

Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU FUEL PULV 20, 36-K20) Particulate Matter Emissions Test Summary Report

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

Prepared for:

Lafarge

Alpena Plant 1435 Ford Avenue Alpena, Michigan

Project No. 16-4952.00 January 25, 2017

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (248) 548-8070

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

AIR QUALITY DIVISION

JAN 3 1 2017

RECEIVED

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

AIR QUALITY DIV.

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Lafarge Midwest Inc.	County Alpena
Source Address 1435 Ford Ave.	City _Alpena
AQD Source ID (SRN) B1477 RO Permit No. MI-ROP-B1477-2012a	RO Permit Section No.
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the R	O Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, this source was in compliance with ALL terms each term and condition of which is identified and included by this reference. The me is/are the method(s) specified in the RO Permit.	and conditions contained in the RO Permit, hthod(s) used to determine compliance
2. During the entire reporting period this source was in compliance with all terms each term and condition of which is identified and included by this reference, E) enclosed deviation report(s). The method used to determine compliance for each term the RO Permit, unless otherwise indicated and described on the enclosed deviation report.	(CEPT for the deviations identified on the rm and condition is the method specified in
Semi-Annual (or More Frequent) Report Certification (General Condition No. 2	3 of the RO Permit)
Reporting period (provide inclusive dates): From To 1. During the entire reporting period, ALL monitoring and associated recordkeeping and no deviations from these requirements or any other terms or conditions occurred	requirements in the RO Permit were met
2. During the entire reporting period, all monitoring and associated recordkeeping re no deviations from these requirements or any other terms or conditions occurred, EX enclosed deviation report(s).	
A Other Depart Cartification	
Other Report Certification Reporting period (provide inclusive dates): From 12/13/2016 To 12 Additional monitoring reports or other applicable documents required by the RO Permit Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU PUEL PULV 20, Particulate Matter Emission Test Summary Report	

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete.

Paul Rogers	Plant Manager	989-354-4171
Name of Responsible Official (print or type)	Title	Phone Number
PIRA		128/2017
Signature of Responsible Official		Date

EXECUTIVE SUMMARY

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM₁₀.

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln 20 system on December 14, 2016. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM_{10} .

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

1. Introduction

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

AQD has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (December 2013). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

Sampling and analysis for the emission test program was conducted on December 13 and 14, 2016 at the Lafarge facility located in Alpena, Michigan.

1.b Purpose of Testing

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

1.c Source Description

The control devices are baghouse dust collectors.

1.d Test Program Contacts

The contacts for the source and test report are:

Mr. Travis Weide Area Environmental & Public Affairs Manager LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Brian Joyce Area Environmental Coordinator LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Barry Boulianne Senior Project Manager BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (313) 449-2361

Names and affiliations for personnel who were present during the testing program are summarized by Table 2.

Name and Title	Affiliation	Telephone
Mr. Barry Boulianne Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Matt Young Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Steve Smith Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Mike Nummer Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Shane Rabideau Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Brian Joyce LafargeHolcim	Lafarge – Alpena Plant 1435 Ford Avenue Alpena, Michigan 49707	(989) 916-4854

Table 2 Test Personnel

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions compliance test program.

2.a Operating Data

Kiln production rate and baghouse pressure drop is available in Appendix E.

2.b Applicable Permit

AQD issued Renewable Operating Permit MI-ROP-B1477-2012b to Lafarge North America.

2.c Results

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM_{10} .

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln20 system on December 14. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM_{10} .

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a **Process Description**

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.b Process Flow Diagram

A process flow diagram is available on request.

3.c Raw and Finished Materials

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.d Process Capacity

Each baghouse is rated for the maximum exhaust gas flowrate from each system and the efficiencies are equivalent to that necessary to achieve the corresponding emission limitations.

3.e Process Instrumentation

Proper operation of the baghouse dust collectors is verified by baghouse pressure drop monitoring.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used.

4.a Sampling Train and Field Procedures

Measurement of exhaust gas velocity, molecular weight, and moisture content were conducted using the following reference test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 "Sample and Velocity Traverses for Stationary Sources"
- Method 2 "Determination of Stack Gas Velocity and Volumetric Flowrate"
- Method 3 "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources" (Fyrite)
- Method 4 "Determination of Moisture Content in Stack Gases"

Stack gas velocity traverses were conducted in accordance with the procedures outlined in Method 1 and Method 2 (see Figure 2 and 3 for a schematic of the sampling location). S-type pitot tubes with thermocouple assemblies, calibrated in accordance with Method 2, Section 4.1.1, were used to measure exhaust gas velocity pressures (using a manometer) and temperatures during testing. The S-type pitot tube dimensions were within specified limits, therefore, a baseline pitot tube coefficient of 0.84 (dimensionless) was assigned.

A cyclonic flow check was performed at the sampling location. The existence of cyclonic flow is determined by measuring the flow angle at each sample point. The flow angle is the angle between the direction of flow and the axis of the stack. If the average of the absolute values of the flow angle is greater than 20 degrees, cyclonic flow exists. The null angle was determined to be less than 20 degrees at each sampling point.

Molecular weight was determined according to USEPA Method 3, "Gas Analysis for the Determination of Dry Molecular Weight." The equipment used for this evaluation consisted of a one-way squeeze bulb with connecting tubing and a set of Fyrite[®] combustion gas analyzers. Carbon dioxide and oxygen content were analyzed using the Fyrite[®] procedure.

Exhaust gas moisture content was evaluated using Method 4. Exhaust gas was extracted as part of the PM and lead sampling trains and passed through the impinger configuration (see Figure 1). Exhaust gas moisture content was then determined gravimetrically.

4.b Particulate Matter (USEPA Method 17/202)

40 CFR 60, Appendix A, Method 17, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 51, Appendix M, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 1 for a schematic of the sampling train). Triplicate60-minute test runs were conducted on each source.

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel nozzle, (2) an in stack stainless-steel filter housing, (3) a steel probe, (4) a vertical condenser, (5) an empty pot bellied impinger, (6) an empty modified Greenburg-

Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU FUEL PULV 20, 36-K20) Particulate Matter Emissions Test Summary Report

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

Prepared for:

Lafarge

Alpena Plant 1435 Ford Avenue Alpena, Michigan

Project No. 16-4952.00 January 25, 2017

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (248) 548-8070

RECEIVED

JAN 3 1 2017

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

AIR QUALITY DIVISION

AIR QUALITY DIV.

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Lafarge Midwest Inc.	County Alpena
Source Address 1435 Ford Ave.	City Alpena
AQD Source ID (SRN) B1477 RO Permit No. MI-ROP-B1477-2012a	RO Permit Section No.
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the F	RO Permit)
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, this source was in compliance with ALL terms each term and condition of which is identified and included by this reference. The mis/are the method(s) specified in the RO Permit.	
2. During the entire reporting period this source was in compliance with all terms each term and condition of which is identified and included by this reference, E enclosed deviation report(s). The method used to determine compliance for each term the RO Permit, unless otherwise indicated and described on the enclosed deviation report.	XCEPT for the deviations identified on the erm and condition is the method specified in
Semi-Annual (or More Frequent) Report Certification (General Condition No. 2	3 of the RO Permit)
Reporting period (provide inclusive dates): From To To 1. During the entire reporting period, ALL monitoring and associated recordkeeping and no deviations from these requirements or any other terms or conditions occurred	requirements in the RO Permit were met
2. During the entire reporting period, all monitoring and associated recordkeeping re no deviations from these requirements or any other terms or conditions occurred, EX enclosed deviation report(s).	equirements in the RO Permit were met and CEPT for the deviations identified on the
Other Report Certification	
	2/14/2016
Reporting period (provide inclusive dates): From <u>12/13/2016</u> To <u>1</u> Additional monitoring reports or other applicable documents required by the RO Permit	
Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU PUEL PULV 20	
Particulate Matter Emission Test Summary Report	

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete.

Paul Rogers	Plant Manager	989-354-4171
Name of Responsible Official (print or type)	Title	Phone Number
PIRA		1252017
Signature of Responsible Official		Date

EXECUTIVE SUMMARY

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM₁₀.

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln 20 system on December 14, 2016. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM_{10} .

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

i

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

1. Introduction

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

AQD has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (December 2013). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

Sampling and analysis for the emission test program was conducted on December 13 and 14, 2016 at the Lafarge facility located in Alpena, Michigan.

1.b Purpose of Testing

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

1.c Source Description

The control devices are baghouse dust collectors.

1.d Test Program Contacts

The contacts for the source and test report are:

Mr. Travis Weide Area Environmental & Public Affairs Manager LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Brian Joyce Area Environmental Coordinator LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Barry Boulianne Senior Project Manager BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (313) 449-2361

Names and affiliations for personnel who were present during the testing program are summarized by Table 2.

Name and Title Affiliation Telepho				
Mr. Barry Boulianne Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070		
Mr. Matt Young Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070		
Mr. Steve Smith Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070		
Mr. Mike Nummer Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070		
Mr. Shane Rabideau Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070		
Mr. Brian Joyce LafargeHolcim	Lafarge – Alpena Plant 1435 Ford Avenue Alpena, Michigan 49707	(989) 916-4854		

Table 2 Test Personnel

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions compliance test program.

2.a Operating Data

Kiln production rate and baghouse pressure drop is available in Appendix E.

2.b Applicable Permit

AQD issued Renewable Operating Permit MI-ROP-B1477-2012b to Lafarge North America.

2.c Results

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM_{10} .

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln20 system on December 14. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a Process Description

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.b Process Flow Diagram

A process flow diagram is available on request.

3.c Raw and Finished Materials

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.d Process Capacity

Each baghouse is rated for the maximum exhaust gas flowrate from each system and the efficiencies are equivalent to that necessary to achieve the corresponding emission limitations.

3.e Process Instrumentation

Proper operation of the baghouse dust collectors is verified by baghouse pressure drop monitoring.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used.

4.a Sampling Train and Field Procedures

Measurement of exhaust gas velocity, molecular weight, and moisture content were conducted using the following reference test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 "Sample and Velocity Traverses for Stationary Sources"
- Method 2 "Determination of Stack Gas Velocity and Volumetric Flowrate"
- Method 3 "Determination of Oxygen and Carbon Dioxide Concentrations in
- Emissions from Stationary Sources" (Fyrite)
- Method 4 "Determination of Moisture Content in Stack Gases"

Stack gas velocity traverses were conducted in accordance with the procedures outlined in Method 1 and Method 2 (see Figure 2 and 3 for a schematic of the sampling location). S-type pitot tubes with thermocouple assemblies, calibrated in accordance with Method 2, Section 4.1.1, were used to measure exhaust gas velocity pressures (using a manometer) and temperatures during testing. The S-type pitot tube dimensions were within specified limits, therefore, a baseline pitot tube coefficient of 0.84 (dimensionless) was assigned.

A cyclonic flow check was performed at the sampling location. The existence of cyclonic flow is determined by measuring the flow angle at each sample point. The flow angle is the angle between the direction of flow and the axis of the stack. If the average of the absolute values of the flow angle is greater than 20 degrees, cyclonic flow exists. The null angle was determined to be less than 20 degrees at each sampling point.

Molecular weight was determined according to USEPA Method 3, "Gas Analysis for the Determination of Dry Molecular Weight." The equipment used for this evaluation consisted of a one-way squeeze bulb with connecting tubing and a set of Fyrite[®] combustion gas analyzers. Carbon dioxide and oxygen content were analyzed using the Fyrite[®] procedure.

Exhaust gas moisture content was evaluated using Method 4. Exhaust gas was extracted as part of the PM and lead sampling trains and passed through the impinger configuration (see Figure 1). Exhaust gas moisture content was then determined gravimetrically.

4.b Particulate Matter (USEPA Method 17/202)

40 CFR 60, Appendix A, Method 17, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 51, Appendix M, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 1 for a schematic of the sampling train). Triplicate60-minute test runs were conducted on each source.

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel nozzle, (2) an in stack stainless-steel filter housing, (3) a steel probe, (4) a vertical condenser, (5) an empty pot bellied impinger, (6) an empty modified Greenburg-

Smith (GS) impinger, (7) unheated filter holder with a teflon filter, (8) a second modified GS impinger with 100 ml of deionized water, and a third modified GS impinger containing approximately 300 g of silica gel desiccant, (9) a length of sample line, and (10) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, and the nozzle and the front half of the filter holder assembly were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container. The impinger train was then purged with nitrogen for one hour at a flow rate of 14 liters per minute. The CPM filter was recovered and placed in a petri dish. The back half of the filter housing, the condenser, the pot bellied impinger, the moisture drop out impinger, and the front half of the CPM filter housing and all connecting glassware were double rinsed with deionized water which was collected in a pre-cleaned sample container. The same glassware was then rinsed with acetone which was collected in a pre-cleaned sample container labeled as the organic fraction. The glassware was then double rinsed with hexane which was added to the same organic fraction sample bottle.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition blank samples of the acetone and filter were collected. BTEC personnel carried all samples to BTEC's laboratory (for filter and acetone gravimetric analysis) in Royal Oak, Michigan. 40 CFR 60, Appendix A, Method 17, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 60, Appendix A, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 1 for a schematic of the sampling train). Triplicate 60-minute test runs were conducted for each source.

The 202 samples were sent to Maxxam Analytical in Ontario, Canada.

4.c **Recovery and Analytical Procedures**

Filterable particulate matter samples were processed at BTEC's laboratory in Royal Oak, Michigan. Condensable particulate matter samples were sent to Maxxam Laboratories in Ontario, Canada.

4.d Sampling Ports

Diagrams of the stacks showing sampling ports in relation to upstream and downstream disturbances are included as Figures 2 and 3. 4.e Traverse Points JAN 3 1 2017 Diagrams of the stacks indicating traverse point locations and stack dimensions and stack dimen included as Figures 2 and 3.

5. Test Results and Discussion

Sections 5.a through 5.k provide a summary of the test results.

5.a Results Tabulation

Detailed results for the emissions test program are summarized by Tables 4, 5, and 6.

5.b Discussion of Results

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM₁₀.

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln20 system on December 14, 2016. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

5.c Sampling Procedure Variations

Following completion of two test runs on Kiln 20 on December 13, 2016 it appeared that the particulate loading on the filters was greater than anticipated. Consequently, testing was discontinued and baghouse maintenance was completed. The Kiln 20 system was shut down and a baghouse inspection was completed to determine why it was malfunctioning. This was performed before prior to conducting an additional three test runs on December 14, 2016.

5.d Process or Control Device Upsets

It appeared there was more particulate on the filters than normal after the first two test runs were completed for the stack testing.

5.e Control Device Maintenance

The bags in the baghouse dust collector were inspected for holes and were replaced as needed.

5.f Re-Test

The emissions test program was not a re-test.

5.g Audit Sample Analyses

No audit samples were collected as part of the test program.

5.h Calibration Sheets

Relevant equipment calibration documents are provided in Appendix B.

5.i Sample Calculations

Sample calculations are provided in Appendix C.

5.j Field Data Sheets

Field documents relevant to the emissions test program are presented in Appendix A.

5.k Laboratory Data

Laboratory analytical results for this test program are presented in Appendix D.

Table 4 Kiln 19 Particulate Matter Emission Rates

Company Source Designation	Lafarge Kiln 19			
Test Date	12/13/2016	12/13/2016	12/13/2016	
Meter/Nozzle Information	Run 1	Run 2	Run 3	Average
Meter Temperature Tm (F)	58,5	56,9	55.2	56.9
Meter Pressure - Pm (in. Hg)	29.7	29.7	29.7	29,7
Measured Sample Volume (Vm)	55.4	53,5	56,2	55.0
Sample Volume (Vm-Std ft3)	56,4	54.6	57.6	56.2
Sample Volume (Vm-Std m3)	1.60	1,55	1.63	1.59
Condensate Volume (Vw-std)	1,910	1.829	1.730	1.823
Gas Density (Ps(std) lbs/ft3) (wet)	0.0736	0.0736	0.0737	0.0737
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	4.29	4.16	4.37	4.27
Total weight of sampled gas (m g lbs) (dry)	4.21	4.07	4.29	4.19
Nozzle Size - An (sq. ft.)	0.000241	0.000241	0.000241	0.000241
Isokinetic Variation - I	101.1	101.0	100.7	100.9
Stack Data				
Average Stack Temperature - Ts (F)	138.4	136.8	136.7	137.3
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28,8
Molecular Weight Stack Gas-wet (Ms)	28.5	28.5	28.5	28.5
Stack Gas Specific Gravity (Gs)	0.983	0.984	0.985	0.984
Percent Moisture (Bws)	3.27	3.24	2.92	3.14
Water Vapor Volume (fraction)	0.0327	0.0324	0.0292	0.0314
Pressure - Ps ("Hg)	29.4	29.4	29.4	29.4
Average Stack Velocity - Vs (fl/sec) Area of Stack (ft2)	76.9 4.1	74.3 4.1	78.2 4.1	76.4 4.1
Exhaust Gas Flowrate		· · · · · · · · · · · · · · · · · · ·		······································
Flowrate ft ³ (Actual)	19,010	18,368	19,352	18,910
Flowrate ft ³ (Standard Wet)	16,483	15,971	16,828	16,427
Flowrate ft ³ (Standard Dry)	15,943	15,453	16,338	15,911
Flowrate m ³ (standard dry)	451	438	463	451
Total Particulate Weights (mg)				
Total Nozzle/Probe/Filter	15.0	14.0	15.9	15.0
Organic Condensible Particulate	0.8	0.6	1.3	0.9
Inorganic Condensible Particulate	4.3	4.8	8.9	6.0
Condensible Blank Correction	2.0	2.0	2.0	2.0
Total Condensible Particulate	3.1	3,4	8.2	4.9
Total Filterable and Condensible Particulate	18.1	17.4	24.1	19.9
Filterable Particulate Concentration				0.000
1b/1000 lb (wet)	0.008	0.007	0.008	0.008
1b/1000 lb (dry)	0.008	0.008	0.008	0.008
mg/dscm (dry) gr/dscf	9.4 0.0041	9.1 0.0040	9.8 0.0043	9.4 0.0041
Filterable Particulate Emission Rate				·····
lb/hr	0.56	0.53	0.60	0.56
Condensible Particulate Concentration	0.000	0.000	0.004	A AA2
1b/1000 lb (wet)	0.002	0.002	0.004	0.003
lb/1000 lb (dry)	0.002	0.002	0.004	0.003
mg/dscm (dry) gr/dscf	1.9 0.0008	2.2 0.0010	5.0 0.0022	3.1 0.0013
Condensible Particulate Emission Rate	0.0000	0.0010	0.0022	0.0015
b/ hr	0.12	0.13	0.31	0.18
Total Particulate Concentration	V.+L			5110
lb/1000 lb (wet)	0.009	0.009	0.012	0.010
lb/1000 lb (dry)	0.009	0.009	0.012	0.010
mg/dscm (dry)	11.3	11.3	14.8	12.5
gr/dscf	0.0050	0.0049	0.0065	0.0054
Total Particulate Emission Rate		0.77		A 90
lb/ hr	0.68	0.65	0.91	0.75

 Table 5

 Kiln 20 Particulate Matter Emission Rates – December 13, 2016

Company Source Designation Test Date	Lafarge Kiln 20 12/13/2016	12/13/2016	
Meter/Nozzle Information	Run 1	Run 2	Average
Meter Temperature Tm (F)	38.0	39.5	38.7
Meter Pressure - Pm (in. Hg)	29.6	29.6	29.6
Measured Sample Volume (Vm)	46.5	39.7	43.1
Sample Volume (Vm-Std ft3)	49.0	41.7	45.3
Sample Volume (Vm-Std m3)	1.39	1.18	1.28
Condensate Volume (Vw-std)	1.608	1.542	1.575
Gas Density (Ps(std) lbs/ft3) (wet)	0.0736	0.0735	.0.0736
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	3.73	3.18	3.45
Total weight of sampled gas (m g lbs) (dry)	3.65	3.10	3.38
Nozzle Size - An (sq. ft.)	0.000197	0.000167	0.000182
Isokinetic Variation - I	101.0	101.4	101.2
Stack Data			
Average Stack Temperature - Ts (F)	130.2	130.4	130.3
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.5	28.4	28,5
Stack Gas Specific Gravity (Gs)	0.984	0.982	0.983
Percent Moisture (Bws)	3.18	3.57	3.37
Water Vapor Volume (fraction)	0.0318	0.0357	0.0337
Pressure - Ps ("Hg)	29.4	29.4	29.4
Average Stack Velocity -Vs (fl/sec)	80.4	80,6	80.5
Area of Stack (ft2)	4.3	4.3	4.3
Exhaust Gas Flowrate			
Flowrate ft ³ (Actual)	20,622	20,673	20,647
Flowrate ft ³ (Standard Wet)	18,126	18,164	18,145
Flowrate ft ³ (Standard Dry)	17,550	17,516	17,533
Flowrate m ³ (standard dry)	497	496	496
Total Particulate Weights (mg)			
Total Nozzle/Probe/Filter	215.0	165.2	190.1
Organic Condensible Particulate	0.6	0.7	0.7
Inorganic Condensible Particulate	2.9	4.0	3.5
Condensible Blank Correction	2.0	2.0	2.0
Total Condensible Particulate	1.5	2.7	2.1
Total Filterable and Condensible Particulate	216.5	167.9	192.2
Filterable Particulate Concentration			
lb/1000 lb (wet)	0.127	0.115	0.121
lb/1000 lb (dry)	0.130	0.117	0.124
mg/dscm (dry)	155.0	140.1	147.5
gr/dscf	0.0678	0.0612	0.0645
Filterable Particulate Emission Rate	10.00	0.00	0.70
lb/ hr	10.23	9.22	9.73
Condensible Particulate Concentration	0.001	0.002	0.001
lb/1000 lb (wet)	0.001	0.002	0.001
lb/1000 lb (dry)	0.001	0.002	0.001
mg/dsom (dry) gr/dsof	1.1 0.0005	2.3	1.7 0.0007
Condensible Particulate Emission Rate	0.0005	0.0010	0.0007
lb/ hr	0,07	0.15	0,11
Total Particulate Concentration			
lb/1000 lb (wet)	0.128	0.117	0.122
1b/1000 lb (dry)	0.131	0.119	0.125
ng/dscm (dry)	156.1	142.4	149.2
gr/dscf	0.0682	0.0622	0.0652
Fotal Particulate Emission Rate		······································	
b/ hr	10.30	9.37	9.84

Company Source Designation	Lafarge Kiln 20	an is flams -		
Test Date	12/14/2016	12/14/2016	12/14/2016	- 11200 1
Meter/Nozzle Information	Run 3	Run 4	Run 5	Average
Meter Temperature Tm (F)	59.7	46.7	46.1	50.8
Meter Pressure - Pm (in. Hg)	29.3	29.3	29.3	29.3
Measured Sample Volume (Vm)	39.0	37,5	38.8	38.4
Sample Volume (Vm-Std ft3)	38.2	37.6	39.0	38.3
Sample Volume (Vm-Std m3)	1.08	1.06	1.11	1.08
Condensate Volume (Vw-std)	1.589	[.867	1.872	1.776
Gas Density (Ps(std) lbs/ft3) (wet)	0.0734	0.0732	0.0732	0.0733
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	2.92	2.89	3.00 2.91	2.94
Total weight of sampled gas (m g lbs) (dry) Nozzle Size - An (sq. ft.)	2.84 0.000167	2,80 0.000167	0.000167	2.85 0.000167
Isokinetic Variation - I	101.8	102.1	102,0	102.0
Stack Data	·····			
Average Stack Temperature - Ts (F)	137.6	136.2	136.1	136.6
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28,8
Molecular Weight Stack Gas-wet (Ms)	28.4	28.3	28.3	28.4
Stack Gas Specific Gravity (Gs)	0.981	0.978	0.979	0.979
Percent Moisture (Bws)	4.00	4.73	4,58	4.43
Water Vapor Volume (fraction)	0.0400	0.0473	0.0458	0.0443
Pressure - Ps ("Hg)	29.1	29.1	29.1	29.1
Average Stack Velocity - Vs (ft/sec) Area of Stack (ft2)	75.5 4.3	74.5 4.3	77.3 4.3	75.8 4.3
• • • • • • • • • • • • • • • • • • •				т.э
Exhaust Gas Flowrate				
Flowrate ft ³ (Actual)	19,361	19,109	19,825	19,432
Flowrate ft ³ (Standard Wet)	16,663	16,486	17,107	16,752
Flowrate ft ³ (Standard Dry)	15,997	15,706	16,324	16,009
Flowrate m ³ (standard dry)	453	445	462	453
Total Particulate Weights (mg)				·····
Total Nozzle/Probe/Filter	89.4	79.2	75.4	81.3
Organic Condensible Particulate	0.5	0.8	0.9	0.7
Inorganic Condensible Particulate	3.4	3.1	3.0	3.2
Condensible Blank Correction	2.0	2.0	2.0	2.0
Total Condensible Particulate	1.9	1.9	1.9	1.9
Total Filterable and Condensible Particulate	91.3	81.1	77.3	83.2
Filterable Particulate Concentration	0.068	0.060	0.055	0.061
Ib/1000 lb (dry)	0.069	0.062	0.057	0.063
mg/dscm (dry)	82.7	74.4	68.2	75,1
gr/dscf	0.0361	0.0325	0.0298	0.0328
Filterable Particulate Emission Rate lb/ hr	4.97	4.39	4.19	4.52
Condensible Particulate Concentration	·····			
lb/1000 lb (wet)	0.001	0.001	0.001	0.001
1b/1000 lb (dry)	0.001	0.001	0.001	0.001
mg/dscm (dry)	1.8	1.8	1.7	1.8
gr/dscf	0.0008	0.0008	0.0008	0.0008
Condensible Particulate Emission Rate				
lb/ hr	0.11	0.11	0.11	0.11
Total Particulate Concentration		0.072	0.057	
1b/1000 lb (wet)	0.069	0.062	0.057	0.063
lb/1000 lb (dry) ng/dscm (dry)	0.071	0.064	0.059	0.064
ng/dscm (dry) gr/dscf	84.5 0.0369	76.2 0.0333	69.9 0.0306	76.9 0.0336
Fotal Particulate Emission Rate	0.0309	0.0333	0.0300	0.0550
lb/ hr	5.08	4,50	4.29	4.62

Table 6 Kiln 20 Particulate Matter Emission Rates – December 14, 2016

> Rev. 14.0 4.62 3-20-15 BC

Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU FUEL PULV 20, 36-K20) Particulate Matter Emissions Test Summary Report

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

Prepared for:

Lafarge

Alpena Plant 1435 Ford Avenue Alpena, Michigan

Project No. 16-4952.00 January 25, 2017

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (248) 548-8070

RECEIVED

JAN 3 1 2017

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

AIR QUALITY DIVISION

AIR QUALITY DIV.

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Lafarge Midwest Inc.	County Alpena
Source Address 1435 Ford Ave. City	Alpena
AQD Source ID (SRN) B1477 RO Permit No. MI-ROP-B1477-2012a	RO Permit Section No.
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the RO Pe	rmit)
Reporting period (provide inclusive dates): From To	
 1. During the entire reporting period, this source was in compliance with ALL terms and c each term and condition of which is identified and included by this reference. The method(is/are the method(s) specified in the RO Permit. 	
2. During the entire reporting period this source was in compliance with all terms and c each term and condition of which is identified and included by this reference, EXCEP enclosed deviation report(s). The method used to determine compliance for each term ar the RO Permit, unless otherwise indicated and described on the enclosed deviation report(T for the deviations identified on the nd condition is the method specified in
Semi-Annual (or More Frequent) Report Certification (General Condition No. 23 of t	he RO Permit)
Reporting period (provide inclusive dates): From To In During the entire reporting period, ALL monitoring and associated recordkeeping requirements or any other terms or conditions occurred. To	rements in the RO Permit were met
2. During the entire reporting period, all monitoring and associated recordkeeping requirer no deviations from these requirements or any other terms or conditions occurred, EXCEPT enclosed deviation report(s).	
Other Report Certification	
Reporting period (provide inclusive dates): From <u>12/13/2016</u> To <u>12/14/</u> Additional monitoring reports or other applicable documents required by the RO Permit are at	
Kiln 19 (EU FUEL PULV 19, 36-K19) and Kiln 20 (EU PUEL PULV 20, 36-	
Particulate Matter Emission Test Summary Report	

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete.

Paul Rogers	Plant Manager	989-354-4171
Name of Responsible Official (print or type)	Title	Phone Number
P)Raf		125/2017
Signature of Responsible Official		Date

EXECUTIVE SUMMARY

RECEIVED

JAN 3 1 2017

AIR QUALITY DIV.

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM₁₀.

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

Three additional test runs were conducted on the Kiln 20 system on December 14, 2016. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitation for PM₁₀.

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

1. Introduction

Lafarge North America (Lafarge) operates five dry process cement kilns (Kilns 19-23) at its plant in Alpena, Michigan (EPA Facility ID #MID005379607). Kiln Nos. 19, 20, and 21 are collectively known as Kiln Group 5 (KG5). Kiln Nos. 22 and 23 are collectively known as Kiln Group 6 (KG6). The Kiln Group 5 kilns are smaller than the Kiln Group 6 kilns but are of similar overall design. Each kiln has had an indirect firing system added to the low side of the kiln to preheat the coal before it goes into the kiln.

Lafarge retained BT Environmental Consulting, Inc. (BTEC) to measure filterable and condensable particulate matter emission rates from each fuel handling system dust collector for each of the five kilns. BTEC measured filterable and condensable particulate matter emission rates from the Kilns 19 and 20 fuel handling system dust collectors (stacks 36-K19 and 36-K20) on December 13 and 14, 2016.

AQD has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (December 2013). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

Sampling and analysis for the emission test program was conducted on December 13 and 14, 2016 at the Lafarge facility located in Alpena, Michigan.

1.b Purpose of Testing

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

1.c Source Description

The control devices are baghouse dust collectors.

1.d Test Program Contacts

The contacts for the source and test report are:

Mr. Travis Weide Area Environmental & Public Affairs Manager LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Brian Joyce Area Environmental Coordinator LafargeHolcim 1435 Ford Avenue Alpena, Michigan 49707

Mr. Barry Boulianne Senior Project Manager BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (313) 449-2361

Names and affiliations for personnel who were present during the testing program are summarized by Table 2.

Name and Title	Affiliation	Telephone
Mr. Barry Boulianne Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Matt Young Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Steve Smith Project Manager	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Mike Nummer Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Shane Rabideau Environmental Technician	BTEC 4949 Fernlee Royal Oak, MI 48073	(248) 548-8070
Mr. Brian Joyce LafargeHolcim	Lafarge – Alpena Plant 1435 Ford Avenue Alpena, Michigan 49707	(989) 916-4854

Table 2 Test Personnel

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions compliance test program.

2.a Operating Data

Kiln production rate and baghouse pressure drop is available in Appendix E.

2.b Applicable Permit

AQD issued Renewable Operating Permit MI-ROP-B1477-2012b to Lafarge North America.

2.c Results

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM_{10} .

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM_{10} .

Three additional test runs were conducted on the Kiln20 system on December 14. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM₁₀.

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing

demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a Process Description

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.b Process Flow Diagram

A process flow diagram is available on request.

3.c Raw and Finished Materials

A mixture of pulverized bituminous coal, petroleum coke, and asphalt shingles with a heating value of approximately 11,750 Btu per pound, serves as the primary fuel fed to the kilns. Coal and coke are fed to a Raymond bowl mill and ground to a fineness of approximately 95% passing a 200-mesh sieve. Each kiln includes an indirectly fired fuel pre-heater system.

3.d Process Capacity

Each baghouse is rated for the maximum exhaust gas flowrate from each system and the efficiencies are equivalent to that necessary to achieve the corresponding emission limitations.

3.e Process Instrumentation

Proper operation of the baghouse dust collectors is verified by baghouse pressure drop monitoring.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used.

4.a Sampling Train and Field Procedures

Measurement of exhaust gas velocity, molecular weight, and moisture content were conducted using the following reference test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 "Sample and Velocity Traverses for Stationary Sources"
- Method 2 "Determination of Stack Gas Velocity and Volumetric Flowrate"
- Method 3 "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources" (Fyrite)
- Method 4 "Determination of Moisture Content in Stack Gases"

Stack gas velocity traverses were conducted in accordance with the procedures outlined in Method 1 and Method 2 (see Figure 2 and 3 for a schematic of the sampling location). S-type pitot tubes with thermocouple assemblies, calibrated in accordance with Method 2, Section 4.1.1, were used to measure exhaust gas velocity pressures (using a manometer) and temperatures during testing. The S-type pitot tube dimensions were within specified limits, therefore, a baseline pitot tube coefficient of 0.84 (dimensionless) was assigned.

A cyclonic flow check was performed at the sampling location. The existence of cyclonic flow is determined by measuring the flow angle at each sample point. The flow angle is the angle between the direction of flow and the axis of the stack. If the average of the absolute values of the flow angle is greater than 20 degrees, cyclonic flow exists. The null angle was determined to be less than 20 degrees at each sampling point.

Molecular weight was determined according to USEPA Method 3, "Gas Analysis for the Determination of Dry Molecular Weight." The equipment used for this evaluation consisted of a one-way squeeze bulb with connecting tubing and a set of Fyrite[®] combustion gas analyzers. Carbon dioxide and oxygen content were analyzed using the Fyrite[®] procedure.

Exhaust gas moisture content was evaluated using Method 4. Exhaust gas was extracted as part of the PM and lead sampling trains and passed through the impinger configuration (see Figure 1). Exhaust gas moisture content was then determined gravimetrically.

4.b Particulate Matter (USEPA Method 17/202)

40 CFR 60, Appendix A, Method 17, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 51, Appendix M, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 1 for a schematic of the sampling train). Triplicate60-minute test runs were conducted on each source.

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel nozzle, (2) an in stack stainless-steel filter housing, (3) a steel probe, (4) a vertical condenser, (5) an empty pot bellied impinger, (6) an empty modified Greenburg-

Smith (GS) impinger, (7) unheated filter holder with a teflon filter, (8) a second modified GS impinger with 100 ml of deionized water, and a third modified GS impinger containing approximately 300 g of silica gel desiccant, (9) a length of sample line, and (10) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, and the nozzle and the front half of the filter holder assembly were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container. The impinger train was then purged with nitrogen for one hour at a flow rate of 14 liters per minute. The CPM filter was recovered and placed in a petri dish. The back half of the filter housing, the condenser, the pot bellied impinger, the moisture drop out impinger, and the front half of the CPM filter housing and all connecting glassware were double rinsed with deionized water which was collected in a pre-cleaned sample container. The same glassware was then rinsed with acetone which was collected in a pre-cleaned sample container labeled as the organic fraction. The glassware was then double rinsed with hexane which was added to the same organic fraction sample bottle.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition blank samples of the acetone and filter were collected. BTEC personnel carried all samples to BTEC's laboratory (for filter and acetone gravimetric analysis) in Royal Oak, Michigan. 40 CFR 60, Appendix A, Method 17, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 60, Appendix A, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 1 for a schematic of the sampling train). Triplicate 60-minute test runs were conducted for each source.

The 202 samples were sent to Maxxam Analytical in Ontario, Canada.

4.c **Recovery and Analytical Procedures**

Filterable particulate matter samples were processed at BTEC's laboratory in Royal Oak, Michigan. Condensable particulate matter samples were sent to Maxxam Laboratories in Ontario, Canada.

4.d Sampling Ports

Diagrams of the stacks showing sampling ports in relation to upstream and downstream disturbances are included as Figures 2 and 3. 4.e Traverse Points JAN 3 1 2017 Diagrams of the stacks indicating traverse point locations and stack dimensions ReQUALITY DIV. included as Figures 2 and 3.

5. Test Results and Discussion

Sections 5.a through 5.k provide a summary of the test results.

5.a Results Tabulation

Detailed results for the emissions test program are summarized by Tables 4, 5, and 6.

5.b Discussion of Results

The objective of the emissions test program was to demonstrate compliance with emission limitations for each stack for filterable particulate matter (0.15 lbs/1,000 lbs, dry) and particulate matter less than 10 microns in diameter (1.8 lbs/hr). Because of stack and exhaust gas conditions, it was proposed to test for filterable and condensable particulate matter emission rates and compare those total PM results to the PM_{10} emission limitation with the result being a conservative comparison of total PM to a PM_{10} limitation.

Testing for the Kiln 19 system was conducted on December 13, 2016. The average Kiln 19 system filterable PM emission rate was 0.01 lbs/1,000 lbs, dry. The average Kiln 19 system total PM emission rate was 0.8 lbs/hr. Consequently, these test runs demonstrated compliance with the emission limitations for filterable PM and PM_{10} .

Testing for the Kiln 20 system was conducted on December 13, 2016 and December 14, 2016. Two test runs were conducted on December 13. For these two test runs, the average Kiln 20 system filterable PM emission rate was 0.12 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 9.8 lbs/hr. Consequently, these two test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitations for PM_{10} .

Three additional test runs were conducted on the Kiln20 system on December 14, 2016. For these three test runs, the average Kiln 20 system filterable PM emission rate was 0.06 lbs/1,000 lbs, dry. The average Kiln 20 system total PM emission rate was 4.6 lbs/hr. Consequently, these three test runs demonstrated compliance with the emission limitation for filterable PM and were inconclusive with respect to demonstrating compliance with the emission limitation for PM₁₀.

It should be noted that, for all Kiln 20 test runs, the filterable portion of the total particulate emission rate was a minimum of 98%. It is almost certain that the majority of the filterable portion was greater than 10 microns in diameter. In summary, the emissions testing demonstrated compliance with the emission limitations for Kiln 19 but were inconclusive with respect to the emission limitations for Kiln 20.

5.c Sampling Procedure Variations

Following completion of two test runs on Kiln 20 on December 13, 2016 it appeared that the particulate loading on the filters was greater than anticipated. Consequently, testing was discontinued and baghouse maintenance was completed. The Kiln 20 system was shut down and a baghouse inspection was completed to determine why it was malfunctioning. This was performed before prior to conducting an additional three test runs on December 14, 2016.

5.d Process or Control Device Upsets

It appeared there was more particulate on the filters than normal after the first two test runs were completed for the stack testing.

5.e Control Device Maintenance

The bags in the baghouse dust collector were inspected for holes and were replaced as needed.

5.f Re-Test

The emissions test program was not a re-test.

5.g Audit Sample Analyses

No audit samples were collected as part of the test program.

5.h Calibration Sheets

Relevant equipment calibration documents are provided in Appendix B.

5.i Sample Calculations

Sample calculations are provided in Appendix C.

5.j Field Data Sheets

Field documents relevant to the emissions test program are presented in Appendix A.

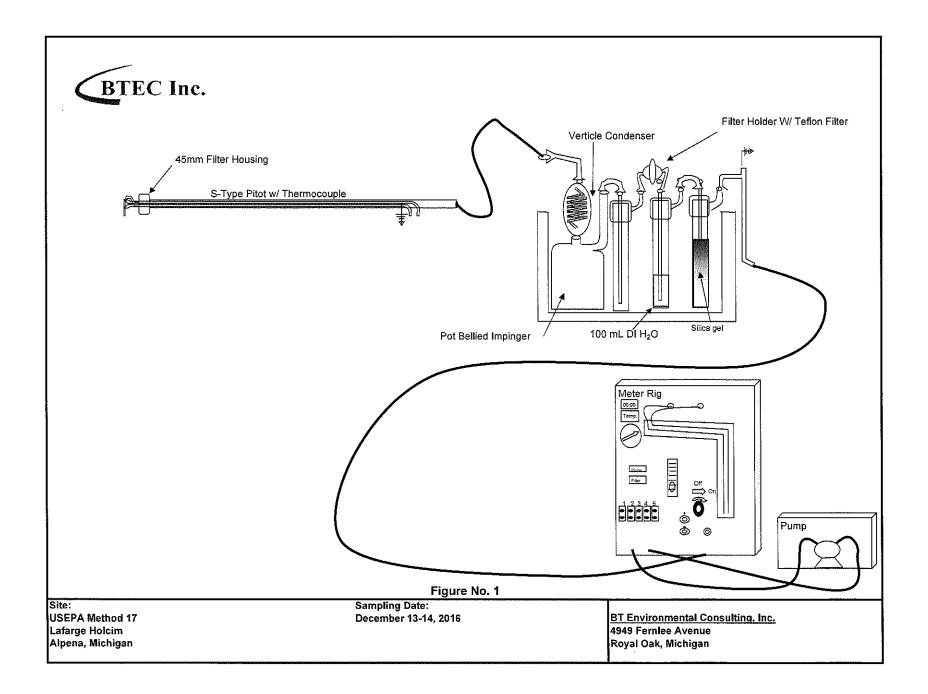
5.k Laboratory Data

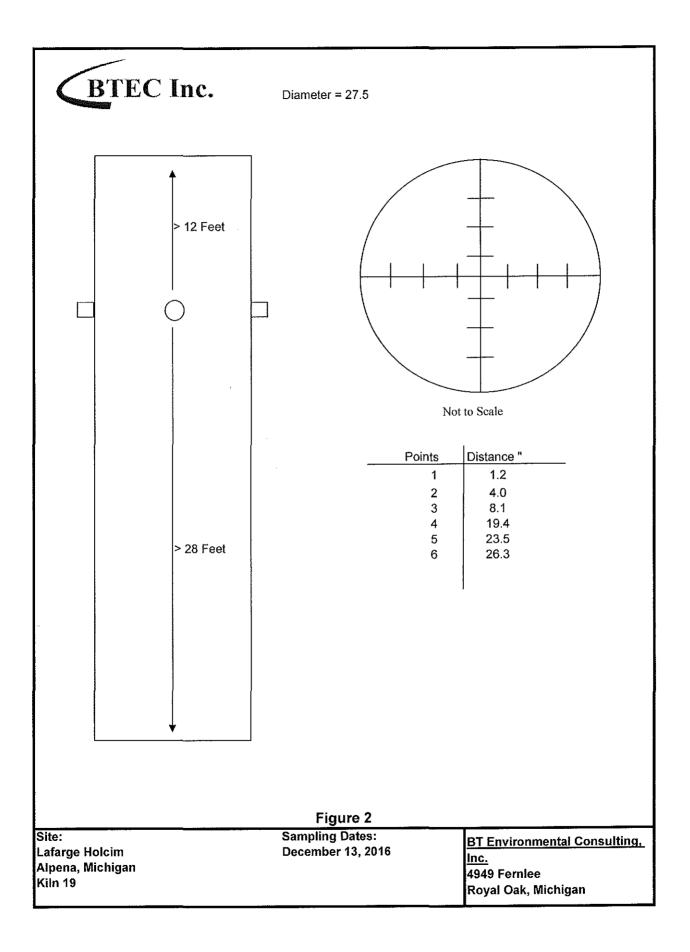
Laboratory analytical results for this test program are presented in Appendix D.

Table 4 Kiln 19 Particulate Matter Emission Rates

Company Source Designation	Lafarge Kiln 19			
Test Date	12/13/2016	12/13/2016	12/13/2016	
Meter/Nozzle Information	Run 1	Run 2	Run 3	Average
Meter Temperature Tm (F)	58.5	56,9	55.2	56.9
Meter Pressure - Pm (in. Hg)	29.7	29.7	29.7	29.7
Mcasured Sample Volume (Vm)	55.4	53,5	56.2	- 55.0
Sample Volume (Vm-Std ft3)	56,4	54.6	57.6	56.2
Sample Volume (Vm-Std m3)	1.60	1.55	1,63	1.59
Condensate Volume (Vw-std)	1,910	1.829	1.730	1,823
Gas Density (Ps(std) lbs/ft3) (wet)	0.0736	0.0736	0.0737	0.0737
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
fotal weight of sampled gas (m g lbs) (wet)	4.29	4.16	4.37	4.27
Total weight of sampled gas (m g lbs) (dry)	4.21	4.07	4.29	4.19
Nozzle Size - An (sq. ft.)	0.000241	0.000241	0.000241	0.000241
sokinetic Variation - I	101.1	101.0	100.7	100.9
Stack Data				
Average Stack Temperature - Ts (F)	138.4	136.8	136.7	137.3
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.5	28.5	28.5	28.5
Stack Gas Specific Gravity (Gs)	0.983	0.984	0.985	0.984
Percent Moisture (Bws)	3.27	3.24	2.92	3.14
Water Vapor Volume (fraction)	0.0327	0.0324	0.0292	0.0314
Pressure - Ps ("Hg)	29.4	29.4	29.4	29.4
Average Stack Velocity -Vs (ft/sec) Area of Stack (ft2)	76.9 4.1	74,3 4.1	78.2 4.1	76.4 4.1
Exhaust Gas Flowrate				
	10.010	10.2/0	10.252	10.010
Flowrate ft³(Actual) Flowrate ft³ (Standard Wet)	19,010	18,368	19,352	18,910
Flowrate ft ³ (Standard Dry)	16,483	15,971	16,828	16,427
Plowrate m ³ (standard dry)	15,943 451	15,453 438	16,338 463	15,911 451
Total Particulate Weights (mg)				
Total Nozzie/Probe/Filter	15.0	14.0	15.9	15.0
Organic Condensible Particulate	0.8	0.6	1.3	0.9
norganic Condensible Particulate	4.3	4.8	8.9	6.0
Condensible Blank Correction	2.0	2.0	2.0	2.0
Fotal Condensible Particulate	3.1	3.4	8,2	4.9
Total Filterable and Condensible Particulate	18.1	17.4	24.1	19.9
Filterable Particulate Concentration				
lb/1000 lb (wet)	0.008	0.007	0.008	0.008
1b/1000 lb (dry)	0.008	0.008	0.008	0.008
ng/dscm (dry)	9.4	9.1	9.8	9.4
gr/dscf	0.0041	0.0040	0.0043	0.0041
Filterable Particulate Emission Rate	0.56	0.53	0.60	0.56
Condensible Particulate Concentration				
ib/1000 ib (wet)	0.002	0.002	0.004	0.003
1b/1000 ib (dry)	0.002	0.002	0.004	0.003
ng/dscm (dry)	1.9	2.2	5.0	3.1
r/dscf	0.0008	0.0010	0.0022	0.0013
Condensible Particulate Emission Rate				
lb/ hr	0.12	0.13	0.31	0.18
Fotal Particulate Concentration		0.000	0.010	0.010
lb/1000 lb (wet)	0.009	0.009	0.012	0.010
b/1000 lb (dry)	0.009	0.009	0.012	0.010
ng/dscm (dry)	11.3	11.3	14.8	12.5
r/dscf	0.0050	() (8)49	0.0065	0.0054
r/dscf Total Particulate Emission Rate	0.0050	0.0049	0.0065	0.0054

 Table 5


 Kiln 20 Particulate Matter Emission Rates – December 13, 2016


.

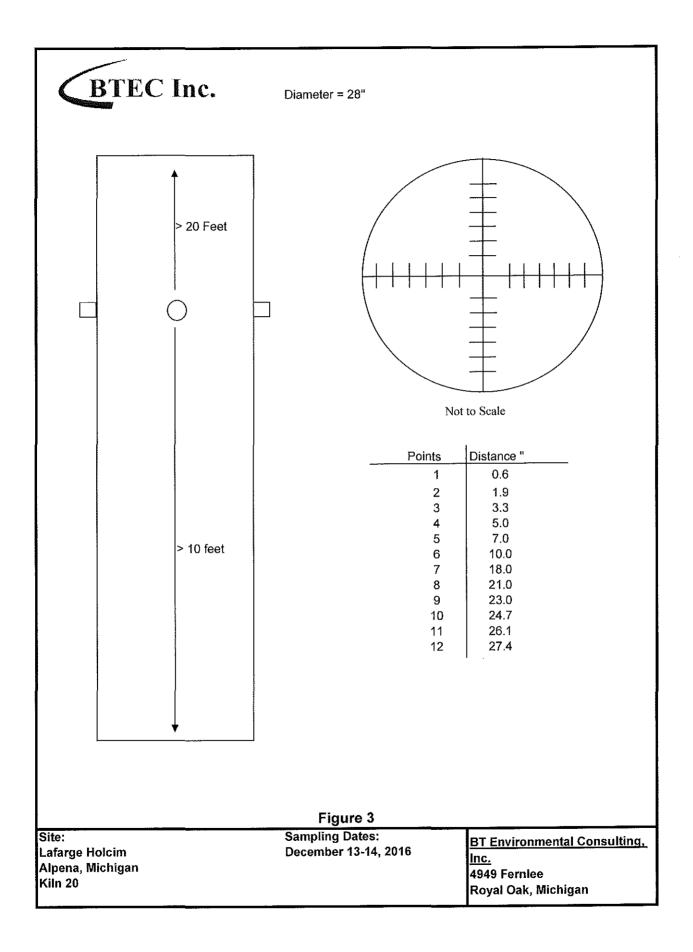

Company Source Designation	Lafarge Kiln 20		
Test Date	12/13/2016	12/13/2016	
Mcter/Nozzle Information	Run 1	Run 2	Average
Meter Temperature Tm (F)	38,0	39.5	38.7
Meter Pressure - Pm (in. Hg)	29.6	29.6	29.6
Measured Sample Volume (Vm)	46.5	39.7	43.1
Sample Volume (Vm-Std ft3)	49.0	41.7	45.3
Sample Volume (Vm-Std m3)	1.39	1.18	1,28
Condensate Volume (Vw-std)	1.608	1.542	1,575
Gas Density (Ps(std) lbs/ft3) (wet)	0,0736	0.0735	0.0736
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	3,73	3.18	3.45
Total weight of sampled gas (m g lbs) (dry)	3.65	3,10	3,38
Nozzle Size - An (sq. ft.)	0,000197	0.000167	0.000182
Isokinetic Variation - 1	101.0	101.4	101.2
Stack Data			
Average Stack Temperature - Ts (F)	130.2	130.4	130.3
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.5	28.4	28.5
Stack Gas Specific Gravity (Gs)	0.984	0.982	0.983
Percent Moisture (Bws)	3.18	3.57	3.37
Water Vapor Volume (fraction)	0.0318	0.0357	0,0337
Pressure - Ps ("Hg)	29.4	29.4	29.4
Average Stack Velocity - Vs (ft/sec)	80.4	80.6	80.5
Area of Stack (ft2)	4.3	4.3	4.3
Exhaust Gas Flowrate			
Flowrate ft ³ (Actual)	20,622	20,673	20,647
Flowrate ft ³ (Standard Wet)	18,126	18,164	18,145
Flowrate ft ³ (Standard Dry)	17,550	17,516	17,533
Flowrate m ³ (standard dry)	497	496	496
Total Particulate Weights (mg)	• • • • • • • • • • • • • • • • • • •		
Total Nozzle/Probe/Filter	215.0	165.2	190.1
Organic Condensible Particulate	0.6	0.7	0.7
Inorganic Condensible Particulate	2,9	4.0	3,5
Condensible Blank Correction	2.0	2.0	2.0
Total Condensible Particulate	1.5	2.7	2.1
Total Filterable and Condensible Particulate	216.5	167.9	192.2
Filterable Particulate Concentration			
1b/1000 lb (wet)	0.127	0.115	0.121
1b/1000 lb (dry)	0.130	0.117	0.124
ng/dscm (dry)	155.0	140.1	147.5
gr/dscf	0.0678	0.0612	0.0645
Filterable Particulate Emission Rate 1b/ hr	10.23	9.22	9.73
Condensible Particulate Concentration			
1b/1000 lb (wet)	0.001	0.002	0.001
lb/1000 lb (dry)	0.001	0.002	0.001
ng/đscm (dry)	1.1	2.3	1.7
ភ្វ/dscf	0.0005	0.0010	0.0007
Condensible Particulate Emission Rate			
lb/ hr	0.07	0,15	0.11
Total Particulate Concentration			
1b/1000 lb (wet)	0.128	0.117	0.122
b/1000 lb (dry)	0.131	0.119	0.125
ng/dscm (đry)	156.1	142.4	149.2
r/dscf	0.0682	0.0622	0.0652
otal Particulate Emission Rate			

	Table 6			
Kiln 20 Particulate Matter	Emission	Rates - December	14, 2	2016

Company Source Designation Test Date	Lafarge Kiln 20 12/14/2016	12/14/2016	12/14/2016	
Meter/Nozzle Information	Run 3	Run 4	Run 5	Average
Meter Temperature Tm (F)	59.7	46.7	46.1	50.8
Meter Pressure - Pm (in. Hg)	29.3	29.3	29.3	29.3
Measured Sample Volume (Vm)	39.0	37.5	38.8	38.4
Sample Volume (Vm-Std ft3)	38.2	37.6	39.0	38.3
Sample Volume (Vm-Std m3)	1.08	1.06	1.11	1.08
Condensate Volume (Vw-std)	1.589	1.867	1.872	1.776
Gas Density (Ps(std) lbs/ft3) (wet)	0.0734	0.0732 0.0745	0.0732 0.0745	0.0733
Gas Density (Ps(std) lbs/ft3) (dry) Total weight of sampled gas (m g lbs) (wet)	0.0745 2.92	2.89	3.00	0.0745 2.94
Total weight of sampled gas (m g lbs) (wet) Total weight of sampled gas (m g lbs) (dry)	2.92	2.89	2.91	2,85
Nozzle Size - An (sq. fl.)	0,000167	0.000167	0.000167	0.000167
Isokinetic Variation - I	101.8	102.1	102.0	102.0
Stack Data		····		
Average Stack Temperature - Ts (F)	137.6	136.2	136,1	136.6
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28,8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.4	28.3	28.3	28.4
Stack Gas Specific Gravity (Gs)	0,981	0.978	0.979	0.979
Percent Moisture (Bws)	4.00	4.73	4.58	4.43
Water Vapor Volume (fraction)	0.0400	0.0473	0.0458	0.0443
Pressure - Ps ("Hg)	29.1	29.1	29.1	29.1
Average Stack Vetocity -Vs (ft/sec) Area of Stack (ft2)	75.5 4.3	74.5 4.3	77.3 4.3	75.8 4.3
Exhaust Gas Flowrate			······	
\mathbf{E}^{\dagger} ($\mathbf{B}^{3}(\mathbf{A}, \mathbf{u}, \mathbf{v})$)	10.3/1	10.100	10.995	10,122
Flowrate ft ³ (Actual) Flowrate ft ³ (Standard Wet)	19,361	19,109	19,825	19,432 16,752
Flowrate ft ³ (Standard Dry)	16,663	16,486	17,107	16,009
Flowrate m ³ (standard dry)	15,997 453	15,706 445	16,324 462	453
Total Particulate Weights (mg)				
Total Nozzle/Probe/Filter	89.4	79.2	75.4	81,3
Organic Condensible Particulate	0.5	0.8	0.9	0.7
Inorganic Condensible Particulate	3.4	3.1	3.0	3.2
Condensible Blank Correction	2.0	2.0	2.0	2.0
Total Condensible Particulate	1,9	1.9	1.9	1.9
Total Filterable and Condensible Particulate	91.3	81.1	77.3	83.2
Filterable Particulate Concentration		0.070	0.022	
lb/1000 lb (wet)	0.068	0,060	0.055	0,061
1b/1000 lb (dry) mo(dsom (dry)	0.069	0.062 74 4	0.057 68.2	0.063 75.1
mg/dscm (dry) gr/dscf	82.7 0.0361	74.4 0.0325	0.0298	0.0328
Filterable Particulate Emission Rate	0.0501	0.0525	0.0278	0,0320
lb/ hr	4.97	4.39	4.19	4.52
Condensible Particulate Concentration				
lb/1000 lb (wet)	0.001	0.001	0.001	0.001
lb/1000 lb (dry)	0.001	0,001	0.001	0.001
mg/dscm (dry)	1.8	1.8	1.7	1.8
gr/dscf Condensible Particulate Emission Rate	0.0008	0.0008	0.0008	0.0008
b/ hr	0.11	0.11	0.11	0.11
Total Particulate Concentration	0.11	<u></u>	0.11	
ib/1000 ib (wet)	0.069	0.062	0.057	0.063
lb/1000 lb (dry)	0.071	0.064	0.059	0.064
mg/dscm (dry)	84.5	76.2	69.9	76.9
gr/dscf	0.0369	0.0333	0.0306	0.0336
Total Particulate Emission Rate				
lb/ hr	5.08	4.50	4.29	4.62

