1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a particulate emission compliance test program for Holcim (US) Inc. Lafarge Alpena at the Alpena Cement Plant in Alpena, Michigan, on the Kiln 19 Breaching Duct on October 28, 2022 and on the Kiln 20 Breaching Duct on October 19, 2022. This report summarizes the results of the test program and test methods.

The test locations, test dates, and test parameter are summarized below.

TEST INFORMATION						
Test Locations Test Dates Test Parameter						
Kiln 19 Breaching Duct	October 28, 2022	Filterable Particulate Matter (FPM)				
Kiln 20 Breaching Duct	October 19, 2022	Filterable Particulate Matter (FPM)				

The purpose of the test program was to demonstrate compliance with Title 40, *Code of Federal Regulations*, Part 60 (40CFR60), and 40CFR63, Subpart LLL "*National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants.*"

Parameter	Date	Units	Emission Rate	Emission Limit	CPMS SSOL
FPM	10/28/2022	lb/ton	0.003 lb/ton	0.07 lb/ton	6.37

Parameter	Date	Units	Emission Rate	Emission Limit	CPMS SSOL
FPM	10/19/2022	lb/ton	0.005 lb/ton	0.07 lb/ton	8.62

The CPMS SSOL was determined to be 6.37 for Kiln 19 and 8.62 for Kiln 20 (based on mA recorded by CPMS during testing respectively).

	TEST PERSONNEL INFORMATION					
Location	Address	Contact				
Test Facility	Holcim (US) Inc. Alpena Plant 1435 Ford Avenue Alpena, Michigan 49707	Mallory Miller Area Environmental Manager Mallory.Miller@lafargeholcim.com				
Testing Company Supervisor	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Chris Trezak Project Manager (Kiln 20) 630-993-2100 (phone) ctrezak@mp-mail.com				
		Paul Coleman Project Manager (Kiln 19) 630-993-2100 (phone) pcoleman@mp-mail.com				
Testing Company Personnel	 Bears and a second secon	Joshua Kukla Test Engineer (Kiln 20)				
		Donald Jordan Test Engineer (Kiln 19)				
		Aaron Benninghoff Test Technician (Both Kilns)				

The identifications of the individuals associated with the test program are summarized below.

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR60, Appendix A in addition the Mostardi Platt Quality Manual. Schematics of the test section diagrams and sampling trains used are included in Appendix A and B respectively. Calculation nomenclature are included in Appendix C. Laboratory analysis for each test run are included in Appendix D. Reference Method and CEM data and process data as provided by Holcim (US) Inc. are included in Appendix E and F.

The following methodologies were used during the test program:

Method 1 Sample and Velocity Traverse Determination

Test measurement points were selected in accordance with USEPA Method 1, 40CFR60, Appendix A. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION AT KILN 19 OUTLET DUCT							
Stack Dimensions (Feet)	StackStack AreaPortNumber ofDimensions(SquareNo. ofLengthUpstreamDownstreamTestSampling(Feet)Feet)Ports(Inches)DiametersDiametersParameterPoints						Number of Sampling Points
8.00 x 9.917	79.336	3	3.25	0.7	0.8	FPM	42

TEST POINT INFORMATION AT KILN 20 OUTLET DUCT							
Stack Dimensions (Feet)	StackStack AreaPortNumber ofDimensions(SquareNo. ofLengthUpstreamDownstreamTestSampling(Feet)Feet)Ports(Inches)DiametersDiametersParameterPoints						
8.00 x 8.75	70.000	3	3.25	0.47	1.11	FPM	42

Method 2 Volumetric Flow Rate Determination

Gas velocity was measured following USEPA Method 2, 40CFR60, Appendix A, for purposes of calculating stack gas volumetric flow rate and emission rates on a lb/hr basis. A 8-foot-long S-type pitot tube, 0-10" differential pressure gauge, and K-type thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Copies of field data sheets are included in Appendix G. Calibration data are presented in Appendix H. This testing met the performance specifications as outlined in the Method.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas O_2 and CO_2 concentrations were determined in accordance with USEPA Method 3A. An ECOM analyzer was used to determine the O_2 and CO_2 concentrations in the manner specified in the Method. The O_2 instrument operates in the nominal range of 0% to 25% with the specific range determined by the high-level calibration gas. The CO_2 instrument operates in the nominal range of 0% to 20% with the specific range determined by the high-level calibration gas. High and mid-range calibrations were performed using USEPA Protocol gas. Zero nitrogen (a low ppm pollutant in balance nitrogen calibration gases) was introduced during other instrument calibrations to check instrument zero. Zero and mid-range calibrations were performed using USEPA Protocol gas after each test run. Calibration data and copies of the gas cylinder certifications are found in Appendices H and I. This testing met the performance specifications as outlined in the Method.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas filterable PM concentrations and emission rates were determined in accordance with Method 5. The probe and filter housing were maintained at a temperature of 248°F +/- 25°F. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate. Four impingers were utilized, the first two each containing 100ml of deionized water, the third was empty, and the fourth contained approximately 200 grams of silica gel. The impingers were weighed prior to and after each test run in order to determine moisture content of the stack gas. The total sample time was 84 minutes, with forty-two (42) sample points being utilized (14 points per port, 3 total ports). A minimum of 1 dscm was sampled for each run.

PM in the sample probe was recovered utilizing acetone; a minimum of three passes of the probe brush through the entire probe was performed, followed by a visual inspection of the acetone exiting the probe. If the acetone solution exiting the probe was clear, the wash was considered complete, if not, another pass of the brush through the probe was made and inspected until the solution was clear. The nozzle was then removed from the probe and cleaned in a similar manner, utilizing an appropriately sized nozzle brush. The probe wash and filter catch were analyzed by Mostardi Platt personnel. Laboratory analysis data are found in Appendix D. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:Holcim (US) Inc.Facility:Alpena Cement PlantTest Location:Kiln 19 Breaching DuctTest Method:5

Source Condition	Normal	Normal	Normal		
Date	10/28/22	10/28/22	10/28/22		
Start Time	8:00	10:50	12:53		
End Time	9:33	12:23 Dun 2	14:24 Dup 2	A.v.o. #0.000	
Stack Conv	Run 1	Run 2	Run 3	Average	
		411.0	112 5	411.4	
Average Gas Temperature, F	410.7	411.0	412.5	411.4	
Flue Gas Moisture, percent by volume	4.7%	5.3%	5.2%	5.1%	
Average Flue Pressure, In. Hg	29.72	29.72	29.72	29.72	
Gas Sample Volume, dscr	70.443	69.747	67.263	69.151	
Average Gas velocity, fi/sec	33.822	32.854	31.641	32.772	
Gas Volumetric Flow Rate, actm	160,997	156,390	150,615	156,001	
Gas Volumetric Flow Rate, dscfm	92,454	89,143	85,861	89,153	
Gas Volumetric Flow Rate, scfm	96,985	94,182	90,538	93,902	
Average %CO ₂ by volume, dry basis	17.1	17.1	17.7	17.3	
Average %O ₂ by volume, dry basis	9.2	9.1	9.0	9.1	
Isokinetic Variance	99.1	101.8	101.9	100.9	
Clinker Production Rate, ton/hr	54.7	53.9	54.0	54.2	
CPMS Response, mA	4.066	4.264	4.100	4.143	
Filterable Particulate	Matter (Me	thod 5)			
grams collected	0.00041	0.00098	0.00164	0.00101	
grains/acf	0.0001	0.0001	0.0002	0.0001	
grains/dscf	0.0001	0.0002	0.0004	0.0002	
lb/hr	0.071	0.166	0.277	0.171	
lb/ton of clinker	0.001	0.003	0.005	0.003	
Site Specific Operating Lim	it (SSOL) D	eterminatior	1		
Source Emissions Limit, Ib/ton 0.07					
CPMS Zero, mA		4.	00		
Filterable Particulate Matter, % of Emissions Limit		4.5	5%		
SSOL		6.	37		

1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a particulate emission compliance test program for Holcim (US) Inc. Lafarge Alpena at the Alpena Cement Plant in Alpena, Michigan, on the Kiln 19 Breaching Duct on October 28, 2022 and on the Kiln 20 Breaching Duct on October 19, 2022. This report summarizes the results of the test program and test methods.

The test locations, test dates, and test parameter are summarized below.

TEST INFORMATION					
Test Locations Test Dates Test Parameter					
Kiln 19 Breaching Duct	October 28, 2022	Filterable Particulate Matter (FPM)			
Kiln 20 Breaching Duct	October 19, 2022	Filterable Particulate Matter (FPM)			

The purpose of the test program was to demonstrate compliance with Title 40, *Code of Federal Regulations*, Part 60 (40CFR60), and 40CFR63, Subpart LLL "*National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants.*"

Parameter	Date	Units	Emission Rate	Emission Limit	CPMS SSOL
FPM	10/28/2022	lb/ton	0.003 lb/ton	0.07 lb/ton	6.37

Parameter	Date	Units	nits Emission Rate Emission Limit		CPMS SSOL	
FPM	10/19/2022	lb/ton	0.005 lb/ton	0.07 lb/ton	8.62	

The CPMS SSOL was determined to be 6.37 for Kiln 19 and 8.62 for Kiln 20 (based on mA recorded by CPMS during testing respectively).

	TEST PERSONNEL INFORMATION					
Location	Address	Contact				
Test Facility	Holcim (US) Inc. Alpena Plant 1435 Ford Avenue Alpena, Michigan 49707	Mallory Miller Area Environmental Manager Mallory.Miller@lafargeholcim.com				
Testing Company Supervisor	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Chris Trezak Project Manager (Kiln 20) 630-993-2100 (phone) ctrezak@mp-mail.com				
		Paul Coleman Project Manager (Kiln 19) 630-993-2100 (phone) pcoleman@mp-mail.com				
Testing Company Personnel		Joshua Kukla Test Engineer (Kiln 20)				
		Donald Jordan Test Engineer (Kiln 19)				
		Aaron Benninghoff Test Technician (Both Kilns)				

The identifications of the individuals associated with the test program are summarized below.

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR60, Appendix A in addition the Mostardi Platt Quality Manual. Schematics of the test section diagrams and sampling trains used are included in Appendix A and B respectively. Calculation nomenclature are included in Appendix C. Laboratory analysis for each test run are included in Appendix D. Reference Method and CEM data and process data as provided by Holcim (US) Inc. are included in Appendix E and F.

The following methodologies were used during the test program:

Method 1 Sample and Velocity Traverse Determination

Test measurement points were selected in accordance with USEPA Method 1, 40CFR60, Appendix A. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION AT KILN 19 OUTLET DUCT							
Stack Dimensions (Feet)	StackStack AreaPortNumber ofDimensions(SquareNo. ofLengthUpstreamDownstreamTestSampling(Feet)Feet)Ports(Inches)DiametersDiametersParameterPoints						
8.00 x 9.917	79.336	3	3.25	0.7	0.8	FPM	42

TEST POINT INFORMATION AT KILN 20 OUTLET DUCT								
Stack Dimensions (Feet)	Stack Area (Square Feet)	No. of Ports	Port Length (Inches)	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points	
8.00 x 8.75	70.000	3	3.25	0.47	1.11	FPM	42	

Method 2 Volumetric Flow Rate Determination

Gas velocity was measured following USEPA Method 2, 40CFR60, Appendix A, for purposes of calculating stack gas volumetric flow rate and emission rates on a lb/hr basis. A 8-foot-long S-type pitot tube, 0-10" differential pressure gauge, and K-type thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Copies of field data sheets are included in Appendix G. Calibration data are presented in Appendix H. This testing met the performance specifications as outlined in the Method.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas O_2 and CO_2 concentrations were determined in accordance with USEPA Method 3A. An ECOM analyzer was used to determine the O_2 and CO_2 concentrations in the manner specified in the Method. The O_2 instrument operates in the nominal range of 0% to 25% with the specific range determined by the high-level calibration gas. The CO_2 instrument operates in the nominal range of 0% to 20% with the specific range determined by the high-level calibration gas. High and mid-range calibrations were performed using USEPA Protocol gas. Zero nitrogen (a low ppm pollutant in balance nitrogen calibration gases) was introduced during other instrument calibrations to check instrument zero. Zero and mid-range calibrations were performed using USEPA Protocol gas after each test run. Calibration data and copies of the gas cylinder certifications are found in Appendices H and I. This testing met the performance specifications as outlined in the Method.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas filterable PM concentrations and emission rates were determined in accordance with Method 5. The probe and filter housing were maintained at a temperature of 248°F +/- 25°F. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate. Four impingers were utilized, the first two each containing 100ml of deionized water, the third was empty, and the fourth contained approximately 200 grams of silica gel. The impingers were weighed prior to and after each test run in order to determine moisture content of the stack gas. The total sample time was 84 minutes, with forty-two (42) sample points being utilized (14 points per port, 3 total ports). A minimum of 1 dscm was sampled for each run.

PM in the sample probe was recovered utilizing acetone; a minimum of three passes of the probe brush through the entire probe was performed, followed by a visual inspection of the acetone exiting the probe. If the acetone solution exiting the probe was clear, the wash was considered complete, if not, another pass of the brush through the probe was made and inspected until the solution was clear. The nozzle was then removed from the probe and cleaned in a similar manner, utilizing an appropriately sized nozzle brush. The probe wash and filter catch were analyzed by Mostardi Platt personnel. Laboratory analysis data are found in Appendix D. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:Holcim (US) Inc.Facility:Alpena Cement PlantTest Location:Kiln 19 Breaching DuctTest Method:5

Source Condition	Normal	Normal	Normal				
Date	10/28/22	10/28/22	10/28/22				
Start Time	8:00	10:50	12:53				
End Time	9:33	12:23	14:24				
	Run 1	Run 2	Run 3	Average			
Stack Conditions							
Average Gas Temperature, °F	410.7	411.0	412.5	411.4			
Flue Gas Moisture, percent by volume	4.7%	5.3%	5.2%	5.1%			
Average Flue Pressure, in. Hg	29.72	29.72	29.72	29.72			
Gas Sample Volume, dscf	70.443	69.747	67.263	69.151			
Average Gas Velocity, ft/sec	33.822	32.854	31.641	32.772			
Gas Volumetric Flow Rate, acfm	160,997	156,390	150,615	156,001			
Gas Volumetric Flow Rate, dscfm	92,454	89,143	85,861	89,153			
Gas Volumetric Flow Rate, scfm	96,985	94,182	90,538	93,902			
Average %CO ₂ by volume, dry basis	17.1	17.1	17.7	17.3			
Average %O ₂ by volume, dry basis	9.2	9.1	9.0	9.1			
Isokinetic Variance	99.1	101.8	101.9	100.9			
Clinker Production Rate, ton/hr	54.7	53.9	54.0	54.2			
CPMS Response, mA	4.066	4.264	4.100	4.143			
Filterable Particulate	Matter (Me	thod 5)					
grams collected	0.00041	0.00098	0.00164	0.00101			
grains/acf	0.0001	0.0001	0.0002	0.0001			
grains/dscf	0.0001	0.0002	0.0004	0.0002			
lb/hr	0.071	0.166	0.277	0.171			
Ib/ton of clinker	0.001	0.003	0.005	0.003			
Site Specific Operating Limit (SSOL) Determination							
Source Emissions Limit, Ib/ton	0.07						
CPMS Zero, mA	4.00						
Filterable Particulate Matter, % of Emissions Limit	4.5%						
SSOL		6.	37				

Client:	Holcim (US) Inc.
Facility:	Alpena Cement Plant
Test Location:	Kiln 20 Breaching Duct
Test Method:	5

Source Condition	Normal	Normal	Normal				
Date	10/19/22	10/19/22	10/19/22	,			
Start Time	10:00	12:26	14:55				
End Time	11:34	13:57	16:26				
	Run 1	Run 2	Run 3	Average			
Stack Conditions							
Average Gas Temperature, °F	370.8	376.0	379.2	375.3			
Flue Gas Moisture, percent by volume	5.0%	6.7%	7.1%	6.3%			
Average Flue Pressure, in. Hg	28.93	28.93	28.93	28.93			
Gas Sample Volume, dscf	60.574	60.482	60.772	60.609			
Average Gas Velocity, ft/sec	38.879	39.135	39.544	39.186			
Gas Volumetric Flow Rate, acfm	163,292	164,369	166,083	164,581			
Gas Volumetric Flow Rate, dscfm	95,327	93,664	93,821	94,271			
Gas Volumetric Flow Rate, scfm	100,330	100,367	101,020	100,572			
Average %CO ₂ by volume, dry basis	17.8	17.7	18.3	17.9			
Average %O ₂ by volume, dry basis	9.0	8.7	8.3	8.7			
Isokinetic Variance	100.4	102.1	102.4	101.6			
Clinker Production Rate, ton/hr	54.0	54.0	54.1	54.0			
CPMS Response, mA	4.341	4.416	4.530	4.4			
Filterable Particulate	Matter (Me	thod 5)					
grams collected	0.00118	0.00169	0.00097	0.00128			
grains/acf	0.0002	0.0002	0.0001	0.0002			
grains/dscf	0.0003	0.0004	0.0002	0.0003			
lb/hr	0.246	0.346	0.198	0.263			
Ib/ton of clinker	0.005	0.006	0.004	0.005			
Site Specific Operating Limit (SSOL) Determination							
Source Emissions Limit, Ib/ton	0.07						
CPMS Zero, mA	4.00						
Filterable Particulate Matter, % of Emissions Limit 7.0%							
SSOL 8.62							

RECEIVED

FEB 1 4 2023

AIR QUALITY DIVISION

4.0 CERTIFICATION

Mostardi Platt is pleased to have been of service to Holcim (US) Inc. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As the program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results. The test program was performed in accordance with the test methods and the Mostardi Platt Quality Manual, as applicable.

MOSTARDI PLATT

Saps

Project Manager

Christopher S. Trezak

M. Cinhue

Jeffrey M. Crivlare

Quality Assurance

APPENDICES

~

Appendix A - Test Section Diagrams

EQUAL AREA TRAVERSE FOR RECTANGULAR DUCTS

EQUAL AREA TRAVERSE FOR RECTANGULAR DUCTS

Appendix B - Sample Train Diagrams

RECEIVED

FEB 1 4 2023

AIR QUALITY DIVISION

©Mostardi Platt

Project No. M224902 Kiln 19 and Kiln 20 Breaching Duct

USEPA Method 2 – Type S Pitot Tube Manometer Assembly

USEPA Method 3A - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing ECOM To Measure from Sample Exhaust

ATD-091 USEPA Method 3A

Rev. 1.3

USEPA Method 5- Particulate Matter Sample Train Diagram

ATD-035 USEPA Method 5