug 15	Aug 15	Aug 15	
Start Ti	me (approx.)	09:00	11:03	13:25	15:31	
Stop Ti	me (approx.)	10:10	12:17	14:42	16:54	
Proces	s Conditions					
R_P	Production Rate (BPD)	150,000	150,000	150,000	150,000	150,000
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,578	8,548	8,548	8,548	
H_{i}	Actual heat input (MMBtu/hr)	299	299	295	295	297
Gas Co	onditions					
O_2	Oxygen (dry volume %)	7.1	7.1	7.1	7.3	7.2
CO_2	Carbon dioxide (dry volume %)	7.8	7.8	7.8	7.7	7.8
T_s	Sample temperature (°F)	300	300	301	300	300
B_w	Actual water vapor in gas (% by volume)	13.9	14.5	14.5	14.1	14.2
Gas Flo	ow Rate					
Q_a	Volumetric flow rate, actual (acfm)	121,000	122,000	121,000	123,000	122,000
Q_s	Volumetric flow rate, standard (scfm)	82,300	83,300	82,200	84,000	82,900
$\mathbf{Q}_{\mathrm{std}}$	Volumetric flow rate, dry standard (dscfm)	70,900	71,300	70,300	72,200	71,100
Sampli	ng Data					
V_{mstd}	Volume metered, standard (dscf)	36.92	36.79	36.22	37.35	36.82
% I	Isokinetic sampling (%)	103.3	102.4	102.2	102.6	102.6
Labora	tory Data					
m_{filter}	Matter collected on filter(s) (g)	0.00246	0.00252	0.00224	0.00276	
m_s	Matter collected in solvent rinse(s) (g)	0.00037	0.00013	0.00042	0.00056	
m_n	Total FPM (g)	0.00283	0.00265	0.00266	0.00332	
FPM Re	esults					
C_sd	Particulate Concentration (lb/dscf)	1.69E-07	1.59E-07	1.62E-07	1.96E-07	1.71E-07
$E_{lb/hr}$	Particulate Rate (lb/hr)	0.718	0.680	0.682	0.850	0.732
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00219	0.00206	0.00209	0.00258	0.00223

CleanAir Project No. 13947 Revision O, Final Report Page 5

Table 2-2: Crude/Vacuum Heater – H₂SO₄ Emissions

Run No	•	1	2	3	4	Average
Date (2	019)	Aug 15	Aug 15	Aug 15	Aug 15	
Start Ti	me (approx.)	09:00	11:03	13:25	15:31	
Stop Ti	me (approx.)	10:10	12:17	14:42	16:54	
Proces	s Conditions					
P_1	Charge rate (BPD)	150,000	150,000	150,000	150,000	150,000
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,578	8,548	8,548	8,548	
H_{i}	Actual heat input (MMBtu/hr)	299	299	295	295	295
Gas Co	nditions					
O_2	Oxygen (dry volume %)	7.1	7.6	7.0	7.0	7.2
CO_2	Carbon dioxide (dry volume %)	7.8	7.5	7.9	7.9	7.8
T_s	Sample temperature (°F)	302	301	303	301	302
B_{w}	Actual water vapor in gas (% by volume)	14.5	13.8	14.2	13.8	14.1
Sampli	ng Data					
V_{mstd}	Volume metered, standard (dscf)	26.40	26.41	26.20	26.26	26.32
Labora	tory Data (Ion Chromatography)					
m_n	Total H ₂ SO ₄ collected (mg)	0.6110	0.6198	0.5129	0.4411	
Sulfurio	: Acid Vapor (H₂SO₄) Results					
C_sd	H ₂ SO ₄ Concentration (lb/dscf)	5.10E-08	5.17E-08	4.32E-08	3.70E-08	4.57E-08
C_{sd}	H ₂ SO ₄ Concentration (ppmdv)	0.201	0.203	0.170	0.146	0.180
E_{Fd}	H ₂ SO ₄ Rate - Fd-based (lb/MMBtu)	0.000663	0.000695	0.000555	0.000476	0.000597

CleanAir Project No. 13947 Revision 0, Final Report Page 6

Table 2-3: Crude/Vacuum Heater – PM Emissions

Run No).	1	2	3	4	Average
Date (2	2019)	Aug 15	Aug 15	Aug 15	Aug 15	
Start Ti	me (approx)	09:00	11:03	13:25	15:31	
Stop Ti	me (approx.)	10:10	12:17	14:42	16:54	
Proces	ss Conditions					
R_P	Production Rate (BPD)	150,000	150,000	150,000	150,000	150,000
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,578	8,548	8,548	8,548	
$H_{\rm i}$	Actual heat input (MMBtu/hr)	299	299	295	295	297
Gas Co	onditions					
O_2	Oxygen (dry volume %)	7.1	7.1	7.1	7.3	7.2
CO_2	Carbon dioxide (dry volume %)	7.8	7.8	7.8	7.7	7.8
T_s	Sample temperature (°F)	300	300	301	300	300
B_{w}	Actual water vapor in gas (% by volume)	13.9	14.5	14.5	14.1	14.2
FPM Re	esults					
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00219	0.00206	0.00209	0.00258	0.00223
Sulfuri	c Acid Vapor (H₂SO₄) Results					
E_{Fd}	H ₂ SO ₄ Rate - F _d -based (lb/MMBtu)	0.000663	0.000695	0.000555	0.000476	0.000597
Particu	ılate Matter (as PM ₁₀) Results ¹					
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00153	0.00136	0.00154	0.00210	0.00172

 $^{^{\}rm 1}\,{\rm Final}\,{\rm PM}\,{\rm result}$ is the average of three (3) highest valid runs (Runs 1, 3, & 4).

CleanAir Project No. 13947 Revision 0, Final Report Page 7

Table 2-4: Crude/Vacuum Heater – NSFPM Emissions

Run No).	1	2	3	4	Average
Date (2	019)	Aug 15	Aug 15	Aug 15	Aug 15	
Start Ti	me (approx.)	09:00	11:03	13:25	15:31	
Stop Ti	me (approx.)	10:10	12:17	14:42	16:54	
Proces	s Conditions					
P_1	Charge Rate (BPD)	150,000	150,000	150,000	150,000	150,000
F_d	Oxygen-based F-factor (dscf/MMBtu)	8,578	8,548	8,548	8,548	
$H_{\rm i}$	Actual heat input (MMBtu/hr)	299	299	295	295	297
Gas Co	nditions			,		
O_2	Oxygen (dry volume %)	7.3	7.0	7.1	7.0	7.1
CO_2	Carbon dioxide (dry volume %)	7.7	7.9	7.8	7.9	7.8
T_s	Sample temperature (°F)	300	300	300	299	300
B_{w}	Actual water vapor in gas (% by volume)	14.8	14.5	14.6	14.8	14.7
Gas Flo	w Rate					
Q_{a}	Volumetric flow rate, actual (acfm)	114,000	117,000	119,000	119,000	117,000
Q_s	Volumetric flow rate, standard (scfm)	77,700	80,100	81,200	81,500	80,100
$\mathbf{Q}_{\mathrm{std}}$	Volumetric flow rate, dry standard (dscfm)	66,200	68,500	69,300	69,500	68,400
Sampli	ng Data					
V_{mstd}	Volume metered, standard (dscf)	34.36	35.37	35.66	36.02	35.35
%I	Isokinetic sampling (%)	102.9	102.3	102.0	102.8	102.5
Labora	tory Data					
m_{filter}	Matter collected on filter(s) (g)	0.00180	0.00066	0.00089	0.00103	
m_s	Matter collected in solvent rinse(s) (g)	0.00014	0.00007	0.00017	0.00033	
\mathbf{m}_{n}	Total NSFPM(g)	0.00194	0.00073	0.00106	0.00136	
NSFPM	Results					
C_{sd}	Particulate Concentration (lb/dscf)	1.24E-07	4.54E-08	6.56E-08	8.35E-08	7.97E-08
$E_{lb/hr}$	Particulate Rate (lb/hr)	0.494	0.187	0.273	0.348	0.325
E_{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00164	0.000584	0.000849	0.00107	0.00104

3. DESCRIPTION OF INSTALLATION

Process Description

MPC's facility in Detroit, Michigan, produces refined petroleum products from crude oil. MPC must continue to demonstrate that select process units are in compliance with permitted emission limits.

The Crude Unit (EU05-CRUDE) separates crude oil into various fractions through the use of distillation processes. These fractions are sent to other units in the refinery for further processing. The Crude Unit consists of process vessels (including heat exchangers and fractionation columns), the Alcorn Heater (EU05-CRUDEHTR-S1), tanks, containers, compressors, pumps, piping, drains, and various components (pump and compressor seals, process valves, pressure relief valves, flanges, connectors, etc.).

The Vacuum Unit (EU04-VACUUM) separates the reduced crude from the Crude Unit through the use of a vacuum column. The reduced crude is separated into light vacuum gas oil, medium vacuum gas oil, heavy vacuum gas oil, and a bottoms product called flux. The various fractions are sent to other units in the refinery for further processing. The vacuum unit consists of process vessels (including heat exchangers and vacuum column), two process heaters, tanks, containers, two cooling towers, flare, compressors, pumps, piping, drains, and various components (pumps and compressor seals, process valves, pressure relief valves, flanges, connectors, etc.).

Both the Crude Heater (EU05-CRUDEHTR-S1) and the Vacuum Heater (EU04-VACHTR-S1) are fired by refinery fuel gas. Emissions are vented to the atmosphere via a common stack known as the Crude/Vacuum Heater Stack (SV04-H1-05-H1), where testing was performed.

Test Location

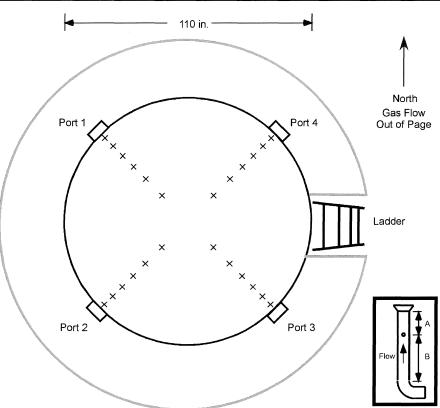
The sample point locations were determined by EPA Method 1. Table 3-1 presents the sampling information for the test location described in this report. The figure shown on page 9 represents the layout of the test location.

Table 3-1: Sampling Point Information

Source Constituent	Method (USEPA)	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Crude/Vacuum Heater	<u>Stack</u>						
FPM	5	1-4	4	6	2.5	60	3-1
NSFPM	5B	1-4	4	6	2.5	60	3-1
H ₂ SO ₄	CTM-013 (Mod)	1-4	1	1	60	60	N/A ¹

¹ CTM-013 (Mod) sampling were conducted from a single point near the center of the duct.

CleanAir.


Marathon Petroleum Company LP

Detroit Refinery - Crude/Vacuum Heater

Report on Compliance Testing

CleanAir Project No. 13947 Revision 0, Final Report Page 9

Figure 3-1: FPM and NSFPM Sample Point Layout

Sampling Point	% of Stack Diameter	Port to Point Distance (inches)
1	35.6	39.2
2	25.0	27.5
3	17.7	19.5
4	11.8	13.0
5	6.7	7.4
6	2.1	2.3

Duct diameters upstream from flow disturbance (A): 5.3 Limit: 0.5 Duct diameters downstream from flow disturbance (B): 2.4 Limit: 2.0

CleanAir Project No. 13947 Revision 0, Final Report Page 10

4. *METHODOLOGY*

Procedures and Regulations

The test program sampling measurements followed procedures and regulations outlined by the United States Environmental Protection Agency (USEPA) and the Michigan DEQ. These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc.

Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery, and analytical procedures. Any modifications to standard test methods are explicitly indicated in this appendix.

In accordance with ASTM D7036 requirements, CleanAir included a description of any such modifications, along with the full context of the objectives and requirements of the test program in the test protocol submitted prior to the measurement portion of this project. Modifications to standard methods are not covered by the ISO 17025 and TNI portions of CleanAir's A2LA accreditation.

CleanAir follows specific QA/QC procedures outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods," EPA/600/R-94/038C. Appendix D contains additional QA/QC measures, as outlined in CleanAir's internal Quality Manual.

Title 10 CEP Dart 60 Annondix A

TITIE 40 CF	R Part 60, Appendix A
Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"
Method 4	"Determination of Moisture Content in Stack Gases"
Method 5	"Determination of Particulate Matter Emissions from Stationary Sources"
Method 5B	"Determination of Nonsulfuric Acid Particulate Matter Emissions from Stationary Sources"

CTM-013 (Modified)

"Determination of Sulfur Oxides Including Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid Vapor and Mist from Stationary Sources Using a Controlled Condensation Sampling Apparatus"

CleanAir Project No. 13947 Revision O, Final Report Page 11

Methodology Discussion

FPM – USEPA Method 5

FPM emissions were determined using EPA Method 5.

The front-half of the sampling train consisted of a glass nozzle, glass liner, and filter holder heated to $248^{\circ}F \pm 25^{\circ}F$ and a quartz fiber filter. Flue gas samples were extracted isokinetically per Method 5 requirements.

After exiting the front-half filter, the flue gas passed through a series of knock-out jars. Condensate in the knock-out jars were collected to determine the flue gas moisture and thoroughly dry the gas. The sample gas then flowed into a calibrated dry gas meter where the collected sample gas volume was determined.

The front-half portion of the sample train (nozzle, probe, and heated filter) was recovered per Method 5 requirements, using acetone as the recovery solvent.

All samples and blanks were returned to CleanAir Analytical Services in Palatine, Illinois, for gravimetric analysis. Upon receipt, the filters dessicated for 24 hours at ambient temperature. The front-half rinses were evaporated at ambient temperature and pressure. The masses from each fraction were then summed for a total FPM mass.

$H_2SO_4 - CTM-013$ (Modified)

H₂SO₄ emissions were determined referencing modified CTM-013.

A gas sample was extracted from the source at a constant flow rate using a quartz-lined probe maintained at a temperature of $650^{\circ}F \pm 25^{\circ}F$ and a quartz fiber filter (to remove PM) maintained at the same temperature as the probe.

The sample then passed through a glass coil condenser for collection of sulfuric acid vapor and/or mist. A glass frit/filter was located at the condenser outlet for the collection of residual sulfuric acid mist (SAM) not collected by the condenser. The condenser temperature is regulated by a water jacket and the SAM filter is regulated by a closed oven. Both the water jacket and SAM filter oven were maintained at $140^{\circ}F \pm 9^{\circ}F$ plus $2^{\circ}F$ for each 1% moisture above 16% flue gas moisture (above the water dew point which eliminates the possibility of oxidation of dissolved SO_2 into the H_2SO_4 -collecting fraction of the sample train).

After exiting the SAM filter, the sample gas then continued through a series of four (4) glass knock-out jars: two (2) containing water, one (1) empty and one (1) containing silica gel for residual moisture removal. The exit temperature from the knock-out jar set is maintained below 68°F. The sample gas then flowed into a dry gas meter where the collected sample gas volume is determined by means of a calibrated, dry gas meter.

The H_2SO_4 -collecting portion of the sample train (condenser and SAM filter) was recovered into a single fraction using DI H_2O as the recovery/extraction solvent; any H_2SO_4 disassociates into sulfate ion (SO_4^{2-}) and was stabilized in the H_2O matrix until analysis. Following the initial sample recovery, a second DI H_2O rinse was completed.

Samples, back-up rinses, and blanks were returned to CleanAir Analytical Services in Palatine, Illinois, for ion chromatography analysis.

CleanAir Project No. 13947 Revision 0, Final Report Page 12

NSFPM - USEPA Method 5B

NSFPM emissions were determined using EPA Method 5B.

The front-half of the sampling train consisted of a glass nozzle, glass liner, and filter holder heated to 320°F ± 25°F and a quartz fiber filter. Flue gas samples were extracted isokinetically per Method 5B requirements.

After exiting the front-half filter, the flue gas passed through a series of knock-out jars. Condensate in the knock-out jars were collected to determine the flue gas moisture and thoroughly dry the gas. The sample gas then flowed into a calibrated dry gas meter where the collected sample gas volume was determined.

The front-half portion of the sample train (nozzle, probe, and heated filter) was recovered per Method 5B requirements, using acetone as the recovery solvent.

All samples and blanks were returned to CleanAir Analytical Services in Palatine, Illinois, for gravimetric analysis. Upon receipt, the filters dessicated for 24 hours at ambient temperature. The front-half rinses were evaporated at ambient temperature and pressure. The masses from each fraction were then summed for a total FPM mass.

End of Section