# 1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a filterable particulate Matter (FPM) and visible emissions test program for Holcim (US) Inc. d/b/a Lafarge Alpena at the Alpena Cement Plant at the Secondary Crusher (11-002) in Alpena, Michigan, on March 3, 2022. This report summarizes the results of the test program and test methods used.

The test location, test date, test parameters, Emission Limit, and Emission Rate are summarized below.

The purpose of this test program was to determine emission rates of the below test parameters during normal operating conditions. A complete summary of emission test results follows the narrative portion of this report.

| Test Location                 | Test Date | Test Parameters | Emission Limit  | Emission Rate  |
|-------------------------------|-----------|-----------------|-----------------|----------------|
| Secondary Crusher<br>(11-002) | 3/3/2022  | VE              | 7%              | 0%             |
|                               | 3/3/2022  | FPM             | ≤ 0.014 gr/dscf | 0.0014 gr/dscf |

The throughput for the system averaged 458.68 tons per hour on March 3, 2022. Operating data is found in Appendix A.

The identifications of the individuals associated with the test program are summarized below.

| TEST PERSONNEL INFORMATION        |                                                                                |                                                                                                       |  |
|-----------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Location                          | Address                                                                        | Contact                                                                                               |  |
| Test Facility                     | Holcim (US) Inc.<br>Alpena Plant<br>1435 Ford Avenue<br>Alpena, Michigan 49707 | Ms. Mallory Miller<br>Area Environmental Engineer<br>224-517-6896<br>Mallory.Miller@lafargeholcim.com |  |
| Testing Company<br>Representative | Mostardi Platt<br>888 Industrial Drive<br>Elmhurst, Illinois 60126             | Mr. Chris Trezak<br>Senior Project Manager<br>(630) 993-2100 (phone)<br>ctrezak@mp-mail.com           |  |

The test crew consisted C. Buglio, R. Spoolstra and C. Trezak of Mostardi Platt.

## 2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40 CFR, Part 60. The plant operation data is included in Appendix A. Schematics of the test section diagram and sampling trains used are included in Appendix B and C, respectively. Calculation nomenclature and example calculations are included in Appendix D. Sample analysis data are included in Appendix E. Copies of reference method data and field data sheets for each test run are also included in Appendix F and G, respectively.

The following methodologies were used during the test program:

#### Method 1 Sample and Velocity Traverse Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

| TEST POINT INFORMATION        |                               |                                |                       |                         |                   |                                 |
|-------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------|-------------------|---------------------------------|
| Location                      | Stack<br>Dimensions<br>(Feet) | Stack Area<br>(Square<br>Feet) | Upstream<br>Diameters | Downstream<br>Diameters | Test<br>Parameter | Number of<br>Sampling<br>Points |
| Secondary<br>Crusher (11-002) | 2.125                         | 3.547                          | 2.5                   | 4.4                     | FPM               | 24                              |

#### Method 2 Volumetric Flow Rate Determination

Gas velocity is measured following Method 2, 40 CFR, Part 60, Appendix A, for purposes of calculating stack gas volumetric flow rate and emission rates. An S-type pitot tube, as a component of the isokinetic sampling trains, differential pressure gauge, thermocouple, and temperature readout are used to determine gas velocity at each sample point. All of the equipment used is calibrated in accordance with the specifications of the Method. Calibration data is presented in Appendix H.

Oxygen and carbon dioxide concentrations were determined per section 8.6 of USEPA Method 2, for processes emitting essentially air an analysis was not conducted. A dry molecular weight of 29.0 was used.

#### Method 5 Filterable Particulate Matter Determination

Stack gas FPM concentrations and emission rates were determined in accordance with Method 5. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Particulate matter in the sample probe was recovered using an acetone wash. The probe wash and filter catch were analyzed by Mostardi Platt personnel. Laboratory analysis data are found in Appendix E. Calibration data are presented in Appendix H.

#### Method 9 Visual Emission Determination

Visible emissions are determined in accordance with Method 9. The observer stood at a distance providing a clear view of the emissions with the sun oriented in the 140° sector to their back. As much as possible, the line of vision was approximately perpendicular to the plume direction.

Opacity observations were made at the point of greatest opacity in the portion of the plume where condensed water vapor was not present. Observations were made at 15-second intervals for the duration of the test run.

Visible emissions observations were conducted and recorded by Mr. Chris Trezak, who is a certified visual emissions observer. Visible emissions data and the reader's certification are found in Appendix I.

# **3.0 TEST RESULT SUMMARIES**

Client:LaFarge Holcim USFacility:Alpena Cement PlantTest Location:Secondary Crusher Baghouse StackTest Method:5

| Source Condition<br>Date<br>Start Time<br>End Time | Normal<br>3/3/22<br>9:45<br>10:50<br>Run 1 | Normal<br>3/3/22<br>11:26<br>12:31<br>Run 2 | Normal<br>3/3/22<br>13:44<br>14:47<br><u>Run 3</u> | Average |  |
|----------------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------|---------|--|
| Stack Conditions                                   |                                            |                                             |                                                    |         |  |
| Average Gas Temperature, °F                        | 21.0                                       | 23.9                                        | 26.1                                               | 23.7    |  |
| Flue Gas Moisture, percent by volume               | 0.4%                                       | 0.4%                                        | 0.5%                                               | 0.4%    |  |
| Average Flue Pressure, in. Hg                      | 30.25                                      | 30.25                                       | 30.25                                              | 30.25   |  |
| Gas Sample Volume, dscf                            | 36.158                                     | 32.368                                      | 34.449                                             | 34.325  |  |
| Average Gas Velocity, ft/sec                       | 22.184                                     | 19.959                                      | 21.325                                             | 21.156  |  |
| Gas Volumetric Flow Rate, acfm                     | 4,721                                      | 4,247                                       | 4,538                                              | 4,502   |  |
| Gas Volumetric Flow Rate, dscfm                    | 5,217                                      | 4,667                                       | 4,958                                              | 4,947   |  |
| Gas Volumetric Flow Rate, scfm                     | 5,238                                      | 4,686                                       | 4,983                                              | 4,969   |  |
| Isokinetic Variance                                | 100.8                                      | 100.9                                       | 101. <u>1</u>                                      | 100.9   |  |
| Filterable Particulate Matter (Method 5)           |                                            |                                             |                                                    |         |  |
| grams collected                                    | 0.00475                                    | 0.00258                                     | 0.00208                                            | 0.00314 |  |
| grains/acf                                         | 0.0022                                     | 0.0014                                      | 0.0010                                             | 0.0015  |  |
| grains/dscf                                        | 0.0020                                     | 0.0012                                      | 0.0009                                             | 0.0014  |  |
| lb/hr                                              | 0.091                                      | 0.049                                       | 0.040                                              | 0.060   |  |

## 4.0 CERTIFICATION

Mostardi Platt is pleased to have been of service to Prairie State Generating Company, LLC. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

X. Jupz

Christopher S. Trezak

**Program Manager** 

Muy M. Crime

Jeffrey M. Crivlare

**Quality Assurance** 



MAR 23 2022

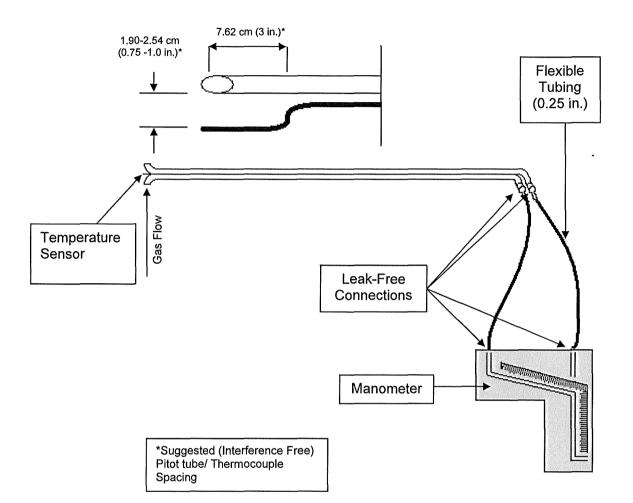
AIR QUALITY DIVISION

## APPENDICES

### Appendix A - Plant Operating Data

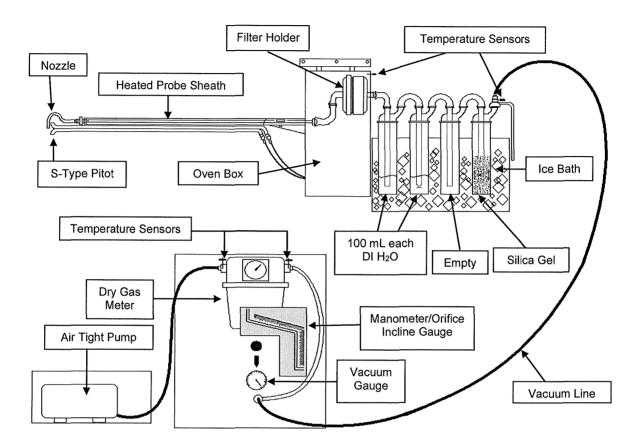
|                                  | ALP.241-            |
|----------------------------------|---------------------|
|                                  | BC03.F01:<br>PV_AVG |
| Average                          | 496.94              |
| 3/3/2022 09:45                   | 514.05              |
| 3/3/2022 09:46<br>3/3/2022 09:47 | 517.90<br>521.65    |
| 3/3/2022 09:48                   | 525.17              |
| 3/3/2022 09:49                   | 526.15              |
| 3/3/2022 09:50<br>3/3/2022 09:51 | 526.96<br>526.26    |
| 3/3/2022 09:52                   | 541.18              |
| 3/3/2022 09:53                   | 532.88              |
| 3/3/2022 09:54<br>3/3/2022 09:55 | 535.37<br>540.80    |
| 3/3/2022 09:56                   | 532.88              |
| 3/3/2022 09:57                   | 532.61              |
| 3/3/2022 09:58<br>3/3/2022 09:59 | 541.83<br>535.37    |
| 3/3/2022 10:00                   | 532.66              |
| 3/3/2022 10:01                   | 545.79              |
| 3/3/2022 10:02<br>3/3/2022 10:03 | 550.56<br>559.08    |
| 3/3/2022 10:04                   | 554.25              |
| 3/3/2022 10:05<br>3/3/2022 10:06 | 551.38              |
| 3/3/2022 10:06                   | 557.67<br>556.15    |
| 3/3/2022 10:08                   | 556.15              |
| 3/3/2022 10:09<br>3/3/2022 10:10 | 542.70<br>560.93    |
| 3/3/2022 10:10                   | 548.01              |
| 3/3/2022 10:12                   | 557.24              |
| 3/3/2022 10:13<br>3/3/2022 10:14 | 539.88<br>546.06    |
| 3/3/2022 10:14                   | 542.81              |
| 3/3/2022 10:16                   | 548.94              |
| 3/3/2022 10:17<br>3/3/2022 10:18 | 549.15<br>540.53    |
| 3/3/2022 10:19                   | 542.86              |
| 3/3/2022 10:20                   | 552.35              |
| 3/3/2022 10:21<br>3/3/2022 10:22 | 545.36<br>561.36    |
| 3/3/2022 10:23                   | 555.28              |
| 3/3/2022 10:24                   | 551.76              |
| 3/3/2022 10:25<br>3/3/2022 10:26 | 548.34<br>555.45    |
| 3/3/2022 10:27                   | 552.68              |
| 3/3/2022 10:28                   | 543.78<br>551.92    |
| 3/3/2022 10:29<br>3/3/2022 10:30 | 557.29              |
| 3/3/2022 10:31                   | 556.04              |
| 3/3/2022 10:32<br>3/3/2022 10:33 | 546.93<br>537.71    |
| 3/3/2022 10:33                   | 553.93              |
| 3/3/2022 10:35                   | 554.09              |
| 3/3/2022 10:36<br>3/3/2022 10:37 | 552.08<br>549.59    |
| 3/3/2022 10:37                   | 542.59              |
| 3/3/2022 10:39                   | 546.17              |
| 3/3/2022 10:40<br>3/3/2022 10:41 | 544.16<br>542.81    |
| 3/3/2022 10:42                   | 551.54              |
| 3/3/2022 10:43                   | 547.53              |
| 3/3/2022 10:44<br>3/3/2022 10:45 | 498.05<br>137.42    |
| 3/3/2022 10:46                   | 28.27               |
| 3/3/2022 10:47                   | 0.00                |
| 3/3/2022 10:48<br>3/4/2022 10:49 | 0.00<br>0.00        |
| 3/5/2022 10:50                   | 0.00                |
|                                  |                     |

|                                  | ALP.241-         |
|----------------------------------|------------------|
|                                  | BC03.F01:        |
|                                  | PV_AVG           |
| Average                          | 497.91           |
| 3/3/2022 13:44                   | 480.58           |
| 3/3/2022 13:45                   | 491.59           |
| 3/3/2022 13:46                   | 494.68           |
| 3/3/2022 13:47<br>3/3/2022 13:48 | 499.19<br>490.56 |
| 3/3/2022 13:48                   | 501.95           |
| 3/3/2022 13:50                   | 501.57           |
| 3/3/2022 13:51                   | 502.39           |
| 3/3/2022 13:52                   | 490.89           |
| 3/3/2022 13:53                   | 494.25           |
| 3/3/2022 13:54                   | 491.92           |
| 3/3/2022 13:55                   | 489.69           |
| 3/3/2022 13:56<br>3/3/2022 13:57 | 492.89<br>510.58 |
| 3/3/2022 13:58                   | 494.03           |
| 3/3/2022 13:50                   | 494.85           |
| 3/3/2022 14:00                   | 502.50           |
| 3/3/2022 14:01                   | 502.66           |
| 3/3/2022 14:02                   | 501.14           |
| 3/3/2022 14:03                   | 500.27           |
| 3/3/2022 14:04                   | 496.26           |
| 3/3/2022 14:05                   | 503.26           |
| 3/3/2022 14:06<br>3/3/2022 14:07 | 498.43<br>486.71 |
| 3/3/2022 14:07                   | 506.56           |
| 3/3/2022 14:09                   | 503.85           |
| 3/3/2022 14:10                   | 492.89           |
| 3/3/2022 14:11                   | 502.77           |
| 3/3/2022 14:12                   | 490.78           |
| 3/3/2022 14:13                   | 502.22           |
| 3/3/2022 14:14                   | 498.48           |
| 3/3/2022 14:15<br>3/3/2022 14:16 | 509.33<br>500.76 |
| 3/3/2022 14:10                   | 501.30           |
| 3/3/2022 14:18                   | 489.80           |
| 3/3/2022 14:19                   | 494.36           |
| 3/3/2022 14:20                   | 502.66           |
| 3/3/2022 14:21                   | 491.64           |
| 3/3/2022 14:22                   | 494.68           |
| 3/3/2022 14:23                   | 502.22           |
| 3/3/2022 14:24<br>3/3/2022 14:25 | 493.44<br>498.70 |
| 3/3/2022 14:25                   | 495.44           |
| 3/3/2022 14:27                   | 502.01           |
| 3/3/2022 14:28                   | 483.29           |
| 3/3/2022 14:29                   | 510.31           |
| 3/3/2022 14:30                   | 494.41           |
| 3/3/2022 14:31                   | 509.44           |
| 3/3/2022 14:32<br>3/3/2022 14:33 | 504.94<br>496.80 |
| 3/3/2022 14:33                   | 496.80           |
| 3/3/2022 14:34                   | 509.49           |
| 3/3/2022 14:36                   | 494.68           |
| 3/3/2022 14:37                   | 486.71           |
| 3/3/2022 14:38                   | 504.99           |
| 3/3/2022 14:39                   | 498.37           |
| 3/3/2022 14:40                   | 502.39           |
| 3/3/2022 14:41<br>3/3/2022 14:42 | 507.05<br>494.09 |
| 3/3/2022 14:42                   | 494.09<br>503.47 |
| 3/3/2022 14:43                   | 488.28           |
| 3/3/2022 14:45                   | 504.18           |
| 3/3/2022 14:46                   | 491.37           |
| 3/3/2022 14:47                   | 500.81           |
|                                  |                  |


#### Appendix C - Sample Train Diagrams

# RECEIVED

MAR 23 2022


Project No. M220503 Secondary Crusher 13 of 63

AIR QUALIMY TIVISION



## **USEPA Method 2 – Type S Pitot Tube Manometer Assembly**

ATD-001 USEPA Method 2



## USEPA Method 5- Particulate Matter Sample Train Diagram

ATD-035 USEPA Method 5