

Field Services Division

Comprehensive Emissions Test Report

Grede, LLC - Iron Mountain Particulate, PM-10, CO, SO₂, VOC Compliance Testing

Testing Date(s): Dec. 8-10 & 15-17, 2020 Report Date: February 5, 2021 Revision Date: No revision to date

Report Prepared For:

Tyler Hill Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Telephone No.: (906) 779-0201 E-mail Address: tyler.hill@grede.com

Report Preparation Supervised By:

Terry Borgerding Pace Analytical Services, LLC 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Telephone No.: (612) 607-6374 E-mail Address: terry.borgerding@pacelabs.com

Pace Project No. 20-04074

Subject Facility:

Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Regulatory Permit No.: MI-ROP-B1577-2020 SRN: B1577

Subject Emission Sources:

Cupola	EU-P009
Module Pouring & Cooling	EU-P036
Main Plant Pouring & Cooling	EU-P016

Test Locations:

Cupola Baghouse Exhaust	324644
Module Pouring & Cooling	2 Stacks
Main Plant Pouring & Cooling	6 Stacks

Table of Contents

Repor Table			nts		1 2
Regula Introdu Result	uctio	n	mmary ary		3 5 6
Summ	nary ⁻	Гabl	es		8
	Tab	le	1-9	Particulate Results Summary	9
	Tab	le	10	Gas Monitoring Results, Cupola BH Inlet	18
Detail	Tabl	es			19
	Tab	le	11-21	Major Gases and Moisture Results	20
	Tab	le	22-30	Particulate Results	31
	Tab	le	31-33	Opacity Observations	40
	Tab	le	34-41	Preliminary Airflow Measurements	43
	Tab	le	42-43	Airflow Measurement Results, Cupola BH Inlet	51
Proces	ss De	escr	iption		53
Test P	roce	dure	es		54
	Figu	ire	1-9	Test Location Schematics	67
Repor	t Sig	natu	ires		76
Appen	ndix	A	Field Da	ata Sheets and Documentation	A-1
Appen	ndix	В	Quantita	ation and Laboratory Reports	B-1
Appen	ndix	С	Calculat	tion Equations and Report Nomenclature	C-1
Appen	ndix	D	Quality	Assurance Information	D-1
Appen	ndix	Е	Source/	Process/Plant Information	E-1
Appen	ndix	F	Test Pro	ptocol and Pretest Correspondence	F-1

Regulatory Summary

Subject Facility: Plant Address:	Grede, LLC – Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802
Air Permit No.:	MI-ROP-B1577-2020
Facility ID No.:	SRN: B1577

Emission Unit IDs	Emission Unit Name	Regulated Constituent	Regulatory Citations	Regulatory Limit	Average Test Result
324484	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0026 GR/DSCF
324632	Main Plant Pouring & Cooling No. 6 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0025 GR/DSCF
324662	Main Plant Pouring & Cooling No. 7 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0072 GR/DSCF
324678	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0043 GR/DSCF
324682	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0012 GR/DSCF
324848	Main Plant Pouring & Cooling No. 5 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0041 GR/DSCF
334116	Module Pouring & Cooling Exhaust	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0032 GR/DSCF
334176	Module Pouring & Cooling Exhaust	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0032 GR/DSCF

Emission Unit IDs	Emission Unit Name	Regulated Constituent	Regulatory Citations	Regulatory Limit	Average Test Result			
				≤21.0 LB/HR	0.811 LB/HR			
		Carbon Monoxide	R 336.1201(3)	≤250.0 mg/m ³ , corrected to 70°F and 29.92" Hg	14.5 mg/dscm (70°F : 29.92"Hg)			
		Particulate	R 336.1331	≤0.011 LB/1000 LB exhaust gas	0.0026 LB/1000 LB exhaust gas			
EU-P009 324644	Cupola Baghouse Exhaust	(filterable)	40 CFR 63.7690(a)(2)	≤0.006 GR/DSCF	0.0014 GR/DSCF			
		PM-10	R 336.1331	≤1.30 LB/HR	2.50 LB/HR			
		Sulfur Dioxide	de R 336.1201(3)	≤170 mg/m ³ , corrected to 70°F and 29.92" Hg	29.5 mg/dscm (70°F : 29.92"Hg)			
				≤13.8 LB/HR	1.65 LB/HR			
					Volatile Organic HAP (VOHAP)	40 CFR 63.7690(a)(8)	≤20 PPMv @ 10% O₂ as hexane	<0.11 PPM, dry @ 10% O ₂
		Opacity (fugitive)	40 CFR 63.7690(a)(7)	≤20% 6-minute average, except for one 6-minute average per hour that does not exceed 27%	3.8% Highest 6-minute average			

Introduction

Pace Analytical Services, LLC personnel conducted source emission compliance testing at the Grede, LLC – Iron Mountain facility located in Kingsford, Michigan. Cupola testing included particulate, carbon monoxide (CO), total hydrocarbon (THC), sulfur dioxide (SO₂), and opacity. Particulate emission testing was performed on eight Main Plant and Module Plant pouring and cooling exhaust stacks. Terry Borgerding, Zack Eckstrom, Andrew Radabaugh, Jake Geis, Stanley Broome, Josh Price, and Lucas Ruhland performed on-site testing activities on December 8-10 and 15-17, 2020. Terry Borgerding provided administrative project management. Tom White and Tyler Hill with Grede, LLC – Iron Mountain coordinated plant activities during testing. Jeremy Howe and Michael Conklin with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) were on-site to witness testing. Pace Analytical Services, LLC prepared a comprehensive test protocol that was submitted to the EGLE prior to testing. On-site activities consisted of the following measurements:

- Particulate, three independent 72-96 minute samplings on the Main Plant and Module Plant pouring stacks
- Particulate, three independent two-hour samplings on the Cupola baghouse exhaust.
- CO, SO₂, THC, three independent one-hour monitoring periods on the Cupola baghouse inlet.
- Gas composition (O₂/CO₂), integrated bags collected concurrent with Cupola testing at the baghouse inlet and exhaust.
- Volumetric airflow, measurements collected in conjunction with isokinetic testing.
- Visible emissions (fugitive), three independent one-hour monitoring periods on the Cupola building.

The project objectives were to quantify particulate, CO, THC, and SO₂ emission constituents and compare them to applicable air emissions regulations stipulated by Iron and Steel Foundry MACT and the facility permit. These measurements were performed at the highest achievable melt rate. Quality protocols comply with regulatory compliance testing requirements.

Subsequent sections summarize the test results and provide descriptions of the process and test methods. Supporting information and raw data are in the appendices.

Results Summary

Results of particulate determinations are summarized in Tables 1-9 and in the regulatory summary. The filterable particulate emission concentration from all the Main Plant and Module Plant exhaust stacks ranged from 0.0012 GR/DSCF to 0.0072 GR/DSCF and were below the particulate emission concentration limit of 0.010 GR/DSCF for these sources. Subsequent to previous testing, modifications were made to exhaust stacks to mitigate cyclonic flow effect and establish EPA Method 1 compliance with upstream/downstream distances. All of the stacks met EPA Method 1 distance and cyclonic flow (less than 20 degrees) criteria. Standard EPA Method 5 testing procedures were followed. Current stack schematics are included.

The filterable particulate emission concentration from the cupola averaged 0.0014 GR/DSCF and 0.0026 LB/1000 LB exhaust gas. The operating permit limits for this source are 0.006 GR/DSCF and 0.011 LB/1000 LB exhaust gas. The PM-10 emission rate averaged 2.50 LB/HR. The PM-10 operating permit emission limit for this source is 1.30 LB/HR. Subsequent tables provide expanded detail of the testing results.

Particulate matter and PM-10 were collected with a single sampling train under the assumption that all particulate is less than 10 microns. The particulate dry catch (EPA Method 5) was used to report filterable matter. The dry catch (EPA Method 5), organic wet catch and inorganic wet catch (EPA Method 202) and EPA Method 5D dilution factors were combined to report PM-10 mass rate (LB/HR) on the cupola baghouse exhaust.

Particulate testing on the Cupola baghouse exhaust was performed following the procedures of EPA Method 5D. Sampling on the Cupola exhaust is performed from an area above the baghouse compartments and accessed from an open area along the top side of the baghouse. Airflow and temperature measurements collected from the inlet to the baghouse and temperatures from the baghouse exhaust were used to calculate dilution flow rate and the total flow rate at the baghouse exhaust to set isokinetic

sampling rates and exhaust mass emission rates following equations in section 12.2, 12.3 and 12.4 of EPA Method 5D. The isokinetic sampling rate for Run 2 (111.7%) was slightly outside of the Method criteria of 90-110% but should not have a significant bias on the particulate result. Baghouse outlet particulate is small enough to behave as an aerosol and largely unaffected by isokinetic sampling. Runs 1 and 3 isokinetic variation were acceptable but below 100% so if any bias existed, it would likely average out.

Results of THC, SO₂, and CO determinations measured from the cupola baghouse inlet are reported in Table 10. The THC concentration averaged <0.11 PPM as hexane @ 10% O₂. The VOC emission limit for this source is 20 PPM as hexane @ 10% O₂. The SO₂ concentration averaged 29.5 mg/dscm with a mass emission rate of 1.65 LB/HR. The SO₂ emission limit for this source is 170 mg/dscm corrected to 70°F and 29.92 inches Hg and 13.8 LB/HR. The CO concentration averaged 14.5 mg/dscm with a mass emission rate of 0.811 LB/HR. The CO emission limit for this source is 250 mg/dscm corrected to 70°F and 29.92 inches Hg and 21.0 LB/HR. An unusually low moisture value (7.3%) was measured for Run 1. After discussion with Jeremy Howe (EGLE), this value was used in calculations as it would only bias the mass rate result higher. Test runs on the cupola were halted when the cupola was in by-pass mode and resumed after the cupola returned to steady state in the blast mode. Down times are recorded on the Gas Monitoring Log included in Appendix B.

Results of opacity observations from the Cupola building are reported in Tables 31-33. The high six-minute average was 3.8%. The opacity limit for this source is $\leq 20\%$ 6-minute average, except for one 6-minute average per hour that does not exceed 27%.

The data in this report are indicative of emission characteristics of the measured sources for process conditions at the time of the test. Representations to other sources and test conditions are beyond the scope of this report.

Summary Tables

Grede, LLC - Iron Mour Kingsford, MI Pace Project No. 20-04074	Itain Main Plant Pouring	& Cooling E	Results	Table 1 Summary g - 324484 Test 1
Parameter Date of Run Time of Run	Run 1 12/9/20 0826-0954	Run 2 12/9/20 1015-1144	Run 3 12/9/20 1205-1334	Average
Volumetric Flow Rate (Rounded to 10 Cl ACFM DSCFM	^{FM)} 8,320 7,430	8,460 7,530	8,470 7,550	8,420 7,500
Gas Temperature, °F Gas Moisture Content, %v/v	90 1.7	89 2.3	91 1.7	90 1.9
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.14	0.16	0.20	0.17
Particulate Concentration, GR/DSC Filterable Particulate	F 0.0021	0.0025	0.0031	0.0026

Grede, LLC - Iron Mounta Kingsford, MI Pace Project No. 20-04074	İ∩ Main Plant Pourir	ng & Coolin	Results	Fable 2 Summary P - 324632 Test 1
Parameter Date of Run Time of Run	Run 1 12/10/20 0720-0856	Run 2 12/10/20 0925-1052	Run 3 12/10/20 1210-1339	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	4,370 4,030	4,550 4,150	4,480 4,070	4,470 4,080
Gas Temperature, °F Gas Moisture Content, %v/v	84 0.9	89 0.9	94 0.4	89 0.7
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.073	0.080	0.106	0.087
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0023	0.0030	0.0025

Grede, LLC - Iron Mounta Kingsford, MI Pace Project No. 20-04074	İ∩ Main Plant Pourir	ng & Coolin	Results	Table 3 Summary P - 324662 Test 1
Parameter Date of Run Time of Run	Run 1 12/8/20 0748-0927	Run 2 12/8/20 0959-1200	Run 3 12/8/20 1225-1341	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	8,650 7,870	•	8,740 7,880	8,740 7,910
Gas Temperature, °F Gas Moisture Content, %v/v	91 0.8	95 0.8	96 0.9	94 0.8
	0.8	0.0	0.9	0.0
Gas Composition, %v/v, dry				
Carbon Dioxide, CO_2	0.04	0.04	0.04	0.04
Oxygen, O ₂	21.0	21.0	21.0	21.0
Nitrogen, N_2 (by difference)	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.49	0.54	0.43	0.49
Particulate Concentration, GR/DSCF Filterable Particulate	0.0073	0.0079	0.0063	0.0072

Grede, LLC - Iron Mour Kingsford, MI Pace Project No. 20-04074	ntain Main Plant Pouring	& Cooling D	Results	Table 4 Summary g - 324678 Test 1
Parameter Date of Run Time of Run	Run 1 12/9/20 1052-1210	Run 2 12/9/20 1251-1406	Run 3 12/9/20 1435-1550	Average
Volumetric Flow Rate (Rounded to 100 (ACFM DSCFM	CFM) 17,700 16,700	17,400 16,700	17,500 16,700	17,500 16,700
Gas Temperature, °F Gas Moisture Content, %v/v	71 0.4	61 0.1	66 0.1	66 0.2
Gas Composition, %v/v, dry	0.4	0.1	0.1	0.2
Carbon Dioxide, CO_2	0.04	0.04	0.04	0.04
Oxygen, O ₂	21.0	21.0	21.0	21.0
Nitrogen, N_2 (by difference)	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.63	0.51	0.70	0.61
Particulate Concentration, GR/DSC Filterable Particulate	F 0.0044	0.0036	0.0049	0.0043

Grede, LLC - Iron Moun Kingsford, MI Pace Project No. 20-04074	tain Main Plant Pouring a	& Cooling D	Results	Table 5 Summary g - 324682 Test 1
Parameter Date of Run Time of Run	Run 2 12/8/20 0935-1153	Run 3 12/8/20 1215-1342	Run 4 12/8/20 1400-1527	Average
Volumetric Flow Rate (Rounded to 100 C ACFM DSCFM	CFM) 14,800 14,200	14,700 14,000	14,900 14,100	14,800 14,100
Gas Temperature, °F Gas Moisture Content, %v/v	63 0.6	66 0.7	67 1.1	65 0.8
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.15	0.14	0.16	0.15
Particulate Concentration, GR/DSC Filterable Particulate	F 0.0012	0.0012	0.0013	0.0012

Grede, LLC - Iron Mounta Kingsford, MI Pace Project No. 20-04074	İN Main Plant Pourin	g & Cooling	Results	Table 6 Summary P - 324848 Test 1
Parameter Date of Run Time of Run	Run 1 12/8/20 0750-0916	Run 2 12/8/20 0935-1150	Run 3 12/8/20 1206-1332	Average
Volumetric Flow Rate (Rounded to 100 CFM) ACFM DSCFM	10,800 10,100	11,000 10,200	11,000 10,200	10,900 10,200
Gas Temperature, °F Gas Moisture Content, %v/v	77 0.4	79 0.6	80 0.6	79 0.5
Gas Composition, %v/v, dry Carbon Dioxide, CO_2 Oxygen, O_2 Nitrogen, N_2 (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.40	0.35	0.34	0.36
Particulate Concentration, GR/DSCF Filterable Particulate	0.0046	0.0039	0.0039	0.0041

Grede, LLC - Iron Mountain Kingsford, MI Pace Project No. 20-04074	Module Pour	ring & Cool	Results	Table 7 Summary st - 334116 Test 1
Parameter Date of Run Time of Run	Run 1 12/10/20 0750-0917	Run 2 12/10/20 0940-1168	Run 3 12/10/20 1226-1352	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	7,590 6,980	7,440 6,810	7,470 6,740	7,500 6,840
Gas Temperature, °F Gas Moisture Content, %v/v	86 0.9	92 0.2	97 0.8	92 0.6
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.20	0.23	0.14	0.19
Particulate Concentration, GR/DSCF Filterable Particulate	0.0034	0.0040	0.0024	0.0032

Grede, LLC - Iron Mountain Kingsford, MI Pace Project No. 20-04074	Module Pouri	ng & Coolii	Results	Table 8 Summary t - 334176 Test 1
Parameter Date of Run Time of Run	Run 1 12/9/20 0815-0942 1	Run 2 12/9/20 1035-1205 <i>1</i>	Run 3 12/9/20 1228-1354	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	3,920 3,630	4,080 3,740	4,100 3,770	4,030 3,710
Gas Temperature, °F Gas Moisture Content, %v/v	80 0.5	82 1.0	85 0.4	82 0.6
Gas Composition, %v/v, dry Carbon Dioxide, CO_2 Oxygen, O_2 Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.122	0.088	0.094	0.101
Particulate Concentration, GR/DSCF Filterable Particulate	0.0039	0.0027	0.0029	0.0032

Kingsford, MI Pace Project No. 20-04074 Table 9

Results Summary Cupola Baghouse Exhaust Test 1

Parameter Date of Run Time of Run	Run 1 12/16/20 0830-1056	Run 2 12/16/20 1230-1456	Run 3 12/17/20 0753-1017	Average
Volumetric Flow Rate (Rounded to 1000 CFM) ACFM DSCFM	188,000 146,000	178,000 139,000	171,000 133,000	179,000 139,000
Gas Temperature, °F	172	176	175	175
Gas Moisture Content, %v/v	3.4	2.8	3.0	3.1
Gas Composition, %v/v, dry Carbon Dioxide, CO_2 Oxygen, O_2 Nitrogen, N_2 (by difference)	3.1 17.9 79.1	2.4 18.5 79.2	2.7 18.3 79.1	2.7 18.2 79.1
Particulate Mass Rate, LB/HR				
Filterable Particulate	3.18	0.75	1.26	1.73
Filterable+Organic Cond.	3.40	1.00	1.60	2.00
Total Particulate (PM-10 Eq.)	3.89	1.67	1.95	2.50
Particulate Concentration, GR/DSCF Filterable Particulate Filterable+Organic Cond. Total Particulate (PM-10 Eq.)	0.0025 0.0027 0.0031	0.0006 0.0008 0.0014	0.0011 0.0014 0.0017	0.0014 0.0017 0.0021
Regulatory Units, LB/1000 LBS of Flue Gas Filterable Particulate Filterable+Organic Cond. Total Particulate (PM-10 Eq.)	0.0047 0.0050 0.0057	0.0012 0.0016 0.0026	0.0020 0.0026 0.0032	0.0026 0.0031 0.0038

Kingsford, MI Pace Project No. 20-04074

Test 1

Parameter Date of Run Time of Run Sample Duration (Minutes)	Run 1 12/15/20 0855-0955 60	Run 2 12/15/20 1045-1145 60	Run 3 12/15/20 1230-1401 60	Average
Stack Temperature (°F) Duct Moisture Content (%v/v)	682 13.9	695 20.4	713 22.1	697 18.8
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	40,000 17,900 15,400	42,900 19,000 15,100	42,500 18,500 14,500	41,800 18,500 15,000
Constituent Concentration, PPMv - Dry Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	13.9 13.3 <0.12	10.2 10.4 <0.13	13.1 9.37 <0.13	12.4 11.0 <0.12
Constituent Mass Rate, LB/HR Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	0.935 2.04 <0.024	0.673 1.57 <0.025	0.825 1.35 <0.025	0.811 1.65 <0.025
Corrected Constituent Concentrations, PPM, o Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	dry @ 10% Ox 12.9 12.3 <0.11	xygen 9.31 9.50 <0.11	11.4 8.17 <0.11	11.2 9.99 <0.11
Constituent Concentration, mg/dscm (Std to 7 Carbon Monoxide Sulfur Dioxide	0°F) 16.3 35.5	11.9 27.8	15.3 25.1	14.5 29.5

Detail Tables

Table 11

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling Disa Pouring - 324484 Test 1

Parameter Date of Run Time of Run	Run 1 12/9/20 0826-0954	Run 2 12/9/20 1015-1144	
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured) Carbon Dioxide	0.04	0.04	0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	0.04 20.60 77.68	20.47	0.04 20.59 77.65
Portable Oxygen Monitor Result Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	25.0	34.8	26.2
Moisture Content, %v/v	1.68	2.28	1.73
Moisture Content if Saturated, %v/v Relative Humidity, % rH	5.03 33%	4.89 47%	5.24 33%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.78	28.96 28.71	28.96 28.77

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 12

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling No. 6 HMP - 324632 Test 1

Parameter Date of Run Time of Run	Run 1 12/10/20 0720-0856	Run 2 12/10/20 0925-1052	Run 3 12/10/20 1210-1339
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	0.04 20.76 78.30	0.04 20.77 78.31	0.04 20.87 78.70
Portable Oxygen Monitor Result			
Time Weighted Average, $%O_2$	20.9	20.9	20.9
Moisture Collected, ml	15.7	15.8	7.0
Moisture Content, %v/v	0.90	0.88	0.40
Moisture Content if Saturated, %v/v Relative Humidity, % rH	4.06 22%	4.88 18%	5.64 7%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.86	28.96 28.86	28.96 28.92

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 13

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling No. 7 HMP - 324662 Test 1

Parameter Date of Run Time of Run	Run 1 12/8/20 0748-0927	Run 2 12/8/20 0959-1200	Run 3 12/8/20 1225-1341
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen	0.04 20.79	0.04 20.78	0.04 20.77
Nitrogen	78.41	78.38	78.32
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	13.6	10.8	11.6
Moisture Content, %v/v	0.77	0.80	0.87
Moisture Content if Saturated, %v/v Relative Humidity, % rH	5.07 15%	5.72 14%	5.94 15%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.88	28.96 28.87	28.96 28.86

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling Disa Pouring - 324678 Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run	1052-1210	1251-1406	1435-1550
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.87	20.94	20.94
Nitrogen	78.70	78.97	78.96
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	5.5	0.7	1.0
Moisture Content, %v/v	0.39	0.05	0.07
Moisture Content if Saturated, %v/v	2.65	1.91	2.24
Relative Humidity, % rH	15%	3%	3%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry ¹	28.96	28.96	28.96
Wet	28.92	28.95	28.95

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 14

Parameter

Date of Run

Time of Run

	•.•.		
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.83	20.80	20.72
Nitrogen	78.55	78.46	78.16
5			
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
	20.9	20.9	20.9
Moisture Collected, ml	8.2	9.7	15.1
Moisture Collected, III	0.2	5.7	13.1
Majatura Contant 8/11/1	0.59	0.70	1.08
Moisture Content, %v/v	0.59	0.70	1.00
Meisture Content if Seturated 0/1/4	2.06	2.26	2.30
Moisture Content if Saturated, %v/v			
Relative Humidity, % rH	28%	31%	47%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry ¹	28.96	28.96	28.96
Wet	28.90	28.88	28.84

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain

Major Gas Constituents - Ambient, % v/v

Dry Basis (as measured) **Carbon Dioxide**

Kingsford, MI Pace Project No. 20-04074

Major Gases and Moisture Results Main Plant Pouring & Cooling Disa Pouring - 324682 Test 1

Run 2

0.04

12/8/20

Table 15

Run 4

12/8/20

0.04

Run 3

12/8/20

0.04

0935-1153 1215-1342 1400-1527

Table 16

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling No. 5 HMP - 324848 Test 1

Parameter Date of Run Time of Run	Run 1 12/8/20 0750-0916	Run 2 12/8/20 0935-1150	Run 3 12/8/20 1206-1332
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04		0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	0.04 20.86 78.68	20.82	0.04 20.83 78.57
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	5.8	8.8	7.8
Moisture Content, %v/v	0.42	0.62	0.55
Moisture Content if Saturated, %v/v Relative Humidity, % rH	3.33 12%	3.48 18%	3.67 15%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.91	28.96 28.89	28.96 28.90

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 17

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Module Pouring & Cooling Exhaust - 334116 Test 1

Parameter Date of Run Time of Run	Run 1 12/10/20 0750-0917	Run 2 12/10/20 0940-1168	Run 3 12/10/20 1226-1352
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured) Carbon Dioxide	0.04	0.04	0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	0.04 20.76 78.29	0.04 20.91 78.87	0.04 20.79 78.40
Portable Oxygen Monitor Result Time Weighted Average, $\%O_2$	20.9	20.9	20.9
Moisture Collected, ml	15.3	2.9	12.5
Moisture Content, %v/v	0.91	0.18	0.77
Moisture Content if Saturated, %v/v Relative Humidity, % rH	4.33 21%	5.29 3%	6.22 12%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.86	28.96 28.94	28.96 28.88

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 18

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Module Pouring & Cooling Exhaust - 334176 Test 1

Parameter Date of Run Time of Run	Run 1 12/9/20 0815-0942	Run 2 12/9/20 1035-1205	Run 3 12/9/20 1228-1354
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured) Carbon Dioxide	0.04	0.04	0.04
Oxygen Nitrogen (by difference)	20.95 79.01	20.95 79.01	20.95 79.01
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	0.04 20.85 78.64	0.04 20.73 78.19	0.04 20.86 78.68
Portable Oxygen Monitor Result Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	6.1	14.2	5.7
Moisture Content, %v/v	0.47	1.04	0.42
Moisture Content if Saturated, %v/v Relative Humidity, % rH	3.64 13%	3.90 27%	4.27 10%
Molecular Weight of Flue Gas, lb/lb-mole Dry ¹ Wet	28.96 28.91	28.96 28.85	28.96 28.91

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Kingsford, MI Pace Project No. 20-04074 Table 19 Major Gases and Moisture Results Cupola Baghouse Exhaust Test 1

Parameter Date of Run Time of Run	Run 1 12/16/20 0830-1056	Run 2 12/16/20 1230-1456	Run 3 12/17/20 0753-1017
Major Gas Constituents - Instrumental, % v/v Dry Basis (as measured) Carbon Dioxide Oxygen Nitrogen (by difference)	3.09 17.85 79.06	2.38 18.45 79.17	2.69 18.25 79.06
Wet Basis (calculated) Carbon Dioxide Oxygen Nitrogen	2.99 17.25 76.39	2.31 17.93 76.94	2.61 17.71 76.72
Portable Oxygen Monitor Result Time Weighted Average, %O ₂	18.2	18.3	18.0
Moisture Collected, ml	75.0	70.8	60.1
Moisture Content, %v/v	3.38	2.82	2.95
Moisture Content if Saturated, %v/v Relative Humidity, % rH	44.63 8%	48.85 6%	47.05 6%
Molecular Weight of Flue Gas, lb/lb-mole Dry Wet	29.21 28.83	29.12 28.81	29.16 28.83

Table 20

Kingsford, MI Pace Project No. 20-04074

Major Gases and Moisture Results Cupola Baghouse Inlet Test 1

Time of Run 0905-0955 1047-1157 1317-14 Sample Duration, Minutes 40 56	45
Average Flue Gas Temperature, °F6806806	696
Major Gas Constituents - Instrumental, % v/v Dry Basis (as measured)	
	.30
	.40
Nitrogen (by difference)79.4779.2779	.30
Wet Basis (calculated)	
	.38
Oxygen 8.49 7.12 6	.40
Nitrogen 73.66 63.06 60	.48
	.21
Sample Volume, Dry Standard, Ft ³ 22.61 30.71 25	.38
	7.8
Moisture Content of Gas Stream, %v/v7.3120.4523	.73
Moisture Content if Saturated, %v/v NA (>BP) NA (>BP) NA (>EP) NA	3P)
Relative Humidity, % rH NA (>BP) NA (>BP) NA (>BP)	,
Molecular Weight of Flue Gas, lb/lb-mole	.30
Wet 29.29 27.74 27	.38

Table 21

Kingsford, MI Pace Project No. 20-04074

Major Gases and Moisture Results Cupola Baghouse Inlet Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/16/20 0845-0955 45	Run 2 12/16/20 1240-1336 46	Run 3 12/17/20 0800-0910 60
Average Flue Gas Temperature, °F	687	693	679
Major Gas Constituents - Instrumental, % v/v Dry Basis (as measured)			
Carbon Dioxide	11.60	11.10	10.79
Oxygen	8.95	9.55	9.75
Nitrogen (by difference)	79.45	79.35	79.46
Wet Basis (calculated)			
Carbon Dioxide	9.96	9.52	9.38
Oxygen	7.69	8.19	8.47
Nitrogen	68.24	68.05	69.05
Sample Volume, Meter Conditions, Ft ³	25.27	25.12	33.95
Sample Volume, Dry Standard, Ft ³	25.28	25.02	33.31
Moisture Collected, ml	88.2	88.3	106.7
Moisture Content of Gas Stream, %v/v	14.11	14.24	13.10
Moisture Content if Saturated, %v/v	NA (>BP)	NA (>BP)	NA (>BP)
Relative Humidity, % rH	NA (>BP)	NA (>BP)	NA (>BP)
Molecular Weight of Flue Gas, lb/lb-mole Dry Wet	30.21 28.49	30.16 28.43	30.12 28.53
	20.40	20.40	20.00

Table 22

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling Disa Pouring - 324484 Test 1

Parameter Date of Run Time of Run	Run 1 12/9/20 0826-0954	Run 2 12/9/20 1015-1144	Run 3 12/9/20 1205-1334
Sample Duration, Minutes	84	84	84
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	90.1 1.7	89.2 2.3	91.4 1.7
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	9.53 NR NR	11.58 NR NR	14.26 NR NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	8,320 7,560 7,430	8,460 7,710 7,530	8,470 7,690 7,550
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	70.38 68.84	73.54 70.23	73.85 70.08
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0025	0.0031
Particulata Emission Pata I R/UP			

Particulate Emission Rate, LB/HR			
Filterable Particulate	0.14	0.16	0.20

Table 23

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling No. 6 HMP - 324632 Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/10/20 0720-0856 84	Run 2 12/10/20 0925-1052 84	Run 3 12/10/20 1210-1339 84
Average Flue Gas Temperature, °F	83.7	89.5	94.1
Moisture Content of Flue Gas, %v/v	0.9	0.9	0.4
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch Volumetric Flow Rate (Rounded to 10 CFM)	11.25 NR NR	12.19 NR NR	16.17 NR NR
ACFM	4,370	4,550	4,480
SCFM	4,060	4,180	4,090
DSCFM	4,030	4,150	4,070
Sample Volume, Meter Conditions, Ft ³	82.92	84.98	85.33
Sample Volume, Dry Standard, Ft ³	81.63	83.48	82.04
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0023	0.0030

Particulate Emission Rate, LB/HR			
Filterable Particulate	0.073	0.080	0.106

Table 24

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling No. 7 HMP - 324662 Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/8/20 0748-0927 96	Run 2 12/8/20 0959-1200 72	Run 3 12/8/20 1225-1341 72
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	90.7 0.8	94.5 0.8	95.8 0.9
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	39.06 NR NR	32.48 NR NR	25.37 NR NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	8,650 7,930 7,870	8,830 8,040 7,980	8,740 7,950 7,880
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	86.19 82.86	66.30 63.12	66.20 62.16
Particulate Concentration, GR/DSCF Filterable Particulate	0.0073	0.0079	0.0063
Particulate Emission Rate, LB/HR			

Particulate Emission Rate, LB/HR			
Filterable Particulate	0.49	0.54	0.43

Table 25

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling Disa Pouring - 324678 Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run	1052-1210		
Sample Duration, Minutes	72	72	72
Average Flue Gas Temperature, °F	70.6	61.1	65.6
Moisture Content of Flue Gas, %v/v	0.4	0.1	0.1
Particulate Collected, mg			
Dry Catch	18.78	15.16	20.93
Inorganic Wet Catch	NR	NR	NR
Organic Wet Catch	NR	NR	NR
Volumetric Flow Rate (Rounded to 100 CFM)			
ACFM	17,700	17,400	17,500
SCFM	16,700	16,700	16,800
DSCFM	16,700	16,700	16,700
Sample Volume, Meter Conditions, Ft ³	70.50	70.98	71.23
Sample Volume, Dry Standard, Ft ³	65.89	65.52	65.80
Particulate Concentration, GR/DSCF			
Filterable Particulate	0.0044	0.0036	0.0049
Particulate Emission Rate, LB/HR			

Particulate Emission Rate,	LB/HF
Filterable Particulate	

0.63 0.51 0.70

Table 26

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling Disa Pouring - 324682 Test 1

Parameter	Run 2	Run 3	Run 4
Date of Run	12/8/20	12/8/20	12/8/20
Time of Run	0935-1153		
Sample Duration, Minutes	84	84	84
Average Flue Gas Temperature, °F	63.5	66.0	66.6
Moisture Content of Flue Gas, %v/v	0.6	0.7	1.1
Particulate Collected, mg			
Dry Catch	5.10	4.89	5.56
Inorganic Wet Catch	NR	NR	NR
Organic Wet Catch	NR	NR	NR
Volumetric Flow Rate (Rounded to 100 CFM)			
ACFM	14,800	14,700	14,900
SCFM	14,300	14,100	14,300
DSCFM	14,200	14,000	14,100
Sample Volume, Meter Conditions, Ft ³	66.45	66.05	66.63
Sample Volume, Dry Standard, Ft ³	65.40	64.48	65.26
Particulate Concentration CR/DSCE			
Particulate Concentration, GR/DSCF Filterable Particulate	0.00120	0.00117	0.00131
Particulate Emission Rate, LB/HR			

Filterable Particulate

0.15 0.14 0.16

Table 27

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling No. 5 HMP - 324848 Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/8/20 0750-0916 84	Run 2 12/8/20 0935-1150 84	Run 3 12/8/20 1206-1332 84
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	77.4 0.4	78.8 0.6	80.4 0.6
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	19.55 NR NR	16.92 NR NR	16.57 NR NR
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	10,800 10,100 10,100	11,000 10,300 10,200	11,000 10,200 10,200
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	66.14 65.38	67.42 66.15	67.75 65.95
Particulate Concentration, GR/DSCF Filterable Particulate	0.0046	0.0039	0.0039
Particulate Emission Rate, LB/HR			

Filterable Particulate

0.35 0.34

0.40

Table 28

Kingsford, MI Pace Project No. 20-04074 Particulate Results Module Pouring & Cooling Exhaust - 334116 Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/10/20 0750-0917 84	Run 2 12/10/20 0940-1168 84	Run 3 12/10/20 1226-1352 84
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	85.8 0.9	92.1 0.2	97.3 0.8
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	17.36 NR NR	19.57 NR NR	11.73 NR NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	7,590 7,040 6,980	7,440 6,830 6,810	7,470 6,790 6,740
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	79.59 78.61	78.35 76.33	78.90 75.92
Particulate Concentration, GR/DSCF Filterable Particulate	0.0034	0.0040	0.0024

Particulate Emission Rate, LB/HR			
Filterable Particulate	0.20	0.23	0.14

NR=Not required or not requested.

Table 29

Kingsford, MI Pace Project No. 20-04074 Particulate Results Module Pouring & Cooling Exhaust - 334176 Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run		1035-1205	
Sample Duration, Minutes	84	84	84
Average Flue Gas Temperature, °F	80.1	82.3	85.0
Moisture Content of Flue Gas, %v/v	0.5	1.0	0.4
Particulate Collected, mg			
Dry Catch	15.63	11.30	12.09
Inorganic Wet Catch	NR	NR	NR
Organic Wet Catch	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM)			
ACFM	3,920	4,080	4,100
SCFM	3,650	3,780	3,780
DSCFM	3,630	3,740	3,770
Sample Volume, Meter Conditions, Ft ³	63.41	66.27	66.85
Sample Volume, Dry Standard, Ft ³	61.41	63.66	63.74
Derticulate Concentration OD/DOOF			
Particulate Concentration, GR/DSCF Filterable Particulate	0.0039	0.0027	0.0029
Particulate Emission Rate, LB/HR			

1	articulate Emission Nate, ED/1	
	Filterable Particulate	

0.122 0.088 0.094

NR=Not required or not requested.

Kingsford, MI Pace Project No. 20-04074 Particulate Results Cupola Baghouse Exhaust Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1 12/16/20 0830-1056 120	Run 2 12/16/20 1230-1456 120	Run 3 12/17/20 0753-1017 120
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	172.5 3.4	176.5 2.8	174.7 3.0
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	16.6 2.6 1.1	4.7 4.2 1.6	6.6 1.9 1.8
Volumetric Flow Rate (Rounded to 1000 CFM) ACFM SCFM DSCFM	188,000 151,000 146,000	178,000 143,000 139,000	171,000 137,000 133,000
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	106.70 100.96	123.14 114.85	98.98 92.94
Particulate Concentration, GR/DSCF Filterable Particulate Inorganic Condensables Organic Condensables Filterable+Organic Cond. Total Particulate (PM-10 Eq.) (F+I+O)	0.0025 0.0004 0.0002 0.0027 0.0031	0.0006 0.0006 0.0002 0.0008 0.0014	0.0011 0.0003 0.0003 0.0014 0.0017
Particulate Emission Rate, LB/HR Filterable Particulate Inorganic Condensables Organic Condensables Filterable+Organic Cond. Total Particulate (PM-10 Eq.) (F+I+O)	3.18 0.49 0.22 3.40 3.89	0.75 0.67 <u>0.25</u> 1.00 1.67	1.26 0.35 0.34 1.60 1.95

NR=Not required or not requested.

Table 30

Kingsford, MI Pace Project No. 20-04074 Table 31 Opacity Observations Cupola Building - East Side Test 1, Run 1

Per	rcent Opaci	ity O	ptical Densi	ity Relative Frequency
	0		0.000	99.17
	5		0.022	0.83
	10		0.046	0.00
	15		0.071	0.00
	20		0.097	0.00
	25		0.125	0.00
	30		0.155	0.00
	35		0.187	0.00
	40		0.222	0.00
	45		0.260	0.00
	50		0.301	0.00
	55		0.347	0.00
	60		0.398	0.00
	65		0.456	0.00
	70		0.523	0.00
	75		0.602	0.00
	80		0.699	0.00
	85		0.824	0.00
	90		1.000	0.00
	95		1.301	0.00
	99		2.000	0.00
Average >	0.0		0.000	Total > 100
				: High Six Minute Average: 0.2
<u>Period</u>	<u>Opacity</u>	<u>Period</u>	<u>Opacity</u>	Maximum reading: 5.0
1	0.2	6	0.0	Minumum reading: 0.0
2	0.0	7	0.0	
3	0.2	8	0.0	Observer: Zachary Eckstrom
4	0.0	9	0.0	Date of test: 12/16/2020
5	0.0	10	0.0	Time of test: 1010-1110

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

Kingsford, MI Pace Project No. 20-04074 Table 32 Opacity Observations Cupola Building - South Side Test 1, Run 2

Ре	rcent Opacit	ty C	Optical Densi	ity Relative Frequency
	0	-	0.000	100.00
	5		0.022	0.00
	10		0.046	0.00
	15		0.071	0.00
	20		0.097	0.00
	25		0.125	0.00
	30		0.155	0.00
	35		0.187	0.00
	40		0.222	0.00
	45		0.260	0.00
	50		0.301	0.00
	55		0.347	0.00
	60		0.398	0.00
	65		0.456	0.00
	70		0.523	0.00
	75		0.602	0.00
	80		0.699	0.00
	85		0.824	0.00
	90		1.000	0.00
	95		1.301	0.00
	99		2.000	0.00
-				
Average >	0.0		0.000	Total > 100
	city Por Soa	untial Six M	linute Period	High Six Minute Average: 0.0
Period	Opacity	Period	Opacity	Maximum reading: 0.0
<u>1 enou</u>	0.0	<u>1 enou</u> 6	0.0	Minumum reading: 0.0
2	0.0	0 7	0.0	
2	0.0	8	0.0	Observer: Zachary Eckstrom
3 4	0.0	8 9	0.0	Observer: Zachary Eckstrom Date of test: 12/16/2020
4	0.0	Э	0.0	Date 01 lest. 12/10/2020

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

10

5

0.0

0.0

Time of test: 1010-1110

Kingsford, MI Pace Project No. 20-04074 Table 33 Opacity Observations Cupola Building - West Side Test 1, Run 3

Percent Opacity Optical Density Relative Frequency 0 0.000 71.67 5 0.022 27.50 10 0.046 0.83 15 0.071 0.00 20 0.097 0.00 25 0.125 0.00 30 0.155 0.00 35 0.187 0.00 40 0.222 0.00 45 0.260 0.00 50 0.301 0.00 55 0.347 0.00 60 0.398 0.00 65 0.456 0.00 70 0.523 0.00 80 0.699 0.00 85 0.824 0.00 90 1.000 0.00 95 1.301 0.00	D	orcont Onaci	ty C	Intical Donei	ity Pol	ativo Eroqu	onev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	-	iy C	•		-	ency
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
800.6990.00850.8240.00901.0000.00951.3010.00992.0000.00							
850.8240.00901.0000.00951.3010.00992.0000.00							
901.0000.00951.3010.00992.0000.00							
951.3010.00992.0000.00							
99 2.000 0.00							
		95					
verge > 15 0.006 Total > 100		99		2.000		0.00	_
	Average >	1.5		0.006	Total >	100	
	Average >	80 85 90 95 99		0.699 0.824 1.000 1.301 2.000	- Total >	0.00 0.00 0.00 0.00 0.00	
	• ·	• •			-	-	
erage Opacity Per Sequential Six Minute Period: High Six Minute Average: 3.8						-	
PeriodOpacityPeriodOpacityMaximum reading:10.0					ivinumum rea	ading:	0.0
PeriodOpacityPeriodOpacityMaximum reading:10.010.860.0Minumum reading:0.0	2	1.9	7	1.9	1		

2	1.9	7	1.9	
3	2.3	8	3.3	Observer: Zachary Eckstrom Date of test: 12/16/2020
4	0.0	9	3.1	Date of test: 12/16/2020
5	0.2	10	1.0	Time of test: 1355-1455

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

Grede, LLC - Iron Mour	tain Table 34
Kingsford, MI Pace Project No. 20-04074	Preliminary Airflow Measurements Main Plant Pouring & Cooling Disa Pouring - 324484 Test 1
Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.43
Static Pressure, Inches WC	-1.50
Absolute Gas Pressure (In. Hg)	28.32
Average Gas Temperature, °F	84
Moisture Determination Procedure	Wet/Dry Bulb
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb Dry Wet	b/lb-mole 29.0 28.9
Flue Gas Average Velocity, FPS	43.34
Duct Cross-sectional Area, Sq. Ft.	3.14
Volumetric Flow Rate (Rounded to 100 ACFM	CFM) 8,200
SCFM	7,500
DSCFM	7,400

Grede, LLC - Iron Mountain Kingsford, MI Preliminary Airf Pace Project No. 20-04074 Main Plant Pouring & Cooling I	Table 35 flow Measurements No. 6 HMP - 324632 Test 1
Parameter Date of Run	Run 1 12/7/20
Time of Measurement	1500
Barometric Pressure, Inches Hg	28.64
Static Pressure, Inches WC	-0.35
Absolute Gas Pressure (In. Hg)	28.61
Average Gas Temperature, °F	92
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	23.54
Duct Cross-sectional Area, Sq. Ft.	3.14

Volumetric Flow Rate
ACFM(Rounded to 10 CFM)4,440SCFM4,060DSCFM4,020

Table 36

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements Main Plant Pouring & Cooling No. 7 HMP - 324662 Test 1

Parameter Date of Run	Run 1 12/8/20
Time of Measurement	0830
Barometric Pressure, Inches Hg	28.65
Static Pressure, Inches WC	-0.50
Absolute Gas Pressure (In. Hg)	28.61
Average Gas Temperature, °F	85
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	41.40
Duct Cross-sectional Area, Sq. Ft.	3.41
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	8,500
SCFM	7,800
DSCFM	7,800

-	Table 37 Airflow Measurements
Pace Project No. 20-04074 Main Plant Pouring & Cooling) Disa Pouring - 324678 Test 1
Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.45
Static Pressure, Inches WC	-0.25
Absolute Gas Pressure (In. Hg)	28.43
Average Gas Temperature, °F	71
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	32.56
Duct Cross-sectional Area, Sq. Ft.	9.62
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	18,800
SCFM	17,800
DSCFM	17,600

Grede, LLC - Iron Mountain Kingsford, MI Preliminary Airflow Pace Project No. 20-04074 Main Plant Pouring & Cooling Disa F	
Parameter Date of Run	Run 1 12/7/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.63
Static Pressure, Inches WC	-0.45
Absolute Gas Pressure (In. Hg)	28.60
Average Gas Temperature, °F	69
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	23.83
Duct Cross-sectional Area, Sq. Ft.	9.62
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	13,800
SCFM	13,100
DSCFM	13,000

Grede, LLC - Iron Mountain	
Kingsford, MI	Preliminar

Table 39

Test 1

Kingsford, MI	Preliminary Airflow Measurements
Pace Project No. 20-04074	Main Plant Pouring & Cooling No. 5 HMP - 324848
	Tost 1

Parameter Date of Run	Run 1 12/7/20
Time of Measurement	1435
Barometric Pressure, Inches Hg	28.64
Static Pressure, Inches WC	2.00
Absolute Gas Pressure (In. Hg)	28.79
Average Gas Temperature, °F	75
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	61.68
Duct Cross-sectional Area, Sq. Ft.	3.14
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	11,600
SCFM	11,000
DSCFM	10,900

Grede, LLC - Iron Mountain Kingsford, MI Pace Project No. 20-04074	Table 40 Preliminary Airflow Measurements Module Pouring & Cooling Exhaust - 334116 Test 1
Parameter Date of Run	Run 1 12/10/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.69
Static Pressure, Inches WC	-0.07
Absolute Gas Pressure (In. Hg)	28.68
Average Gas Temperature, °F	75
Moisture Determination Procedure	Wet/Dry Bulb
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	24.54
Duct Cross-sectional Area, Sq. Ft.	4.91
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	7,200
SCFM	6,800
DSCFM	6,800

Grede, LLC - Iron Mountain Kingsford, MI Pace Project No. 20-04074	Table 41 Preliminary Airflow Measurements Module Pouring & Cooling Exhaust - 334176 Test 1
Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0750
Barometric Pressure, Inches Hg	28.47
Static Pressure, Inches WC	-0.14
Absolute Gas Pressure (In. Hg)	28.46
Average Gas Temperature, °F	75
Moisture Determination Procedure	Wet/Dry Bulb
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	11.89
Duct Cross-sectional Area, Sq. Ft.	4.91
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	3,500
SCFM	3,300
DSCFM	3,300

Kingsford, MI Pace Project No. 20-04074

Table 42 Airflow Measurement Results Cupola Baghouse Inlet Test 1

Parameter Date of Run	Run 1 12/15/20	Run 2 12/15/20	Run 3 12/15/20	Run 4 12/15/20
Time of Measurement	0845	1030	1200	1400
Barometric Pressure, Inches Hg	29.11	29.11	29.11	29.11
Static Pressure, Inches WC	-1.25	-1.26	-1.93	-1.14
Absolute Gas Pressure (In. Hg)	29.01	29.01	28.96	29.02
Average Gas Temperature, °F	684	680	710	715
Corresponding M-4 Run Number	1	2	2	3
Average Moisture Content, %v/v	7.3	20.4	20.4	23.7
Gas Molecular Weight (Gas Data?), lb/lb-mole Dry Wet	30.19 29.29	30.24 27.74	30.24 27.74	30.30 27.38
Flue Gas Average Velocity, FPS	51.83	54.25	59.50	53.19
Duct Cross-sectional Area, Sq. Ft.	12.57	12.57	12.57	12.57
Volumetric Flow Rate (Rounded to 100 CFM)				
ACFM	39,100	40,900	44,900	40,100
SCFM	17,500	18,400	19,600	17,500
DSCFM	16,200	14,600	15,600	13,300

Kingsford, MI Pace Project No. 20-04074

Parameter	Run 1	Run 2	Run 3
Date of Run	12/16/20	12/16/20	12/17/20
Time of Measurement	0730	1200	0730
Barometric Pressure, Inches Hg	28.86	28.86	28.82
Static Pressure, Inches WC	-1.62	-1.34	-1.25
Absolute Gas Pressure (In. Hg)	28.74	28.76	28.73
Average Gas Temperature, °F	735	684	694
Corresponding M-4 Run Number	1	2	3
Average Moisture Content, %v/v	14.1	14.2	13.1
Gas Molecular Weight (Instrumental), lb/lb-mole			
Dry	30.21	30.16	30.12
Wet	28.49	28.43	28.53
Flue Gas Average Velocity, FPS	55.76	53.54	50.69
Duct Cross-sectional Area, Sq. Ft.	12.57	12.57	12.57
Volumetric Flow Rate (Rounded to 100 CFM)			
ACFM	42,000	40,400	38,200
SCFM	17,900	17,900	16,800
DSCFM	15,300	15,400	14,600

Report Date 2/5/2021

Process Description

The Grede, LLC - Iron Mountain (Grede) facility produces gray iron castings, typically for industrial machinery and various transportation industry customers. The major processes at Grede include raw material handling (metals, fluxes, and metallurgical coke), metal melting, mold and core production, casting and finishing.

Grede operates a main foundry and a module foundry under one roof. A single WRIB Company high efficiency cupola (EU-P009) provides all of the molten iron used by the main and module foundry. The cupola has a maximum melt rate of 20 tons per hour. Molten iron is stored in an electric holding furnace with a capacity of 28 tons prior to pouring. Emission control equipment for the cupola exhaust includes four natural gas afterburners for VOC and CO, a low efficiency scrubber (quench tank) for SO₂, and a Hartzell Engineering Corp. baghouse for particulate.

Test related process and operational details were recorded by Grede personnel and included in Appendix E of the report.

Test Procedures

EPA Method 1 specifies test location acceptability criteria and defines the minimum number of traverse points for representative sampling. Linear measurements from upstream and downstream flow disturbances and the duct equivalent diameter are compared and the distances related to number of diameters. A flow disturbance can be defined as anything that changes or upsets the direction of flow within the duct including bends, dampers, fans, shape or size transitions, and open flames. Method 1 stipulates that test ports should be located at least eight diameters downstream and two diameters upstream of any flow disturbance. The minimum acceptable criteria are two diameters downstream and 0.5 diameters upstream of flow. Once the distances have been determined, the values are used to select the minimum number of traverse points for representative sampling. Shorter distances require a greater number of traverse points. The test site configuration and measurement details are documented on EPA Method 1 Field Data Sheet.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 2 defines procedures used to measure linear velocity and volumetric flow rate of a confined gas stream. Using traverse points determined by EPA Method 1, multiple differential pressure measurements (pitot impact opening versus static pressure) are made using a pitot tube and differential pressure gauge. The individual measurements are averaged and combined with the gas density to calculate the average gas velocity. The velocity and duct cross-sectional area are used to calculate the volumetric flow rate. The volumetric flow rate is expressed as actual cubic feet per minute (ACFM), standard cubic feet per minute (SCFM), and dry standard cubic feet per minute (DSCFM). The technician maintains comprehensive test records on EPA Method 2 Field Data Sheet. Details of the equipment used to measure gas velocity include:

Pitot Tube: Differential Pressure Gauge: Temperature Device: Barometer Type: Gas Density Determination: Gas Moisture Determination: S-Type Oil or Electronic Digital Manometer Type K Thermocouple Electronic Digital Barometer EPA Method 3 EPA Method 4

Method Defined Quality Control:

- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 3 Ambient Provision allows the use of published or ambient gas concentrations (dry molecular weight of 28.96 LB/LB-mole) in cases where the source gas is free of combustion components. Ambient gas concentrations result in a dry molecular weight of 28.96 (29.0) LB/LB-mole.

		Molecular	
Gas Constituent	% v/v	Weight	LB/LB -mole
Nitrogen, N ₂	78.08	28.01	21.87
Oxygen, O ₂	20.95	32	6.70
Argon, Ar	0.93	39.95	0.37
Carbon Dioxide, CO2	0.038	44.01	0.02
Sum of Gas Constituents			28.96

Modified EPA Method 3/3A defines procedures to quantify carbon dioxide (CO₂) and oxygen (O₂) concentrations from stationary combustion sources. An integrated gas sample is collected simultaneously with other emissions testing. Sample gases are extracted from an emission stream at a constant rate over the course of a test period equal to other test constituents. A TedlarTM, aluminized MylarTM, or other inert material bag contains the collected gas sample prior to sample analyses. Instrumental gas analyzers compliant to EPA Method 3A quantify the CO₂ and O₂ concentrations. Three point instrument calibrations (zero, mid, and high span) are performed to certify the instruments for gas analyses. The technician maintains comprehensive test records on EPA Method 3 and Gas Analysis Field Data Sheets. Equipment used for measuring gas composition includes:

Filter Material:	Glass-fiber Filter or equivalent
Moisture removal:	Condenser and/or sorbent
Bag Material:	Tedlar [™] or Aluminized Mylar [™] or equivalent
Gas Analyzer:	Non-dispersive Infrared Detector (CO ₂)
	Paramagnetic Detector (O ₂)
Calibration Gases:	EPA Protocol 1

Method Defined Quality Control:

- Sampling bag leak check.

Pace FSD conducts the method as written with the following routine sampling deviation:

In the field, the gas sample is analyzed within two hours of collection using a portable O_2 detector. At a later time, potentially outside of the eight hour hold period, the gas sample is re-analyzed using an EPA Method 3A (Orsat) gas analyzer to quantify CO_2 and O_2 concentrations.

The preliminary analysis result from the portable O_2 detector is used to validate the Orsat results. The results are acceptable when the O_2 result from the field and the O_2 result from the lab differ by $\leq 0.3\%$.

EPA Method 4 - Isokinetic defines procedures to measure the moisture content of emission gas streams from stationary sources. The moisture content of the gas stream is determined in conjunction with an isokinetic sampling train. Collected water condensate is measured from the back half of the isokinetic train. Method 4 equations convert the condensed liquid volume to a gas volume. The water vapor volume compared with the dry standard gas volume collected through the isokinetic train determines the moisture content of the emissions gas stream and is reported in percent by volume. Test records are included on the associated isokinetic method data sheet. Equipment used for measuring moisture content includes:

Probe Material:	Borosilicate glass or Stainless Steel
Filter Media:	Glass or Quartz fiber
Impinger Train Material:	Borosilicate Glass
Desiccant:	Drierite
Condensate Measure:	Graduated Cylinder or Electronic Scale
Desiccant Measure:	Electronic Scale

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 5 defines procedures to measure particulate emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating procedures from EPA Methods 2, 3, and 4, a sample gas stream is isokinetically drawn from the emission stream. The particulate dry fraction collects in the sampling probe and on a quartz or glass-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is empty. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. The impinger contents can be discarded or saved for additional analyses. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Filter Holder Material: Filter Media:	Stainless Steel and Borosilicate Glass Borosilicate Glass with glass or Teflon support Quartz or Glass-fiber, >99.95% efficient at 0.3µm
Impinger Train Material:	Borosilicate Glass
Impinger Reagents:	Deionized Water
Recovery Reagents:	Acetone
	Deionized water
Control Train:	Gas meter, orifice, differential pressure
	gauges, pump, valves, temperature monitors
Analytical Techniques:	and controllers Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).

- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 5D defines procedures to measure particulate emissions from positive pressure fabric filters in terms of concentration (mg/dscm or GR/DSCF) and emission rate (kg/HR or LB/HR). Using traverse points determined using EPA Method 1 or the alternative measurement sites specified in Method 5D, a sample gas stream is isokinetically withdrawn from the emission stream. For monovent sampling, the isokinetic rate is calculated from fabric filter inlet airflows. The particulate dry fraction collects on a glass-fiber filter. The probe and filter components of the sampling train are maintained at a temperature at or above the exhaust gas temperature up to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is dry. A desiccant packed drying column follows the impinger train temperature (outlet) at 68°F or less. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery.

The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Filter Holder Material: Filter Media:	Stainless Steel and Borosilicate Glass Borosilicate Glass Glass-fiber, >99.95% efficient at 0.3 µm
Impinger Train Material:	Borosilicate Glass
Impinger Reagents:	Deionized Water
Recovery Reagents:	Acetone
	Deionized Water
Control Train:	Gas meter, orifice, differential pressure
	gauges, pump, valves, temperature monitors & controllers
Analytical Techniques:	Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Pace FSD conducted this method with the following project situational deviations: Mass rates were calculated from inlet airflow measurements.

EPA Method 202 defines procedures to determine organic and inorganic condensable particulate matter (CPM) emissions from stationary sources. The CPM is collected in a condensate knock-out impinger and Teflon filter after filterable PM has been collected by either Method 5 or Method 201A. The gas stream is sample isokinetically following EPA Method 5 or Method 201A procedures. The gas stream is initially cooled with a spiral condenser using recirculated cool water to maintain a sample gas temperature of 85°F or less. Condensate from the spiral condenser collects in glass, stemless, dropout impingers. The intent of the condenser and dropout impinger is to minimize gas/water contact to reduce collection of unintended artifacts. The dropout impinger is followed by a second impinger to provide overflow capacity. A TeflonTM filter, also maintained at 85°F or less is used to collect any remaining organic CPM. The filter is followed by an iced, water prepared impinger and desiccant packed drying column to quantitatively collect remaining moisture. Immediately after sampling, the Method 202 CPM condensate is purged with nitrogen (N₂) to liberate dissolved sulfur dioxide (SO₂) gases. The contents of the dropout and backup impingers prior to the CPM filter are measured, weighed, and transferred to an appropriate sample bottle. CPM is quantitatively recovered with water, acetone, and hexane rinses. The CPM filter and water are extracted with hexane and combined with solvent rinses to determine the organic CPM. Following extraction, the water is dried and the residue measured as the inorganic CPM. The combination of both fractions represents the total condensable particulate matter (CPM). The train operator maintains comprehensive test records on appropriate Field Data Sheets.

Filter Holder Material:	Glass, Stainless Steel (316 or equivalent), or
	Fluoropolymer-coated Stainless Steel
Filter Media:	Teflon, >99.95% efficient at 0.3 um
Impinger Train Material:	Borosilicate Glass
Impinger Reagents:	Deionized Water
Recovery Reagents:	Acetone
	Hexane
	Deionized Water
Control Train:	EPA Method 5
Analytical Technique:	Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a threepoint "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 6C defines procedures to measure sulfur dioxide (SO₂) from stationary sources. A stainless steel sampling probe and a heat-traced TeflonTM sampling line draw a sample of the gas stream from the duct to a thermo-electric gas conditioner to remove moisture. The sample gas stream is delivered to a fluorescence gas analyzer to quantify SO₂ emissions. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 SO₂ standards specific to the target calibration range. A computerized data acquisition system logs SO₂ concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records on the electronic Project Results Instrumental Workbook. Equipment used for SO₂ testing includes:

Probe Material:

Stainless Steel

Moisture Removal:	Thermo-electric
Transfer Line:	Teflon™
Analytical Technique:	Fluorescence Detector
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of ≥ 2x the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 9 defines procedures to evaluate the opacity of the plume emitted from a source stack. An independently certified visible emissions observer visually estimates the opacity of the non-moisture plume from the source. The observer positions themselves with the sun (or other light source) at their back and perpendicular to the plume when directly facing the emission point. The observer must also ensure a clear and contrasting background behind the plume. The certified observer then estimates (based on certification trials) the percentage of the background blocked by the source plume (plume opacity) in increments of 5%. Observed opacity readings are recorded at 15-second intervals throughout the run. Tabulated results include run average and successive six-minute averages. The spreadsheet software also searches the data set for any group of 24 consecutive readings that yield the highest possible six-minute average. The train operator maintains comprehensive test records on the Visible Emission Observation Form. Details of the opacity evaluation are outlined below:

Evaluation Period:	One hour
Observation Frequency:	15 Seconds
No. of Observations:	240
No. of Six-minutes Averages:	10
Observer Certifications:	Semi-annual

Pace FSD conducts the method as written with no routine deviations.

In-Stack Method: Method 10 defines procedures to measure carbon monoxide (CO) emissions from stationary sources. A stainless steel sampling probe and a heat-traced Teflon[™] sampling line draw a sample of the gas stream from the duct to a thermoelectric gas conditioner to remove moisture. The sample gas stream is delivered to a gas filter correlation non-dispersive infrared analyzer to quantify CO concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 CO standards specific to the target calibration range. A computerized data acquisition system logs CO concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used to conduct Method 10 stack method testing includes:

Probe Material:	Stainless Steel
Moisture Removal:	Thermo-electric
Transfer Line:	Teflon™
Analytical Technique:	Non-dispersive Infrared
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\ge 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 25A defines procedures used to measure total hydrocarbons from stationary sources. A stainless steel sampling probe and heat-traced TeflonTM sampling line draw a sample of the gas stream from the duct directly to the analytical system. A total hydrocarbon monitor utilizing a flame ionization detector (FID) quantifies total hydrocarbon concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 propane (C₃H₈) standards specific to the target calibration range. A computerized data

acquisition system logs THC concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The analyzer results are multiplied by 3 to report results as carbon (C_1). The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used for THC testing includes:

Probe Material:	Stainless Steel
Transfer Line:	Teflon™, (heated)
Analytical Technique:	Flame Ionization Detector (FID)
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\ge 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducted the method as written with the following project deviations. Hexane was used as the calibration gas in place of propane to report results as hexane.

Reference Standards. Pace implements a comprehensive program to verify and validate reference standards to further enhance and support method standards. Primary reference standards are directly comparable to a reference base. The National Institute of Standards and Technology (NIST) maintains primary reference materials or very closely traceable secondary standards. These materials are then used to certify secondary or transfer standards for use in quality management programs. Secondary reference standards are calibrated with primary standards using a high precision comparator. Materials that have a documented path to the primary standard are often referred to as traceable to NIST or NIST traceable. Where commercially and feasibly available, Pace uses primary reference standards to perform calibrations and verifications. In other cases, Pace maintains traceable secondary reference standards. Primary and secondary reference standards are used to calibrate and verify equipment and materials. Pace reference standards are calibrated by external vendors that have a

formal, registered quality system. Calibrations are performed with equipment and materials that are traceable to NIST.

Quality Controls (not defined in test methods):

- Sampling/Recovery Reagents are Reagent Grade or better.
- Reference Temperature Simulator is calibrated annually.
- Reference Pressure Transducer is calibrated annually.
- Reference DryCal airflow meter is calibrated annually.
- Mercury Barometer is a primary reference standard.
- Liquid Manometers are primary reference standards.
- Angle Blocks, Gauge Blocks, and Measuring Rods are verified every five years.
- Angle Gauges are verified each day of use.
- Calipers are verified annually.
- Stainless steel reference weights are verified every five years.
- Analytical balances are calibrated annually and verified at each use.
- Field balances are calibrated annually and verified at each use.

Quality Management System. To produce data that is complete, representative, and of known precision and accuracy, Pace Analytical Field Services Division has designed and implemented a rigorous and innovative quality management system. The system was initially based on the USEPA Quality Assurance Handbook for Air Pollution Measurement Systems and continually developed as procedural complexities and standards progressed. The Field Services Division Quality Management System (Pace FSD QMS) is now accredited by the American Association of Laboratory Accreditation (A2LA) to comply with three national accreditation standards:

- ASTM D7036 Standard Practice for Competence of Air Emission Testing Bodies (AETB).
- ISO 17025 General Requirements for the Competence of Testing and Calibration Laboratories
- The NELAC Institute General Requirements for Field Sampling and Measurement Organizations (FSMO)

The Pace FSD QMS includes:

- Quality Programs
 - Ethics policy and training.
 - Corrective Action and Preventative Action (CAPA).
 - Continuous Process Improvement.
 - Documented Demonstrations of Capability.
 - Internal and third party proficiency testing.
 - Qualified Individual program (QI)
 - Internal and external audits.
 - Annual management reviews.
- Documentation and Traceability
 - High quality traceable standards and reagents.

- Reagent tracking and management system.
- Use of matrix spikes, duplicate analysis, internal standards, and blanks.
- Validated workbooks for data collection and results reporting.
- Electronic quality, training, and safety documents available in-field.
- Sample security and preservation procedures.
- Chain of custody maintained from sample collection through laboratory analysis.
- Equipment Calibration
 - Full time staff dedicated to equipment maintenance and calibration.

All equipment and instruments are calibrated by trained personnel on a frequency that meets or exceeds method requirements.

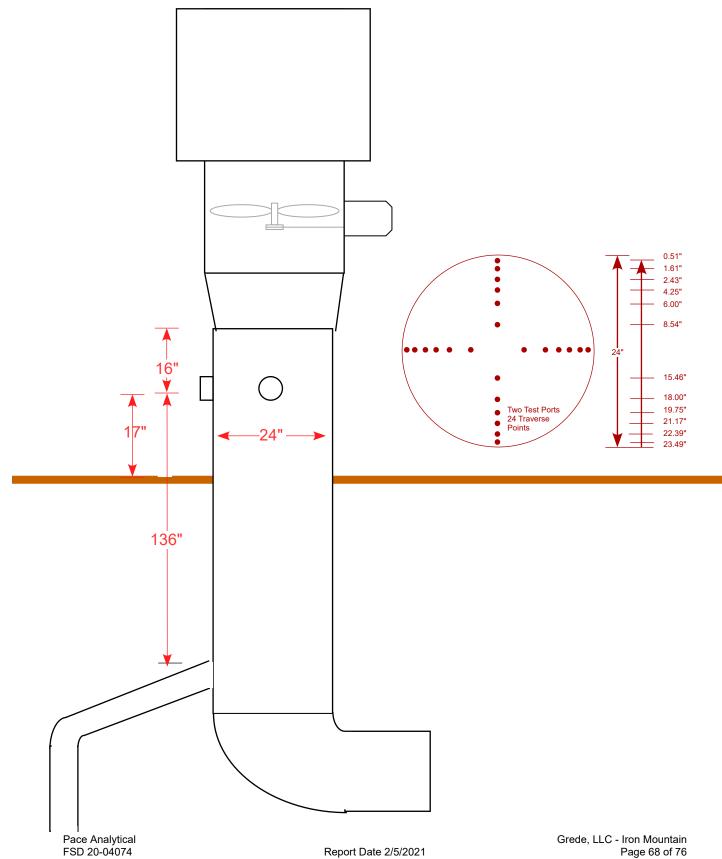


Figure 1 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling Disa Pouring (324484) tjb \ 12/2020

Figure 2 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling No. 6 HMP (324632) tjb \ 12/2020

Page 68 of 76

Figure 3 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling No. 7 HMP (324662) tjb\ 11/4/2019

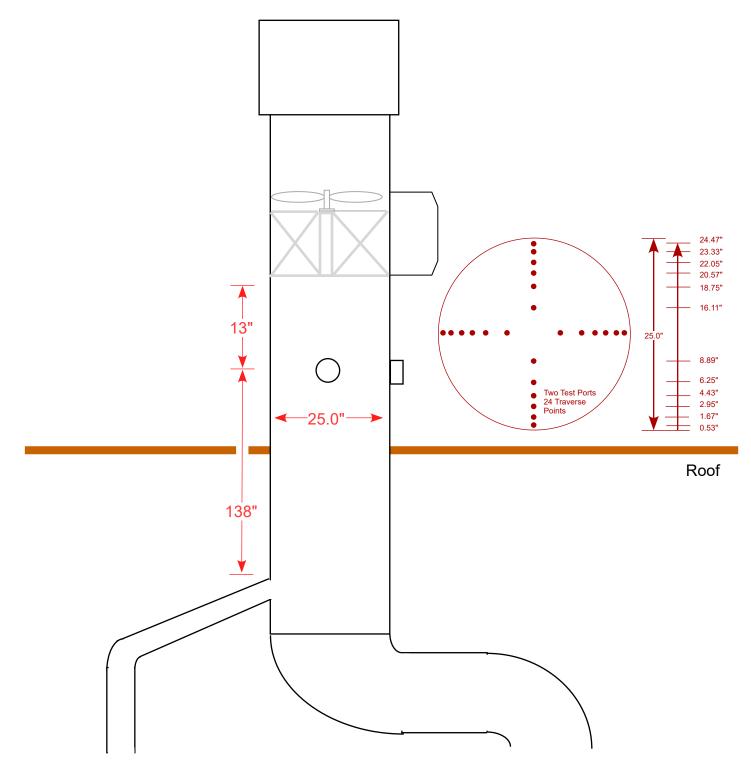


Figure 4 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling Disa Pouring (324678) tjb \ 11/4/2019

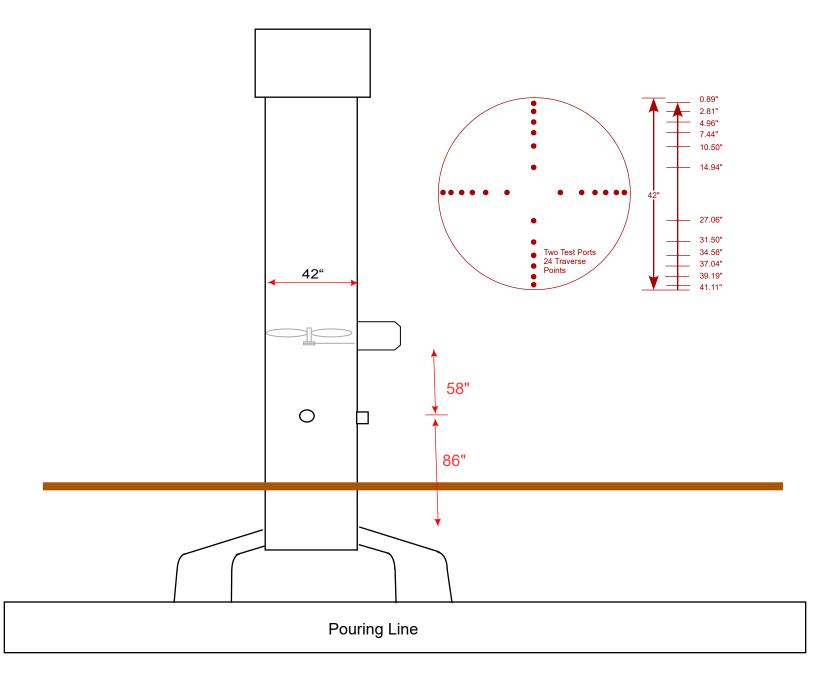


Figure 5 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling Disa Pouring (324682) tjb \ 12/2020

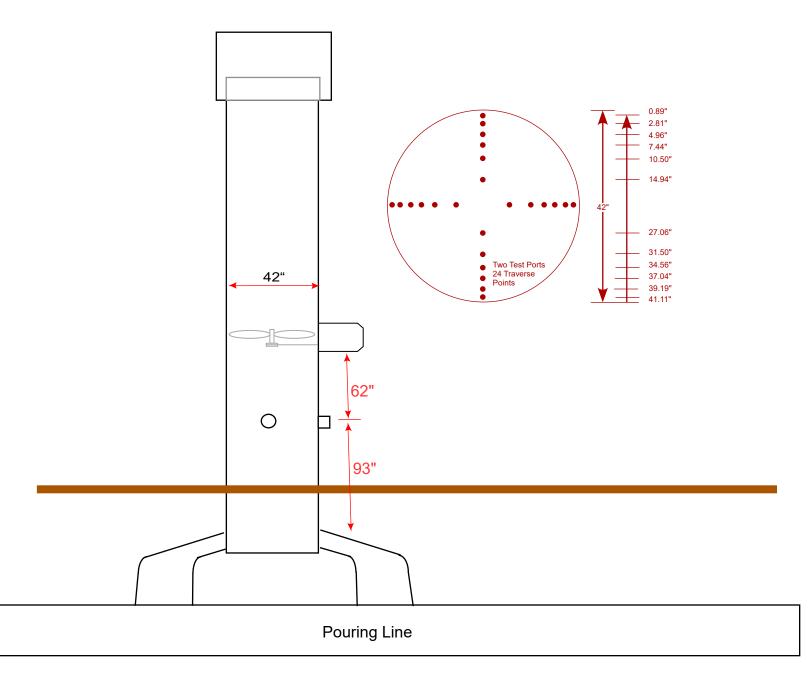
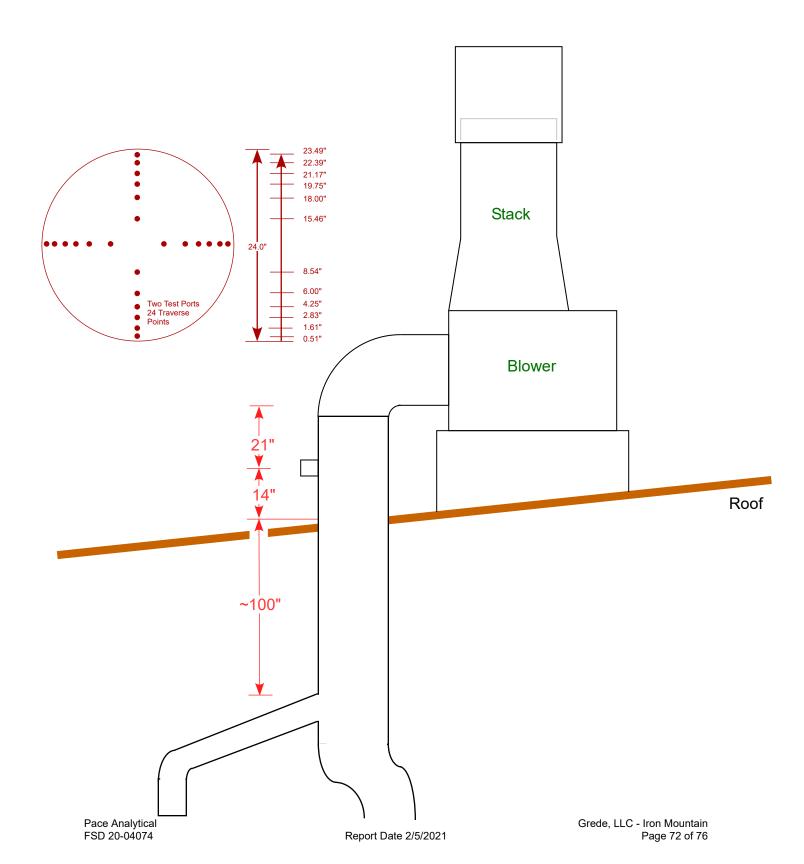
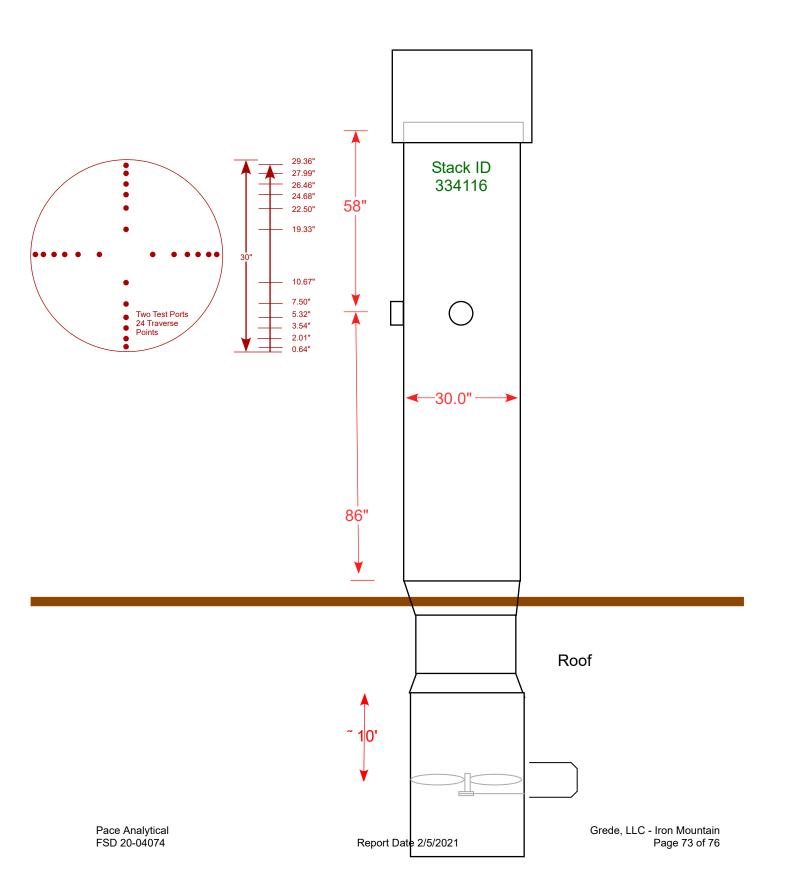


Figure 6 Grede, LLC - Iron Mountain Kingsford, MI Main Plant Pouring & Cooling No. 5 HMP (324848) tjb \ 12/2020

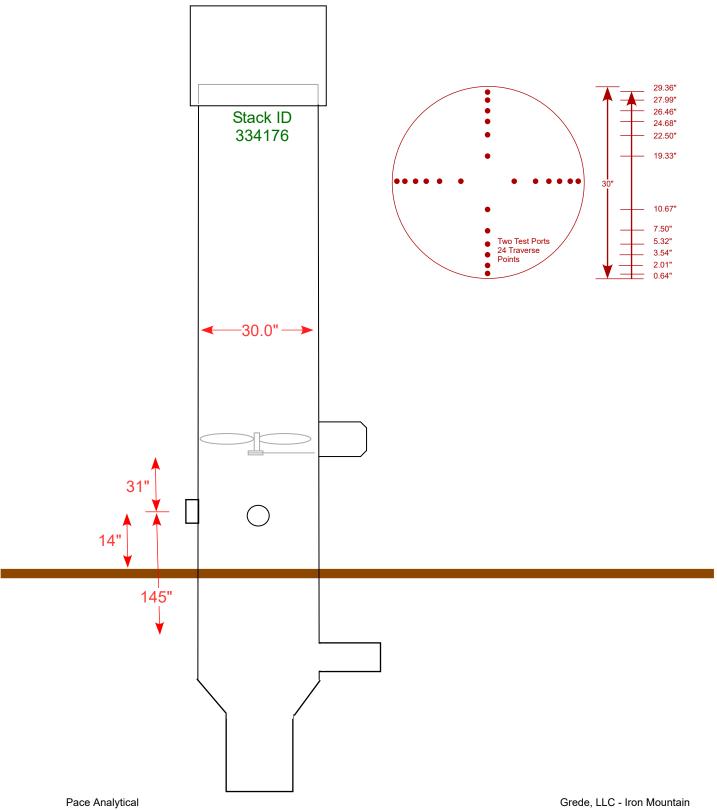


Figure 7 Grede, LLC - Iron Mountain Kingsford, MI Module Pouring & Cooling Exhaust (334116) tjb/ 12/2020

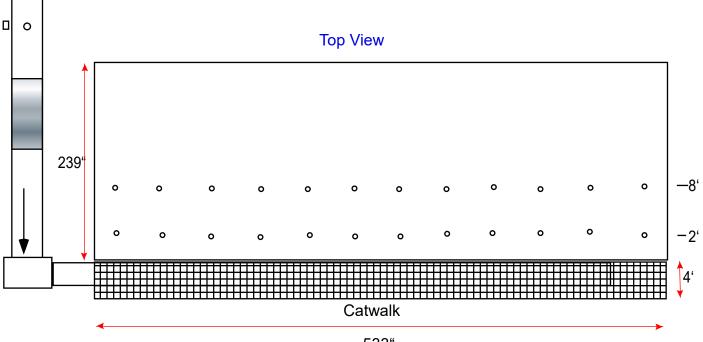


Figure 8 Grede, LLC - Iron Mountain Kingsford, MI Module Pouring & Cooling Exhaust (334176) tjb/ 11/4/2019

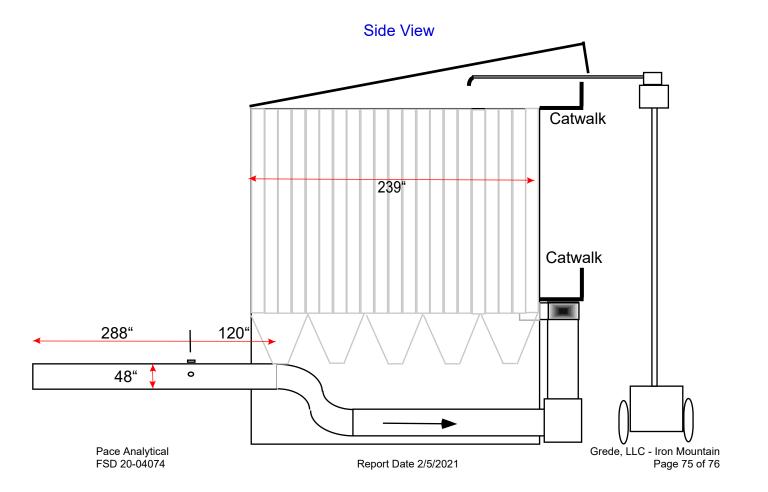


Figure 9 Grede, LLC - Iron Mountain Kingsford, MI Cupola Baghouse Exhaust (EU-P009) TJB \ 08/05

533"

Report Signatures

Field Testing and Reporting Performed by: Pace Analytical Services, LLC

Pace Analytical Services, LLC Field Services Division 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Field Testing Affirmation

All field testing was performed in accordance with stated test methods subject to modifications and deviations listed herein. Raw field data presented in this report accurately reflects results and information as recorded at the time of tests or otherwise noted.

Date 1/20/2021

Terence J.)Borgerding, QSTI Team Lead

Report Affirmation

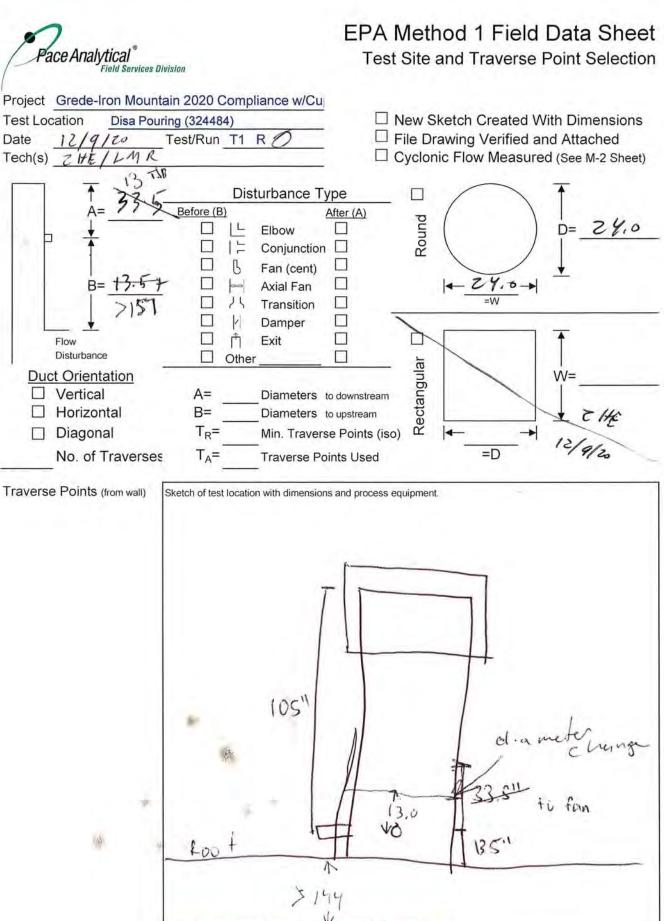
To the best of my knowledge, this report accurately represents the compiled field and laboratory information with no material omissions, alterations or misrepresentations.

Date 1/20/2021

Terence J. Borgerding, QSTI Project Manager

Responsible Charge Affirmation

I have reviewed, the information herein and it is approved for distribution.

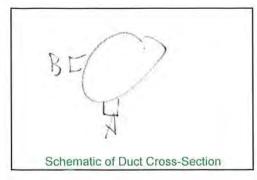

Date 1/20/202

Donald B. Stock, QEP, QSTI General Manager, Field Services Division

Appendix A

Field Data Sheets and Documentation

Field Data Sheets - 324484


If file drawing, correct or circle dimensions as they are verified.

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project		on Mount	ain 2020 C	Complian	ce w/Cu	Manome	ter Type	and ID	CM-5	-	
Test Loc	ation	Disa Pou	uring (3244	184)		Baromet	er Type a	and ID	DB-	50	
Date	12/9/	20	Test/Run	T1 R		Thermod	couple Se	ensor ID 3-01	TC-	38	
	nensions	2	4x24		Inches	Pitot Tuk	be No.	3-01	Cpg	84	
Port Len	gth	6			Inches	Technici	ans 7	ZHE /L	MR	0	
	k Check	- Pos	/	Neg	V	#REF!				FSD PN	1: 20-04074
Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	d - Inches	H ₂ O	Sta	ick Temp	perature	- °F
Point	Inches	s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔP	ΔP	ΔΡ	ΔP	°F	°F	°F	°F
AI	151	6.51	5	0.46	1			1			
z	1.61	7.61	8	0.47							
2	2.43	8.43	0	0.50	1			82			
Ч	4.25	10.25	5	0.49	1						
5	6100	12.00	5	0.46	1	15	Uno			ZH	,
6	8.54	19.54		0.45	-	1	12			CAR	2
/	15.46	21.46	5	0.41		121	-	83			
ž	18.00	24.0	0	0.45		12/9/2	1				
4	19:75	25:75		0.68			1			2/1/20	
10	21.17	27.17	-7 -7	0.70			/	00		16	\backslash
- 11	23.49	28.39		0.80			/	84			
12	22144	21.15	-7	0.81	1					1	
3 1	-1-	T	0								1
2			0	-							
3	-		0								
5	-		5				-	1			
ý	Sam	el	5			1					
5	95		0				ZHE				
8	abu		-10					-			
9			-10			12	19/20				
10			-10				9/2				
1			-12				~	/		1	
12	4	1	-12					/	-		
1		1	1.1.1.1						/		
/									1		
										_	
		-	ZHE				12.00	1			
		In the second se	19/2	~						/	
			12/9/20								
											1
							-				

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.431				"Hg
Static Pressure	-1.50			1	"H ₂ O
Dry Bulb Temp.	84		15	1th and	°F
Wet Bulb Temp.	-		1.	ł.	°F
Moisture Content	1.1		12	-	%v/v
320 P Oxygen	20.9		1 %	/	%v/v
Time of Meas.	730	J		1	(24 Hour)

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-4 of 88

Pitot No. Pitot No. 77 Pitot No. 77 Static Pres. 77 Static Pres. 250 Est. Moist. 1 Static Pres. 1 Static Pres. 250 Static Pres. 1 Static Pres. 250 Static Pres. 1 Static Pres. 2 2 2 3 2 3 3 3 3 3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	odule ID (M-15) Pitot No. eter Coef. Y 2.9916 Bar. Pres. iffice Coef. AH@ 2.07916 Bar. Pres. astret Coef. AH@ 2.079 Static Pres. ozzle No. <u>≤</u> <u></u> Dn 0.259 Est. Moist. Est. Moist. Static Pres. Static Pres	FSD FN: 2004074 ISD FN: 2004074 Module ID (M - 5) Pitot No. 884) Meter Coef. Y 2.974/b Bar. Pres. Run T1 R.I Nozie No. 2.974/b Bar. Pres. Run T1 R.I Nozie No. 5.074 Static Pres. Run T1 R.I Nozie No. 5.074 Static Pres. Nozie No. 5.071 3.47 3.75 51 71 Meter Coef. M. mental Vacuum Temp. Temp. Mater All AV. M. mental Vacuum Temp. Temp. Mater Coef. 3.42 3.42 3.42 3.5 5.75 5.77 <	FSD FN: 2004014 ID (M-5) Pitot No. 484) Module ID (M-5) Pitot No. 484) Meter Coeft Y 0.991/b Bar, Pres. Run T1 R1 Nozzle No. 2.071/b Bar, Pres. Run T1 R1 Nozzle No. 2.071/b Bar, Pres. Nozzle No. 2.072 Diffice Coeft Y 0.971/b Static Pres. Nozzle No. 2.072 3.47 3.5 55 14 AP Meter AH AV Monist. Par. 15 3.42 3.47 3.47 3.5 57 15 3.42 3.47 3.47 3.5 57 16 hothes H ₂ Nm mental Vm Par. 16 2.15 3.47 3.47 3.5 57 175 2.15 3.47 3.47 3.5 57 16 2.12 305.27 2.17 2.1 31 16 2.15 2.15 2.17 2.1 31 32 175 2.16 3.16 2.12 2.1 2.1 31 32 175 2.15 3.16 2.15 2.1<
	odule ID $(M-5)$ eter Coef. γ eter Coef. γ	FSD FN: 20-04074 ICompliance W/ Module ID A84) Meter Coef. AH@ Run T1 R.I A84) Meter Coef. AH@ Run T1 R.I Nozzle No. S. V2 A84 Meter Coef. AH@ A84 Meter Coef. AH@ A84 Meter Coef. AH@ A84 Nozzle No. City Orifice Coef. AH@ A84 Nozzle No. A84 Nozzle No. A84 Nozzle No. A90 Inches H20 City Orifice Coef. AH@ A90 Nozzle No. A90 Nozzle No. A91 No A92 797.9 A93 2.7 A12 799.2 A13 2.7 A14 2.15 A15 3.15 A15 3.16 A16 2.12 A17 3.12 A18 2.12 A17 3.12 A18 2.12 A17 3.12 A16 2.12 A17 3.13 A16 2.12 A17 3.14	Witcal FSD PN: 20-04074 Field Serveree Dirision FSD PN: 20-04074 Con Mountain 2020 Compliance w/ Module ID $(M - 5)$ Disa Pouring (32484) Meter Coef. γ 0.7 Disa Pouring (32484) Meter Coef. γ 0.7 Disa Pouring (32484) Meter Coef. γ 0.7 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 Disa Pouring (32484) Nozile No. S_1 No Nozile No. S_1 N_m Meter AH Nozile No. S_1 N_m No Nozile No. S_1 N_m No Nozile No. S_1 N_m No Nozile No. S_1 N_m No S_1 S_1 <

16

Grede, LLC - Iron Mountain Page A-5 of 88

Ace Analytical Field Services Division FSD PN: 20-0 Ace Analytical Field Services Division FSD PN: 20-0 Grede-Iron Mountain 2020 Compliance W/ Location Disa Pouring (324484) Location Disa Pouring (324484) Isof Tay Test/Run Trime Vis Time Vis Meter Vol. Velocity Meter Vol. Velocity

ł,

Grede, LLC - Iron Mountain Page A-6 of 88

Sampling	320P %viv %oviv 20.6	Prese Pr
ate Sam ate Sam <i>C.M-y</i> <i>T(-33</i> <i>D/3-6</i> <i>D/3-6</i>	Mtr Out Temp. °F 74 74 74 74 74 74 74 74 74 74 72 72 72 72 72 72 72 72 72 72 72 72 72	Desiccant 1306.8 1406- 7.3
etic Particu Manometer ID TC Sensor ID Barometer ID Scale ID	Meter In Temp. Temp. Frank	2
5 .E	Impinger Temp. "F "F "F "F "F "F "F "F "F "F	4
Isok lsok n. Hg m. Hg m. Hg	Sample	3.4.2
3~0 0 28.431 -1.5	Probe Temp. *F 269 269 269 269 269 269 269 269 269 269	2 10.8
w 0 1	К Filter 0. Temp. 0. Temp. 0. 7	108.9
Pitot No. Bar. Pres.	Terminal Star	Impinger No. Final Volume Initial Volume Difference
M- 5 0-9916 1@ 2.074 5 D. 0.253	Wet Catch; Wet Catch;	
f. [√] ef. ∆H@	The set of the second s	#REFI
1074 Module ID Meter Coef. Orifice Coe. Nozzle No.	Desired AN ^m AN ^m Cubic Feet 127.40 127.40 127.40 127.60 127.60 127.60 127.60 127.60 127.60 127.60 127.60 127.60 127.60 127.60 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.67 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 128.77 	
FSD PN: 20-04074 pliance w/ M T1 R 7 0 N	De - nacional a del 1000 a de 2000 a 2000	Comments:
ian 2020 Con (32484) Test/Run	Velocity Orifice Head ΔP Meter Δ Inches H ₂ 0 Inches H 0 7 5 9.4 0 7 5 9.4 0 7 7 3 2 0 5 7 2 3 2 0 5 7 2 2 2 0 5 7 2 2 2 0 5 7 2 2 0 5 7 2 2 2 0 5 7 2 2 0 5 7 2 2 2 0 5 7 2 2 2 0 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Pace Analytical FSD PN: 20-0 Project Grede-Iron Mountain 2020 Compliance w/l Sample Location Disa Pouring (32484) Date 12/q/20 Test/Run T1 R Operators/Techs ZHE/LM.R	Trav. Time Neter Vol. Vm Point ΔT Cubic Feet Ind. Vm No. ΔT Cubic Feet Ind. Vm I 2 3.5 925.39 00 I 2 3.5 925.39 00 I 2 15.5 937.09 00 I 2 28.5 920.12 00 I 2 28.5 920.12 00 I 2 28.5 920.12 00 I 2 28.5 920.50 0 I 2 980.57	Pretest 0.00 (Median Checks: Pretest 0.00 (0.0 "Hg Posttest 0.00 (0.0 "Hg Pitot - Pos. V Neg. V
Project Grede-Irc Sample Location Date 12/9/0	Trav. Time Point AT No. AT NO. AT NO	Pretest 0.00 (Posttest
Project Sample Date Operato	Trav. Point No. No. No. No. No. No. No. No. No. No.	Sampling Pretest Posttest Pitot - P

Grede, LLC - Iron Mountain Page A-7 of 88

14.1

NT-2 26. 12/9/20

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates. It is not intended to reflect final results.

Project G	rede-Iron Mountain 2020 CoS	Site
Sample Loca	ation Disa Pouring (324484	4)

Date Tech.

12/9/20 3415

Initialization Parameters									
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5			
Meter Coefficient - Y	0.9916								
Orifice Coefficient - △H@	2.074								
Pitot Coefficient - C _p	0.64								
Nozzle Diameter - D _n	0.250			100					
Barometric Pressure - P _b	28.431	-		>					
Static Pressure - P _g	-1.5			~>					
Oxygen Estimate - %O ₂	20.9	-	-	->>		E.			
Moisture Estimate - %MC	- 1	1	1	1					
No. of Traverse Points	24								
Point Duration - ∆T	3.5								
Meter Start Temp, °F - t _m	58	58	58	72					
Initial Meter Volume - V _i	775.25	775.25	846.00	919.90					
Duct Shape (Rnd/Rect)	Rnd								
Duct Width, Inches	24		<u> </u>						
Duct Depth, Inches	24								
Final Volume - V _f		845.63	919.54	993.75	1				
Total Run Time - θ		84	84	84					
Condensate Volume, ml (g)		25.0	34.8	26.2					
	End	of Run Su	mmary						
Average Sq. Rt. of the ΔP	√∆P	0.7482	0.7611	0.7613					
Average Orifice Meter	ΔH	2,50	2.65	2.66					
Average Stack Temperature	ts	90.1	89.2	91.4					
Average Meter Temperature	t _m	52,3	67.8	68.2					
Sample Volume, Actual	Vm	70.38	73.54	73.85					
Sample Volume, Dry Standar	V _{std}	68.79	70.19	70.04					
Moisture Content	MC	1.68	2.28	1.73					
Estimated Mole. Wt., dry	M _d			-					
Estimated Mole. Wt., wet	M _w			/		1			
Average Gas Velocity	Vs	44.23	45.01	45.06					
Isokinetic Variation	%I	101.4	102.1	101.6					
Volumetric Airflow, Actual	ACFM	83 40	8480	8490					
Volumetric Airflow, Standard	SCFM	7580	7720	7700					
Volumetric Airflow, Dry Std.	DSCFM	7450	75 40	7570					

y

Pace Analytical [®] Field Services Division	Equipment & Met Isokinetic and Group 1 QI <u>て</u> 好き	Associated Testing
Project Name: Grede-Iron Mountain 2020 Complia Sampling Location: Disa Pouring (324484)		2/9/25 IFE
Airflow Determination EPA Method: X 2		Initials
Pitot Tube No.: 3-01 Coef.: 0.84	Next Ver. Date: 1/1/21 Next Ver. Date:	Pre-Use Insp.: ZIAE Pre-Use Insp.:
Manometer ID: CM-5 XOil Digital N	Next Ver. Date: 2/11/21	Pre-Use Insp.: 2IHE
	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: 08-60 Aneroid Digital N	Next Ver. Date: 2/22/2/	Pre-Use Insp. 245
	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-44 Single Dual N	Next Ver. Date: 10/ 31/2/	Pre-Use Insp. Z HE
T/C Readout	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA Method: 3 3/3A	3B 3C Ambien	nt initials
	ayer Inert Other	Leak Checks:
	nental: Instrument ID:	Cal Range
Ambient Provision Oxygen Verification: Portable O2	and the second second second second second second second second second second second second second second second	the state of the second s
Moisture Content EPA Method: X 4, back-half of i	iso train Other	Explain In Options/ Initials Deviations Section
Wt. Scale ID: 13-45 Digital Beam		Pre-Use Insp.:
Std. Weight ID: Std. Weight (g):		Pass Fail
Isokinetic EPA Method: 7 5 8 17	23 26A 29	Other hildals
Nozzle ID: 0.2 50 Type: X Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 0.250 20.250 30.250 0.25	P 0.25 0.25	Pre-Use Insp.: 2 HI
Nozzle ID: Type: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1 2 3 4	5 Avg	Pre-Use Insp.:
Probe Length: <u>3</u> ft. Liner: SS 🔀 Glass	Quartz Teflon	Other
Pitot Tube No.: <u>3-01</u> Coef.: <u>0.84</u> N	lext Ver. Date:	Pre-Use Insp.:
Probe Length:ft. Liner: SS Glass	Quartz Teflon	Other
Pitot Tube No.: Coef.: N	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: (1-5 Y: 0.99/6 AH@: 2,074 M	Next Ver. Date: 2/ 11/21	Pre-Use Insp. 2145
Control Mod ID:Υ:ΔH@:Ν	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" Round 4" Round	Thimble Other	
Filter Media: Glass Fiber Quartz Fiber	Paper Teflon S	SOther

WC Options/Deviations: Pace Analytical

Wet Catch:

EPA 202

FSD 20-04074

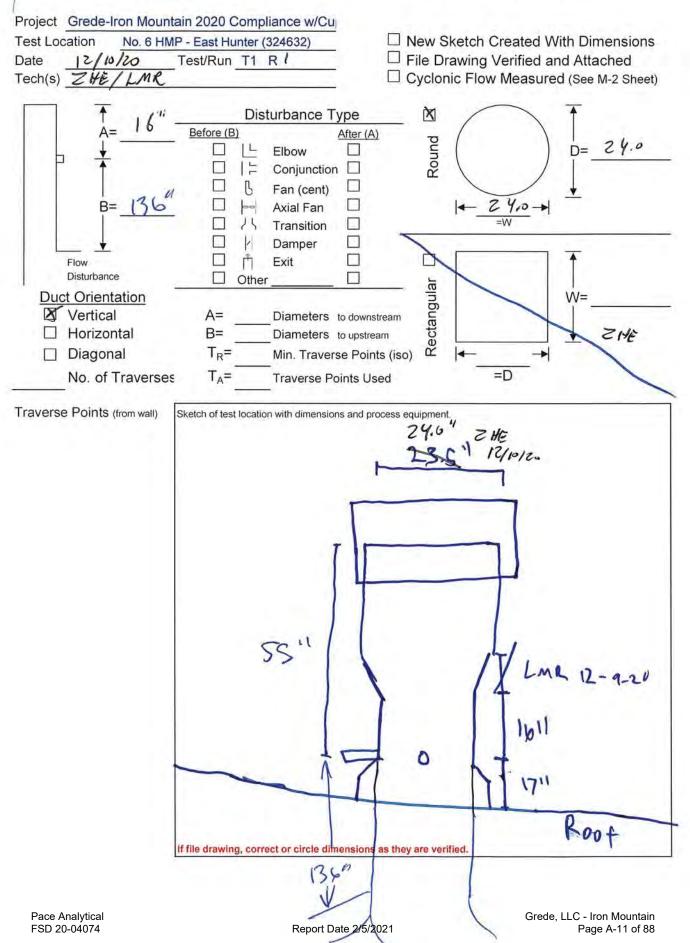
EPA 23

EPA 26A

EPA 8

Grede, LLC - Iron Mountain Page A-9 of 88

Other


EPA 29

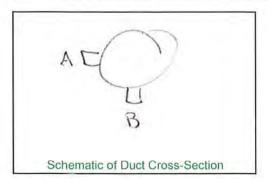
Field Data Sheets - 324632

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations


Project	ect Grede-Iron Mountain 2020 Complian								
Test Lo				IMP - East H	lunter	(324632)			
Date	12	17		Test/Run	T1	R			
Duct Dir	mensic	ons	2	4.0		Inches			
Port Ler	ngth		6	.0	_	Inches			
Pitot Lea	ak Che	eck	- Pos	V	Neg	_ <u>/</u>			

Manometer Type and ID	CM-5
Barometer Type and ID	DB-60
Thermocouple Sensor ID	76-44
Pitot Tube No. 3-01	Ср
Technicians TJB	1 Jul
#REF!	

FSD PN: 20-04074

0.84

Trav	Traverse Point IDs Cyclonic			Velo	elocity Head - Inches H ₂ O			Stack Temperature - °F			
Point No.	Inches Wall	s From Port	Flow °Yaw	Run 1 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 2 <u> </u> <u> </u> AP	Run 3 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 4 ΔP	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
A-4	0.51	6.51	5	0.13					1		
2	1.61	7.61	10 15	0.15	-						
3	2.93		15	0115		1		· · · · · · · · · · · · · · · · · · ·			
4	4125	10.25	7 5 0	0110					_		
5	6.00	12.00	5	0.18					SHE		
4) ()	0.19				1		_	
8	15.46	24,00	-5	0.18					12.		
9	19.75		õ	617				-	12/9/20	<	
10	21.17	27.17	Ö	0.15					10	1	
11	22.39	28 39	-5	0.14							
12	23.49	2949	-3	014							/
B-1	T	Ĩ	50	/							
23											
		1	12					1			
4		1.23	5		/						
5	5	ane	0								
8	a a	5	0								
3	1		0			/					
	a	bove	-7			-	1		-		
10			-1				/	ZH	-		
			-5 -5 -5 -5				/	- 176	-		
1/2	1	L	-7					1			
				1.1.1.1				/	12/91	/	
									191	w	
									/		
								-	-		
										1	
				-						-	
											1

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	2864	1			"Hg
Static Pressure	-0.35			1	"H ₂ O
Dry Bulb Temp.	92		151	1	°F
Wet Bulb Temp.	1		TE		°F
Moisture Content	1		12/0		%v/v
320 P Oxygen	209		1/25	/	%v/v
Time of Meas.	1500			/	(24 Hour)

heet	320P %v/v %v/v 0.201	15.7
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling Isokinetic Particulate Sampling <td>Mtr Out Temp. "F" "F" "F" "F" "F" "F" "F" "F</td> <td>120.5</td>	Mtr Out Temp. "F" "F" "F" "F" "F" "F" "F" "F	120.5
eld E 'articul eter ID sor ID tter ID	n Temp	
d 5 Field inetic Partic Manometer ID TC Sensor ID Barometer ID Scale ID	4 Temp. "F	
Aetho Isok <i>O.84</i> In. Hg In. H ₂ O %v/v	Sample Temp. "F	2022
EPAN CP CP CP CP CP CP CP CP CP CP CP	Probe Temp. °F °F °F °F °F °F °F °F °F °F	1.4
2 2 1	- Lynner hand and and and an and a had	1:00-2-8.9
Pitot No. Bar. Pres. Static Pres.		olume
5 2.074 Dn 0.37	Final V	Initial Volume Difference
SS SS	Incre- mental V Van mental V Van Marine V V V V V V V V V V V V V V V V V V V	#REF!
074 Module ID Meter Coef. Orifice Coef.	sited sited in Feet in Feet	
FSD PN: 20-04074 pliance w/ M T1 R1 0 N	TO	
ston F 1 2020 Com 1 2020 Com 1 2020 Com Test Hunter Test/Run	Velocit Head A Head A H	
evines Divines	Trav. Time Meter Vol. Vm No. AT Cubic Feet Ind. No. (720) 994.85 11 7 Cubic Feet Ind. 12 3.5 998.38 0 11 7 10.5 0.02.08 0 12 3.5 10.5 10.65 0.02 0.08 12 10.5 10.5 10.65 0.02 0.08 12 10.5 10.65 0.02 0.08 0.02 12 10.5 10.65 0.02 0.08 0.02 12 10.5 10.65 0.02 0.08 0.02 12 10.5 10.65 0.02 0.03 0.02 12 10.5 10.65 0.02 0.03 0.02 12 10.5 0.02 0.03 0.03 0.03 12 10.65 0.03 0.03 0.03 0.03 12 12 10.65 0.03 0.03 0.03 12 12 10.65 0.03 0.03 0.03 12 12 10.65 0.03 0.03 0.03 12 12 10.05 0.03 0.03 </td <td>leg.</td>	leg.
Project Grede-Iron Mc Sample Location No. 6 Date 12/10/20 Operators/Techs 21	Tav. Time oint AT Vo. 720 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Project Grede-I Sample Location Date 12/10	Trav. No. No. No. No. No. No. No. No. No. No.	Posttest <u>0.</u> Pitot - Pos.

ede-Iron Mountain ation No. 6 HMP- (P/20 echs $\overline{Z} + \overline{E} / L M$ echs $\overline{Z} + \overline{E} / L M$ ΔT Cubic Feet V_m V_m V_m ΔT Cubic Feet $\gamma = \gamma =$	20 Compliance w/ st Hunter (324632) st/Run T1 R 2 elocity Orifice aad ΔP Meter ΔH hes H ₂ O Inches H ₂ O 0.17 3・59 0.17 3・59 0.17 3・59 0.17 3・59	Module ID <i>CM-5</i> Meter Coef. γ 0.99 Orifice Coef. ΔH@ 2.0 Orifice Coef. ΔH@ 2.0 Nozzle No. 55 Desired Incre- Tr ΔVm ΔVm mental Vac Vac ΔVm Vac ΔVm Mental Vac Vac ΔVm Vac Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ <	10000-0000 BE Han 374	Pres. 20. 9-0 Ic Pres. 20. 10. 9-0 Moist. REU/7/11 0. Temp. 0 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.4	СС СС СС СС СС СС СС СС СС СС СС СС СС	0.84 In. Hg %v/v %v/v F F	Manometer ID TC Sensor ID Barometer ID Scale ID Scale ID Impinger Meter Temp. F F F F F F F F F F F F F F F F F F F		DELANDER BET CONTRACTOR	320P %v/v %v/v
le Location No. 6 HMP- 12/b/20 ators/Techs $\sum \Psi E / L M$ ators/Techs $\sum \Psi E / L M$ ΔT Meter Vol. V_m ΔT Cubic Feet $\begin{pmatrix} q_2 & 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \\ 7 \\ 10 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 10 \\ 7 \\ 8 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 10$	st Hunter (324632) st/Run T1 R 2 elocity Orifice and ΔP Meter ΔH nes H ₂ O Inches H ₂ O 1.15 3 . 6 0.17 3 . 59 0.17 3 . 59	oef. 7 Soef. AH@ Vo. 55 Vo. 55 Incre- mental 3.57 3.57 3.57 3.57 3.57 3.57 3.57 3.57	20000-0000 BE NOODOODOO	Pres. 22 Moist. К. Filter 5. Тетр. 237 2357 2557 2557 2557 2557 2557 2557	66 Probe Temp. 7.253 7.2557 7.2557 7.2557 7.25577 7.255777 7.2557777777777				ad a plan is the for the	320P %v/v
ators/Techs $Z \# E / L /$ t Time Meter Vol. V_m ΔT Cubic Feet (92.5) 78.1/ 7 85.0/ 7 85.0/ 17.5 85.0/ 11.5 85.0/	elocity Orifice and ΔP Meter ΔH nes H ₂ O Inches H ₂ O 116 3 49 017 3 59 017 3 59 017 3 59 017 3 59	No. 55 Incre- mental 3.572 3.5772 3.5772 3.5772 3.5772 3.5772 3.5772 3.57772 3.57772 3.57772 3.577772 3.577777 3.5777777777777777777777777777	K E E P Nor o no - 0 00 0	Moist. RE 1/7/11 RE 1/7/11 0. Temp. 0. C 0 0. C 0		A DE			Starped day bet 4	320P %v/v
Time Meter Vol. AT Cubic Feet (925) 78.11 7.5 81 58 7.5 81 58 10.5 88 53 14 92 11 10.5 88 53 14 92 11 10.5 88 53 14 92 11 17.5 106 40 31.5 106 40 31.5 106 40 31.5 106 40 31.5 106 40 31.5 106 40 31.5 106 40	Orifice Meter AH Inches H ₂ O 3 5 9 3 10 10 10 10 10 10 10 10 10 10 10 10	Desired Incre- ∆Vm mental Cubic Feet Vm 81. 64 3.53 85. 64 3.53 85. 64 3.45 88. 55 3.45 82. 03 3.45 82. 03 3.45 42. 03 3.52 42. 03 3.52 42. 03 3.52 42. 03 3.52 45. 55 3.52 45. 55 3.52 106. 34 3.53 116. 36 3.53		Filter 7 Temp. 7 Temp. 7 420 7 420 7 420 7 420 7 420 7 420 7 420 7 420 7 450 7 555 7 555 7 555 7 555 7 555 7 555 7 555 7 7 7 555 7 7 7 555 7 7 7 555 7 7 7 555 7 7 7 555 7 7 7 7 7 7 555 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						320P %v/v
△T Cubic Feet (925) 78.11 3.5 81 58 7 85.01 10.5 88 53 14 92.11 17.5 95 60 21 99 89 31.5 109 89 355 116 37 985 116 37 985 116 37 985 116 37 985 116 37 985 116 37	Inches H20 3.59 3.5799 3.5799 3.5	Cubic Feet Vm 81.64 3.53 85.64 3.53 85.64 3.45 88.51 3.45 42.03 3.52 42.03 3.52 42.03 3.52 42.03 3.52 45.56 3.52 106.34 3.63 106.34 3.63 113.12 3.39		4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						%%%
41: 2) 109: 51: 2 109: 51: 2 109: 51: 2 109: 51: 2 109: 51: 2 11: 2 11: 2 12: 2 10: 2 11: 2 12:	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	81.64 3.53 85.09 3.45 85.09 3.45 88.50 3.45 42.03 3.57 45.55 3.52 45.55 3.52 45.70 3.64 106.34 3.64 106.34 3.64 113.12 3.34	1000000-00000	1200 1200 1200 1200 1200 1200 1200 1200	2222222		0000			0.0
41. 2.2 10.2 10.5 10.	8	81.64 3.53 85.69 3.45 88.03 3.45 92.03 3.57 92.03 3.57 106.34 3.57 106.34 3.57 106.34 3.57 113.12 3.57 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 111.36 112.36 12.57 111.36 112.57 112.57 112.57 113.5	10000-00000	222 222 222 222 222 222 222 222 222 22	22222					0.0
41 (2) 81 (2) 81 (2) 81 (2) 82 (2)	20077760 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89.54 3.45 88.51 3.42 98.51 3.42 42.03 3.57 42.03 3.57 42.03 3.57 42.05 3.53 1.06.34 3.57 1.06.34 3.64 1.06.34 3.64 1.13.12 3.37 1.13.12 3.37 1.13.12 3.53	0000-0000	222 222 222 222 222 222 222 222 222 22	2000 0 20 20 20 20 20 20 20 20 20 20 20				or words and	
11 22 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10:03 3:57 15:03 3:57 10:00:34 3:53 10:06:34 3:53 10:10 3:63 113:10 3:34	0000-0000	222	2020 - 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				2212201011	
11 21 11 12 11 21 12 12 11 21 12 12 12	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15.55 3.52 94.07 3.52 106.34 3.64 106.34 3.64 113.12 3.34 113.12 3.34	0000-0000	452 452 452 452 452 452 452	200000				2 2 2 2 2 2 2	
21 00 10 28, 5 10 40 28, 5 10 40 38, 5 10 40 38, 5 11 3.18 38,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	94.07 3.52 102.70 3.63 106.34 3.69 106.34 3.49 113.12 3.34	0-0000	2554	2330				22220	
28.5 105 201 24.0 28.5 106 40 38.5 119 -84 38.5 119 -84 3	2 2 394	106.34 3.65 106.34 3.64 108.74 3.44 113.12 3.34	- 0 0 0 0	252	230				1222	
11 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	22.44	113.12 3.49 113.12 3.49 116.36 3.23	0000	25:52	236		t		252	
365 113 18 385 116 37 42 119 60 455 (23 14		113.12 3.39	00	255				t	28	
11 23 114 - 60 42 119 - 60 42 119 - 60	52	116.36 3.23	0.	1 10	102					
42 119 60	20.		>	2000	612				28	
K1. 221 5'9h	14 3.05	42.5 09.611	-	1 50	4.22	-	-	51	5 8	
10 10 00	10 3 89	123.27 5.61	0 0 0	200	212	-	+		20	
2.5 130.43	18 2 89	in	-0	241	125	-	t		201	
56 133.98	3.86	4	3.9 90	242	222		+		57	
8 59.5 137.73		137.92 3.76	4.3 8	245	12				24	
63 141 .51	18 2 87	n's	8 1.7	252	230		+	~	Sol.	
6 66 5 145 04	20.10 2.44	145.02 2.74	and a construction of the	122 8	2/10		77	1	29	
73.5 152.59	18 2 81	7 2.6	1		m	-			0	
1,56.22	19 7.10	4 3.7	4.3. 88	-	892		53	56 6	56	
2 80.5 159 61	5 3.23	159.59 3.35	2	~	m	N	2		69	1
(052) (63.04	97.	1.1 0	2.8		622		65		00	,
0- 00 10 - 00 08	C/ 2-HV PIN PIN - OVI-		- 86 -	2						0
TOUTAND - 4 1 0 - 4 1 0 - 4 101	-110					ļ		ľ	9.44_m	U2-00.9
Samples Recovered: FilterO -	-1144; A Probe	be Wash; 🔲 Wet	et Catch;	M-202;	Other_					
Sampling Train Leak Checks:	Comments:		Impinger No.		1	en :	4	5	Desiccant	Total
Posttest 2. 30 @ 8.0 "Hg			Initial Volume	10 100	601	2.4	/		1701.5	
Neg.		#REF!	Difference	-24.0	14.4	5.4		1	30	331

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-14 of 88

Sampling	320P Oxygen %v/v	501	02=200	Total
	Mtr Out Temp. °F	1 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tm=66.7	Desiccant - 33.8.8 13/5.1
Particul leter ID lsor ID ster ID	Meter In Temp. °F	a ve and a tem ce hand and march		2
Isokinetic Particulate $ \begin{array}{c} \delta Y \\ H_2 \\ H_2 \\ W \\ V \\ Scale ID \\ \end{array} $ Isokinate ID $ \begin{array}{c} \delta X \\ \delta Y \\ \delta Y \\ \delta Y \\ \end{array} $	Impinger Temp. °F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4
% L	Sample Temp. °F	₩>		5.7 3
01 Cp 0.35	Probe Temp. °F	220 220 220 220 220 220 220 220 220 220	Other	2 113.2 100
	Filter Temp. °F	2224 2224 2224 2224 2224 2224 2224 222	/ M-202; [64.8
Est. Maist.	Stack Temp.	200 200 100 100 000 000 000 000 000 000	t _s =94.	Impinger No. Final Volume Initial Volume Difference
0-9916 0-9916 0.0-32	Train Vacuum Inches Hg	22222222222222222222222222222222222222	Wet Catch;	Impinger N Final Volur Initial Volu Difference
ef. 2 0.99 Def. 2 0.99 Def. ∆H@ 2.0	Incre- mental V _m	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	ent and #REFL
074 Module ID <i>CM</i> Meter Coef. <u>γ</u> d Orifice Coef. ∆H@ Nozzle No. < S	Desired ΔV_m Cubic Feet	226.42 127.56 177.64 177.64 181.50 181.50 181.50 181.50 181.50 181.50 181.50 181.50 181.50 200.55 215.65 215.55	be Wash;	start O
FSD PN: 20-04074 pliance w// M T1 R 7 0 N N	Orifice Meter ΔH Inches H ₂ O	и чии и и чи и и и и и и и и и и и и и	AH= 3.57	ents:
sion FSD PN: 20 1 2020 Compliance w East Hunter (324632) Test/Run T1 R 3	Velocity Head ∆P Inches H ₂ O	000000000000000000000000000000000000000	12 4050	
Tate Anialytical Field Services Division FSD PN: 20-0 Project Grede-Iron Mountain 2020 Compliance w/l Sample Location No. 6 HMP - East Hunter (324632) Date i2/m/Le Test/Run T1 R \$ Operators/Techs 2 Hr / 1 M M	er Vol. Vm c Feet	166 95 166 96 166 96 166 96 166 96 178 19 1985 15 1985 19 1985 >19 19 19 19 19 19 19 19 19 19 19 1	Tot/Avg $0 = g\gamma$ $V_m = g5.33$ $V_{\Delta P=0}$, $\gamma_{o5}\phi_{\Delta H} = 3.57$ Samples Recovered: Filter $2 - 117g$; $\phi_{\Delta} P$	Sampling Train Leak Checks: Pretest 0. po 0 1.0 "Hg Posttest 0. 00 0 0 Meg." Hg
Project Grede-Iro Sample Location Date <u>iv/v/te</u>	Φ	14.5 14.5	0= 94 es Recove	Pretest 0.00 (
Project Sample Date Operator	Trav. Point No.	7= 0 0 0 0 0 0 2 mh - 12 = 0 0 0 2 0 1 2 mh +	Tot/Avg Sample	Pretest 0.0

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-15 of 88

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates It is not intended to reflect final results.

Ŧ

esults.

it is not inte	nded to reliect linal res
Date	12/10/20

Project	Grede-II	ron Mountain 2020 Co Site
Sample L	ocation	No. 6 HMP - East Hunter (3246

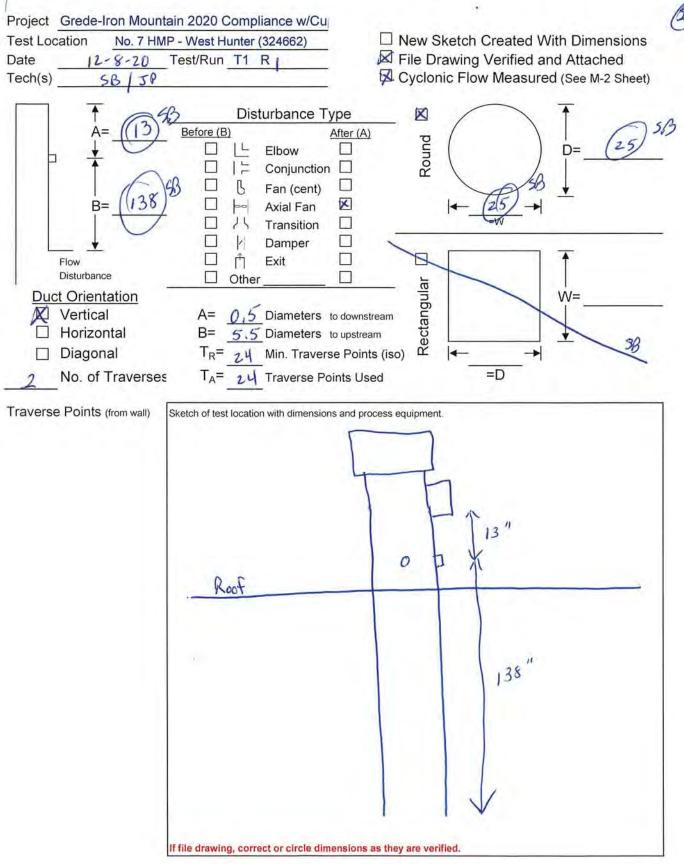
Tech.

12/12/20 ZHE

	Initia	lization Pa	rameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	0.99/6					
Orifice Coefficient - △H@	2.074					
Pitot Coefficient - Cp	0.84					
Nozzle Diameter - D _n	0.370					
Barometric Pressure - P _b	28.66			->		
Static Pressure - P _g	-0.35			~>		
Oxygen Estimate - %O ₂	20.9			~>		
Moisture Estimate - %MC	1	1	1	1		
No. of Traverse Points	24					
Point Duration - ∆T	3.5					
Meter Start Temp, °F - t _m	63	63	55	60		
Initial Meter Volume - V _i	994.85	994.85	78.11	163.35		
Duct Shape (Rnd/Rect)	Rud					-
Duct Width, Inches	24					
Duct Depth, Inches	24			1		
Final Volume - V _f		1077.77	163.09	248,68		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		15.7	15.8	7		
	End	of Run Si	ummary			
Average Sq. Rt. of the ΔP	√∆P	0.3982	0.4109	0.4050		
Average Orifice Meter	ΔH	3.46	3.63	3.57		
Average Stack Temperature	ts	83.7	89.5	94.1		
Average Meter Temperature	t _m	54.3	55.6	66.7		
Sample Volume, Actual	Vm	82.92	84.98	85.33		
Sample Volume, Dry Standar	V _{std}	81.57	83.43	81.99		
Moisture Content	MC	0.90	0.88	0.40		
Estimated Mole. Wt., dry	M _d			/		
Estimated Mole. Wt., wet	M _w	/	\rightarrow			
Average Gas Velocity	Vs	23.24	24.11	23.84		
Isokinetic Variation	%1	101.3	100.9	100.7		
Volumetric Airflow, Actual	ACFM	4380	4540	4490		
Volumetric Airflow, Standard	SCFM	4070	4180	4090		
Volumetric Airflow, Dry Std.	DSCFM	4030	4140	4070		

Equipment & Method Summary

Isokinetic and Associated Testing Group 1 QI ZHE Group 4 QI


Project Name: Grede- Sampling Location: No. 6 H	Iron Mountain 2020 Compli IMP - East Hunter (324632		
Airflow Determination	EPA Method: 2	2C Other	Inilials
Pitot Tube No.: 3-0 / Pitot Tube No.:	Coef.: 2.89 Coef.:	Next Ver. Date: 1/1/2) Next Ver. Date:	Pre-Use Insp.: <u>214</u> Pre-Use Insp.:
Manometer ID: (M-5	Oil Digital	Next Ver. Date: 2/11/2/	Pre-Use Insp.: CHE
Manometer ID:	Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: 08-60	Aneroid 🔀 Digital	Next Ver. Date: 2/22/21	Pre-Use Insp.: 7 HE
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-YY	Single Dual	Next Ver. Date: 10/31/20	Pre-Use Insp.: 2#5
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C Amb	pient Initials
Container Type: Ted Sampling Proc.: Sing	lar 🗌 Teflon 🔲 7- Jle Point 🗌 Multipoint	Layer Inert Other	Leak Checks:] Grab 🔲 Integrated
Gas Analysis: 🗌 Orsat	Fyrite Instru	umental: Instrument ID:	Cal Range
Ambient Provision Oxygen \		2 ID Ambient C	al Reading:
Moisture Content EPA	Method: X 4, back-half o	f iso train Other	Explain in Options/ Initials Deviations Section
Wt. Scale ID: DS-45	Digital Beam	Next Ver. Date: 7/7/2/	Pre-Use Insp.: 2 45
Std. Weight ID:	Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method:	5_ 8 17	7 23 26A 2	9 Other Initials
Nozzle ID: Type	e: 🔀 Stainless Steel 🛛	Glass Quartz	Other
Nozzle Cal.: 1 .370 2	.371 373 373		Pre-Use Insp.: TJB
Nozzle ID: Type	e: Stainless Steel	Glass Quartz	Other
Nozzle Cal.:	3 4	E Avg	Pre-Use Insp.:
	Liner: SS K Glass		
Pitot Tube No.: 3-01		Next Ver. Date: 1/1/2/	Pre-Use Insp. ZHE
	Liner: SS Glass		
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: <u>CM-5</u> Y:		Next Ver. Date: 2/11/21	Pre-Use Insp. Z HE
Control Mod ID:		Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" Ro	ound 4" Round		er
Filter Media: Glass I		Paper Teflon	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26A E	PA 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Date 2		ede, LLC - Iron Mountain Page A-17 of 88

Field Data Sheets - 324662

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

CM-1 DB-35 CM-1

Project	Grede-I	ron Mou	ntain 20)20 C	omplia	ance w/Cu
Test Lo	cation	No. 7 H	IMP - V	Vest I	Hunter	(324662)
Date	12 -	8-20	Test/	Run	T1	RI
Duct Di	mensions	3	25"	50	und	Inches
Port Ler	ngth		6			Inches
Pitot Le	ak Check	- Pos	-	1	Neg	/

Manometer Type	and ID	CI
Barometer Type	and ID	DB-
Thermocouple S	ensor ID	Cr
Pitot Tube No.	3-01	Ср
Technicians	5	BIJP
#REF!		

FSD PN: 20-04074

0.84

53

Trav	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	perature -	۰°F
Point No.	Inches Wall	From Port	Flow °Yaw	Run 1 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 2 ∆P	Run 3 <u>AP</u>	Run 4	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
A-1	0,53	6.53	5	0.50	1			8.5-			
2	2.95	8.95	0	0.53	1						
4	4.43	10.43	(1)	0.53							
5	6.25	12.25	9	0.50	/	100			/	A	
6	8.89	14.89	0	0.43		148				KIB	
7	16.11	20,11	Ø	0.38		10				les	
8	18.75	24.75	0	0.36		1				Y	
9	20.57	26.57	3	0.50		1					
10	22.05	28.05	O	0.53							1
1/_	23.33	29.33	0	0.63							1
12	24:47	30.47	Ö	0.65				V			/
13-1	0.53	6.53	2			_)		-		
2	1.67	7.67	0								
3	2.95	8.95	0								
4	4.43	10.43								-	
2	6.25	12.25	03					-			
6	8.89	14.89	5								
2	16.11	20.11 24.75	0								
3	20,57	26.57	0								
12	22.05	28.05	õ						(3)		
11	23.33	29.33	õ						V		
17	24.47	30,47	Õ								
14		and the									
							-				
							1SA				1
							C				
										-	
	-									-	

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.65	1			"Hg
Static Pressure	-0.5	/			"H ₂ O
Dry Bulb Temp.	85		a		°F
Wet Bulb Temp.	1	(Kit	1	°F
Moisture Content	1	_	1	1	%v/v
320 P Oxygen	20.9	20,9	20,9		%v/v
Time of Meas.	0830			1	(24 Hour)

Grede, LLC - Iron Mountain Page A-20 of 88

AH@ L_{TTDD} Data trees $L_0 L_S$ In trees $L_0 L_S$ Description Descripti	Vitica Field S on N	220 Com	FSD PN: npliance	20-04	074 Module ID	C V	-	Pitot No.	in di	EPA M	O O	d 5 Field inetic Partic Manometer ID	articul eter ID	EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	heet
Incre- Imantal Wimmenta	Sample Location No. / HMP - West Hunter (3 Date /1 - 8 - この Test/Run 71 Operators/Techs こん / ての		T	324662) 1 R	Orifice Coef Nozzle No.		1.821 Dn 2760		11	35	In. Hg In. H ₂ O %v/v	Barome Scale II	sor IU ster ID	D8-3	35
Mental Value Termo. Termo.<	Mater Vici Vie	Valneity	Orifi	0	Dacirad		Train		Filter	Droho	Samila	Imninder	Matar In	Antr Out	300D
3.19 2.0 85 2.45 2.44 M/A H 63 65 20 3.49 2.0 85 2.45 2.44 M/A H 63 65 20 3.49 2.0 87 2.45 2.44 M/A H 63 65 20 3.54 2.0 87 2.45 2.44 41 63 65 64 3.58 2.0 87 250 246 44 65 64 3.55 2.0 87 250 246 44 65 64 3.56 3.0 92 250 247 41 66 66 3.17 3.0 92 250 247 41 67 67 3.17 3.0 92 250 247 41 67 67 3.17 2.0 93 251 247 41 70 66 3.17 2.0 93 244 251 41 67 67 3.18 2.0 94 251 244 70 61 3.11 2.0 95 244 251 41 70 3.12 <td< td=""><td>Head ∆P N Inches H₂O In</td><td>Head ∆P Inches H₂O</td><td>Meter A</td><td>H</td><td>ΔVm Cubic Feet</td><td></td><td>Vacuum Inches Hg</td><td>Temp.</td><td>Temp.</td><td>Temp.</td><td>Temp.</td><td>Temp.</td><td>Temp.</td><td>Temp.</td><td>Oxygen</td></td<>	Head ∆P N Inches H ₂ O In	Head ∆P Inches H ₂ O	Meter A	H	ΔVm Cubic Feet		Vacuum Inches Hg	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Oxygen
3,19 2.0 85 2.45 2.44 11 63 65 45 24 245 244 255 244 211 63 65 44 65 44 65 44 65 64 253 65 244 245 244 245 244 444 65 64 65 64 65 64 65 66				4											
3.49 $Z.0$ $85'$ $Z45'$ $244'$ $Z51$ 412 $63'$ $65'$ 3.52 $Z.0$ $89'$ $Z49'$ $Z51$ 442 $63'$ $65'$ 3.52 $Z.0$ $89'$ $Z49'$ $Z51'$ 442 $63'$ $65'$ 3.52 $Z.0$ $89'$ $Z47'$ $244'$ $444'$ $66'$ $64'$ 3.53 3.0 $92'$ $Z50'$ $Z47'$ $44'$ $65'$ $64'$ 3.17 3.0 $92'$ $Z51'$ $244'$ $14'$ $66'$ $66'$ 3.17 3.0 $97'$ $250'$ $247'$ $41'$ $67'$ $65'$ 3.17 3.0 $97'$ $251'$ $244'$ $27'$ $14'$ $10'$ $65'$ 3.17 3.0 $97'$ $274'$ $274'$ $274'$ $27'$ $41'$ $70'$ $66'$ $91'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ $10'$ </td <td>747 40 0 45 2</td> <td>0.45 2</td> <td></td> <td>-</td> <td>747.34</td> <td>3.19</td> <td>2.0</td> <td>88</td> <td>245</td> <td>HHZ</td> <td>NA</td> <td>1</td> <td>63</td> <td>is</td> <td>20.9</td>	747 40 0 45 2	0.45 2		-	747.34	3.19	2.0	88	245	HHZ	NA	1	63	is	20.9
540 $c.0$ 89 744 251 472 245 444 65 64 3.52 2.0 87 250 245 444 65 64 3.51 2.0 87 250 246 444 65 64 3.51 2.50 247 444 65 64 3.61 3.0 912 250 247 447 69 65 3.17 3.0 91 251 251 247 41 67 65 3.11 2.0 97 251 251 47 67 65 3.11 2.0 97 251 247 417 70 66 3.12 2.0 97 251 247 241 70 67 67 3.12 2.0 97 251 247 417 107 67 67 3.12 2.0 97 276 244 <	750.93 0.50 2	0.50 2			750,53	3,49	2.0	100	245	244	-		e 3	65	-
3.52 2.0 89 250 245 245 444 666 64 3.35 2.0 871 250 246 444 67 69 65 3.47 3.0 92 250 246 444 67 64 3.17 3.0 97 250 247 44 67 65 3.17 3.0 97 251 247 47 70 67 3.11 2.0 97 251 247 417 70 67 66 3.11 2.0 97 251 247 241 70 67 66 3.11 2.0 97 251 247 241 70 67 67 3.12 2.0 93 244 255 417 70 67 68 3.12 2.0 94 276 257 417 70 67 68 3.12	110 755. 20 0.53 2.47	1 65.0			754,43	3.60	2.0	68	249	251		17	63	65	-
3.34 2.0 871 250 246 44 67 69 65 3.47 3.0 92 250 246 44 69 65 3.47 3.5 251 251 746 70 65 67 3.47 3.0 97 250 247 76 67 65 3.17 3.0 97 251 247 716 70 65 3.17 2.0 96 251 247 947 67 67 3.18 2.0 942 256 249 257 417 70 67 3.18 2.0 942 256 249 255 417 70 67 3.18 2.0 87 250 254 246 417 70 67 3.12 2.0 87 250 254 417 70 67 3.12 2.0 887 250	761.75 0.51 2	0.51 2			761.53	3.52		89	252	245		hh	iole	64	
3.66 3.0 q_2 250 246 444 68 64 3.17 3.0 q_2 250 247 416 65 64 65 3.17 3.0 q_2 250 247 76 66 65 3.17 3.0 q_1 251 237 746 70 66 3.17 2.0 q_2 251 247 417 07 66 3.17 2.0 q_2 251 2445 2447 247 67 67 3.17 2.0 q_2 251 2442 2417 70 66 67 3.17 2.0 q_2 251 244 255 417 70 67 3.13 2.0 87 246 255 417 70 67 3.13 2.0 887 250 244 245 417 70 67 3.15 3.0 87 </td <td>745.20 0.47 2</td> <td>2 Lh. 0</td> <td></td> <td></td> <td>25.476</td> <td>3,39</td> <td></td> <td>5</td> <td>250</td> <td>24S</td> <td></td> <td>hH</td> <td>La</td> <td>Pa</td> <td></td>	745.20 0.47 2	2 Lh. 0			25.476	3,39		5	250	24S		hH	La	Pa	
410 3.0 90 250 240 44 69 65 3.17 3.0 97 251 251 251 75 277 76 66 65 3.17 3.0 97 251 251 247 76 66 65 3.17 3.0 97 251 244 246 47 67 67 3.17 2.0 92 251 247 241 270 67 67 3.13 2.0 92 251 477 67 67 67 3.13 2.0 92 252 249 252 477 70 67 67 3.12 2.0 97 250 249 255 477 70 67 67 3.15 3.0 87 250 2749 255 477 70 67 67 3.15 3.0 87 250 2740	769.00 0.62 2	2 20.0			768.50	3,55		26	250	542		Чч	68	64	
7_{1} 3.5 73 251 251 251 251 251 70 65 3.17 3.0 97 250 247 716 70 66 3.11 2.0 95 251 245 244 917 67 66 3.17 2.0 95 251 244 274 917 67 67 3.135 2.0 92 251 244 252 244 251 417 69 61 3.35 2.0 94 250 254 417 70 67 67 3.43 2.0 94 250 244 252 244 71 67 67 3.43 2.0 87 244 255 417 70 61 71 67 53 3.13 2.0 87 244 255 244 255 417 71 67 67 53 <	773.10 6.68 3.	0.68 3.			18.2	10 h		60	250	249	-	44	100	los .	-
3.72 3.0 97 250 247 47 70 66 3.12 2.0 97 251 247 47 70 66 3.17 2.0 95 251 246 276 67 67 3.17 2.0 95 254 247 47 67 67 3.35 2.0 93 249 257 477 67 67 3.35 2.0 93 249 257 477 67 67 3.35 2.0 912 250 254 417 70 67 3.43 2.0 88 250 249 255 417 71 67 3.172 3.0 81 250 254 417 71 67 67 3.15 2.0 88 250 254 417 71 67 67 3.56 3.0 87 250 254 <td< td=""><td>30 111.40 0.72 3.36 40 781 27 0.75 2.07</td><td>0.72 3.</td><td></td><td>-</td><td>741 05</td><td>21.19</td><td>n n n</td><td>530</td><td>251</td><td>1.52</td><td>-</td><td>Sh</td><td>10</td><td>65</td><td></td></td<>	30 111.40 0.72 3.36 40 781 27 0.75 2.07	0.72 3.		-	741 05	21.19	n n n	530	251	1.52	-	Sh	10	65	
3.18 2.0 4.8 2.44 2.16 4.7 7.0 6.6 3.27 2.0 96 251 2.45 4.7 4.7 6.7 6.6 3.35 2.0 92 251 2.45 2.47 2.7 6.7 6.7 2.96 2.51 2.47 2.57 4.7 6.7 6.7 3.42 2.0 92 2.54 2.57 4.7 7.0 6.7 3.43 2.0 92 2.54 2.57 4.7 7.0 6.7 3.43 2.0 92 2.54 2.57 4.7 7.0 6.7 3.43 2.0 92 2.44 2.55 4.7 7.0 6.7 3.15 3.0 87 2.46 2.55 4.7 7.0 6.7 3.15 3.0 87 2.46 2.55 4.7 7.0 6.7 3.15 3.0 87 2.76 2.56	745.04 0.57 7.	0.57 3.		1.1	184.75	3 12	000	12	251	141		46	202	60	
3.27 2.0 96 251 245 47 67 67 3.35 2.0 92 249 257 47 67 67 3.35 2.0 93 249 257 47 67 67 3.42 2.0 95 249 257 47 70 67 3.43 2.0 94 250 254 244 246 67 3.43 2.0 92 250 254 244 70 67 3.13 2.0 92 250 254 47 71 67 3.15 3.0 87 246 255 244 71 67 3.15 3.0 87 244 255 244 71 68 3.15 3.0 87 244 71 72 68 3.34 3.0 88 246 256 244 71 72 69 71	783.70 6.42 1.45	0 .42 1.4S	.45		787.94	3.14	2.0	48	249	246		47	70	66	
3.35 2.00 72 244 242 247 267 67 67 67 2.96 2.0 95 249 257 47 70 67 67 3.42 2.0 95 249 257 47 70 67 67 3.42 2.0 92 249 252 249 257 47 70 67 3.43 2.0 92 249 256 249 255 47 71 67 3.15 3.0 81 250 254 47 72 68 3.50 87 250 254 47 72 68 3.515 3.0 91 255 417 72 68 3.515 3.0 87 250 244 71 61 67 3.52 250 244 255 417 72 68 67 3.52 250 2	0.44 2.05	0.44 2.05	.05		12.11	3.27	2.0	36	251	245		LH	20	99	
3.42 2.0 95 254 252 47 61 61 3.42 2.0 94 250 254 47 70 67 3.43 2.0 94 250 254 47 70 67 3.43 2.0 94 250 254 47 70 67 3.12 3.0 87 250 254 47 71 67 3.15 3.0 87 250 254 47 72 68 3.34 3.0 81 246 255 244 47 72 68 3.34 3.0 91 250 254 47 72 68 53 3.34 2.0 85 246 256 246 47 72 68 3.34 2.0 85 249 250 246 47 72 69 56 3.34 2.0 85 240 <td>at 0 00.551</td> <td>0 46 2</td> <td></td> <td></td> <td>101 52</td> <td>3.35</td> <td>2:00</td> <td>22</td> <td>244</td> <td>242</td> <td></td> <td>5</td> <td>101</td> <td>67</td> <td></td>	at 0 00.551	0 46 2			101 52	3.35	2:00	22	244	242		5	101	67	
3.35 2.0 94 250 254 47 70 67 3.43 2.0 92 249 246 46 71 67 3.43 2.0 92 249 246 46 71 67 3.72 3.0 87 250 254 41 71 67 3.84 3.0 87 250 254 41 72 68 3.75 3.0 91 255 41 72 68 3.75 3.0 87 250 254 41 72 68 3.34 2.0 88 249 250 254 41 72 68 3.34 2.0 88 240 250 254 41 72 68 3.36 85 250 240 41 72 69 61 3.34 2.0 85 240 240 71 26 69	X01 -40 0 - 4% 2	0.4%			Sec. 93	3.42	2.0	95	249	252		- 1-2	10	10	-
3.43 2.0 92 249 234 246 446 71 67 3.72 3.0 85 256 249 234 417 71 67 3.86 3.0 87 250 254 417 71 67 3.56 3.0 87 250 254 417 72 68 3.75 3.0 91 250 254 417 72 68 3.75 3.0 87 250 254 417 72 68 3.75 3.0 85 250 234 47 72 68 3.34 2.0 85 250 234 47 72 69 3.34 2.0 85 250 246 47 72 69 3.34 2.0 85 249 246 47 72 69 3.34 2.0 85 240 246 47	804.90 0.460 Z.	0.46 2.			804.29	3.35		44	250	254		15	70	67	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	208.40 0.48 2	2 21 0		-	Sc7.72	3.43		20	249	246		46	12	101	-
3.64 3.0 871 249 255 471 72 68 3.75 3.0 91 250 254 471 72 68 3.75 3.0 81 250 254 471 72 68 3.34 2.0 88 249 2416 471 72 69 3.34 2.0 85 249 2416 471 72 69 3.34 2.0 857 250 2416 471 72 69 16 4.3 1.5 2.9 2416 471 72 69 16 4.5 2.0 857 250 2416 471 72 69 16 1_5 2.9 $2.96.7$ $2.96.7$ $2.96.7$ 0.2 1.7 0.2	814 00 0 815 00 0	0 ioo 2		-	S14.30	3.86	200	22	250	447		10-1		61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	819.90 0.61 2	2 19.0		1	819.19	3,89	3.0	1-8	249	255		LH	72	68	
3.34 2.0 88 249 246 41 73 69 \cdot 3.34 2.0 85 250 246 41 72 69 \cdot $t_{5}=90.7$ $t_{5}=90.7$ $t_{6}=7.4$ $02=$	0.57 2.6	0.57 2			49.228	3.75	0 0	6	250	254		Lh	26	ies'	
$\frac{1}{10^{-2}} = \frac{1}{10^{-2}}	-	0.45 2.1		-	12- 228	3.34	200	100	PHZ	246	~	15	23	69	>
90.7 tm=67.4 O2=					201100	2120		0	1	a	*	r		1.9	
90.7 $t_{m}=67.4$ $0_{2}=$				-											
	96 Vm= 86.19 VAP=0.72 AH= 2.45	=HV 2	AH= Z. 45					s= 90,7						tm=67.4	02=20.9
	-	1957 C .	mments:				Imping	er No.	1	2	3	4	5	Desiccant	Total
1 2 3 4 5 Desiccant	0 0	BH					Final V	olume	81.9	112.14	Zis	1	1	1282.1	
1 2 3 4 5 Desiccant 81.9 112.4 2.5 7 12.82.1	Posttest 0:00 @ C Hg	B				#DEEL	Differer	onme	1001	100	0	1	1	1265.6	1 01
1 2 3 4 5 Desiccant 81.9 112.4 2.5 7 1282.1 100 100 0 1265.6	2					million -		2	11101-	1.1	110	1		C.91	0.01

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-21 of 88

. ((A)																															
heet		-35	2h-	320P Oxygen %v/v		Purt	-		-	-		-							-						1	>	02=20,9		Total			10.8
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	CM-1	CM-1 DB-3	DS-	Mtr Out Temp. °F	5	19	68	68	les	65	1.00	1.9	202	70	11	12	72	72	72	22	24	75	75	75	76	16	tm=72.6		Desiccant	1293.8	1282.1	1117
ield D Particul	Manometer ID	nsor ID eter ID	D	Impinger Meter In Temp. Temp. °F °F	0.	1.1.	1000	69	02	12	12	75	75	75	al	22	74	75	LL	24	VT VT	76	22	75	80	00			5	1	1	1
d 5 F inetic F		TC Sensor ID Barometer ID	Scale ID	Impinger Temp. °F		11	Ч	H	42	27	27	44	44	5	45	46	its	45	51	45	t by	5	hh	14	11	05			4	1	1	1
Metho Isok	0.84	In. Hg In. H ₂ O	N/N%-	Sample Temp. °F		HIN.	-											-	-					-	1	>			~	-	0	1.8
EPA N	3-61 Cp	NE	1	Probe Temp. °F	one	1112	246	248	246	253	250	250	246	254			_	246	3SI	Shr	9120	253	245	253	246			D Other	2		100	5.6
-			oist.	Filter Temp. °F	Ser C	150	249	249	249	642	245	250	250	250	250	252	250	249	250	250	2 the	247	250	249	250	200		□ M-202; [-	6.16	100	- 813
	Pitot No.	Bar. Pres.	Est. Moist.	Stack Temp. °F	0	54	47	69	101	25	00	67.	-88	26	92	26	R		50	04	CFO	de la			44		ts=94.5		Impinder No.	Final Volume	Initial Volume	ence
	CM-1	0.9959	Dn .240	Train Vacuum Inches Hg		200	2.0	2 0	02	200	000			3.0	3.0	0.6			200	0 0	20	- m	3.0	3.0		<u>.</u>		Wet Catch;	Impin	Final	Initial	Difference
		γ. ΔH	0. 12	Incre- mental V _m		2.57	2.63	2.65	2.63	2.66	10.2	2.99	11.2					2.57	318	19.2	100	3.08	3.13	3.05	2.72	x. JC						#REF!
1074	Module ID	Meter Coef. Orifice Coet	Nozzle No.	Desired ∆V _m Cubic Feet	11. 000	10 725	838.64	841.29	843,92	846.58	85.248	855 75	821.98		863.33	866.03	868,70	871.21	873.44	8210-012	LC CSS	885.35	888.49	891,54	894.33	cs.010		Probe Wash;				
FSD PN: 20-04074	ipliance w/i	er (324662) T1 R2		Orifice Meter ∆H Inches H ₂ O		2000		2.38	2,35	2 39	2 40	3.01		2.36	2.46	2.46	2.40	2.12		00.00				3.12	2.61	8. 8	AH=2,54	Pro	Comments:			
	1 2020 Com	- West Hunter (324662) Test/Run T1 R2	138	Velocity Head ∆P Inches H ₂ O	X	0.40	15.0	0.51		15.0	19.0	Pol.	i CS	6.50		52		Sh	-	0.51	C -1 - 0	0.68		10.67	0.55	24.0	3	0-1040	c, c, 0			
Pace Analytical [®] Field Services Division	Project Grede-Iron Mountain 2020 Compliance w/	No. 7 HMP -	50	Meter Vol. V _m Cubic Feet	831 200	855 . 400	8.38 .75	841 40			25. 158	1 X		860.95	863.67	SM		871 -50				05 . 50 85 . 90		01.215	894 .93	MC-1 HO	Vm= 66 30 10P=0.7	Samples Recovered: Filter	Sampling Train Leak Checks:	@ (e "Ha	8	Neg.
2 ace Analy	Grede-Irc	Sample Location	Operators/Techs	Time ΔT	(0459)		90				21			33			12				52			90	53	(1200)	0= 72	s Recove	nd Train Ly	st 0.00 @	est 0,00 @	Pitot - Pos.
a la	_	Sample Date		Trav. Point No.	11		sw	4	ju.	70	- 30	o	01	U	21	- 1	1	m	3	en s	7 é	- 20	0	01		2	Tot/Avg	Sample			Postte	Pitot -

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-22 of 88

Proce/abilitiani EPA Method 5 Field Data Si Rece/abilitiani EPA Method 5 Field Data Si Rece/abilitiani EPA Method 5 Field Data Si Rece/abilitiani Rece/abilitiani Rece/abilitiani Rece/abilitiani Rece/abilitiani Received ability a		0	/																											
EPA Method 5 Field Data S EPA Method 5 Field Data S Isokinetic Particulate Sam Isokinetic Particulate Sam Isokinetic Particulate Sam Isokinetic Particulate Sam Sokinetic Particulate Sokinetic Sokinetic Particulate Sokinetic	heet npling	1-	- 67	320P Oxygen %v/v	0	Lint	-	-	-		-						-	-					/			02=20.9		Total		11.6
Image: FSD FN: 2:04074 EPA Me 2020 Compliance w/ Module ID ZM-1 Pitot No. 3-01 C ₉ 2 West Humer (32:4682) Meter Coef. 7 0.49(57) Bar. Pres. 25.45 In. West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 3-01 C ₉ 0 West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 1.52.1 %	ata S ate San	CM.	D8-	Mtr Out Temp. °F	ìr	76	76	710	76	LL	11	18	78	78	4	62	80	8	150	18	20	10	22	28				Desiccant	1306.3	1293.8
Image: FSD FN: 2:04074 EPA Me 2020 Compliance w/ Module ID ZM-1 Pitot No. 3-01 C ₉ 2 West Humer (32:4682) Meter Coef. 7 0.49(57) Bar. Pres. 25.45 In. West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 3-01 C ₉ 0 West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 1.52.1 %	eld D articula	eter ID	sor ID ter ID	Meter In Temp. °F	~~~	15	LL	11	79	80	20	100	83	83	80	80	00	23	20	85	50	55	220	Slo				5	1	11
Image: FSD FN: 2:04074 EPA Me 2020 Compliance w/ Module ID ZM-1 Pitot No. 3-01 C ₉ 2 West Humer (32:4682) Meter Coef. 7 0.49(57) Bar. Pres. 25.45 In. West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 3-01 C ₉ 0 West Humer (32:4682) Meter Coef. 7 0.49(57) Est No. 1.52.1 %	d 5 Fi inetic P	Manom	TC Sen Barome Scale II	Impinger Temp. °F	rite	410	44	44	44	44	14	42	40	5	46	46	247	46	96	46	16	17	No N	200				4	1	11
Image: Fight of the state of the s	1etho Isoki		In. Hg In. H ₂ O %v/v		also a	LAIN		-		_	-								_	_	-	-	-	1				e	1.2	C12
Image: Fight of the state of the s	PA N		s's	Probe Temp. °F	120	240	hhe	142	250	246	255	245	246	248	247	250	244	255	246	كالمل	248	255	anc	256			6.0	2	2:001	001
Im FSD PN: 20-04074 Module ID CM-1 Pitot 20200 Compliance W/ Module ID Meter Coeff. Y 0.49457 Bar. West Humter (324662) Meter Coeff. Y 0.49457 Bar. TestRun T1 R3 Orifice Coeff. AH@ 1.82.31 Stat TestRun T1 R3 Nozzle No. 12 Dn., 2240 Est. Velocity Orifice Desired Incre. Train Stat Stat Velocity Orifice Desired Incre. Vin. mental Vacuum Termin functions H20 Orifice Pito Pito<	ш		ιιι 	Filter Temp. °F	n ne	245	245	117	245	249	250	251	350	250	250	249	249	249	250	250	250	244	250	250			-	1	87.2	100 -12,8
Im FSD PN: 20-04074 Z020 Compliance w/ West Hunter (324662) Module ID CM-1 West Hunter (324662) Meter Coef. Y 0.99757 TestRun T1 R3 Orifice Coef. AH@ 0.99757 Vest Hunter (324662) Meter Coef. Y 0.99757 0.99757 0.99757 Vest Hunter (324662) Meter AH Nozzle No. 1.20L0 Velocity Orifice Coef. AH@ 1.4017 2.010 Velocity Orifice Coef. AH@ 1.401 2.010 Peelocity Orifice Coef. AH@ 2.012 2.00 Peelocity Orifice Coef. AH@ 2.013 3.014 2.02 Peelocity Inches Ho Meter AH Vm membral 2.00 O 5.2 2.013 3.04 2.02 2.02 2.02 2.02 2.02 2.02 2.02 0.02 2.02 0.02 2.02 2.02 0.02 2.02 0.02 2.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <td></td> <td>Pitot No</td> <td>N 25 T</td> <td>Stack Temp.</td> <td>é</td> <td>075</td> <td>hb</td> <td>nb</td> <td>95</td> <td>63</td> <td>201</td> <td>107</td> <td>105</td> <td>101</td> <td>92</td> <td>25</td> <td>910</td> <td>36</td> <td>63</td> <td>66</td> <td>50</td> <td>50</td> <td>00</td> <td>16</td> <td></td> <td>s=95.8</td> <td></td> <td>er No.</td> <td>olume</td> <td>/olume nce</td>		Pitot No	N 25 T	Stack Temp.	é	075	hb	nb	95	63	201	107	105	101	92	25	910	36	63	66	50	50	00	16		s=95.8		er No.	olume	/olume nce
Image: SD PN: 20-04074 FSD PN: 20-04074 2020 Compliance w/ West Hunter (324662) Meter Coef. 7 West Hunter (324662) Meter Coef. AH@ West Hunter (324662) Meter Coef. AH@ Test/Run T1 R3 Orifice Coef. AH@ P Nozle No. 12 Velocity Inches H20 D: 55 2 : 13 90.31 D: 55 2 : 13 903.13 D: 55 2 : 13 903.10 D: 55 2 : 13 903.10 D: 55 2 : 13 903.10 D: 55 2 : 13 910.93 D: 55 2 : 13 923.64 D: 55 2 : 35 933.45 D: 55 2 : 14 923.55 D: 55 2 : 14 925.12 D: 55 2 : 14 944.57		1-1	0.9959 1.821	Train Vacuum Inches Hg				2.0	00		0 @	20.0	0.0	0.2	2.0	0.2	00		2.0	3.0	50	200	2.0	2.0		t		Imping	Final V	Differe
in FSD PN: 20-04074 in FSD PN: 20-04074 Module West Hunter (324662) West Hunter (324662) Meter Construction West Hunter (324662) Test/Run T1 R3 West Hunter (324662) Meter Construction Meter Construction Test/Run T1 R3 Meter Construction Velocity Orifice Nozzle N Nozzle N Velocity Orifice Meter Construction Nozzle N Velocity Orifice AVm Nozzle N Noszle N20 Inches H20 Inches H20 Inches H20 0 S 2 2 13 0 S 2 2 13 0 S 2 2 13 0 S 2 3 14 0 S 2 <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>51.8</td> <td>2.79</td> <td>2.60</td> <td>2.69</td> <td>2.92</td> <td>3.04</td> <td>3.07</td> <td>2.78</td> <td>2.61</td> <td>2.63</td> <td>2,68</td> <td>2.66</td> <td>2,67</td> <td>2.72</td> <td>2.89</td> <td>3.70</td> <td>1.10</td> <td>256</td> <td>2.56</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>#REF!</td>					2	51.8	2.79	2.60	2.69	2.92	3.04	3.07	2.78	2.61	2.63	2,68	2.66	2,67	2.72	2.89	3.70	1.10	256	2.56						#REF!
in FSD PN: 20-04 2020 Compliance w/ West Hunter (324662) Test/Run T1 RSP 213 Velocity Orifice Velocity Inches H ₂ O Velocity Orifice Velocity Inches H ₂ O Velocity Orifice Velocity Orifice 0 55 2 0 55 2 0 55 2 0 55 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 5 2 0 2 2 0 5 2 0	74	Module ID	Meter Coe Orifice Coe Nozzle No	Desired ΔV_m Subic Feet	-			-		916.98	920.08	925.95	428.74	931.35	933.98	936.66	454.32 947 M	944.67	947.39		952.97	112.020	Alal OC	963 65			e Wash;			
in West Hunte Test/Run Test/Run Test/Run Test/Run Test/Run Test/Run Test/Run Test/Run Test/Run Test/Run Cest Cost Cost Cost Cost Cost Cost Cost Co	SD PN: 20-040	pliance w/i	r (324662) T1 R 3				. 60	13-	27.	. 85		3.14		26	30	34	35	E	T	76	=10	52	910	31		1=2,51		iments:		
Pace Analytical Field Services Division Inple Location No. 7 HMP Imple Recovered: Filter Meter Vol. Imples Recovered: Filter Meter Vol. Imples Recovered: Filter Meter Vol. Imples Recovered: Filter Meter Vol. Imples Recovered: Filter Meter Vol.		1 2020 Com	West Hunte Test/Run	Velocity Head ∆P Inches H ₂ O	12.30	• •		15.9		000.0	0.68	19.0	0.55	0.48	•			.50	SI	PS:	So						141-0	1906.10		
Pace Analy Pace Analy Pace Analy Pace Analy Pace Analy rest Grede-In Pace Analy av. Time Pace Analy Pace Pace Pace Analy Pace Pace Analy Pace Pace Analy Pace Pace Analy Pace Pace Analy Pace Pace Pace Analy Pace Pace Analy Pace Pace Analy Pace Pace Analy Pace Pace Pace Pace Analy Pace Pace Pace Pace Pace Pace Pace Pace	t tical ® Field Services Divi	on Mountain	7 HMP			907 .18	906.00		414 .24	02.119	920.30	926.25	929.06	931.70	934.30	937 00	937,60 942.35	945.10	08.142	950 . 65	953.40	456 . 65	2			66.		eak Checks	@ 8 "Hg	Neg.
The market of the second of th	7 Ice Analy	Grede-Irc		Time ΔT	(1225)	en	0	14	18	12	74	17	33	36				51	54	27	60	60 1-1	And Infl	72	(14:1)	-	s Recove	g Train L	st 0.00	
	and and a	Project	Sample I Date Operator	Trav. Point No.			m =	5 1	en	22	00	01	11				n 2	2	9	~	so	3-5	10	7		Tot/Avg (Sample	Samplin	Pretes	Postte Pitot -

C

Grede, LLC - Iron Mountain Page A-23 of 88

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-Iron Mounta			112		Date Tech.	12-8-2
Sample Location No. 7 HN	IF - VVESLF	funiter (524	662)		recn.	53/58
	Initial	ization Par	ameters	-	and a second	Lawrence
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	0.9959					
Orifice Coefficient - △H@	1.821				1	
Pitot Coefficient - Cp	0,84					
Nozzle Diameter - D _n	.240					
Barometric Pressure - P _b	28.65			->		
Static Pressure - P _g	-0.5 -			->		
Oxygen Estimate - %O ₂	20.9	~		>		
Moisture Estimate - %MC	1			\rightarrow		
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	64	64.0	67.5	76.5		1
Initial Meter Volume - V _i	744.152	744.152	831.20	897,800		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	25					
Duct Depth, Inches	25					
Final Volume - V _f		830,35	897.50	964.00		
Total Run Time - θ		96	72	72		
Condensate Volume, ml (g)		13.6	10.8	11.6		
	End	of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	0,7212	017340	0.726		
Average Orifice Meter	ΔH	2.45	2.54	2.51		
Average Stack Temperature	ts	90.7	94.5	95.8		
Average Meter Temperature	t _m	67.4	72.6	80.1		
Sample Volume, Actual	V _m	86.19	66.30	66.20		
Sample Volume, Dry Standar	V _{std}	82.81	63.08	62.12		
Moisture Content	MC	0,77	0,80	0.87		
Estimated Mole. Wt., dry	M _d	29.0	29.0	29.0		6
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	42.37	43.27	42.85		
Isokinetic Variation	%1	101.2	101.4	101.1		
Volumetric Airflow, Actual	ACFM	8670	8850	8760	1	
Volumetric Airflow, Standard	SCFM	7950	8060	7960	1	
Volumetric Airflow, Dry Std.	DSCFM	7890	8000	7890		

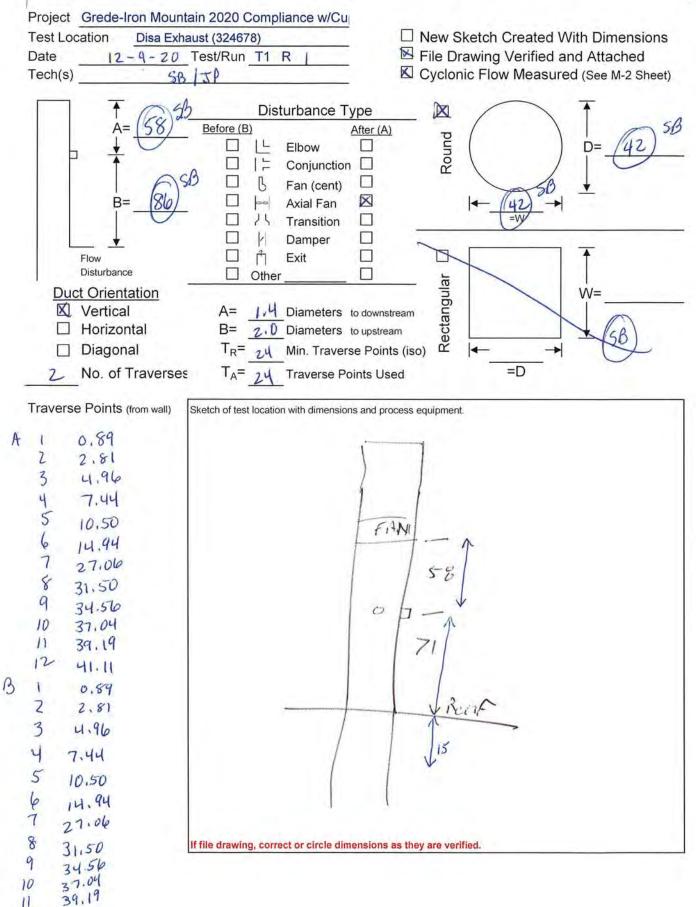
Sampling Location: No.

Airflow Determination

Project Name:

cal [®] sion			Eq	Iso		thod Sumr Associated To Group 4 QI	12 A A A A A A A A A A A A A A A A A A A
Grede	e-Iron Mountain 2	2020 Compl	iance w/(Test D)ate:	12-8-20	
No. 7	HMP - West Hu	nter (324662	2)	Recor	ded By: _	50	
ion	EPA Method:	2	2	2C [Other		Initials
-01_	Coef.: 018 Coef.:	<u>4</u>	Next Ver. Next Ver.		1-1-21	Pre-Use Insp. Pre-Use Insp.	
n-1	X Oil	Digital	Next Ver.	Date:	1-13-21	Pre-Use Insp.	V
	Oil 🗌	Digital	Next Ver.	Date:		Pre-Use Insp.	
-35	Aneroid	Digital	Next Ver.	Date:	3-22-21	Pre-Use Insp.	1
	Aneroid	Digital	Next Ver.	Date:		Pre-Use Insp.	:
0-1	Single	Dual	Next Ver.	Date:	1-13-21	Pre-Use Insp.	
	Single	Dual	Next Ver.			Pre-Use Insp.	
EPA	A Method: 3	3/3A	3B	3C	X Ambie	ent	Initials
Teo	dlar 🗌 Teflo	n 7-	Layer Iner	t 🗌	Other	Leak Checks	:
Sin	gle Point	Multipoint	With With	h Iso Tra	ain 🗌 🤆	Grab 🗌 Inte	grated
Orsat	Fyrite	Instru	umental: In	strume	at ID:	Cal Range	
xygen	Verification:	Portable O2	2 ID	1	Ambient Cal	Reading:	
	(and a second	Note: Portable O2 re	isults are not report	led as lest dat	a	_	/
EPA	A Method: 🔀 4,	back-half o	f iso train		Other	Explain in Options/ Deviations Section	Initials
5-42	Digital	Beam	Next Ver.	Date:	4-6-21	Pre-Use Insp.	1
	Std. Weight (g	ı):	Scale F	Reading		Pass	Fail
Nethod	5_	8 17	23	26	A 29	Other	Initials
Тур	e: 🔀 Stainles	s Steel	Glass		Quartz	Other	

Pitot Tube No.: 3-0(Coef.: 0184 Pitot Tube No.: Coef.:	Next Ver. Date: Next Ver. Date:	Pre-Use Insp.: Pre-Use Insp.:
Manometer ID: <u>CM-I</u> XOil Digital	Next Ver. Date: 1-13-21	Pre-Use Insp.:
Manometer ID: Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: <u>pb-35</u> Aneroid X Digital	Next Ver. Date: 3-22-21	Pre-Use Insp.:
Barometer ID: Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout Cm-1 Single Dual	Next Ver. Date:	Pre-Use Insp.:
T/C Readout Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA Method: 3 3/3/	A 3B 3C X Ambie	nt Initials
Container Type: Tedlar Teflon 7	'-Layer Inert Other	Leak Checks:
Sampling Proc.: Single Point Multipoint	With Iso Train	Grab Integrated
Gas Analysis: Orsat Fyrite Inst	rumental: Instrument ID:	Cal Range
Ambient Provision Oxygen Verification: Portable O	D2 ID Ambient Cal	Reading:
Moisture Content EPA Method: X 4, back-half	of iso train Other	Explain in Options/ Initials Deviations Section
Wt. Scale ID: DS-42 Digital Beam	Next Ver. Date: 4-6-21	Pre-Use Insp.:
Std. Weight ID: Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method: X 5 8 1	7 23 26A 29	Other Initials
Nozzle ID: 12 Type: 🔀 Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 260 2.260 3.260 4.	260 5,260 Avg, 260	Pre-Use Insp.:
Nozzle ID: Type: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 2 3 4	5. Avg	Pre-Use Insp.:
Probe Length: <u>3</u> ft. Liner: SS 🔀 Glas	ss 🗌 Quartz 🗌 Teflon	Other
Pitot Tube No.: <u>3-01</u> Coef.: <u>0+84</u>	Next Ver. Date: 1-1-21	Pre-Use Insp.:
Probe Length:ft. Liner: SS Glas	ss 🗌 Quartz 🗌 Teflon	Other
Pitot Tube No.: Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: Y:AH@:	Next Ver. Date: 1-13-21	Pre-Use Insp.:
Control Mod ID:Υ: ΔH@:	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" Round X 4" Round	Thimble Other	
Filter Media: 🔀 Glass Fiber 🗌 Quartz Fiber	Paper Teflon S	S Other
Wet Catch: EPA 202 EPA 8 EPA	A 23 EPA 26A EPA	A 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074 Report Date		e, LLC - Iron Mountain Page A-25 of 88


Field Data Sheets - 324678

ace Analvtical Field Services Division

EPA Method 1 Field Data Sheet

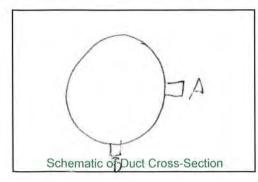
Test Site and Traverse Point Selection

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

CM-1

Project	Grede-Ir	on Mour	ntain 2020 C	Complia	ance w/Cu
Test Lo	cation	Disa Ex	haust (3246	678)	
Date	12-9	-20	Test/Run	T1	R/
Duct Dir	mensions	4	2 × 42		Inches
Port Ler	ngth	(6	_	Inches
Pitot Lea	ak Check	- Pos	V	Neg	


Manometer Type and	ID CM-
Barometer Type and II	
Thermocouple Sensor	ID CM-1
Pitot Tube No. 4 -	06 Cp
Technicians	58 138
#REF!	F

cm - 1 Ср 0,84 JJP SB

FSD PN: 20-04074

30

Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ick Temp	perature	- °F
Point	Inches		Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
AI	0.89	6.89	10	132				71	1		
	2.81	8.81	10	, 32	1				1		
) 4	4.96	10.96	50	,32							
5	7.44	13.44	0			m			/		
6	10.50	20.94	5	130		(68)			1	A	
7	27.06	33.06	10	, 30		1.				657	>>
8	31,50	37.50	0	.30		Y				11	/
C'	34.56		0	+ 31		/		100		1	
10	37.04	43.04	-25	, 34			/				
il	39.19	45.19	- 30	. 35							
12	41.11	47.11	-25	130				V			
5 1	0,89	6.89	5 5 10	1							
2	2.81	8.81	5								
3	4,96	10,96	10								
4	7.44	13,44	7	1			~				
5	10.50	16.50	5 -5				((5B)				
	14.94	20,94	5				200				
7	27.06	33.06	-5				-				
9	34.56	40.56	-10					1			
10	37.04	43.04	-10						-		
11	39.19	45.19	-10			+					
112	41.11	47.11	0								
-											/
							0				
							18				
						-	R				
									-	-	
					11						

	Run 1	Run 2	Run 3	Run 4	N R
Bar. Pressure	28,45	1			"Hg
Static Pressure	-0.25				"H ₂ O
Dry Bulb Temp.	71		60)	°F
Wet Bulb Temp.	1		6		°F
Moisture Content	Gi				%v/v
320 P Oxygen	20,9			/	%v/v
Time of Meas.	0730				(24 Hour)

	69)																														
heet npling	1	-1-	24	320P Oxygen	1101	P=02	-																		10	*	02=20,9		Total			5.5
ata S ate San	Cm-1	Cm-1 DB-35	D5-42	Mtr Out Temp.		56	73	13	73	hL	75	15	16	er	11	25	79	51	80	20	200	52	28	53	500		tm= 79.3		Desiccant	1314.8	1306.3	8.5
eld D articula	eter ID	sor ID ter ID		Meter In Temp.	-	12	22	225	15	76	LL	2	400	200	22	97	100	500	22	22	Se	87	88	Se	C C C	00			5		1	1
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	Manometer ID	TC Sensor ID Barometer ID	Scale ID	Impinger Meter In Temp. Temp.		56	Se	54	59	59	40	60	54	ino	60	00	60	فا	101	00	63	loit	65	en i	65	ð			4	1	1	1
letho Isoki	0.84	45 In. Hg	1/n%	Sample Temp.		AN	-												-						1	>			e	0	0	0
EPA N	olo Cp			Probe Temp.	-	250	250	241	142	25)	254	192	and	14.4	012	7,00	760	255	251	257	248	243	252	246	2410	A - 4		Other	2	109	100	5
ш	0. 4-06	ú	ist.	Filter Temp.	-	152	250	248	bhZ	250	252	241	248	ULL I	250	SHZ	249	251	642	250	249	251	152	251	157			M-202;	+	88	100	212
	Pitot No.	Bar. Pres. Static Pres.	Est. Moist.	Stack Temp.	-	83	22	2020	83	66	68	80	52	5	22	105	28	54	54	700	68	57	56	Se	- 52	-	ts=70 . 6	ų N	ler No.	Final Volume	Initial Volume	nce
	Cm-1	1.821	D, 340	Train Vacuum		9.0	2.0	00.5	9. 1	4.0	0.1	4.0	0.1		240	2.0	2.5			00	3.0	4.0			2 4 0			et Catch;	Impinger No.	Final \	Initial	Difference
		Coef. γ Coef. ΔH@		Incre- mental	E,			2.14		1 1		3.01	58. C	Barr C	2.61	2.77	2.83	2.13		2.59	2.75	3.33	3.44	2.94	212	1014		D Wet				#REF!
074	Module ID	Meter Coef. Orifice Coef.	Nozzle No.	Desired ΔV_m	Cubic reet	968,08	970.30	976 49	979.54	922.40	985.46	ru-886	11.1100	G0- C2	20.0001	1003.39	100623	1008,95	1011.104	CL 1101	19.91	1022.84	1026.27	12.6201	1036.74	3		Probe Wash;				
FSD PN: 20-04074	pliance w/i	T1 R1		Orifice Meter AH		3.04		3.30	1				10.4		60	12.	· 106	91.	95	14.1	1		3.56		12.2		AH= 2,85	Pro	ments:			
	2020 Com	t (324678) Test/Run	30	Velocity Head ∆P		0.32	÷	0.34	1 1		6.31	•	0.34	•	200		1.20			0.20		0.35		+	0.35	1		2411-0	0.50329) : Comments:			
Pace Analytical [®]	Project Grede-Iron Mountain 2020 Compliance w/	Disa Exhaust (324678 - 9 - 2.0 Test/Run	56		965 . 100	968.12	970.40	973.55 876 62	019.70	982. 40	965 . 70	04.88.70	741.45 Der 60	041 200	06.000		1006 50	1009 . 30		1014 . 60	1019 95	1023.20			1056-14		Vm= 70.50 VAP=0.53	Samples Recovered: Filter	Sampling Train Leak Checks:	10 5 "Hg	B	Neg.
Ce Analy	Grede-Iro		s/Techs	Time I	(2501)	m	ب،) T					30		2	10		51				-	121	(0/21)	V 26=0	s Recover	g Train Le	Pretest 0.00 @	Posttest 0.00 @	Pos.
Pa	Project (Sample Location	Operators/Techs	Trav. Point	NO.	1		w ¬	-2	e	5	00	5 9	2 :	2	-		3	יב	5	* [20	0	01	11	2	Tot/Avg 0	Samples	Samplin	Pretes	Postte	Pitot - Pos.
						A										a)								~							

÷

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-29 of 88

	~	/																															
heet npling	1-	CM-1 DB-35	26-	320P Oxygen %v/v		30.9	-	-				-				-			-					-	/		_	02=20.9		Total		1.7	
thod 5 Field Data Sheet Isokinetic Particulate Sampling	CM-1	CM DB	X	Mtr Out Temp. °F		84	83	2 C	84	84	84	84	54	200	83	85	55	85	07	85	85	85	85	3	82			tm=86,1		Desiccant	1315.8	1314.8	X
ield D articula	eter ID	sor ID eter ID	0	Meter In Temp. °F		85	54	22	810	87	87	87	200	200	98	36	36	18	88	28	200	90	06	06	20					5	1	11	
d 5 Fi inetic F	Manometer ID	TC Sensor ID Barometer ID	Scale ID	Impinger Meter In Temp. Temp.		55	Slo	54	53	52	51	5	54	20	54	5	20	305	24	- 14	Se	Sle	LS	5H	200					4	1	1	
EPA Method 5 Field Isokinetic Partic	0.84	In. Hg In. H ₂ O	%v/v	Sample Temp. °F		NA)					e	14.0		Т
EPA N	4-06 Cp	50	-	Probe Temp. °F		142	202	242	246	248	249	250	246	002	152	250	342	PH2	120	251	248	245	642	ph2	247	ł			D Other	2	107.8	001	11
ш		, i	ist.	Filter Temp. °F		228	229	727	228	235	243	Lh2	250	2.04	249	157	ph2	248	12050	250	251	251	251	7750	150	200			M-202; [1	85.9	1001	1111
	Pitot No.	Bar. Pres. Static Pres.	Est. Moist.	Stack Temp.	L N	12	6	54	580	57	57	51	Sle	17,	795	20	6	59	528	28	28	58	27	15	101			$t_s = b $	Ž	Impinger No.	Final Volume	Initial Volume Difference	
	1-1	04959	Dn 0310	Train Vacuum Inches Hg		9.4	wi	2.2		3.5			2.0	2V D	200	0.1	3.5		C . 1		0.4	4.0			00				et Catch;	Impine	Final \	Initial Volu Difference	
	Cm-1			Incre- mental V		28.2	2,81	2.71							2.77			3.29							20				D Wet			#REF!	
274	Module ID	Meter Coef. γ Orifice Coef. $\Delta H@$	Nozzle No	Desired ΔV_m Cubic Feet		38,72	41153	44.24	19.92	52.63	55.16	58,50	61.49	12100	20.18	73.24	76.06	79.34	25, 711	66.88	48.19	94.89	36.7.95	50191	105.41				be Wash;				
FSD PN: 20-04074	pliance w/i	T1 R2		Orifice Meter ∆H Inches H ₂ O		1.1		50	2	oh.	60.	66	-	1-10	15	90	59	3.54	200	00	03	63	Fo.	1.	808			AH= 2,90	Probe	Comments:			
	Grede-Iron Mountain 2020 Compliance w/	t (324678) Test/Run	d	Velocity Head ∆P Inches H ₂ O	7			52.0										0.34			+				17.0	 • 		23	0-1145	Cor Cor		,	1
Pace Analytical [®]	n Mountain	Disa Exhaust	58/3	Meter Vol. Vm Cubic Feet	35 800	1.1	09.11	. 5	: .	52.80			04.10	+		00.61		19.10		• •			1.	0	02.00	• •		V=70,95 VAP=0.	Samples Recovered: Filter	Sampling Train Leak Checks:	@ 5 "Hg	@ 3 "Hg	
2 Ice Analy	Grede-Iro		s/Techs	Time ∆T	(1251)	n n	e	0 :	1	8	17	42	12	32	36	29	12	45	14	24	LS	60	63	00	12	(JUDE)		12 =0	s Recove	d Train Lo	st 0.00 (Pitot - Pos.	
Pa	Project (Sample Location Date	Operators/Techs	Trav. Point		-		uz	-2	19	-	8	5	01	-12			w.	2)	2.2	74	8	0	0	= 2	2		Tot/Avg 6	Sample	Samplin	Pretest	Postte	
		A				4	2									C	5								• •••								

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-30 of 88

	-	Y																															
Sheet	-	-1-	24-	320P Oxygen %v/v		26.9	-					-	-						-						10	-		02=70 9		Totol	1 OIGI		1,0
thod 5 Field Data Sheet Isokinetic Particulate Sampling	cm -1	CM-1 DB-35	DS	Mtr Out Temp. °F		84	84	84 XU	24	84	84	84	24	24	201	83	83	83	22	x x x z x z	84	84	SY	52	85	9		tm= 85.7		Designat	Lesiccant	1315.8	1.3
Field D c Particul	eter ID	isor ID ster ID	0	Meter In Temp. °F		87	84	2.2	218	100	1-20	81	100	XXX	200	20	82	98	18	xux xux	8	86	06	06	90	OL.				Y	>)	1	1
d 5 Fi inetic P	Manometer ID	TC Sensor ID Barometer ID	Scale ID	Impinger Temp. °F		55	Sle	2.6	56	56	Slo	27	200	22	22	24	Slo	Se	1.5	24	53	53	53	Si	59	2					-	1	1
EPA Method Isokine	0.84	In. Hg In. H ₂ O	V/V%	Sample Temp. °F		NA	-																							c	2.4	5.0	2.4
PA N	4-06 Cp	28.45	-	Probe Temp. °F		248	247	Ch2	249	249	542	250	250	121	127	252	251	251	707	162	126	246	LH2	247	248	200			D Other	c	-	10	6.5
ш			ist.	Filter Temp. °F		228	229	230	235	235	Shz	247	2520	051	250	LH2	245	246	Lho	200	257.	251	250	250	251	110			M-202;	*	200	100	1.6-
	Pitot No.	Bar. Pres. Static Pres.	Est. Moist	Stack Temp. °F		58	58	60	(a)	61	74	101	28	50	200	22	88	96	10	19	12	58	55	54	54	50		ts=65.6	ų Ž	or No	Final Volume	Initial Volume	nce
	CM-1	1281	Dn , 310	Train Vacuum Inches Hg		3 5		in a				•			00		3.0	0	3.0	30	1.14	4.0			in				t Catch;	Immino	Final Volume	Initial \	Difference
				Incre- mental V _m		3.01	3.14	n'n n	3.08	3.08	3,10	2,98	3.29	2:10	21.40	2.79	2.74	2.73	2.51	212		1 cc	in	ŝ	3.01	-			D Wet				#REF!
074	Module ID	Meter Coef. γ Orifice Coef. $\Delta H@$	Nozzle No.	Desired ∆V _m Cubic Feet		10.01	113.15	116.28	122,54	125.63	128.72	131.70	135,00	60.861	DL. ENI	ph.olhi	149.22	151.96	isy who	126.58	21.201	165.56	20.191	172,2%	175.29	15130			be Wash;				
FSD PN: 20-04074	pliance w/i	T1 R3		Orifice Meter ∆H Inches H ₂ O		2.99	. 23	12:21	1	11.	n	06	15.		ras.	er v	de.		90.	14	2.99	36		81.	20.45			AH=2,92	A Probe) monte.	.chilailii		
	2020 Com		50	Velocity Head ∆P Inches H ₂ O	-	0.29		0 31	1	0.30		•	0.34					0.25		51.0	0.20	•		in	0.28	٩.		VAP=0.53 4	0-1146	0.50377)			
Pace Analytical [®] Field Services Division	Grede-Iron Mountain 2020 Compliance w/	Disa Exhaust (324678 2 - 9 - 20 Test/Run	581	Meter Vol. V _m Cubic Feet	-	110.05	113.25	116.30			1.00	01.161	-	138.05	142.77	ė	i49.25		154.50	156.67	167.20	1000	168.95		122.51	177.611		Vm=71,23	Samples Recovered: Filter	John Change	Pretest 7 AN @ & "Ho	6.0	Neg.
Ce Analy	Grede-Iro		s/Techs -	.Time ∆T	(1435)		6	3 1	N	8	12	54	57	30	200	39	124	45	118	27	23	60	63	66	595	11550)	maria	1 26 =0	s Recove	Tuint 2		st 0.000	Pitot - Pos.
Pa	Project (Sample Location Date	Operators/Techs	Trav. Point No.		-		~7	5	e	٢	S	8	0	-12			m	5	5	Pr	80	0	0	= 2	-		Tot/Avg 6	Sample	- Inmo	Prefect	Postte	Pitot -
	Daco	Apolytics				4										2	3								Gro	do I		. Ire	n Mo	unto	in		

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-31 of 88

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not	intended	to reflect	final results.	

Project	Grede-In	on Mountain 2020 CoSite
Sample L	ocation	Disa Exhaust (324678)

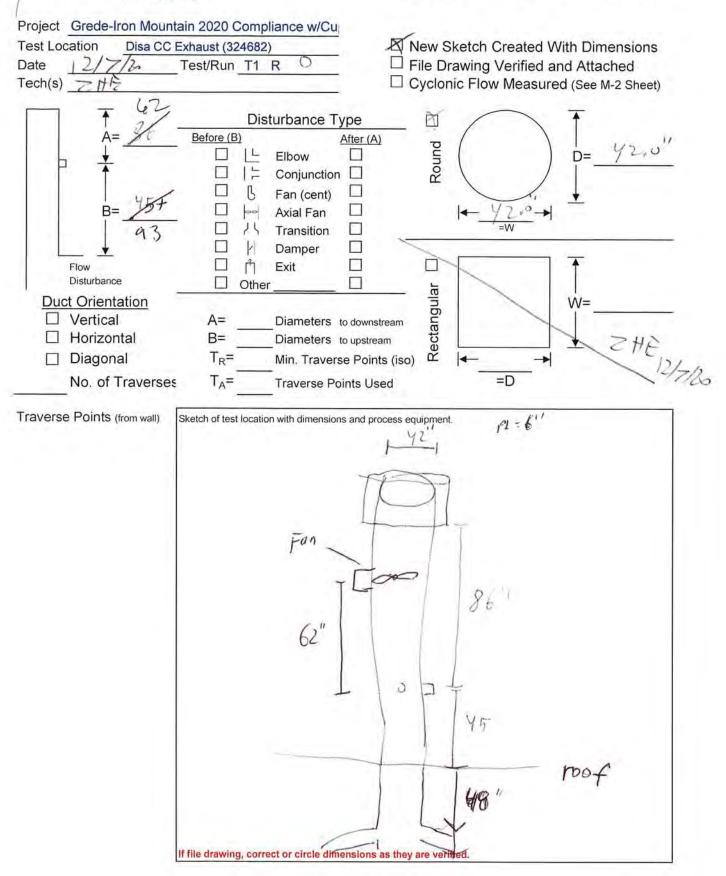
12-9-20 Date Tech. SB

	Initia	lization Pa	rameters			- Sector
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	0.9959					
Orifice Coefficient - ∆H@	1.821					
Pitot Coefficient - C _p	0.84					
Nozzle Diameter - D _n	, 310					
Barometric Pressure - P _b	28.45			\rightarrow		
Static Pressure - Pg	-0.25			>		
Oxygen Estimate - %O ₂	20.9					
Moisture Estimate - %MC	1			-5		
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	72	72	84.5	85.5		
Initial Meter Volume - V _i	965,100	965,100	35,800	107,000		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	42					
Duct Depth, Inches	42					
Final Volume - V _f		1035.60	106.78	178.227		
Total Run Time - θ	1 3 3	72	72	72		
Condensate Volume, ml (g)		5.5	0.7	1.0		
	End	of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	0.5306	0.5263	0,5296		
Average Orifice Meter	ΔH	2.85	2.90	2.92		
Average Stack Temperature	t _s	70.6	61.1	65.6		
Average Meter Temperature	t _m	79.3	86.1	85.7		
Sample Volume, Actual	V _m	70.50	70.98	71.23		
Sample Volume, Dry Standar	V _{std}	65.85	65,48	65.76		
Moisture Content	MC	0.39	0.05	0.07		
Estimated Mole. Wt., dry	M _d	29.0	29.0	29.0		
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	30.67	30,13	30.46		
Isokinetic Variation	%1	160.7	99.8	100.0		
Volumetric Airflow, Actual	ACFM	17710	17390	17580		
Volumetric Airflow, Standard	SCFM	16750	16740	16780		
Volumetric Airflow, Dry Std.	DSCFM	16680	16730	16770		

Equipment & Method Summary

Isokinetic and Associated Testing Group 1 QI 5B Group 4 QI

Project Name:	Grede-Iron Mountain 2020 Co	ompliance w/(Test I	Date:	12-9-20
Sampling Location:	Disa Exhaust (324678)	Reco	rded By:	5B
Airflow Determination	on EPA Method:	2 2C	Other	Initials
Pitot Tube No.: 4- Pitot Tube No.:	-06 Coef.: 0.84 Coef.:	Next Ver. Date: Next Ver. Date:		Pre-Use Insp.: Pre-Use Insp.:
Manometer ID:	n-L XOil Digita	Next Ver. Date:	1-13-21	Pre-Use Insp.:
Manometer ID:	Oil Digita	Next Ver. Date:		Pre-Use Insp.:
Barometer ID: DB	-35 Aneroid 🔀 Digita	Next Ver. Date:	3-22-21	Pre-Use Insp.: 📈
Barometer ID:	Aneroid Digital	Next Ver. Date:		Pre-Use Insp.:
T/C Readout	A-L Single Dual	Next Ver. Date:	1-13-21	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:		Pre-Use Insp.:
Gas Composition	EPA Method: 3	3/3A 3B 30	Ambier	t Initials
Container Type:	Tedlar Teflon	7-Layer Inert	Other	Leak Checks:
Sampling Proc.:	Single Point Multip	oint With Iso Tr	ain 🗌 G	rab Integrated
Gas Analysis:	Orsat Fyrite	Instrumental: Instrume	ent ID:	Cal Range
Ambient Provision Ox		le O2 ID ble O2 results are not reported as fest da		Reading:
Moisture Content	EPA Method: X 4, back-h	nalf of iso train	Other	Explain in Options/ Initiate Deviations Section 1
Wt. Scale ID: DS-	-uz X Digital Bea	am Next Ver. Date:	4-6-21	Pre-Use Insp.:
Std. Weight ID:	Std. Weight (g):	Scale Reading	ı:	🗌 Pass 📃 Fail
Isokinetic EPA N	lethod: 🔀 5 🔄 8	17 23 26	SA 29	Other Initials
Nozzle ID:	Type: 🔀 Stainless Steel	I Glass	Quartz] Other
Nozzle Cal.: 31	0 2,310 3,310 4	,310 5,310	Avg . 310	Pre-Use Insp.:
Nozzle ID:	Type: Stainless Stee	I Glass	Quartz] Other
Nozzle Cal.:	2 3 4	5	Avg	Pre-Use Insp.:
Probe Length: 4	_ft. Liner: SS	Glass 🗌 Quartz	Teflon	Other
Pitot Tube No.: 4-	06 Coef .: 0.84	Next Ver. Date:	1-2-21	Pre-Use Insp.:
Probe Length:	_ft. Liner: SS	Glass 🗌 Quartz	Teflon	Other
Pitot Tube No.:	Coef.:	Next Ver. Date:		Pre-Use Insp.:
Control Mod ID: Cr)-1 Υ: 0,9959 ΔH@: 1,8	821 Next Ver. Date:	1-13-21	Pre-Use Insp.:
Control Mod ID:	<u>Υ</u> :ΔH@:	Next Ver. Date:		Pre-Use Insp.:
Filter Type:	21/2" Round X 4" Round	d Thimble	Other	
Filter Media:	Glass Fiber 🔲 Quartz Fibe	er 🗌 Paper 🗌 Te	eflon St	G Other
Wet Catch: EP	A 202 EPA 8	EPA 23 EPA 26	A EPA	29 Other
WC Options/Deviatio Pace Analytical FSD 20-04074		Date 2/5/2021	Grede,	LLC - Iron Mountain Page A-33 of 88

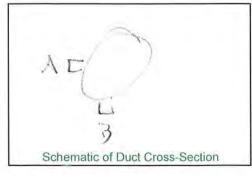

Page A-33 of 88

Field Data Sheets - 324682

Pace Analytical [®]	
TIETU BETVILES DIVISIUI	1

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection


EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project	Grede-Iron	Moun	tain 2020 C	Complia	Grede-Iron Mountain 2020 Compliance w/Cu								
Test Loc	ation Di	sa CC	Exhaust (3	324682	2)								
Date	12/7/20		Test/Run	T1	R)								
Duct Dim	ensions	42	XYZ		Inches								
Port Leng	gth		6 x 60		Inches								
Pitot Lea	k Check - F	os	1	Neg	V								

Manometer Type and ID (M-5)Barometer Type and ID DB-6Thermocouple Sensor ID (M-5)Pitot Tube No. Y-0.2 Cp D.BYTechnicians ZHE/LMR#REF! FSD PN: 20-04074

Trav	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	perature	- °F
Point No.	Inches Wall	s From Port	Flow °Yaw	Run 1 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 2 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 3 ∆P	Run 4 ΔP	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
A	0,89	6.81	8		0,20			69			
3	7.81 4.96 7.44	10.16	05	0.21 0.18 0.19	0.18			63	/		
5	13.50	16.50	05	0.15		1			/		
8	27.06	33.06	Ö Ö	0.18				69	j	1	
9	37,56	40.56	-5	0,17	1						
12	34.19	45.19 47.11	5550	0.150	0,20		11.	69		S	HE
B 1 2	T	T	050	0.45	12/8/20		HE		h		
24			0	0.50			12/8/20			12/8/20	
5	541	ne	8	0.48	pitat	leak Itizh				1.46	1
7.20	us		-55	O.YR	1 Dias	tigh					1
	96	×l	5000	0.48							
		1	Q	0,48				60		-	
						24					
						2/8/					
					1	2/8/	20				

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.634	1			"Hg
Static Pressure	-0,450				"H ₂ O
Dry Bulb Temp.	64		SHE		°F
Wet Bulb Temp.	-	1	10		°F
Moisture Content	1	1.	-18/2	/	%v/v
320 P Oxygen	20.9			/	%v/v
Time of Meas.	730			/	(24 Hour)

Grede, LLC - Iron Mountain Page A-36 of 88

et.	aceAnal	Pace Analytical®	ision	FSD PN: 20-04074	4074				ш	PAN	letho Isoki	EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	eld D articula)ata S ate Sar	heet npling
Project	Grede-I	Project Grede-Iron Mountain 2020 Compliance w/	n 2020 Con	npliance w/	Module ID	D CM-	5	Pitot No.	-7	02 Cp	98.0	Manometer ID	eter ID	C11-5	
Sample Date	Sample Location	Disa CC	Exhaust (324682) Test/Run T	82) T1 R1	Meter Co Orifice Co	Meter Coef. γ Ο. Orifice Coef. ΔH@	4146.2	Bar. Pres. Static Pres	s. 28.	450	In. Hg In. H ₂ O	TC Sensor ID Barometer ID	sor ID (CA-5 DB-E	
Operat	echs	7/3/12	MR		Nozzle No.	22	Dn.0,26	Gest. Moist.	st.	1 1	%v/v	Scale ID	0	1-50	1
Trav. Point No.	Time ∆T	Meter Vol. V _m Cubic Feet	Velocity Head ∆P Inches H ₂ O	Orifice Meter ∆H Inches H ₂ O	Desired ∆V _m Cubic Feet	Incre- mental V	Train Vacuum Inches Hg	Stack Temp.	Filter Temp. °F	Probe Temp.	Sample Temp.	Impinger Meter In Temp. Temp.	Meter In Temp. °F	Mtr Out Temp.	320P Oxygen %v/v
	540	609.65		4											
5	. 6	512.23	0 :50	54.	16-219	2.69	2.2	62	25	250	411	63	24	69	20.9
11	00	518 .07	ph. 0	22	514.99	1 45	3.3	61		022	_	2	54	200	-
6	121	1.4	0.50	2.78	\$2.025	2.66		60	1	240		49	50	63	-
80)	50	28.222	84.0	65	297 224	260	2. 2	61		0624		25	20	63	_
~	21	2007	22.0	59	37.425	14.5	inco	22	257	1 12		18	20	63	+
<u>_</u>]_	24		0.50		12.085	2.65	2.4	613	600	2207	-	202	200	270	-
5	27	1.4	0.40	32.	533.35	2.65		63	261	067	-	47	24	62	
a	30	535.95	0.46	0	535. 98	2,62	2.	1	. 652	225	_	25	49	19	
1-	14	54.24	27.0	202	540.99	-		55	157	127		17	94	61	-
12	34		24.0	5 9.	14 242	14.2	1.2	63 29	572	240		98	22	60	-
11	24	17	0.49	6 9	13	262	1.6	63	242	82.2		45	24	60	
00	22	so-	0.50	1 .75	548,86	2.64	2.4	62 2	258	2		45	49	60	_
-0×	45	•	0.51	10	541145	10.2	2 4	19	Xa	272		1.17	20	24	_
N	54	571.06	12:0	. Rt	-12	2.69	5. 4	27	250	280		th	200	10-1	
e,	25	44.68		12.	12	3.9.2	4.2	64	5 2	285		45	92	59	
5	60	562.16	14.0	2.80	562,21	2:66	2.2	62	20	042		26	49	59	_
200	44	412 47	F. oe	. 75	564.38	2.67	n'n	10	758	220	-	12	82	5-8	
11.	p	170 08	0	29.	70,09	2.78	1.1	222	24	278	1	45	22	52	>
-	1111	08.213		14.2	19.72.5	257	5.6	65 29	260	580	>	22	47	24	
	(och														
Tot/Avg 0=	72 =0	Vm= 63,15	63.15 VAP=0.7208 AH=2	17.5=HA		Y I	,t	ts=62.0						tm=5.5.]	0=20-9
Sampl	les Recov	Samples Recovered: Filter O	6290-0	àr ···	Probe Wash;		Wet Catch;	□ M-202;	02; 🗆	Other					
Sampl	ing Train	Sampling Train Leak Checks:		mments:			Impinger No.	er No.	+	2	3	4	5	Desiccant	Total
Pretest	est 0, 00	0 8.0 "Hg		Possible	KCK	in	Final Volume	Final Volume 7	6.4	(.) (.)	0.4			1413.8	
Pitot	Pitot - Pos	3)		1	Line S	#RFFI	Difference		23.6	1.0	00	/		0. 472	11.2
		-R.	1	J Swinno	LUN		2010	~	12:1	1.1	2.1			0.11	1.1

#REF! Enoly

61

207 0 N W

Grede, LLC - Iron Mountain Page A-37 of 88

52) 639.55 0.21 2.33 639.43 2.92 2.5 64 253 2.15 1 42 59 60 52) 10 10 - 660 - 10 - 2.23 639.47 2.95 2.95 2.9 64 256 2.67 1 42 59 61
V = 4 0 V VAP=0 VV MAH= 2.22 t= 1=62.4

2HE RE

Grede, LLC - Iron Mountain Page A-38 of 88

IFSD PN: 20-00074 IFSD PN: 20-00074 Colspan="6">Module ID ($M - \sqrt{5}$ Pilot No. 2020 Compliance w/ Module ID ($M - \sqrt{5}$ Pilot No. Estiman Module ID ($M - \sqrt{5}$ Pilot No. Test/Run Times ($M - \sqrt{5}$ C ρ <th colspa="</th"><th>Isokinetic Particulate Sampling 名 Manometer ID H2 H2 N Scale ID の の の の の の</th><th>r Meter In Mtr Out 320P Temp. Temp. Oxygen °F °F %v/v</th><th>57 63 20.9 54 62 52 61 52 61</th><th>2222</th><th>2222266</th><th>52 50 52 60 52 60 53 50 53 50</th><th></th><th>t_m=664 02209</th></th>	<th>Isokinetic Particulate Sampling 名 Manometer ID H2 H2 N Scale ID の の の の の の</th> <th>r Meter In Mtr Out 320P Temp. Temp. Oxygen °F °F %v/v</th> <th>57 63 20.9 54 62 52 61 52 61</th> <th>2222</th> <th>2222266</th> <th>52 50 52 60 52 60 53 50 53 50</th> <th></th> <th>t_m=664 02209</th>	Isokinetic Particulate Sampling 名 Manometer ID H2 H2 N Scale ID の の の の の の	r Meter In Mtr Out 320P Temp. Temp. Oxygen °F °F %v/v	57 63 20.9 54 62 52 61 52 61	2222	2222266	52 50 52 60 52 60 53 50 53 50		t _m =664 02209
Image: Size Prive 20-00074 FSD FN: 20-00074 Pitot No. Pitot No. 20200 Compliance With Medic Coef. Y. 0.49716 Bar. Pres. Pitot No. Pitot No. 20200 Compliance With Medic Coef. Y. 0.49716 Bar. Pres. Pitot No. Pitot No. 20200 Compliance With Medic Coef. Y. 0.49716 Bar. Pres. Pitot No. Pitot No. 20200 Compliance With Medic Coef. Y. 0.49716 Est. Moist. Dino.2320 Static Pres. 20200 Compliance With Medic Coef. Y. 0.498 Est. Moist. Nozzle No. 55 Dino.2320 Static Pres. 20200 Compliance With Medic Coef. Y. 0.498 Est. Moist. Nozzle No. 55 Dino.232 Static Pres. 20216 C. 778 647.57 2.65 2.77 2.57 2.77 20218 C. 10 655.61 2.97 2.77 2.75 2.75 20218 C. 10 655.61 2.97 2.77 2.75 2.75 20229 C. 10 655.51 2.97 2.77 2.75 2.75 20229 C. 10 655.51 2.97 2.77 <t< td=""><td>Isokinetic Pa $C_p \sim S \neq Manome$ In. Hg TC Sens In. H₂O Baromet %v/v Scale ID</td><td>Sample I Temp. °F</td><td>1/14</td><td></td><td></td><td></td><td></td><td></td></t<>	Isokinetic Pa $C_p \sim S \neq Manome$ In. Hg TC Sens In. H ₂ O Baromet %v/v Scale ID	Sample I Temp. °F	1/14						
Image: FSD FN: 20-04074 FSD FN: 20-04074 2020 Compliance w/ Module ID (A-4) aust (324682) Meter Coef. A/0 Test/Run T1 R3 Meter Coef. A/0 Test/Run T1 R3 Nozzle No. 55 Dir 0.310 Environmental Vacuum T1 Velocity Meter Coef. A/0 Velocity Orifice Coef. A/0 Dir 1 R Velocity Meter A/0 Inches H20 Inches H20 Dir 1 R Velocity Orifice Coef. 257 Dir 1 R Dir 2	3-111	Filter Temp. °F	042 622 622	246	243 243 255 255 255 255 255 255 255 255 255 25	222222222222222222222222222222222222222	5 256 67 255 67 255	<u>л</u> М-202; П	
Image: State of the state of the state of the set of t	M-4 0.4416 3.074 2.074	Train Vacuum Inches Hg	2.2	10000000000000000000000000000000000000	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000 00000	Wet Catch;	
aust (32466 aust (32466 7)/K Velocity Head △P notes H ₂ O 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	4074 Module ID Meter Coef. Orifice Coef.	Desired ∆V _m Cubic Feet	642.34 644.92 647.55	6 662.66 2 6 6 5 3 6 6 6 5 3 6 6 6 6 0 2 2 6 6 6 0 - 8 2 2	666.63 2. 666.63 2. 669.59 2. 55 672.62 3. 677.89 2.	680.58 681.36 681.3 691.68	6 97.22 700.19 70 8.16 701.06	20 Probe Wash;	
Analytical Services Diminical Services Divinities of Services Divinities Services Divinities Services Divinities Services Divinities Services Divinities Services Divinities Services Divinities Services Divinities rian FSD PN: 2020 Compliance aust (324682) Test/Run T1 R			1220		0 90 999		ΔP=0.4467 ΔH= 2. - 11 80 : ΔT		
	Pace Analytical Field Services Divi Project Grede-Iron Mountain Sample Location Disa CC Ext Date $\frac{12}{8}/\omega$ Operators/Techs $\overline{2}$ ($h\overline{z}/L$)	e L	2 10	652	5 600 00 00 00 00 00 00 00 00 00 00 00 00	0000000		0= <i>8</i> / ا ^m =الاسرة (1994) V ^m =الاست (1995) V ^m =الاست (1995) Secovered: Filter	

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-39 of 88

PaceAna	Pace Analytical Field Services Division	nsion	FSD PN: 20-04074	410t) -	
Project Grede-Iron Mountain 2020 Compliance w/	Iron Mountai	n 2020 Con	npliance w/i	Module ID	CM-5	5-1	Pitot No.	0-4	5 20	0-84	Manometer ID		cm-5	
Sample Location	Disa CC	Exhaust (324682)		Meter Coef.	ef. γ . ć	0.9916	Bar. Pres.	5. 28.	634	In. Hg	TC Sensor ID		EM-5	
Date 12/	8/30	Test/Run	T1 R	Orifice Coef. AH@		4202		01:0	100	In. H ₂ O	Barometer ID		013-60	
Operators/Techs	3H2 S		•	Nozzle No.	55	96.0 "O	5 Est. Moist.	st/		V/V%	Scale ID	0	hoja	te
Trav. Time Point ∆T No.	Meter Vol. V _m Cubic Feet	Velocity Head ∆P Inches H ₂ O	Orifice Meter ∆H Inches H ₂ O	Desired ΔV_m Cubic Feet	Incre- mental V _m	Train Vacuum Inches Hg	Stack Temp. °F	Filter Temp. °F	Probe Temp.	Sample Temp. °F	Impinger Temp. °F	Meter In Temp. °F	Mtr Out Temp.	320P Oxygen %v/v
(1400	1706 .20		-											
	70. 901	02.0	20	16.802	2.77	22	12		562	win!	15	4.5	60	20.9
11 2	711 82	0.19		711.66	022	2.2		122	842	-	121	15	26	-
10 14		0.211	200	717.15	14.2	100	67	22.54	220		22/48	161	201	
	516	2.20	32	-	2.76	0.2			221		40	15	510	
	722 150	0.20	12	-	2.76	1.2		-	220			21	59	
5.4.2	725	110		725.37	2.69	1.2	66	233	223		821	1	29	
-		0.00 CCV	27	_	210	0.7	1	247	2271		48		202	-
120	27 557	0.24	12	70.422	3.02	2.6	dr	243	222		205	1/20	02	-
20	· 1	220	65	137.04	3.03	2.7			522	-	25		200	
4	239.	620		740.61	26.97	1.2		43	226		25		59	-
11 49.5	26. 222	010	2.10	11.146	2.70	2.0	62	250	222		22	25	59	+
	-	0 1 4	10		2.70	1.2	~		224		12		129	
56	-	- 5	02		276	1.2	2	x	122		22		2-6	
8 59.5	23.842		80	743.64	269	1.2			224		42	12	5-6	
+	1.	0	200	21-9-16	1000	- in		10	200	1	51	14	20	
2017		0.14	24.1	741.46		4.1	87	222	2022		4/41	21	200	
-	164	0.70		22.472		12	67	1.1	220	-	20	24	28	
3 77	767 00	62.0	3	267.18	2.95	0.2	63		122		64	22	23	
2000	5 769 95	22:0	112	70.077	2.89	P-2	67	255	022	7	25	56	24	>
(1527.	12211	17.		2		+ .	8				2		01	
4 - 6														
Tot/Avg 0= 84	Vm=66.63	V = 6.6.63 VAP=0.454 AH=2.2 4	4 2.2=HD			t.	ts=66.6						tm=52.8	02=20-9
Samples Recovered: FilterO	vered: Filter	8111-0	: A Probe	be Wash;		Wet Catch;	□ M-202;	02; 🗖	I Other					
Sampling Train Leak Checks:	Leak Checks		Comments:			Impinger No.	er No.			3	4	5	Desiccant	Total
Pretestor 0.00	@ 6.0 "Hg					Final Volume		276	1.801	2.5			2.282	
Pitot - Pos.	Neg.				#REF!	Difference	2	8.8		2.4		X	12 3	121

4

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-40 of 88

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

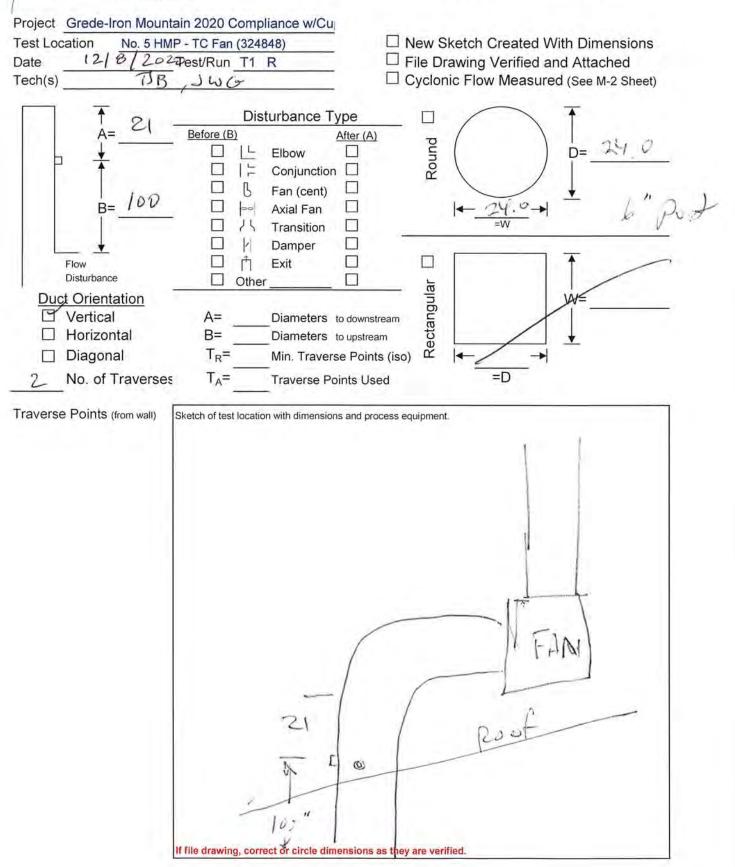
Project	Grede-II	on Mountain 2020 CoSite
Sample L	ocation	Disa CC Exhaust (324682)

Date Tech.

8/20 2 SHE

	Initia	lization Pa	rameters		and the second	
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	0.9917					
Orifice Coefficient - △H@	2.074					
Pitot Coefficient - Cp	0.84					
Nozzle Diameter - D _n	0.260	0.260	0.310	0-310	0.310	
Barometric Pressure - Pb	28.634			-7	~>	
Static Pressure - Pg	-0.450			\rightarrow	-7	
Oxygen Estimate - %O ₂	20.9			~>	-7	
Moisture Estimate - %MC	1	1	1	1	1	
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	62	62	55	60	58	
Initial Meter Volume - V _i	50 9.65	509.65	573,10	639.85	706.2	
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	42				N N	
Duct Depth, Inches	42					
Final Volume - V _f		572. 80	639.55	705.90	772.83	
Total Run Time - θ		72	84	87	84	
Condensate Volume, ml (g)		4.3	8.2	9.7	15.1	
	End	of Run Su	Immary			
Average Sq. Rt. of the ΔP	√∆P	0.700 8	0.4489	0.4451	0.4501	
Average Orifice Meter	ΔH	2.71	2.23	2.20	2.24	
Average Stack Temperature	ts	62.0	63,5	66.0	66.6	
Average Meter Temperature	t _m	55.1	52:3	56.5	58.8	
Sample Volume, Actual	V _m	63.15	66.45	66.05	66.63	
Sample Volume, Dry Standar	V _{std}	61.86	65.36	64.44	65.22	
Moisture Content	MC	0.33	0.59	0.70	1.08	1
Estimated Mole. Wt., dry	M _d					
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	40.06	25.71	25.56	25.88	
Isokinetic Variation	%1	100,7	100.5	100.2	100.7	
Volumetric Airflow, Actual	ACFM	23120	14840	14750	14940	
Volumetric Airflow, Standard	SCFM	22350	14310	14150	14320	
Volumetric Airflow, Dry Std.	DSCFM	22280	14230	14050	14170	

Equipment & Method Summary Isokinetic and Associated Testing


Field Services Division		Group 1 QI Zh	Group 4 QI
Project Name: Grede		pliance w/(Test Date: Recorded By:	12/8/20 ZHE
Airflow Determination	EPA Method:		Initials
Pitot Tube No.: 4-32	Coef.: 0.84	2 2C Other Next Ver. Date:	Pre-Use Insp.:
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Manometer ID: Ch-5	Oil Digital	Next Ver. Date: 2/11/2/	Pre-Use Insp.: 2 HE
Manometer ID:	Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: DB-60	Aneroid Digital	Next Ver. Date: 2/22 /2/	Pre-Use Insp. 2 HE
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-38	Single 🔀 Dual	Next Ver. Date: 3/8/2/	Pre-Use Insp.2.111
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EP/	A Method: 3 3/3	A 3B 3C Amb	ient initials
Container Type: Te	dlar Teflon	7-Layer Inert Other	Leak Checks:
Sampling Proc.: Sir	ngle Point Dultipoin	t 🔄 With Iso Train 📔	Grab Integrated
Gas Analysis: Orsat	Fyrite Ins	trumental: Instrument ID:	Cal Range
Ambient Provision Oxygen		O2 ID Ambient Ca	al Reading:
Moisture Content EP	A Method: 🔀 4, back-half	of iso train Other _	Explain in Options/ Initials Deviations Section 1
Wt. Scale ID: DS-MA	Digital Beam	Next Ver. Date: 7/7/2/	Pre-Use Insp. 7 HE
Std. Weight ID:	Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method		17 23 26A 29	Other
Nozzle ID: 02 (0 Typ	e: X Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 10.260 2	0 260 3 0.260 ª O.	260 \$0.260 100 0.260	Pre-Use Insp.: 2 HE
Nozzle ID: 0-310 Typ	be: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 10.310	0.310 30.310 40.	310 50.310 10.310	Pre-Use Insp.: ZHE
Probe Length: Yft.	Liner: SS SGIA	ass 🗌 Quartz 🗌 Teflo	on Other
Pitot Tube No.: 4-02	Coef.: 0.84	Next Ver. Date:	Pre-Use Insp.:
Probe Length:ft.	Liner: SS Gla	ass 🗌 Quartz 🗌 Teflo	on Other
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: (11-5		4 Next Ver. Date: 2/ 11/21	Pre-Use Insp. 7 115
Control Mod ID:	Ϋ́:ΔΗ@:	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" F	Round 4" Round	Thimble Othe	r
Filter Media: Glass	Fiber 🔲 Quartz Fiber	Paper Teflon	SS Other
Wet Catch: EPA 202	2 🗌 EPA 8 🗌 EP	A 23 🗌 EPA 26A 🗌 EI	PA 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Da	Gre te 2/5/2021	de, LLC - Iron Mountain Page A-42 of 88

Field Data Sheets - 324848

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

EPA Method 2 Field Data Sheet

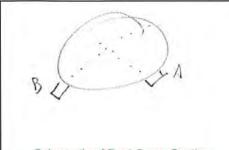
Volumetric Airflow Determinations er Type and ID DM-48

Chel

Jing

-DM-48- DA

Project	Grede-Iron	n Mount	ain 2020 (Compl	iance w/C	Cu
Test Lo	cation N	10. 5 HM	1P - TC Fa	an (32	4848)	
Date	12/7/2	0	Test/Run	T1	R	
Duct Dir	mensions	24.	0		Inche	S
Port Ler	ngth	4	.0		Inche	S
Pitot Le	ak Check -	Pos	v	Ne	g V	2


Manometer Type	e and ID
Barometer Type	and ID
Thermocouple S	ensor ID
Pitot Tube No.	3-41
Technicians	TUD
#REF!	

FSD PN: 20-04074

O.S.

-71

Trav	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ick Temp	perature	- °F
Point No.	Inches Wall	From Port	Flow °Yaw	Run 1 ΔP	Run 2 <u>AP</u>	Run 3 <u> </u> <u> </u> <u> </u> <u> </u> AP	Run 4	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
A 12345 478 42 112 12 12 5 478999 14	0.51 1.61 2.83 4.28 4.28 4.28 4.28 4.00 8.54 15.41 16.0 14.75 21.17 22.39 23.49	6.51 7.61 8 83 10.25 12.0 14.54	100000000 m	1.40 0.93 0.84 0.89 1 13 1.4 1.4 1.4 1.4 1.4 1.4 1.35				-7.5%			

Schematic of Duct Cross-Section

	Run 1	Run 2	Run 3	Run 4	1
Bar. Pressure	28.64	1			"Hg
Static Pressure	-2.0				"H ₂ O
Dry Bulb Temp.	75		/		°F
Wet Bulb Temp.	>		1	25	°F
Moisture Content	1	11		/	%v/v
320 P Oxygen	20.4			/	%v/v
Time of Meas.	1435				(24 Hour)

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-45 of 88

EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	1 Cp 、メヤジ Manometer ID Cレム・11	50	1 %v/v Scale ID 155-33	Probe Sample Impinger Meter In Mtr Out 320P Temp. Temp. Temp. Temp. Ovygen °F °F °F °F °F °F °F		217 NH 56 51 51 209	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64 53 5	64 53	54	1 64 54		54	V 14 0	61 S4	12	62 ST	0 62 55	23 62 55	(0)	47 1 51 53	251 1 61 55 52 1	>	$t_{m} = 52.31 0_{2} = 20.71$	Other Wy Y	2 3 4 5		1324
ш	Pitot No. 3. 41	1도안 Bar. Pres.	,210 Est. Moist.	Train Stack Filter Vacuum Temp. Temp. Inches Hg °F °F	-	3.2 74 247	122 25 22	-19-20-	132 75 251		62 .	201	157	-	78	2.22 11 2.22	101	50	152 AL	20	64 .	252 28 2.2	2	ts=71.5	Catch; D M-202; D	-	•	Initial Volume / C
074	Module ID _ 141 - 11	Meter Coef. 7 , 41	Nozzle No. < 5 Dn	Desired Incre- ∆V _m mental Va Cubic Feet V _m Inc		526	17	100		272 449		-	5%3	111	100	-	762 1	101	125 SC2	180	214	206 919	-		Probe Wash; D Wet C			
sion FSD PN: 20-04074	Grede-Iron Mountain 2020 Compliance w/	TC Fan (324848) Test/Run T1 R (Juc	Velocity Orifice Head ∆P Meter ∆H Inches H ₂ O Inches H ₂ O	4		125 2.94	-	51	0.96 2.18	3.1	200	0.67 1.48			202 221	0 0	2.7	2 85.	10.7 100	1 1	121 25.9		 VAP= 49916 AH= Z.27	DE43 : DE Pro	: Comments:		
Pace Analytical [®] Field Services Division	Project Grede-Iron Mountain	Sample Location No. 5 HMP - Date 721 & 7.5	Operators/Techs	Trav. Time Meter Vol. Vm Point ΔT Cubic Feet	(150) 325.10	A-12 3,5 328.09	10 10.5 334.51	17.5 340.65	12	5 28 379.60			1 42 258 258.60		55 11	10 SUS 347.76		63 377.00	S		185	2 80.5 384.22	(TOUAVE 0= SY N= CGAY	Samples Recovered: Filter	Train Leak Che	n Cr	Posttest e. UO @ 9 "Hg

et g	11	İΤ	o Le V	5				Π	1		T		Т			Т	Π		П	20.01	ì			2
hee	ニニン	38	320P Oxygen %v/v	502											-		-	7	-	02=		Total		5.3
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	cm-11 CM-11	05.20	Mtr Out Temp.	53	ours Surs		54	54	54	54	5.5	ss	2.2	225	25	Se	57	5/5	,	tm=56.4		Desiccant	1-241.4	0.11
ield D articul	leter ID Isor ID Ster ID	0	Meter In Temp. °F	54	22	Sxs	250	52S	525	55	5.5	5	Sq	607	5-5	e-c	55	5-5				5		-
d 5 F inetic F	Manometer ID TC Sensor ID Barometer ID	Scale ID	Impinger Temp. °F	43	277	57	222	20	200	1.S	25	53	25	222	56	56	20	22				4		
letho Isok	, \$42 In. Hg In. H ₂ O	V/V/V	Sample Temp. °F	NIG							-		_			-		>			hun	3	0	
EPA N	o co	-	Probe Temp. °F	234	212			15.	122	122	200	2233	152	236	222	242	266	244			Other	2	0.01	10-
ш	61 1	list.	Filter Temp. °F	227	1222	245	かたこ	したて	222	250	251	2220	2250	250	1.52	250	552	2500			M-202; []	1	100	
	Pitot No. Bar. Pres. Static Pres.	Est. Moist.	Stack Temp. °F	2	12	78	76	910	28	50	26	28	5	23	22	25	76	2.8		ts=76.9	ų L	Impinger No.	Initial Volume	ence
	CM-11 0.995	Dn 1210	Train Vacuum Inches Hg	3.2	3.2	2. 2			2.7		w	5.7		7.5	3.1	L. 2		c.2	•		et Catch;	Imping	Initial	Difference
	ef. Y	55	Incre- mental V _m	144	150	510	228	245	1915	012	242	392	712	343	ちちら	175	417	654	2		D Wet	,		#REF!
074	Module ID CA Meter Coef. γ Orifice Coef. $\Delta H@$	Nozzle No.	Desired ΔV_m Cubic Feet	304	304	305	253	252	122	212	337	376	510	317	301	759	112	27.6	2		be Wash;	1.0.1.	41 11/24	
FSD PN: 20-04074	compliance w/r (324848) in T1 R 2		Orifice Meter ∆H Inches H ₂ O		122			1.9.1	24.1	137	3.21	8	2.43	2.83	2.64		1.63	55-		H= 2.34	Probe /	Comments:		
	2020 Com TC Fan (324 Test/Run	Jivle	Velocity Head ∆P Inches H ₂ O	021	1.20	02.1	28.0		0.00	0.60	1.40	1.35	1.30	(.2.)		0.85	0.73	100	÷ .	AP=1. CONT	0091	Con	1-1	1
Pace Analytical [®]	Grede-Iron Mountain 2020 Compliance w/r Location No. 5 HMP - TC Fan (324848) 2 10 1 2 0 Test/Run T1 R 2	123,	Meter Vol. V _m Cubic Feet 1	22	100.62 403.69	CC - 204	no.	-	96.122	0	427.37			443.51	440.44	18.154	454.22	138 82	•	Vm=G.7.42 VAP= 1. 604 74H= 2.34	Samples Recovered: Filter	Sampling Train Leak Checks:	e	Neg.
) ceAnaly	Grede-Iro	s/Techs	Time ΔT	5.5	10.5	Sili	12 NB	5	38.5		100	5		63	5.25	735	CC	80.5	10511	トシ=0	s Recove	g Train Le	t 0.00	Pos.
Pa	Project G Sample Lo Date 2	Operators/Techs	Trav. Point No.	3-5	236	000	·10-	5	20	-	51-6	-0	5	sr.	ee	5	2	2.	-	Tot/Avg 6	Sample	Sampling	Postte	Pitot - Pos.
	Pace Analyti FSD 20-0407	cal 74					Rep	oort E)ate 2	2/5/2	2021				4	1.510	1.		de, Ll		on Moi je A-47			

Grede, LLC - Iron Mountain Page A-48 of 88

Report Date 2/5/2021

71.5 2.4

20 CDA Mathad & Ciald Data

÷

Field Calculation Summary

Date

Tech.

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project	Grede-I	ron Mountain 2020 CoSite
Sample L	ocation	No. 5 HMP - TC Fan (324848)

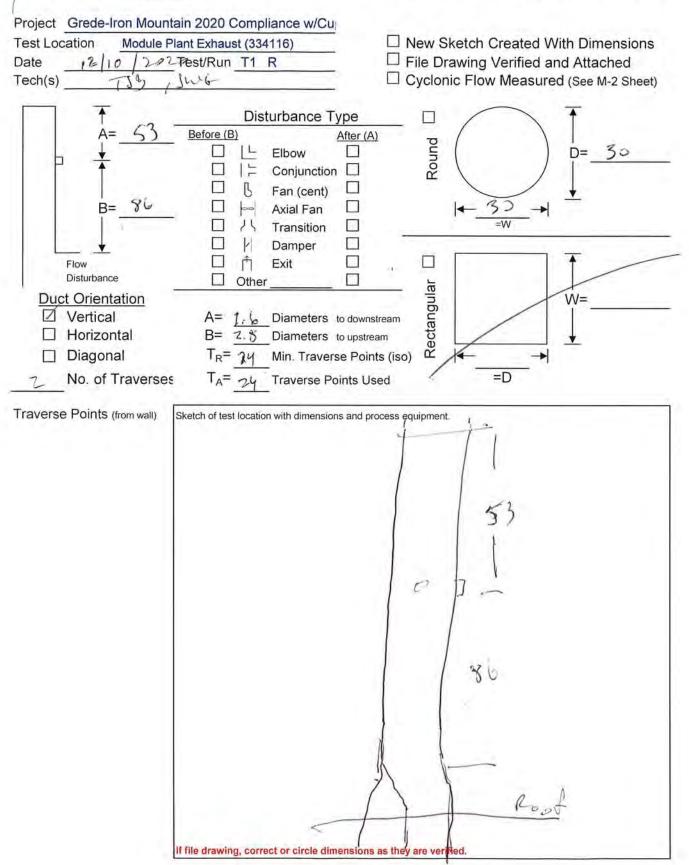
Stack

121 81 2020 713

and the second se	Initial	ization Par	ameters			-
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9958					
Orifice Coefficient - ∆H@	2.079					
Pitot Coefficient - C _p	. 87					
Nozzle Diameter - D _n	,210					
Barometric Pressure - P _b	28.64					
Static Pressure - Pg	-2.0	1	i i i i i i			
Oxygen Estimate - %O ₂	20.9-		~	->	1	
Moisture Estimate - %MC	1	1	1	1		
No. of Traverse Points	24					
Point Duration - ∆T	3.5					
Meter Start Temp, °F - t _m		51	53	57		
Initial Meter Volume - Vi		325,10	391.40	459.00		
Duct Shape (Rnd/Rect)						
Duct Width, Inches		b				
Duct Depth, Inches	17					
Final Volume - V _f	-	391.24	458.82	526.75		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		5.8	8.8	7.8		
	End	of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	,9915	1.0047	1.0053		
Average Orifice Meter	ΔH	2.27	2.34	2.36		
Average Stack Temperature	ts	77.5	78.8	80.4		
Average Meter Temperature	t _m	52,4	56.4	60.5		
Sample Volume, Actual	V _m	66.14	67.42	67.75		
Sample Volume, Dry Standar	V _{std}	65.34	66.11	65.91		
Moisture Content	MC	0.42	0.62	0.53		6
Estimated Mole. Wt., dry	M _d	2884	28.84	28.81		
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	57.49	58.35	58.36		
Isokinetic Variation	%I	100.2	100 4	1003		
Volumetric Airflow, Actual	ACFM	10840	11000	11000		
Volumetric Airflow, Standard	SCFM	10190	10310	10280		
Volumetric Airflow, Dry Std.	DSCFM	10150	10250	10220		

Equipment & Method Summary Isokinetic and Associated Testing

Field Services Division	חס	Group 1 QI _T	JB Group 4 QI
	Grede-Iron Mountain 2020 Com No. 5 HMP - TC Fan (324848)	pliance w/(Test Date: Recorded By:	12/8/2020
Airflow Determinatio			Initials
Pitot Tube No.: <u></u> Pitot Tube No.:		Next Ver. Date:	Pre-Use Insp.: Pre-Use Insp.:
Manometer ID: <u>см</u> Manometer ID:	<u>-∖ı</u> [Next Ver. Date: <u>z/%/z</u> , Next Ver. Date:	
	<u> →</u> <u> →</u> <u> →</u> <u> →</u> <u> →</u> <u> →</u> <u> →</u> <u> →</u>	Next Ver. Date: <u>-2/15/21</u> Next Ver. Date:	Pre-Use Insp.: TYS
Contraction of the second second second second second second second second second second second second second s	<u> </u>	Next Ver. Date: 2/3/21 Next Ver. Date:	Pre-Use Insp.: 19
Gas Composition	EPA Method: 3 3/3		
Container Type:	Tedlar Teflon Single Point Multipoir Orsat Fyrite Ins ygen Verification: Portable	7-Layer Inert Other ot With Iso Train Content otrumental: Instrument ID:	Leak Checks: Grab Integrated
Moisture Content	EPA Method: 4, back-halt	f of iso train	Explain in Options/ Initials Deviations Section L
Wt. Scale ID: D5- Std. Weight ID:	Std. Weight (g):		Pre-Use Insp.:
Nozzle ID: <u>46</u>	ethod: 5 8 Type: Stainless Steel 0 2 2 7ype: Stainless Steel	17 23 26A 2 Glass Quartz 210 211 20 Glass Quartz	9 Other
Nozzle Cal.:	2 3 4	5 Avg	Pre-Use Insp.:
	<u>ч\</u> Coef.: <u>{ч/o</u>	ass Quartz Tefle	Pre-Use Insp.: 15
Probe Length:		ass Quartz Teflo	
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: Cr		Next Ver. Date: 2/8/21	Pre-Use Insp.: 1)
Control Mod ID:	Υ:ΔH@:	Next Ver. Date:	Pre-Use Insp.:
	2 ¹ / ₂ " Round 2 ¹ / ₂ " Round		
	Glass Fiber 📃 Quartz Fiber	Paper Teflon	SS Other
Wet Catch: EPA WC Options/Deviatio Pace Analytical FSD 20-04074	ns:		PA 29 Other <u>MY</u> ede, LLC - Iron Mountain Page A-50 of 88


Page A-50 of 88

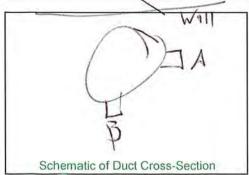
Field Data Sheets - 334116

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations


Project	Grede	e-Iro	on Mou	ntain 2020 (Compli	ance w/Cu
Test Lo				Plant Exha	aust (33	34116)
Date	12	10	20	Test/Run	T1	RO
Duct Dir	mensio	ns		30 ,30		Inches
Port Ler	ngth			6		Inches
Pitot Lea	ak Che	ck -	- Pos	V	Neg	v

Manometer Type and ID	cm-ll
Barometer Type and ID	DB.72
Thermocouple Sensor ID	cm-11
Pitot Tube No. 3-41	Cp ,
Technicians 7	36, JWG
#REF!	

FSD PN: 20-04074

840 .

Trav	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	perature	- °F
Point	Inches	s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔP	ΔP	ΔP	ΔP	°F	°F	°F	°F
1 12	6.04	6.64	202	0-24	1						
11	2.01	5.01	25	0.24					<u></u>		
10	354	9.54	77	0.23		-					
1	5:32		20	0.19					1		1.1.1.1
8	7.50	13.50	15	0,19							
7	10.47		10	0,18							
6	19.33	2533	-10	016							
5	22155		-10	0.15		/					
ч	24.68	30,68	-10	0.15					-		
3	26.46		-15 -15	0.15			/				
2	27.99	33,99	-15	0.15							
1	64 W	35.36	-15	0,15			/				
B 13	54N	E	25								
11	\leq		25								
10)	20					T	35		
8		/	20					/	-	-	
7	(10								
6	1		-10								
5			-10							-	
4			.15						/		
3			*20						1		
2		1/	-20							1	
1		V	-15							/	
~	-		1.4							/	
				~							
		1	~							/	
		(Ave 110-1	0							/
	1au										
	(ip)										
											1
		1									

	Run 1	Run 2	Run 3	Run 4	1
Bar. Pressure	28.69				"Hg
Static Pressure	-,07				"H ₂ O
Dry Bulb Temp.	75		/	1	°F
Wet Bulb Temp.				-	°F
Moisture Content	1		1 = 3		%v/v
320 P Oxygen	20-9			/	%v/v
Time of Meas.	0730				(24 Hour)

Grede, LLC - Iron Mountain Page A-53 of 88

Isokinetic Particulate Sampling -41 c_p 187 -41 c_p 187 -5 64 In. Hg -5 67 In. Hg -27 In. HgTC Sensor ID -27 In. Hg 1 $\%/v$ $\%/v$ Scale ID 03 72	Sample Impinger Meter In Mtr Out 320P Temp. Temp. Temp. Oxygen °F °F °F °F %v/v	N4 56 53 55 209 1 54 51 54 54 51 54	53 53 75 75 74 75 74	~~~~	125	Y = 27 S = 27 S = 27 S = 27 S = 57 S =	my
5 6	Filter Probe S Temp. Temp.			251 243 251 260 252 260 252 260 252 253 752 255		250 258	2; 🗹 Other_
Pitot No. Bar. Pres. Static Pres.	Stack Temp. °F				387530	> >>	atch;
C.M-11 f. DH@ 2.079 55 Dn , 346	Incre- mental Vacuum V _m Inches Hg	151 3.77 513 5.3 566 3.3	2549 3.2 2849 3.2 2318 2.6 815 2.6	2.2 2.2 2.2 2.2 2.2 72 72 72 72 72 72 72 72 72 72 72 72 72		142 455 754	□ Wet Catch;
04074 // Module ID <u>C</u> <i>N</i> Meter Coef. Y Orifice Coef. ∆H@ Nozzle No. <u>5'5</u>	Desired ∆V _m Cubic Feet	362			3576 348 3348 3318 3318 3318	325 313 301	Probe Wash;
FSD PN: 20-04074 Compliance w/ M st (334116) M In T1 R (00	y Orifice P Meter ∆H 20 Inches H ₂ O		ומייש הימי			0.19 3.15 0.16 2.75 0.16 2.75	
Field Services Division FSD PN: 20-0. Grede-Iron Mountain 2020 Compliance w/l Location Module Plant Exhaust (334116) 12 10 20 rs/Techs 73	Meter Vol. Velocity V _m Head ∆P Cubic Feet Inches H ₂ O		1. 0 0	111 015 110 015 58 015 58 026 31 025	111		Filter
t Grede-Iron Mountain 20 e Location Module Plant E 12 [10] 20 Té tors/Techs	Me Man	10.525 71	2 2 4	11116 28	2333	22: 11 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Samples Recovered: Filter
Project Grede-Ir Sample Location Date 12	Trav. Point No.	A 12 (~ ~ ~		3 1 1 1 1 1 1 1 0	Samples

Grede, LLC - Iron Mountain Page A-54 of 88

a Sheet Sampling	172-41	~~~	320P Oxygen %v/v		20.9																				-	2	0.=	~	1	Total		6.2	1
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	Curll	053	Mtr Out Temp.		58	22	SS	Seq	5.5	60	000	25	50	5	5	62	63	es	63	5	22	5	53	CS	65-		t= CAS C			Desiccant	1.20.9	3 ,5	
eld D articula			Meter In Temp. °F		55	5	292	00)	Ceo	ī.		20	6.0	63	CI	63	62	5	65	es	2.	200	202		67					5			
thod 5 Field Data Isokinetic Particulate	Manometer ID TC Sensor ID	Barometer IU Scale ID	Impinger I Temp. °F		55	195	15	25	5.0	53	27	5	24	5.5	35	5-1	54	55	5.5	55	212	36	Sic	s.r	5.7					4	/	1	
lethoc Isokii	078. In. Hg	%v/v	Temp.		AZ.	-	-		_	-	-		-	-				-	-	-	-			-	7			ind		3	C	>	
PA N	500		Probe Temp. °F		\$12	177	224	122	228	226	102	222	257	242	244	122	5 40	572	232	134	226	227	924	200	122			Other		2	1-1 hi	1.6	
ш	N 2	es.	Filter Temp. °F		236	230	254	552	250	842	152	222	2220	222	S.	252	252	152	122	1200	22	250	152		1221						1 1917	>>	
	Pitot No. Bar. Pres.	Static Pres. Est. Moist.	Stack Temp. °F		2%	a h	30	- 20	9 C	100	36	00	20	18	5.8	8.8	101	107	54	20	100	212	66	101	100		t=97.1	D M-202;		er No.	olume	lice	
	11-11	Dn.346	Train Vacuum Inches Hg		1	5.5		3.0	2.9	14	5.7		2 8		5.3			0.0				2 5						Wet Catch;		Impinger No.	Final Volume	Difference	
	30.4		Incre- mental V		543	218	144	593	920	547	015	215	522	832	199	563	Lob	235	Sev	540	105	120	055	329	(00)			D Wet			I	#REF!	
174	Module ID C	Nozzle No.	Desired ∆V _m Cubic Feet		378	375	362	107 8	223	375	165	512	306	311	366	-	-		122	-	-	285	-	273	523			be Wash;					
FSD PN: 20-04074	liance w/l 4116)	- Т - Т - М	Orifice Meter ∆H Inches H ₂ O		2.17	10.5	3.82	5.55	3.11	3.09	3.18	12.00	12.2	2.79	3.87	3.84	3.43	3.09	N. N	2.04	1 5 5	233	233	1.1	2.14		AH= 3, 1 2-	D Probe		Comments:			
	2020 Comp Exhaust (33-	I est/Kun 」	Velocity Head ∆P N Inches H ₂ O		0.25	0.02	62.0	0.21	61.9	61.0	0.19	61.0	0.16	0.1-1 0.1-1	6.23	0.23	12.0	0.19	0.19	0.18	2	214	11.0	6. 1	0.13		VAP= 43(4 AF			Com	1	1	l
Pace Analytical [®]	Project Grede-Iron Mountain 2020 Compliance w// Sample Location Module Plant Exhaust (334116)	20 TJB,	Meter Vol. V Vm Cubic Feet In	317.45	821.11	C12 72 8	331.52	835.98	12.958	542.52	545.80	249.05	55.25	458.35	4 co. 128	865.56	569.02	872.27	875.55	898.36	51.175		CH - 196	393.35	896.00		V-= 7835 VA		l	k Che	BH. 0	Neg.	5
) ce Analyti	Srede-Iror ocation M	12 10	Time C	2	5	5 1 4	1	5	-	S		~	20 1 45				1	+	5	-	~	1	2 11	5	87, 8	(3011		78		Train Le	0100 (0)	Pitot - Pos.	
Paul	Project Grede-Irr Sample Location	Date 12/14 Operators/Techs	Trav. Point No.		8-12	11	23	ne	C	د	5	2.6	2	-	11-12				20	4	183	v 2	- 4	1,1			Tot/Ave 0= 24	Samples		Sampling	Pretest	Pitot - Pos.	

.

Grede, LLC - Iron Mountain Page A-55 of 88

		-																															
heet		176-4	~	320P Oxygen %v/v		20.02			-	-															2	7		02=			I otal		12.5
Ithod 5 Field Data Sheet Isokinetic Particulate Sampling	C-11-1	11-112	DS-38	Mtr Out Temp. °F		65	36	63	65	52	در	66	66	66	67	68	87	53	60	1.91	57	10	20	20	01	20		$t_m = 68.4$			Desiccant	320	13
eld D articula	eter ID		0	Meter In Temp. °F		63	nn Ce	65	66	icc icc	-×-	64	6 2	20	50	20	12	12	50	721	11			74	21	15					Q		
d 5 Fi netic P	Manometer ID	TC Sensor ID Barometer ID	Scale ID	Impinger Meter In Temp. Temp.		60	2,0	(00)	2	1 2 2	62	64	65	65	64	64	64	62	1	100	102	63	63	63	63	50					4		
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	07,2,10	In. Hg In. H ₂ O	N/N%	Sample I Temp. °F		NUT	-				-	-	-	_	-		_	_	-							*			ing		n	0	
PAN	il Cp	23.69		Probe Temp. °F		255	222	224	222	273	223	224	922	\$22	230	122	622	233	100	1220	23.8	236	282	622	228	677.			T Other		2 2	100	1.5
ш	3-41		st.	Filter Temp. °F		252	220	279	252	1.11	152	220	251	122	252	2,5,5	157	- 27	2000	120	225	252	052	152	222	251			M-202;		-	100	
	Pitot No.	Bar. Pres. Static Pres.	Est. Moist.	Stack Temp. °F		000	200	036	201	102	60	96	107	102	100	42	SP	24	(0)	99	60	101	101	26	2 2	04		ts=97.3	D M-2		er No.	olume	Ice
	11	8563 0	Dn ,346	Train Vacuum Inches Hg		3.2			3 0		5.7		+		2.2		s.			4	2.0			•			•		Catch;		Einal Volume	Initial Volume	Difference
	C in-11	-	55	Incre- mental V		818	584	025	25.24	689	295	625	877	121	125	801	176	552	2.0	600	934	255	583	900	517	514			□ Wet			1	#REF!
<i>V</i> 74	Module ID	Meter Coef. γ Orifice Coef. $\Delta H@$	Nozzle No.	Desired ∆V _m Cubic Feet		523	272	341	229	110	- 5	-	287	274	462	376	375	316	202	224	234	325	325	517	517	242			be Wash;				
FSD PN: 20-04074	oliance w/i	34116) T1 R·3		Orifice Meter ∆H Inches H ₂ O	-	3.58	-	3.36	17.6	5.10	2.64	249	2.31	714	2.15	60.2	10.7	107	2.07	316	3.18	2.93	5.99	58.2	1	152		AH= 3, 11	I Probe	and a second second	Comments:		
	2020 Com	Exhaust (3: Test/Run	ういて	Velocity Head ∆P Inches H ₂ O		12.0	12.00	0.20	0.19	5.0	0.16	1.4	014	0.13	ë.13	0.24	120	12.0	6	17.0	510	6.(S	0.15	6.17	11.0	6.12					Con		
Pace Analytical [®]	Project Grede-Iron Mountain 2020 Compliance w/	Sample Location Module Plant Exhaust (334116) Date i 2 /10 / 2 0 Test/Run T1 R	t3,	Meter Vol. V _m Cubic Feet 1	846.25	849.80	an. 11	910.20	913.59	916.00	923.03	925:96	28.829	931.86	937.29	138.00	08.14	945.51	17.1.1	121.41	25731	962.62	165.899	969.07	973.20	975.15		Vm= 78, 40 VAP=4308	ed: Filter		Dratect accord for "Ho	e	Neg.
> ce Analyt	Srede-Iror	ocation N i 2 10	s/Techs	Time AT	(1226)		77	1	5	-	2300	-	1	'S	-	1	1	'n	1.	593	5	-	-		's	1	13521] Š		J Irain Lea	st v. v a	Pitot - Pos.
Par	Project G	Sample L	Operators/Techs	Trav. Point No.		A-12	1	25	- XOF	-	alv	-				312	-	~	5	000	6	22	5	.ev	2	-		Tot/Avg 0= 84	Samples		Sampling	Posttes	Pitot - I

٠

Report Date 2/5/2021

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-I	ron Mountain 2020 CoSite	
Sample Location	Module Plant Exhaust (334116	
	Initialization Parar	nete

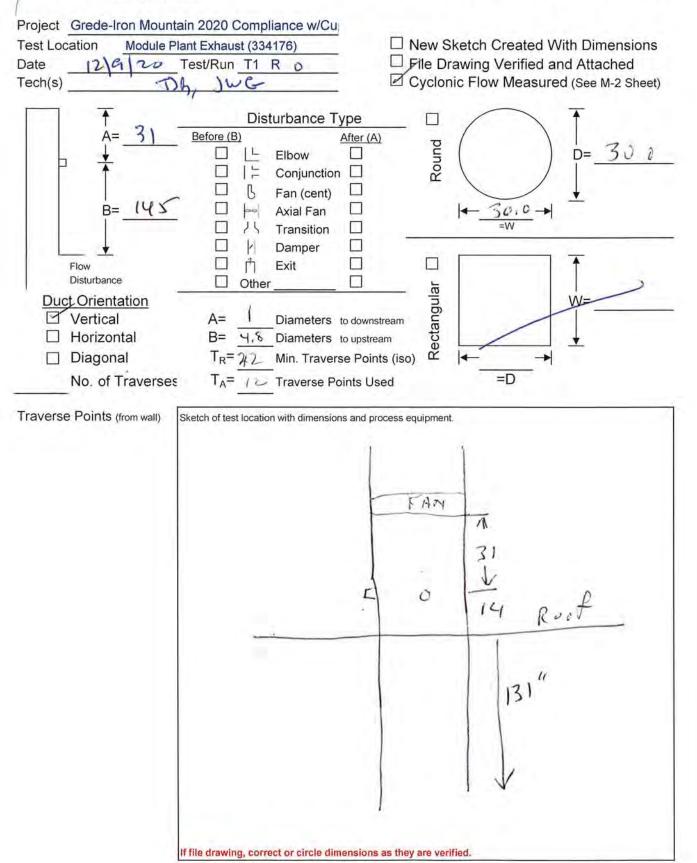
Stack Date Tech.

12/10/20 TJB

	Initial	ization Par	ameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	. 9958					
Orifice Coefficient - ∆H@	2.079					
Pitot Coefficient - C _p	.84					
Nozzle Diameter - D _n	.346					
Barometric Pressure - P _b	28.49	-				
Static Pressure - Pg	07-					
Oxygen Estimate - %O ₂	20,4	_		>		
Moisture Estimate - %MC		1.0.1	1	1	[]]	
No. of Traverse Points						
Point Duration - ∆T		2				
Meter Start Temp, °F - t _m		277.85	57	66		
Initial Meter Volume - V _i	12	737.85	817.65			
Duct Shape (Rnd/Rect)						
Duct Width, Inches						
Duct Depth, Inches						
Final Volume - V _f		817.44	896.00	975.15		
Total Run Time - θ		84	84	87		
Condensate Volume, ml (g)		15.3	7.9	12.5		
	End	of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	.4419	,4314	,4308		
Average Orifice Meter	ΔH	3.26	3.12	3.11		
Average Stack Temperature	t _s	85.8	921	97.3		
Average Meter Temperature	t _m	55.1	60.8	68.4		
Sample Volume, Actual	Vm	79.59	78.35	78.90		
Sample Volume, Dry Standar	V _{std}	78.55	76,45	75.88		
Moisture Content	MC	0.91	0.18	0.77		
Estimated Mole. Wt., dry	M _d	28.87	28.94	28.84		
Estimated Mole. Wt., wet	Mw			1.7.1.1		
Average Gas Velocity	Vs	25.82	25,32	25.43		
Isokinetic Variation	%I	100.6	100.3	10017		
Volumetric Airflow, Actual	ACFM	7600	7460	7490		
Volumetric Airflow, Standard	SCFM	7050	68 40	6800		
Volumetric Airflow, Dry Std.	DSCFM	6990	6830	4750		

Equipment & Method Summary Isokinetic and Associated Testing

Field Services Division		Group 1 QI	[5] Group 4 QI
Project Name: Grede- Sampling Location: Module		liance w/(Test Date: Recorded By:	12/10/20
Airflow Determination	EPA Method: 2	2C Other	Initials
Pitot Tube No.: <u>3-44(</u> Pitot Tube No.:	Coef.:	Next Ver. Date: 1	Pre-Use Insp.: 1)B Pre-Use Insp.:
Manometer ID: Durit	Ojl Digital	Next Ver. Date:	Pre-Use Insp.:
Manometer ID: <u>CM-U</u>	Oil Digital	Next Ver. Date:	Pre-Use Insp.: TS
Barometer ID: 03-72	Aneroid Digital	Next Ver. Date: 2121/2	Pre-Use Insp.: <u>باز</u>
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C Am	bient initials
Container Type: Ted Sampling Proc.: Sing	llar Teflon 7- gle Point Multipoint	-Layer Inert Other	Leak Checks: Grab Integrated
Gas Analysis: Orsat	Fyrite Instr	umental: Instrument ID:	Cal Range
Ambient Provision Oxygen		2 ID Ambient (results are not reported as lost data	Cal Reading:
Moisture Content EPA	Method: 4, back-half c	of iso train Other	Explain in Options/ Initials Deviations Section 1
Wt. Scale ID: 05.38	Digital Beam	Next Ver. Date:	Pre-Use Insp.:
Std. Weight ID:	Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method:	5_ 8 1	7 23 26A	29 Other Initials
Nozzle ID: 55 Type	e: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1, 3410 2	346 346 .3	>47 347 00 346	Pre-Use Insp.: 7-18
Nozzle ID: Type	e: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1 2	3 4	6. Avg	Pre-Use Insp.:
Probe Length: 3 ft.	Liner: SS Glas	s 🗌 Quartz 🗌 Te	flon Other
Pitot Tube No.: 3.41	Coef.: .840	Next Ver. Date:	Pre-Use Insp.: TB
Probe Length:ft.	Liner: SS Glas	s 🗌 Quartz 🗌 Tei	flon Other
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: CHM-11 Y	: 1.9959 AH@: 2.079	Next Ver. Date:	Pre-Use Insp.: The
Control Mod ID:Y	: ΔH@:	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" Ro	ound 4" Round	Thimble Oth	ner
Filter Media: Glass	Fiber 🗌 Quartz Fiber	Paper Teflon	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26A	EPA 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Date		Grede, LLC - Iron Mountain Page A-58 of 88

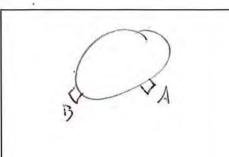

Page A-58 of 88

Field Data Sheets - 334176

d	7
F	ace Analytical®
1	Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection


EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project	Grede-II	ron Mour	ntain 2020 0	Complia	anče w/Cu
Test Lo	cation	Module	Plant Exha	ust (33	84176)
Date	12/91	20	Test/Run	T1	RÓ
Duct Dir	mensions	3	0,0		Inches
Port Ler	ngth		. Les D		Inches
Pitot Le	ak Check	- Pos	~	Neg	-

Manometer Type	e and ID	PM	-48	
Barometer Type	and ID	DB	-72	
Thermocouple S	Sensor ID	CM	n-4	1
Pitot Tube No.	3-41	Ср	.84	
Technicians	T	B,J	6	
#REF!			FSD PN: 20-04	074

Trave	rse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	perature	- °F
Point	Inches	From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔP	ΔΡ	ΔP	ΔP	°F	°F	°F	°F
A-12	2.64	6.64	0	0.065	/						
11	2.01	4.01	3	6.066	/						
10	3,54	9,54	5	0.065							
9	5,32	11.32	5	0 0063		-					_
8	7150	13.50	55	0.059	1		1				
7	10.67	16.67		0.049							
6	19.33	25,33	-10	0.030	1		· · · · · · · · · · · · · · · · · · ·	1	1.)03		
5	22.50	28.50	-5	0.030			10	1			
y	24.68	30.65	O	0.025							
3	26.46	32.46	Ü	0.075						-	
2	27.44	33.99	00	0.021							
1	29,36	35.36	0	0.000				1			1
B-12			5							-	
11			5					-			
10		1	50		<hr/>		-				
1			0		1	1		1			
87			0								
			0					1			
65			10								
			20				-	-			
4			20				LT /	1			
3	_		77					2			
2			22								
1			20								
								/			
											-
										/	
									-	/	

Schematic of Duct Cross-Section

	27-																																			
heet npling	10m		38	320P	Oxygen %v/v		502	-	-	-								-							1		1	>		0.0	02= CO-		Total			()
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	Curll	F80	03~	Mtr Out	Temp. °F		57	5	5	2	20	oi	202	36	22	54	54	55	00	60	60	6	12	10	s	60	62	62		9	["= 04.7	Ļ	Desiccant	5.1719	1268:4	5.2
ield D articul	Manometer ID	eter ID	D	-	Temp. °F		SS	g	8:	ē	e	90	671	5	5	5 %	2.3	55	60	60	00	60	60	.e	e	ce	5	5					5			
d 5 F inetic F	Manor	Barometer ID	Scale ID	Impinger	Temp. °F		より	5	5	Y	40	~ ~ ~	54	CL	25	55	57	57	5)	25	5	58	201	50	202	100	00	00					4	-		
Aetho Isok	340	In. H ₂ O	%viv	Sample	Temp. °F		たい	+	-													-					-	7				At-H	3		0	
EPA N	341 6	5	-	Probe	Temp. °F		249		872	122	520	200						250	253	261	263	205	260	460	140	ast	222	555				Dother A-H	2	198.3	100	1.1-
ш		1,1	oist.	Filter	Temp. °F		222		222	157	222	100	282	232	252	252	esi	222	249	542	222	eri	5	120	101	250	152	2230					1		100	
	Pitot No.		Est. Moist.	Stack	Temp. °F		42	22	00	00	250	- 5	250	74	26	SC	8	52	5	19	28	62	22	200	53	50	87	64		103-1	100 = S1	□ M-202;	Impinger No.	Final Volume	Initial Volume	ence
	N	802	227. na	Train	Vacuum Inches Hg		27	•	۲ ۱	1.1	5 6	S	0.0	1 2		8.1			2.7		+					5.2						Wet Catch;	Imping	Final	_	Difference
	Carl		0. 25	Incre-	wental V _m		305	100	C228	101	702	CULI	100	345	531	210	896	7.81	465	243	820	286	120	200	100	して	020	339								#REF!
4074	Module ID	Orifice Coef. ∆H@	Nozzle No	Desired	∆V _m Cubic Feet		205 Er	154 246	295	1910	120	200	200	172	186	あたす	285	285	622	687.	280	259	1100	141	200	1916	318	587				Probe Wash;				
FSD PN: 20-04074	Ipliance w/	T1 R1		Orifice	Meter ΔH Inches H ₂ O		5003	2002	2 530	2 50	20 2	1.0	922	0.36	1.00	0.93	000	236	28.22	230	225	6.1	11.12	10.0	16.7	293	1.1	2.51			למי בעל	D Pre	Comments:			
	2020 Com	Test/Run	Jul	Velocity	Head ΔP Inches H ₂ O		0.06%	10.066	000	190.	1010	SPO:	-Leon	322	026	120.	.026	190.	000	060	P20.	050	120.	.0.52	100	50	910.	190.		C* 01	JOLT-LD					
tical [®] tield Services Division	Project Grede-Iron Mountain 2020 Compliance w/	Date 12/1/20 Test/Run T1 R	that	Meter Vol.	V _m Cubic Feet	540.03	543.10	544.05		121.21	11 625	11 .1 66	21.125			1.1	0	18.125	524.69			1.5	17:525		11 125	• •	600.45	74. 600)		. 1201	01 10m = 1.1 10r = 1.01 10r = 10	red: Filter	Che	-		Neg.
Pace Analytical [®]	Grede-Iro	Location N	Operators/Techs _	Timo		(815)	35	c		-	11.0	V		6		38.5		5	63			5			220		6		んろう			Samples Recovered: Filter	ng Train Le	ist b.o. a	Posttest 0 200	Pitot - Pos.
a d	Project	Sample	Operato	Trav.	Point No.		214	11	0	51	0	-	25	>>	a	2		3-12	10	63	6	200	~	e	~ >	-m	. 2	1		and the second se	Tot/Avg	Sample	Sampli	Pretest	Postt	Pitot

2.8

Report Date 2/5/2021

		3																																	
heet npling	22	175	8	320P Oxygen %v/v		2002	_														-	-					>			02=209		Total	100		14.6
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	Din-48	Cu-11/	75-38	Mtr Out Temp. °F		60	60	6	60	61	2	62	62	63	62	63	59	62	3	9	66	19	6	289	68	68	69			tm= 2.9		Desiccant	13379	15220	15.4
eld D articula	1.1	-		Meter In Temp. °F		57	28	25	60	61	62	29	63	63	6.3	63	64	99	10	9	3	68	eee eee	200	es	200	68					5			7
d 5 Fi netic P	Manometer ID	TC Sensor ID Barometer ID	Scale ID	Impinger Meter In Temp. Temp. °F °F		15	5	25	52	G	15	SY	SY.	53	25	Ste	26	2	36	10	1.5	26	59	23	60	61	61					4	/		
1etho Isoki	. Bro	In. Hg In. H ₂ O	%~/~	Sample Temp.		マン	6														-			-		1	>				Tri	e		0	
PA N	41 Cp	17.82	-	Probe Temp. °F		622	542	236	232	235	2x5	255	9.52	259	452	752 1	254	139	1.11	010	235	222	241	242	248	220	222				Other	2	68.3	100	1.1-1
ш	12-41		ist.	Filter Temp. °F		254	642	250	254	222	846	279	252	252	252	572	762	222	200	C) C	1221	152	222	152	152	272	522					1	1	100	١
	Pitot No.	Bar. Pres. Static Pres.	Est. Moist.	Stack Temp.		17	20	200	X	79	80	79	25	16	8	8	20	10	20	20	2	58	22	-56	28	\$5	21		0.0	ts= 84.5	D M-202;	er No.	Final Volume	Initial Volume	nce
	[1+ m))	0.9950	Dn o.425	Train Vacuum Inches Hg		2.5		C. 2	2.2		0.2		•	2.0	•			4.6		•		20									Wet Catch;	Impinder No.	Final V	Initial \	DITTERENCE
			x	Incre- mental V _m		210	110	324	20	186	217	638	848	574	246	411	200	995	862	100	286	200	127	010	415	222	120			Ì	D We			in the second se	#REF!
074	Module ID	Meter Coef. γ Orifice Coef. $\Delta H@$	Nozzle No.	Desired ∆V _m Cubic Feet		308	298	306	285	212	122	422	210	226	12	167	189	295	505	100	087.	140	318	329	339	307	300				Probe Wash;				
FSD PN: 20-04074	oliance w/i	34176) T1 R Z		Orifice Meter ΔH Inches H ₂ O	-	2.74	2.57	2.14	2.35	212	1.5	1.43	1.27	5-	28.0	510	27.2	61.2	1.9.7	2010	2.23	1.01	137	3.06	527	2.67	2.56	•	5.0	C 1'7 =HV	Pro	Comments:	-		
	2020 Comp	Exhaust (33 Test/Run	Jul	Velocity Head ∆P Inches H ₂ O	-	510.0	1.90.0	110.0	10.101.2	0.053	0.039	150.0	550.0	0.038	220.0	0.020	0.062	0.065	0.068	0.068	0.050	0.021	2000	60.0	120.0	0.069	0.066			VAF=,2372 A		Com		1	1
Pace Analytical [®]	Project Grede-Iron Mountain 2020 Compliance w/	Sample Location <u>Module Plant Exhaust (334176)</u> Date 1, 2.) - 1 1 R Test/Run T1 R	40	Meter Vol. V _m Cubic Feet Ir	Statistics.	12.100)	610.25	613.28	(a 9.25	621.89	627.18	-	-	22		634 .18		439.99	10. Sha	11.45	n	15. (5)	125 127		1.		670.37		5	Vm=106,21 VL	red: Filter _	Sampling Train Leak Checks:	BH" C @	0	Neg.
) ce Analyt	Srede-Irol	ocation A	s/Techs	Time	(560)		7 6	5.01	5		S				5		49.5		s		5		100	10		80.5 6		12051	a las	1 - 8 - N	Samples Recovered: Filter	a Train Le	t 0.00 @	00	>
Pa	Project (Sample L Date	Operators/Techs	Trav. Point		3-12	11	00	~2	c	c	5	5	3	2	1	いた	11	0	5	20(-	ve		-	4	-			Tot/Avg 9	Samples	Sampline	Pretest	Postte	Pitot - Pos.

•

Report Date 2/5/2021

neet pling		עריא	320P Oxygen %v/v		5.02	-					-		-		-			-		-				NI	0	T		02-		Total			5.7	
EPA Method 5 Field Data Sheet Isokinetic Particulate Sampling	0m-13	09.72	Mtr Out Temp. °F		68	23	60	69	60	00	1001	10	69	63	69	60	69	60	200	10	age of	69	63	E	69				1000	Desiccant	1-12-2	1277.9	5.5	
eld Da articula	eter ID		Meter In Temp. °F		5	1.4 1	er.	66	65	67	101	24	600	83	67	68	28	68	68	200	60	63	- 257	20	10					5				/
d 5 Fi inetic P	Manometer ID	TC Sensor ID Barometer ID Scale ID	Impinger Temp. °F		56	54	54	56	55	202	003	50	قو	5	65	63	63	er.	sy i	5	ere	bio	66	ee	er			Ī		4	1			
letho Isoki	92.8.	7 In. Hg 	0.		NA	-																	-	7	2				with	e		0		
EPA N	3.41 Cp	28.47	Probe Temp. °F		022	267	262	264	268	265	147	264	2415	204	562	208	250	242	ch2	138	224	222		266	202				D Other	2	0.01	001	- 3.8	5
ш		ا ا <mark>ا</mark> اا	Filter Temp. °F		233	245	252	253	542	248	154	2.5	248	2 50	253	2 50	842	257	152	152	279	233	2:57	152	252				M-202;		1952	100		196
	Pitot No.	Bar. Pres. Static Pres – Est. Moist.	Stack Temp. °F		85	55	5.8	36	20	200	10	8 0 0	55	24	28	\$5	2S	He	22	10	12	83	87	\$1	\$\$			2 2 - 5	Ż	Impinder No.	Final Volume	Initial Volume	ence	
	n-	2.079 2.079 Dn .423	Train Vacuum Inches Hg		25			•		200			0.2			•					•				-		•		Wet Catch;	Impino	Final /	Initial \	Difference	
	Cur-U		Incre- mental V _m		277	645	294	262	848	ועא	156	100	124	753	1000	384	693	996	162	195	210	172	Con	262	737				D We				#REF!	
074	Module ID	Meter Coef. γ Orifice Coef. ∆H@ Nozzle No. <u>∢S</u>	Desired ∆V _m Cubic Feet		206	302	293	812	912	1 62	110	35	112	Mile	316	316	309	203	245	220	215	189	202	188	res				be Wash;					
FSD PN: 20-04074	pliance w/i	34176) T1 R 3	Orifice Meter ∆H Inches H ₂ O		2.59	2.80	いた	220	01.6	152	140	271	276	2.87	2.82	28.2	12.21	2.40	2.20	107	1	10.1	1.16	1.00	0.71			122-11	Drobe	Comments:				
-	2020 Com	Exhaust (3: Test/Run	Velocity Head ∆P Inches H ₂ O		10.067	0.014	500.01	0.0SJ	0.036	0.065	110.0	20.0	12000	1000	212.0	6000	0100	10.067	0.064	1 62.0	2220	10.02h	0.032	0.026	0.020		_	_						
Pace Analytical [®] Field Services Division	Project Grede-Iron Mountain 2020 Compliance w/	Module Plant Exhaust (334176) 20 Test/Run T1 R	Meter Vol. V _m Cubic Feet	670.75	02.429	676 30	1082 88	cr:289		CA1 35		11.14 121 2.0	•		1.5	CO. PIL	716.91	•	· • .	125.41	*	732.06		85.58L	737 .60		Torradian II - 1	/m= (00' 00'	red: Filter	Sampling Train Leak Checks:	@ 6 "Hg	5.5	Neg.	
Ce Analy	Grede-Iro		Time ∆T	(3221)	3.5			1	-	245	-	010	-				5		5	1	in the				18.	1354	0- 40		Samples Recovered: Filter	a Train Le	Pretest 0.00 (D	Pos. V	
Pa	Project (Sample Location Date <u>12</u> [4] Operators/Techs	Trav. Point No.		:2		2 5	00	r	.e	5	2 ~	10)	2)	11	0	5	801	-	ماه	~ >	- 00	2	-		1 million	1 ot/Avg	Sample	Samplin	Pretes	Postte	Pitot - Pos.	

Grede, LLC - Iron Mountain Page A-64 of 88

Field Calculation Summary

Date

Tech.

Computer Initialization and Run Summary

The data on this form is preliminary and includes estimates. It is not intended to reflect final results.

20

39

Project	Grede-I	ron Mountain 2020 CoSite	Stark
Sample I	ocation	Module Plant Exhaust (334176	

	Initial	ization Par	rameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	.9958					
Orifice Coefficient - ∆H@	2.079					
Pitot Coefficient - C _p	.840					
Nozzle Diameter - D _n	.425					
Barometric Pressure - P _b	28.41	-		-9		
Static Pressure - P _g	14	-		e		
Oxygen Estimate - %O ₂	20.9	-		->		
Moisture Estimate - %MC						
No. of Traverse Points	24					
Point Duration - ∆T	3.5	1				
Meter Start Temp, °F - t _m		57	60	68		
Initial Meter Volume - V _i		540.03	604.10	670.75		
Duct Shape (Rnd/Rect)						
Duct Width, Inches						
Duct Depth, Inches						
Final Volume - V _f		603.44	670.3)	737,60		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		42)	14.2	5.7		
		of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	. 2287	.237.92	,2383		
Average Orifice Meter	∆H	2.07	2.23	2.27		-
Average Stack Temperature	t _s	80.1	82,3	85,0		
Average Meter Temperature	t _m	59.7	629	68.1		
Sample Volume, Actual	V _m	63.41	66.27	66.85		
Sample Volume, Dry Standar	V _{std}	61.37	63.77	63.20		
Moisture Content	MC	0.47	1.04	,42		
Estimated Mole. Wt., dry	M _d	+7.73				
Estimated Mole. Wt., wet	M _w					5
Average Gas Velocity	Vs	13.33	13.87	13.96		
Isokinetic Variation	%1	101.2	101.1	100.2		
Value at a Aidland Aat	AOTA	2020	1	1		

Volumetric Airflow, Actual

Volumetric Airflow, Standard

Volumetric Airflow, Dry Std.

3930

3650

3630

4090

3790

3750

4110

3790

3770

ACFM

SCFM

DSCFM

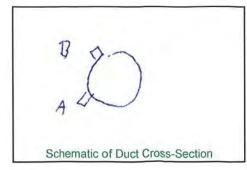
Equipment & Method Summary Isokinetic and Associated Testing

Field Services Division		Group 1 QI	J Group 4 QI
Project Name: Grede Sampling Location: Modul	-Iron Mountain 2020 Comp e Plant Exhaust (334176)	liance w/(Test Date: Recorded By:	12/20
Airflow Determination	EPA Method: 2		Initials
Pitot Tube No.: <u>941</u> Pitot Tube No.:	Coef.: <u>189</u> Coef.:	Next Ver. Date:	Pre-Use Insp.: Pre-Use Insp.:
Manometer ID: Dm-418 Manometer ID:	Oil Digital	Next Ver. Date: 3/30/2	e Pre-Use Insp.: <u>۲.</u> Pre-Use Insp.:
Barometer ID: DB-72	Aneroid Digital	Next Ver. Date: 2 21 17	Pre-Use Insp.:
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout CM-M	Single Dual	Next Ver. Date:	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C Am	bient hitials
Container Type: Tec Sampling Proc.: Sin Gas Analysis: Orsat Ambient Provision Oxygen	gle Point D Multipoint Instr Fyrite D Instr Verification: Portable C	rumental: Instrument ID:	Leak Checks:] Grab Integrated Cal Range Cal Reading:
Moisture Content EPA	Method: 4, back-half	of iso train Other	Explain in Options/ Initials Deviations.Section
Wt. Scale ID: <u>ps-38</u> Std. Weight ID: Isokinetic EPA Method	Std. Weight (g):		Pre-Use Insp.: <u>TB</u> Pass Fail Other
Nozzle ID: 05 Type		Glass Quartz	Other
Nozzle Cal.:			Pre-Use Insp.: <u>18</u>
Nozzle ID: <u>5</u> Type Nozzle Cal.: <u>70.427</u>		Glass Quartz	Other Pre-Use Insp.: 73
State and the state of the stat			
Probe Length: <u>3</u> ft. Pitot Tube No.: <u>3-</u> U	Liner: SS Glas Coef.: *\$40	Next Ver. Date: $1 - 1 - 2 - 1$	Pre-Use Insp.: 7
	Liner: SS Glas		
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
	: 4955 AH@: 2.079		Pre-Use Insp.: 7
Control Mod ID: Y	and a second second second second second second second second second second second second second second second	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 21/2" R		Thimble Oth	-
Filter Media: Glass			SS Other
Wet Catch: EPA 202			EPA 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Date	Gi	rede, LLC - Iron Mountain Page A-66 of 88

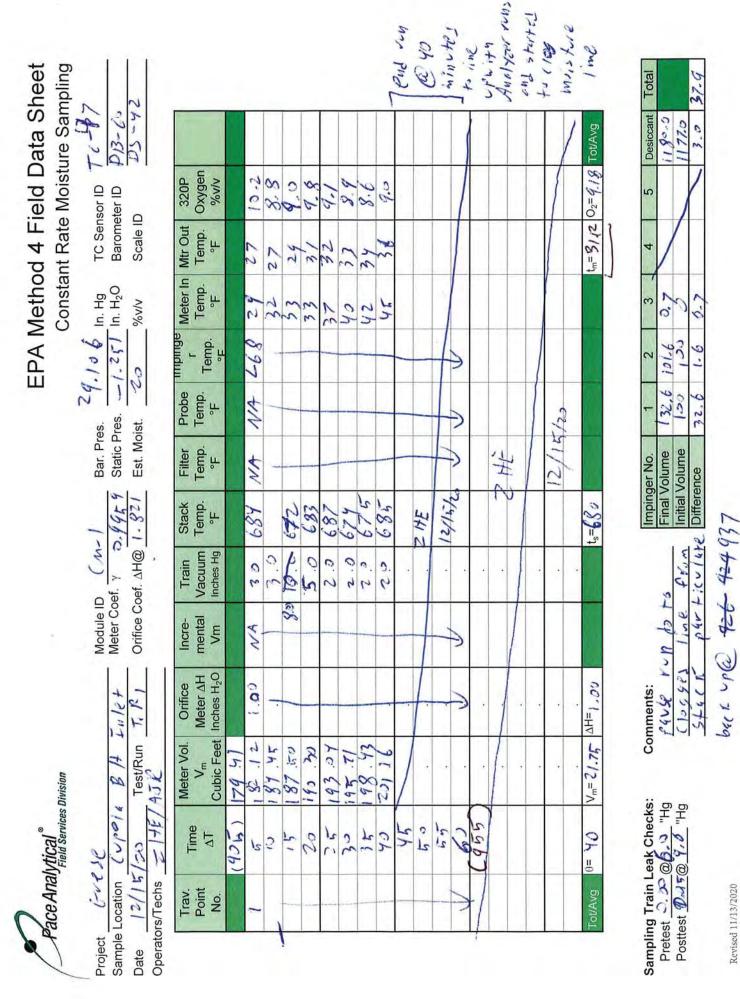
Page A-66 of 88

Field Data Sheets - Cupola Inlet

Pace Analytical[®] Field Services Division


EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations


Project C-Vece			
Test Location (cp	019 124	Ink	F.
Date 12/15/20	Test/Run	Ti	RI
Duct Dimensions	48×48		Inches
Port Length	3.24		Inches
Pitot Leak Check - Pos		Neg	

Manometer Type and ID	EAT UM-46
Barometer Type and ID	26-60
Thermocouple Sensor ID	+1-47
Pitot Tube No. 6-10	Cp 0.84
Technicians ZHE/	4.J.R

Trav	erse Poi	nt IDs	Cyclonic	Velo	city Head	I - Inches	H ₂ O	Sta	ick Temp	oerature	- °F
Point No.	Inches Wall	s From Port	Flow °Yaw	Run 1 ΔP	Run 2 ∆P	Run 3 <u> </u> <u> </u>	Run 4 ΔP	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
-2-2-2-2-1	1,55 5.02 9.30 15.51 32.49 38.70 42.47 46.45	4,80 3.28 12.55 18.76 35.74 41.45 46.22 49.73		0.149	0.490 0.524 0.512	0,420	0.413 0.431 0.431 0.390 0.390 0.407 0.297 0.297 0.297 0.497 0.491 0.491 0.491			683 712 753 721 723 735 692 684 684 698 702	675 643 756 711 727 731 723 715 762 734
375678	1 a.	the s we		0.137 0.437 0.427 0.336 0.336 0.355 0.355	0.383 0.383 0.334 0.293	0.513	0.416 0.423 0.364 0.329 0.329 0.338			717 721 712 712 715 715 715 715	716 718 716 717 716 717 711 711
						2 HE 2/15/23					
						19/23					

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	29.106		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		"Hg
Static Pressure	-1,251	-1.264	-1.929	-1.140	"H ₂ O
Dry Bulb Temp.	684	680	710	715	°F
Wet Bulb Temp.	NY	MY	MY	MY	°F
Moisture Content	-20	MY	MY	MY.	%v/v
320 P Oxygen	10.0	9.0	4.0	9.0	%v/v
Time of Meas.	845	1230	1200	1400	(24 Hour)
	12/15				

Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page A-69 of 88

	Field Services Division	livision							0	onstar	nt Rate	Moist	Constant Rate Moisture Sampling	Constant Rate Moisture Sampling
Project	112			Module ID	1		Bar. Pres.	29.106		In. Hg	TC Sensor ID	sor ID	TC-\$47	
Date /2/11	112	st/R	Inlyt un T.R.Z	Orifice Coef. AH@	0	1.821	Static Pres. Est. Moist.	es1.	264	Ш. H2O %v/v	Barometer ID Scale ID	er ID	21-50	Π
Operators/Techs Trav. Point No.	Time	$ \underline{\Theta}\rangle < \underline{\Theta}\rangle$	Orifice Meter ∆H Inches H ₂ O	Incre- mental Vm	Train Vacuum Inches Hg	Stack Temp. °F	Filter Temp. °F	Probe ¹ Temp. °F	Temp.	Meter In Temp. °F	Mtr Out Temp. °F	320P Oxygen %v/v		
-	(1977) 51 55 55	23. 122. 122. 122. 122. 122. 122. 122. 1	00.1	1/4	7. 1	639 679 672 672	V 4	NGn)	897	44	14	9.9 8.6 8.6		
	63	111 12 12 12 12 12 12 12 12 12 12 12 12			12 12 12 12 12 12 12 12 12 12 12 12 12 1	661 661 667 667 713				21212200	444	8.5 8.9 7.8 8.1 8.1		
\rightarrow	35 60 (1157)	232.11			-	685				15/5	25	9.0		eve rug
			. .	\rightarrow			->		->					Anis hel
Tot/Avg	0= 56	V= 30.29 AH= 1.00	66.1=HD		· t	$t_s = 680$				t	tm=47.08 02= 8 6 Tot/Avg	D2= 9.63	Tot/Avg	Suissaul
npling Trair retest 2.01	Sampling Train Leak Checks: Pretest ??h@ 7?? "Hg Posttest?		Comments: Pavse e to vapivy	Pinke		Impinger No. Frinal Volume Initial Volume Difference		1 2369 1	2 118.9 13.0 18.9	3 2.6	4	5	Desiccant (1853 (180.0)	Total 67.7

Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page A-70 of 88 Revised 11/13/2020

Sheet	2		12														Ful ven	a vr	L C V MIN	Ito inc	ht min	analw-s. 1	6.121 day	the old a	. to at.		Total	0	167.8	
ata S Ire Sa	74-77	08-60	05-42																					1	Tot/Avg		Desiccant	101	0.11	
EPA Method 4 Field Data Sheet Constant Rate Moisture Sampling	sor ID	ter ID			320P Oxygen	V/N%		9.6	5.2	8.7	9.3	9.9	8.6	2.3	1.5	5.5								/	tm=47.0 02=8.72 Tot/Avg		5	0.0261		/
d 4 F nt Rate	TC Sensor ID	Barometer ID	Scale ID	10.00	Mtr Out Temp.	Å		24	96	96	34	47	47	48	28	44									tm=47,0		4		/	
Aetho Consta	In. Hg		%v/v		Meter In Temp.	ų.		20	20	2	25	15	53	_	55	1											3	6.8	6.9	
EPA N	29.10 6	.264	8	BOUIGIUI	r Temp.	Цo		C68		-									>		HE		20				2	350.0		
ш		1	oist. 1		Probe Temp.	H.		N4	-				-		-				>	_	Y	2110	1411				1	25 201	(20.0	
	Bar, Pres.	Static Pres.	Est. Moist.		Filter Temp.	÷		NA		-		-				_		1 .	>								Impinger No.	Final Volume Initial Volume	ence	1342
	1-	5555.0	1.821	1000	Stack Temp.	4	1 100	180	685	269	678	687	685	707	426	22									ts=695.77		Impin	Final	Difference	1340-1342
	CM-1	ef. 7 o	Orifice Coef. AH@ 1. 821		Vacuum	Inches Hg	ſ	1.6	5.2	0.2	7.6	5.0	5.0	0.1	ar r	10				.								4		4
	Module ID	Meter Coef. Y	Orifice Co		Incre- mental	Vm		MA	_	_	-	_						_	A									1245 SI	¢.	E 1318
		40	T, K3			Inches H ₂ O		00.1				-		-		+			4		•	•			00° =HA		Comments:	Parse du		Park up (ch
s Division		8H Inle	Test/Run		Meter Vol.	OUDS Feet	3	236	02. 462	241.88	244.89	247.68	250.45	78.875	266.02	248.93		/				•			Vm=25.21			00)	
Pace Analytical [®]	Grand	2	7 4514	14	Time	5		15	0	15	50	152	30	35	40	45	29	55	60	CUYOO					15 =0	-	Ð	BH. 0.11 @		
aceAn		Sample Location	Date 12/15/15		Trav. Point	No		-		-	-	-					+	1	3						Tot/Avg		ing Train	Pretest 0.20		0000/21/11 Province
et	Project	Sample	Date	in indo	12HE	12/11/21	ad: 42																				Sampli	Pret		Review
Pa FS	ace An SD 20-	alytio 0407	cal ′4		151		23	1				Re	epor	t Da	te 2	/5/20	021							Gre	de, L	LC - Irc Page		ountai 1 of 8		

1 16 V

2461 LONE 1

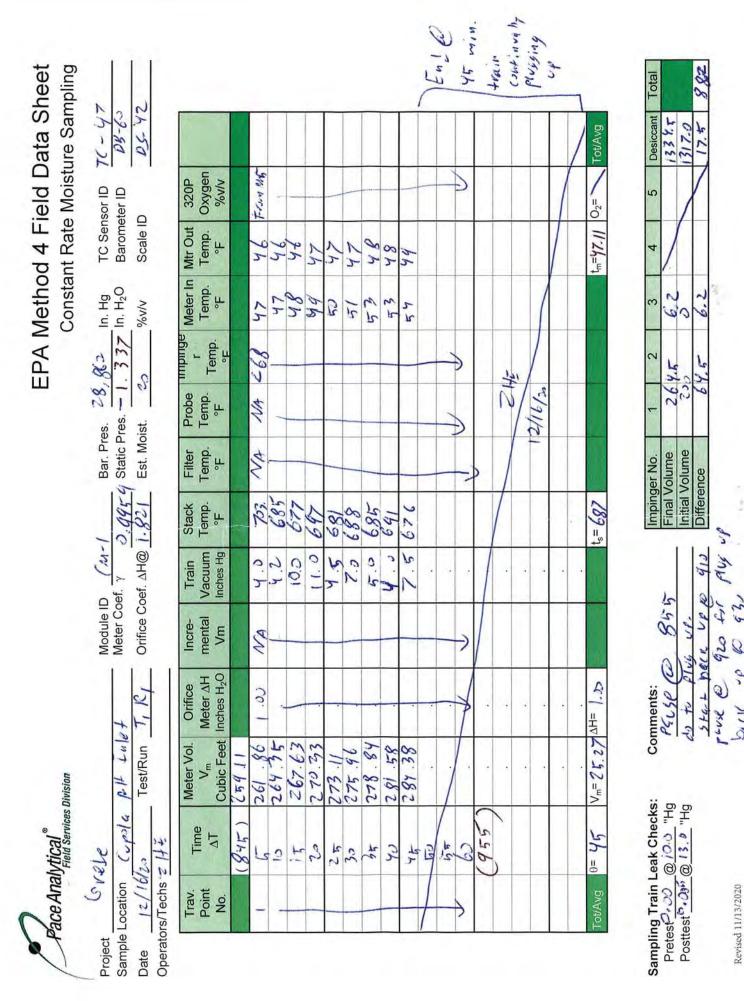
Revised 11/13/2020

Pace Analytical [®] Field Services Division

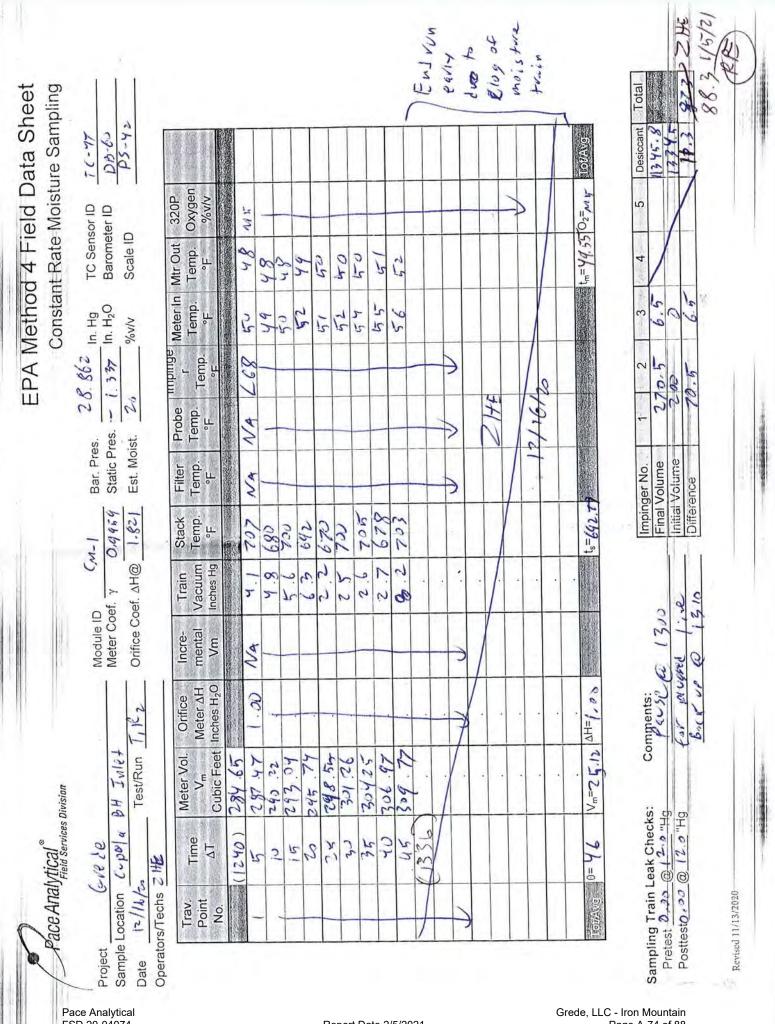
EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project	Greze	5			
Test Location	Lup	14	BH	Inlet	
Date 12/	16/20	Te	st/Run		
Duct Dimensio	ons	40	5-48		Inches
Port Length		3	.25		Inches
Pitot Leak Che	eck - Pos	-	\checkmark	Neg	V


Manometer Type	e and ID	DM-46	
Barometer Type	and ID	DB-60	
Thermocouple S	ensor ID	TC-47	
Pitot Tube No.	6-10	Cp D.BY	
Technicians	SHE		

Traverse Point IDs	Cyclonic	Velo	city Head	I - Inches	H ₂ O	Sta	ack Temp	perature	- °F
Point Inches From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No. Wall Por		ΔΡ	ΔΡ	ΔP	ΔΡ	°F	°F	°F	°F
1 1.55 4.8	0	0,329	0,483	0,397		767	627	691	
2 5.03 821	0	0.338	0,483	0.278		783	645	691 692 696	
3 9.30 12.5 4 15.51 18.76	5 0	0,472	0,496	D-359 0.427		762	649	696	
5 32.44 35.7		0.453	0.378	0.356		717	651	702	
6 3870 41.91	5 5	0.484	0.355	0,390		711	680	706	
7 42.97 96.22	0	12.453	0,347	0.266		712	680 682 685	7878	
\$ 46.45 44.76	0	0,403	0.308	0.216		704	685	698	
1 7 7	0	0.416	0.327	0248		7620	721	692	
2 5442	0	0.384	0.424	0.347		50	723	690	
4 45	00	0,470		0.411		723	684	685	-
5 Gare	0		0.390	0.435		717	692	100	
6 0000	0	0:391	0.469	0.400		715	717	675	
E I I	0	0.383	0.400	0.440		711	712	690	
5 7	0	0,395	0,710	0.386		705	705	695	
		-			Aug	735	684	694	-
	1				17-3		601	6.1	
								-	
				2	11-				
				~	TE				
				12:					
				IC 1	15/2	~			
		1		/	3/2,				
	-	-	-	-	/				
	-								
					17	111	17/1	-	
					10	16	141		
		1			Dun 1	Dun 0	Dun 2	/ Dun 4	
			Bar Dree	COLUTO	Run 1	Run 2	Run 3	Run 4	"Ha
			Bar. Pres		28.862	1 20-	28.814	7	"Hg "H ₂ O
			Static Pre	1.	-1.619	-1.337	-1-267		and a state of
			Dry Bulb		725	684	Gias		°F
			Wet Bulb		MY	My	MY		°F
			Moisture		MY	MY	MY		%v/v
			320 P Ox		9.0	-	-	-	%v/v
Schematic of Duct Cros	s-Section		Time of N	leas.	7:0	1200	730		(24 Hour)


Report Date 2/5/2021

69 Grede, LLC - Iron Mountain Page A-72 of 88

684

Grede, LLC - Iron Mountain Page A-73 of 88 Dacil

FSD 20-04074

Report Date 2/5/2021

Page A-74 of 88

Module ID (M-1) Bar. Pres. EF Meter Coef. Y 0.4171 Bar. Pres. T Drifice Coef. AH@ 1.382 Est. Moist. Onfice Incre- Irain Stack Filter Meter AH mental Vacuum Temp. Femp. Inches H2D Vm 1.382 MA MA Inches H2D VH 2.10 6.87 MA Inches H2D VH 2.56 6.87 MA Inches H2D VH 2.67 6.75 6.75 Inches H2D 0.67 6.75 6.75 6.75 Inches H2D 0.67 6.75 6.75 6.75 Inches H2D 0.67 0.75 6.75 7.75 Inches H2D 0.67 0.75 0.75 7.75 Inches H2D 0.67 0.75 0.75 0.75 Inches H2D 0.67 0.75 0.75 0.75 Inches H2D 0.75 0.75 0.75 0.75 <	en Constant Rate Moisture Sampling	In Hg TC Sensor ID TC-47	Mutho Barometer ID 115-60	1	Motor In Mit Out 320P	0	٩°		56 54 Mr	54 54 1	56 54	2	69 55	60 56			5	62 58	63 59	64 24 A						のためには、「」」」」
Module ID $(M-1)$ (EF) Meter Coef. γ <td>01 (</td> <td>1</td> <td>1.1-</td> <td>02</td> <td>abuduu uubuda</td> <td>Temp.</td> <td>Ŀ.</td> <td></td> <td>NA NA 268</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VV</td> <td></td> <td>CH-</td> <td>-</td> <td>12/1-1</td> <td>11/120</td> <td></td>	01 (1	1.1-	02	abuduu uubuda	Temp.	Ŀ.		NA NA 268	1 1										VV		CH-	-	12/1-1	11/120	
(CF) (CF)		Car-1	0.4959	1.3361		Train Stack	Inches Hg °F		2.0 880				6.	4.9 667	8.6 666	7.0 679		4.0 674	5.0 676	6.0 689						
Division Div		Module		2		Orifice	TE CAN	10.	1 100	0)	75	58	112	22	88	. 83	1 1 1			V V KI						

ota 0 Desiccant 359. 5 4 3 0 2 \$5. 0 Impinger No. Final Volume Initial Volume Difference Comments: Perto

Pretest 0, 00 @ 14.0 "Hg Posttest 0, 00 @ 14.0 "Hg

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-75 of 88

Field Data Sheets - Cupola Exhaust

11	Pace Analytical "	nalyti	ical [®] id Servic	es Division							ш	EPA	Metho	EPA Method 5 Field Data Sheet	ield D	Data S	Sheet
.dic	Project Crade		WOLT	that a	ł	Mod	Module ID	CM-	~	Pitot No		ۍ ۱	0	j,	Manometer ID	AUR AUR	Samping
5 E	Sample Location	E	Dola_		124	Mete	Meter Coef.	~ (9922	Bar. Pres.		26.62	In. Hg	1	TC Sensor ID	70-33	3
Date	Date init	120	1 2	Test/Run	1241	Orific Nozz	Orifice Coef. ムH@ Nozzle No. シゾ		1.862. Dn 1.00	Static Pres. Est. Moist.	Pres. 0.00 oist.	25	In. H ₂ O %v/v	Baromet Scale ID	Barometer ID Scale ID	15-45	72
Trav. Point	nt Time	11	Meter Vol. Vm	Velocity Head ∆P		1.11.1		4 10	Train Vacuum	Stack Temp.	Filter Temp.	Probe Temp.	Sa	E F	Me	¥ ₽	0
No.	0	1	Cubic Feet	Inches H ₂ O	0 Inches H ₂ 0	O Cubic Feet	Feet	^m	Inches Hg	ĥ	ц.	ų.	ĥ.	ዙ 	ĥ	ĥ	%v/v
X			64-	00:00.0	2.7	7123	20	4.30	0.0	184	240	253	5	53.	24	27	18.5
5	1 15	121	205	0.00288	2 44	132	22 22	12	6.1	178	243	25/	50	50	151	10	13.0
	2 20	186	2	0.0023	de	186	63 4	28	20	193	244	249	0.	54	N	N	17.9
	2 20	161	39	0.0025	2 2 34	195.	37 4	33	70	180	241	230	200	50	200	12	18.5
	2 40		36	0.00271	Nr	\$ 199.	4 200	579	6.9	190	231	264	200	25	17	11	179
4			200	6.00267	N	101	204	5	6.3	193	224	265	200	8	12	2	17.7
4	1 55	212	300	0.00250	22	1 216.	50 4	57	100	179	221	277	200	500	17	10	128
	2 60	1	SS.	0.026	N		5 65	124	6.7	186	220	522	62	20	27	200	18.3
	1 20	225	102	J. 00265	2 28	229.0	50 4	250	1.1	176	227	275	200	500	11	20	18.6
	26 1	1 1	20.	0.00274	Ne		2 20	143	12	160	234	278	15	18	10	80	15.3
	1 80	238.	20	0.001.27	14. 2 6	242	716	8.5	2	170	220	220	10	20	101	00	581
	7 90	(1)	59	90.00290	19.20	247	52 4	1.6/	2.7	148	2	263	80	66	80	100	10.6
	2 100	2520	200	0050-0	0 2 6/	252	1 50	19.	10	146	272	266	50	200	200	22	18:0
			10-	6.00304	121	261	55 4	01.	8	158	238	263	910	63	22	25	18.7
	2 110	2020	30	60:00.0	4	266.	2 00	100	10	149	mr	260	60	53	100	500	19.0
	2 120	22	0	9 18000	2 36	R	93 4	1.84	12.6	150	2250	268	72	200	200	300	(7.3
	(/080	0			•		\$										
otra	Tot/Avg 0= 100	A	02.90	Vm= 106.70 VAP=0 05 30H=2.	2011=2.44	1	1			ts=172.5	4					tm=75.8	02=
an	Samples Recovered: Filter 0-1/43	vered:	Filter	0-1143		Probe Wash;	ash;	D We	Wet Catch;	Ø	-202;	D Other	2				
am	Sampling Train Leak Checks:	Leak (Checks		Comments:		1		Impin	Impinger No.	1	2	3	4	5	Desiccant	t Total
E C	Pretest 0 00 @	2/0			purge	Start	CCII		Final	Final Volume	20%	22.4	1128	1	Y	1001	
ī ā	Pitot - Pos. 4	Neg.				013	1075		Difference	Difference	5.8	22.7	12.4		X		35
		1		- Second				1.1.1			2						

very light marks on Ant when an Anter

Revised 11/13/2020

		FIELD SERVI	Field Services Division						i.	Isokinetic Particulate Sampling	Isokir	Isokinetic Particulate Sampling	articula	ate Sar	ildu
Project Sample Date	Grede Location	I topola	Test/Run	254	Module ID $\mathcal{LM} - \frac{1}{2}$ Meter Coef. $\gamma = \frac{-92}{2}$ Orifice Coef. $\Delta H \otimes \frac{1}{2} \frac{2}{2}$	ef. 2H@ 7.	3922	Pitot No. Bar. Pres. Static Pres.	JN1	gr o	Cp. 0.84 In. Hg	Manometer ID TC Sensor ID Barometer ID		CM-3 7C-53	
Operato	0	NR, TU	a		Nozzle No.	. 53	0	Est. Moist.			V/V%	Scale ID		1.1	5
Trav. Point	Time ΔT	Meter Vol. Vm Cubic Ecot	Velocity Head ∆P	Orifice Meter AH Inches H.O	Desired ΔV_m	Incre- mental	Train Vacuum	Stack Temp.	Filter Temp.	Probe Temp.	Sample I Temp.	Impinger I Temp.	Meter In Temp.	Mtr Out Temp.	320P Oxygen
	(1230)	278.15	and the second se				P.					-			2
- 2		~	26400-0	25. 7	4Tha	6.14	611	241	:052		83	29	35	22	18.6
v l d	10	-1-	88 0.00469	11	296.12	282	12.9	146		202	12	24	34	200	11
V	20	1.	242000	4	301.86	5.74	13.2	163	1	255	68	66	34	RB	18
~ •	30	307.45	0.00452	10 2	307.54	563	12.4	153	256 2	200	68	55	50	20	186
1 1		No.	0.00376	3 22	319.30	5.15	13.4	201	-	235	12	er o	220	100	1 27
N	20	323.45	0.00369	5	323.50	5.20	13.2	174	1	2.56	25	22	55	23	1
	1		675000	2 34	528.75	5:2	1.21	163	223	250	22	000	28	63	4
2 4	20	333.88	0.00354	3 15	2355. 86	5.10	11.0	181	550	283	44	na	204	200	101
n	69	343.98	0.00345	3.02	343.95	4.99	10.7	185	202	157	20	24	00	000	12
1 .		30	00.00331		349.78	4.83	8.8	203	255	253	22	69	63	89	0.61
1-	70	19	0.00324	i	353.61	2.83	000	190	249	252		200	20	68	00
r r	203	323 42	0.00324	2 48	14 275	28.88	• •	110	200	252	200	200	200	100	181
1 7		14	2/200.0	2	368.20	4:78	6.8	192	250	251	23	4	68	06	18
N	30	72.90	0.00383	Ч	372.97	4.73	8.8		~	552	20	09	00	00	1
1	1.1	377.54	0.0307	1	577.63	2.68	00	198	~	250	Ni	Sol	20	20	100
1. 1	100	12.280	0.000	200	584.70	1.11	00	21	22	30	14	10	200	200	1.
	110	201 00	20000	1 20	391.00	01 5	10	100	120	50	22	54	00	200	2
		396.60	0.00303	2 6 7	396.61	2.70	24	183	522	16	24	7.3	200	06	vo
2	120	701 29	0.00301	P	901.29	4.68	9.7	185	254 .	254	22	11	84	30	18
	(Neto)						+								
Cel Aug	Totion 0= / 1 0	W = 11 3 M	AV JAPEROSSANH=	1 2 2 = HV				5 141=+						6-0-1	C
BAMAD	140	117-1-WA	1000 101	7				24115							221
Sample	es Recovi	Samples Recovered: Filter		PIC PIC	robe Wash;		Wet Catch;	M-202;	02; L	Other					
Samplir	ng Train L	Sampling Train Leak Checks:		Comments:	11.1		Impinger No.	er No.	+	2	3	4	5	Desiccant	Total
Prete	Pretest 10	@ 0.00 "Hg		physe	1313		Final Volume	Final Volume	191	19.7	68	NA	5	1361.0	
L'usilesi /		シンパー									-		•		

Revised 11/13/2020

Project Grade Zran Sample Location 24000 Date 276765 2177 Operators/Techs 24,70	de tran												arc can	ISUMI TELIC FAI ILCUIALE SAI I PIII IS
ate Locatic		1 vu		Module ID	cm-	5	Pitot No.	4	C _p C	Cp 0.84	Manometer ID	eter ID	C-4-3	
ate 2000	in cupolar	Exhan	24	Meter Coef.		3922	Bar. Pres.	23.	87 1	In. Hg	TC Sensor ID	sor ID	70-33	
	700 RUNI	24772 Test/Run 7,	5, 23	Orifice Coef. AH@ A Nozzle No. JS D	ef. AH@	1 862	Static Pres Est. Moist.	N.	2	In. H ₂ O %v/v	Barometer ID Scale ID	Q	54-00	5
		Valacitu.	Ottoo	Danimud					1 10	-	101 20	Antor In	A4- 0.4	LUCC
Irav. Time	Meter Vol.	Velocity Head AP	Meter AH	Uesired 	mental	Vacuum	Temp. 1	Temp. 1	Temp.	Temp.	Temp. Temp.	Temp.	Temp.	Oxvaen
No. AT	Cubic Feet	-		Cubic Feet	- 1	Inches Hg		-	-		ц Ц	÷.	4	N/N%
(753	8) 41 80													
1 2	305 395	0 10227	66.1	405:83	4.03	15	187 2	259 2	524	68	29	28	80	16.8
2 10	40. TV	0.00215	-	409.73	3.20	1.2	161	55	192	201	65	201	0	120
1 20	16 614	122000	2 00 2	417.07	4 12	20	173 7	22	252	17	22	Sh	50	121
	86: 124	1200	16.1	421.76	395	5.0	200	58 2	255	14	71	79	80	181
2 30	45.79	0.00225	1.97	425.77	1.01	5 0	184 2			72	19	28	000	18.0
4-		0.0021	1.8.1	43.68	3.91	5.0	206 2	25		70	62	23	60	1.8.
2 40	3.64	0.00219	16.1	433.63	3.35	2.0	183	252	222	24	65	30	10	18.6
k	55.1	0.002/8	-	437.56	3.95	200	33	552	535	25	55	200	200	12.2
4 30	24254	0.00216	100	11211	3.92	20	105	000	12	22	14	12	10	10
2 60	49.34		1.88	4933	3.92	5.0	192		254	25	80	200	200	181
1	2.	0	2 - 62	453-41	20%	5.2		254 2	257	SN	29	22	32	18.2
2 70	543	0.00224	66.1	457.35	40%	2.1	180 2	20	256	11	62	100	82	18.2
2 40	461.57	02 000 00	202	915/5	110	1.5	125	252	252	71	60	N'A	22	17.7
	CD 67h	10,00234	41.0	469.95	4.20	5.0	160	N	2X	25	14	24	22	17.9
2 90	474.19	a 50241	224	474.15	430	5.3	151	253	252	NN	60	25	8	19.6
-	14 844	0.00244	2.23	HARLA	62.4	2.5	162 2	253 2	552	11	00	.5.8	5	17.6
2 100	42.79	0.000		462.82	7.58	5.0	151	V	25.5	10	60	80	28	18.8
-	187.11	152 0000	2:25	22.201	12.5	2.5	156	55	151	10	hort	20%	84	18.3
2 110	201 111	0.00460	91.7	12/20	120	5.1	1 031	1 2 2	125	14	100	44	20	0.01
2 120	50.78	-		500.77	4.54	12	0	15	236	54	240	20.00	50	18.7
WA CKO													20	
U														
Tot/Avg 0=/20		8 0" Z=HV & AVD=0'02 & VH=Z'0 &	AH=2.0 8			t	ts=174.7						tm=81.5	O ₂ =
amples Rec	Samples Recovered: Filter		: 🛛 Pro	obe Wash;		Wet Catch;	🛃 M-202;	02; 🔲	Other_					
mpling Trai	Sampling Train Leak Checks:		Comments:			Impinger No.	er No.	1	2	3	4	5	Desiccant	Total
Pretest 5	@ 0.0 "Hg	0,		103	8	Final Volume	olume	18.4	13.01	13.2	IN	~	-	
Ditot Doo	A Nor A		ENE			Difforence		20	200	200	1	1	0.100	1 07

Revised 11/13/2020

Field Calculation Summary

Date

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates. It is not intended to reflect final results.

Project Grede Iron MAT. Sample Location Exhaust Cupola

Dag house Tech.

AUN

12/15/20

	1	It may be a set of the	and the second second second	12/17/20	2	
		lization Pa				
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Y	0.9922			4		
Orifice Coefficient - ∆H@	1.862					
Pitot Coefficient - Cp	0.84					
Nozzle Diameter - D _n	1.00			28.87		
Barometric Pressure - P _b	28.92	28.92	28.92	28.72		
Static Pressure - P _g	0.001	0:001	0.001	0.001		
Oxygen Estimate - %O ₂	18	18	18	18		
Moisture Estimate - %MC	5	5	4	3	G	
No. of Traverse Points	24					
Point Duration - ∆T	24					
Meter Start Temp, °F - t _m	77	77	86	78		
Initial Meter Volume - V _i	169.05	169.20	278.15	401.80	,	
Duct Shape (Rnd/Rect)	Rect					
Duct Width, Inches	533					
Duct Depth, Inches	239					
Final Volume - V _f		275.90	401.29	500.78		
Total Run Time - θ	1	120	120	120		
Condensate Volume, ml (g)		75	70.8	60.1		
		of Run Su	immary			
Average Sq. Rt. of the ΔP	√∆P	0.0530	0.0598	0.0481		
Average Orifice Meter	ΔH	2.78	3.21	2.08		
Average Stack Temperature	ts	172.5	1765	178.7		
Average Meter Temperature	t _m	78.8	826	81.4		
Sample Volume, Actual	Vm	108.70	123.14	98.98		
Sample Volume, Dry Standar	V _{std}	100.90	114.78	92.90		
Moisture Content	MC	3.38	2.82	2.96		
Estimated Mole. Wt., dry	M _d					
Estimated Mole. Wt., wet	M _w		-			
Average Gas Velocity	Vs	3.32	3.76	3.03		
Isokinetic Variation	%1	99.3	99.9	100.8		
Volumetric Airflow, Actual	ACFM	176250	199320	160580	-	
Volumetric Airflow, Standard	SCFM	142220	159830	128480		
Volumetric Airflow, Dry Std.	DSCFM	137810	155320	124680		

Site

Equipment & Method Summary

Isokinetic and Associated Testing Group 1 QI インレ Group 4 QI アノB

Project Name: Greve To Sampling Location: Capola	Exhaust		Date: 🛆	113/20 AJR
Airflow Determination EPA	A Method: 2	2C	Other	Initials
Pitot Tube No.: Coe Pitot Tube No.: Coe	ef.: <u>0.84</u> ef.:	Next Ver. Date: Next Ver. Date:		Pre-Use Insp.: AJA Pre-Use Insp.:
Manometer ID: (m-) KC	Dil Digital	Next Ver. Date:	314/21	Pre-Use Insp .: AUA
Manometer ID:	Dil Digital	Next Ver. Date:		Pre-Use Insp.:
Barometer ID: DD-72 A	Aneroid 🖂 Digital	Next Ver. Date:	2/10/20	Pre-Use Insp.: MJ/
Barometer ID:	Aneroid Digital	Next Ver. Date:		Pre-Use Insp.:
T/C Readout 7C-33	Single 🗷 Dual	Next Ver. Date:	03108/21	Pre-Use Insp.: NR
T/C Readout	Single Dual	Next Ver. Date:		Pre-Use Insp.:
Gas Composition EPA Meth	nod: 3 3/3A	3B 30	C Ambie	nt Initials
Container Type: Tedlar Sampling Proc.: Single Po		ayer Inert		Leak Checks: Grab
Gas Analysis: Orsat				Cal Range 2/
Ambient Provision Oxygen Verific	cation: Portable O2		Ambient Cal	Reading: 20.9
Moisture Content EPA Meth	nod: 🔄 4, back-half of	iso train	Other	Explain in Options/ Initials Deviations Section
	Digital 🔲 Beam . Weight (g): <i>SO</i> O - O	Next Ver. Date: Scale Reading	San a san	Pre-Use Insp.: *///
Isokinetic EPA Method:	5_ 8 17	23 26	6A 29	Other Initials
Nozzle ID: Type:	Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 11.00 2 1.00		5	Avg	Pre-Use Insp.: TUB
Nozzle ID: Type:	Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 1 2	3 4	5	Avg	Pre-Use Insp.:
Probe Length: 12 ft. Liner:	: SS 🕅 Glass	Quartz	Teflon	Other
Pitot Tube No.: Coe	ef.: 0.84	Next Ver. Date:		Pre-Use Insp.: AUR
Probe Length:ft. Liner:	: SS Glass	Quartz	Teflon	Other
Pitot Tube No.: Coe	ef.:	Next Ver. Date:		Pre-Use Insp.:
Control Mod ID: CM-3 Y: 0.95	922 AH@:1.862	Next Ver. Date:	314/21	Pre-Use Insp.: AUK
Control Mod ID:Y:	ΔH@:	Next Ver. Date:		Pre-Use Insp.:
Filter Type: 21/2" Round	A 4" Round	Thimble	Other	
Filter Media: X Glass Fiber	Quartz Fiber	Paper 🗌 Te	eflon S	S Other
Wet Catch: 🖉 EPA 202	EPA 8 EPA :	23 🗌 EPA 26	A EP	A 29 Other
WC Options/Deviations:			11.11	

Grede, LLC - Iron Mountain Page A-81 of 88

Equipment & Method Summary

Instrumental and Associated Testing

Group 3 QI TUB

Project Name: <u>Grede</u> Sampling Location: <u>Capo</u>	Iron Mat. Da Edcharst	D	2/16/20
Airflow Determination		2C Other	AJA
			Pro Line Inen : 4 i4
Pitot Tube No.:	Coef.: <u>0.44</u>	Next Ver. Date:	Pre-Use Insp.: <u>AJA</u> Pre-Use Insp.:
Manometer ID: CM-3	🖉 Oil 🛛 🗌 Digital	Next Ver. Date: 3/4/21	Pre-Use Insp.: AUR
Manometer ID:	Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: DB-72	Aneroid 🗶 Digital	Next Ver. Date: 2/10/2/	Pre-Use Insp.: NR
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-33	Single Z Dual	Next Ver. Date: 03/08/2/	Pre-Use Insp.: AJA
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C Amb	ient
Container Type: Tedla	ar 🕅 Teflon 🗌 7-1	Layer Inert Other	Leak Checks:
Sampling Proc.: Sing	le Point Multipoint	With Iso Train	Grab Integrated
Gas Analysis: Orsat	Fyrite 🕅 Instru	umental: Instrument ID: 6	Cal Range 21
Ambient Provision Oxygen V	/erification: Portable O2	2 ID <u>ax -13</u> Ambient Ca	al Reading: 20.9
	Note: Portable O2 re	sults are not reported as lest data.	
Moisture Content EPA	Method: 4 Wet/I	Dry Bulb Rel. Test	Other Initials
Wt. Scale ID: 05-45	🕅 Digital 📃 Beam	Next Ver. Date: 7/9/202	Pre-Use Insp.: AUA
Std. Weight ID: 4/2/6/	Std. Weight (g): 500.0	Scale Reading: 500.0	Pass 🗌 Fail
Gas Monitoring	PA 3A EPA 6C	EPA 7E EPA	10 EPA 25A
Instrument ID: 02-Co	2-6		
Cal. Range: 0-2	_1		<u> </u>
Interface:	xtractive Extractive	Extractive Extra	active Extractive
	Dilution Dilution	Dilution Diluti	on Dilution
Pre-Use Insp: (initials)			_
Sample Line ID:	Length:ft.	Heated Unheated	Pre-Use Insp.:
Gas Conditioner ID:	Temp. Set Pt	Dilution	Pre-Use Insp.:
Options/Deviations/Provision	ns:		2 C

ace Analvtical* Method Used (circle one) 203A Method 9 203B Other Grece Iron Mountain 401 S. Carpenter State MA Company Name Facility Name Street Address 801 City Kings Fuld Unit No. Process BH Inter Curula Control Equipment

Visible Emissions Observation Form

Zip Cd Operating Mode 95% Operating Mode Emission Point Description Corpola Eastsile Bat horiz Cupola Building Height of Emis. Pt Relative to Observer Start 10 End 10 Direction of Emission Point (Degrees) Start 34 K End 34 K Did Observation Point Change Height of Emission Point Start 23 End 20 Distance to Emission Point Start 80 En 80 Start 8 - Line Vertical Angle to Observation Point End 5 End No Yes Plume Background Description Start Gray Buildin End Grey Building Sky Conditions Emission Color End Light Ever Start (1840 (Par Start None End Wind Speed Start 5-10 Wind Direction End 5-15 54 End Start Sh Ambient Temperature (°F) Wet-Bulb Temp. Vor H End 13 Start 17 Source Layout Diagram **Draw Arrow North**

20 ft. X Observation Point 80 ft. Legend Stack **Observer's Position** & Plume 140° A. \odot Sun Sun Position Wind **Observer** Name Zachary Echstrom face Analytical Affiliation Certified by (Org/Date) Aeronet 11/4/20

Observer Signature Sellar

Date 12/16/20 Ebolon

Grede, LLC - Iron Mountain Page A-83 of 88

Pace Analytical Place Analytical				VIS	ible	CI
Method Used (circle one)	1.00			Test	(atjon Da	Run
Method 203A	203B	Other		12	116	120
	A Startes			Sec	0	15
Company Name (1921	- sag			Min 30	B	2
Company Name Grock Facility Name Jron Ms Street Address Sol S.	1. tain			31	0	0
Street Address Sol S.	(and enter	<	7	32	0	a
city Kinssfill	State M	I	Zip Cd	33	-	0
				34	.0	0
Process	Unit No.		ting Mode	35	0	0
Control Equipment		Operat	ling Mode	36	Ő.	0
Emission Point Description	East silt	an a diaman		37	0	0
	ar no			38	8	C
Height of Emission Point	Height of E Start	mis. Pt Rela	ative to Observer	39	0	0
Start End Distance to Emission Point	Direction of	f Emission P	End Point (Degrees)	40	.0	0
Start End Vertical Angle to Observation Point		ation Point		41	0	0
Start End	Ye	25	No	42	0	0
Plume Background Description Start	End			43	0	C
Emission Color Start End	Sky Conditi Start		End	44	0	0
Wind Speed Start End	Wind Direc Start,		End	45	0	0
Ambient Temperature (°F) Start End	Wet Bule	empe	%rH	46	0	0
	4	5		47	0	0
Source Layout Diag	gram Pa	40 Draw	Arrow North	48	0	0
	12	2 1	\frown	49	0	
	1	(50	0	0
			\smile	51	-	00
X Obser	vation Point		ft. •		0	
				52	0	0
			ft.	53	0	0
		Chaoli	Legend	54	0	0
Obser	ver's Position	Stack &	d_	55	0	0
140°		Plume Sun	à	56	0	0
Sun Position		Wind		57	0	0
Observer Name Zarbavy	Filletin	1		58	N	Q
Observer Name Zachavy Affiliation Pace Au Certified by (Org/Date)	alytica	1		59	0	0
11 3	u 1 / / / u			2	er Signa	
Allowet	11/4	120		Se	2 her	1

Visible Emissions Observation Form

Test (Run /	Page 2	of Z		
Observatio		Start Time	End Time		
101	16/20	1210	1110		

Min	0	15	30	45	Comments		
30	Э	T	0	0			
31	0	0	0	0			
32	0	Q	5	0			
33	~	0	Ŋ	0	1		
34	· C	0	C	0	1.00		
35	0	0	0	53			
36	3	0	0	0			
37	C	0	3	0			
38	8	0	0	0			
39	0	0	0	0			
40	.0	0	0	0			
41	0	0	0	0			
42	9	0	0	0			
43	0	0	0	0			
44	0	0	0	0	• •		
45	0	0	0	0			
46	0	5	5	0			
47	0	0	0	0.			
48	0	0	0	0			
49	C	Ó	0	0.			
50	0	0	0	0			
51	0	0	0	0			
52	0	0	0	0			
53	0	0	0	0			
54	0	0	0-	0			
55	0	0	0	0			
56	0	0	0	S			
57	0	0	0	0			
58	Q	Q	0	0			
59	0	0	0	C	· · · · ·		
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

	0 0 0 0 0 0 0		30) D	Start Time		0
Sec 2	00000	15 で う	S	45 0	Commer	
2	0000	0	S	С		nts
3	000	Ó				
2 3 4 3 3	00	-	0	0		
3	0	0		0		
•			0	0		
;	0	O	0	0		
;	0	0	0	0		
	C	0	D	0		
2	0	0	0	0		
	0.	0	0	0		
,	0	0	0	0		
)	O	ð	9	0		
0	0	0	0	0		
1	0	0	D	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	S	0	0		
5	Ó	0	0	Ù		
6	0	0	0	5		
7	0	3	Ō	0		
8	3	0	0	0		
9	Ð	6	0	0		
0	0	0	6	0		
1	0	0	2	Ŋ		
2	0	0	0	0		
3	0	0	0	0		
4	0	0	D	0	14	
5	0	0	C	0		
6	Ð	0	0	D		
7	0	0	0	0		
8	0	0	С	D		
	0	5	0	0		
	6 7 8 9	6) 7) 8) 9)	6 0 0 7 0 0 8 0 0 9 0 0	6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0	6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0	6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0

1110 Comments . ÷ -•

Grede, LLC - Iron Mountain Page A-85 of 88

Date 12/16/13

RevisePace Analytical FSD 20-04074

÷

Report Date 2/5/2021

1.1

3.4

Visible Emissions Observation Form ace Analytical Run Z 2 Method Used (circle one) Test Page 1 2 of Observation Date Start-Time End Time Method 9 203A 203B Other 12/16/20 10 1212 0 15 30 45 Comments Min Company Name 0 Grebe 0 30 0 3 Facility Name Mora Fain 0 0 IVan 31 0 2 Street Address Carpen ter 801 5. 0 32 D 3 5 State City Zip Cd Kingston 33 0 0 0 0 0 1 0 34 n Unit No. Process Operating Mode 0 35 0 0 0 **Control Equipment** Operating Mode 0 0 36 J 0 Emission Point Description Southsite Ò 0 37 n 3 0 0 38 0 0 Height of Emission Point Height of Emis. Pt Relative to Observer 39 0 0 r Start End Start End Distance to Emission Point Direction of Emission Point (Degrees) 0 0 40 0 2 Start End Start End Vertical Angle to Observation Point Did Observation Point Change Ó 0 41 0 3 Start End Yes No 42 0 C 0 3 Plume Background Desc ription Start End 43 2 0 0 0 Emission Color Sky Conditions End Start Start End 44 3 0 0 3 Wind Speed Wind Direction End Start Start End 45 0 0 0 0 %rH Wer Balb Temp. Ambient Temperature (°F) Start End Ó 0 0 46 0 as 3 0 47 0 0 Source Layout Diagram Draw Arrow North Page 48 \cap 0 0 0 0 49 0 0 0 50 0 2 1 51 0 0 0 0 X Observation Point ft. 52 0 0 0 0 53 0 0 0 ft. 0 0 54 2 egend 0 0 0 Stack 55 0 **Observer's Position** 8 3 Plume 0 0 0 56 140° Sun Œ 1) 0 0 57 0 Sun Position Wind 0 0 0 0 58 Observer Name Aucilytica Cuchary ()0 0 59. 0 Affiliation Certified by (Org/Date) Observer Signature Date 11/4/20 12/16/15 terome +

Grede, LLC - Iron Mountain Page A-86 of 88

Method Used (circle one)	Test	1	Run	3	Page	1	of 2
Method 9 203A 203B Other	Observ 12	ation Da	120		Start Tim	ちち	End Time
	Min	0	15	30	45	-	Comments
Company Name Gulle	0	0	D	0	0		
Company Name Grille Facility Name Ivon Mountain Street Address But S. Carponter City Kings Ford State MI Zip Cd	1	0	0	0	0		
Street Address But S. Carponter	2	0	2	5	O	0	
City Kings Ford State MI Zip Cd	3	5	0	0	0		
	4	0	0	5	0		
CUPO14 199 / 90-3	5	0	0	0	5		
Control Equipment Operating Mode	6	0	D	0	0		
Emission Point Description West Side of Building	7	5	0	0	0		
Cupola Building	8	0	0	0	0		
Height of Emission Point Height of Emis. Pt Relative to Observer	9	5	0	ð	0		
Distance to Emission Point , Direction of Emission Point (Degrees)	10	0	5	5	5		
Vertical Angle to Observation Point Did Observation Point Change	11	5	5	5	5		
Start 5 End 5 Yes (No)	12	5	0	5	0		
Plume Background Description Start Rusty Building End Rusty Building	13		5	0	5		
Emission Color Start Light Gray End Light Gray Start Clear End Clear	14	5	1.00	5	5	_	
Wind Speed Start 5-10 End 5-10 Start 5 End 5 4		0	0	-	5	-	
Ambient Temperature (°F) Start 1 3 End 1 2 Wet Bulb Temp. %	15	5	0	50	0		
	16	5	1				
Source Layout Diagram Draw Arrow North	17	0	0	0	0		
L A	18	C	0	0	0		
	19	0	0	0	0		
	20	0	0	0	0		
X Observation Point	21	0	0	0	0		
	22	0	0	0	0		
60 ft.	23	0	0	0	0		
	24	0	0	0	0		
Observer's Position &	25	0	0	0	0	_	
140° Plume	26	0	D	0	0		
Sun Position	27	0	D	5	0		
Observer Name	28	0	0	0	0		
Zuchang Echstrom	29	0	0	0	0		

of 2 Page Start Time End Time Comments

Revised ace Analytical FSD 20-04074

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-87 of 88

Pace Analytical

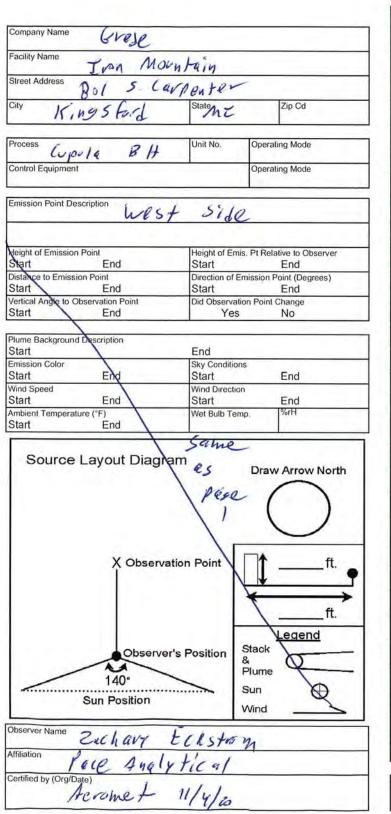
Visible Emissions Observation Form

2

Page

Test /

Run 3


2

of

Method Used (circle one)

(Method 9

203A 203B Other

Test	1	Run	2	Page	L	of Z
12	ation Da	120	5	Start Ti	4 9	End Time
Min	0	15	30	45		Comments
30	0	0	0	0		
31	0	0	0	0	1	
32	0	0	0	0		
33	0	0	0	0		
34	0	0	0	0	2	
35	D	0	0	0		
36	0	0	0	0		
37	1)	0	0	0	-	
38	6	5	0	5		
39	0	5	5	5		10
40	0	0	5	5		
41	5	0	5	5		
42	0	0	5	5		
43	5	0	5	5		
44	う	5	5	5	1	
45	5	Ó	5	5		
46	0	5	5	0		
47	5	0	0	5		
48	5	0	ð	Ó	1	
49	5	5	5	5		
50	0	5	10	10		
51	0	5	5	5		
52	0	00	6	0	1	
53	0	5	0	5	1	
54	0	0	5	0		
55	5	5	5	0		
56	0	0	0	0		
57	0	0	0	6		
58	0	0	0	0		
59	5	0	0	0		
Oheen				-	IDat	

Observer Signature Date abu Ebba

Grede, LLC - Iron Mountain Page A-88 of 88

12/16/20

Appendix B

Quantitation and Laboratory Reports

EPA Method 3/3A Field Data Sheets

EPA Method 3/3A Field Data Sheet

Instrumental Analysis of Collected Samples

Project Test Location Sampling Date Fuel Type

Certs: Zero:

Grede, LLC - Iron Mountain
Cupola BH Inlet
12/16-17/2020

Low:

Analyst	A. Radabaugh
Analysis Date	12/16-17/2020
Instrument ID	
Sample Type	Time Integrated

cc95749 High: DT0033087

	Instrument Calibration											
Cyli	nder Va	alue	Pretest Reading		Calibration Error		Posttest Reading		Pre-Post Test Drift		Calibration Status	
Level	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CE	Drift
Zero	0		0	0	0.0%	0.0%	0.1	0.1	0.5%	0.5%	Pass	Pass
Low												
Mid	9.93	10.9	9.8	10.9	-0.6%	0.0%	9.9	11	0.5%	0.5%	Pass	Pass
High	20	21	20	21	0.0%	0.0%	20.1	21.1	0.5%	0.5%	Pass	Pass

Mid:

Sample Analysis Results								
Samp	ole ID	0 ₂ H	lold	Instrumer	nt Results	riteria	QC Check Status	
Test	Run	Field	Lab	%CO ₂	%O ₂	$\text{Hold} \Delta$	Fo	Result Acceptance
1	1			11.5	9.0	??	1.03	O2 Hold Missing
Calik	oration	Bias Ac	djusted	11.60	8.95			
1	2			11.0	9.6	??	1.023	O2 Hold Missing
Calib	oration	Bias Ac	djusted	11.10	9.55			
1	3			10.7	9.8	??	1.033	O2 Hold Missing
				10.79	9.75			
Calik	oration	Bias Ac	djusted					
Calib	oration	Bias Ac	djusted					
Calik	oration	Bias Ac	djusted					
Calik	oration	Bias Ac	djusted					
Calik	oration	Bias Ac	djusted					
Calik	oration	Bias Ac	djusted					

O₂ Hold Acceptance

Field O_2 - Lab O_2 = Hold Range $\leq 0.3\% O_2$

Fo is a guideline, not criterion.

EPA Method 3/3A Field Data Sheet

Instrumental Analysis of Collected Samples

Project Test Location Sampling Date Fuel Type

Certs: Zero:

Grede, LLC - Iron Mountain
Cupola BH Exhaust
12/16-17/2020

Low:

Analyst	A. Radabaugh
Analysis Date	12/16-17/2020
Instrument ID	
Sample Type	Time Integrated

cc95749 High: DT0033087

Instrument Calibration												
Cyli								Calibi Sta				
Level	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CE	Drift
Zero	0		0	0	0.0%	0.0%	0.1	0.1	0.5%	0.5%	Pass	Pass
Low												
Mid	9.93	10.9	9.8	10.9	-0.6%	0.0%	9.9	11	0.5%	0.5%	Pass	Pass
High	20	21	20	21	0.0%	0.0%	20.1	21.1	0.5%	0.5%	Pass	Pass

Mid:

Sample Analysis Results									
Samp	ole ID	0 ₂	Hold	Instrumer	QC C	riteria	QC Check Status		
Test	Run	Field	Lab	%CO ₂	%O ₂	$Hold\Delta$	F_{o}	Result Acceptance	
1	1	18.1	17.9	3.1	17.9	0.2	0.987	Criteria Met	
Calib	oration	Bias Ac	djusted	3.09	17.85				
1	2	18.6	18.5	2.4	18.5	0.1	1.029	Criteria Met	
Calik	oration	Bias Ac	djusted	2.38	18.45				
1	3	18.5	18.3	2.7	18.3	0.2	0.987	Criteria Met	
				2.69	18.25				
Calib	oration	Bias Ac	djusted						
Calib	oration	Bias Ac	djusted						
Calik	oration	Bias Ac	djusted						
Calib	oration	Bias Ac	djusted						
Calit	oration	Bias Ac	djusted						
Calik	oration	Bias Ac	djusted						

O₂ Hold Acceptance

Field O_2 - Lab O_2 = Hold Range $\leq 0.3\% O_2$

Fo is a guideline, not criterion.

Bias Adjustment Summary

Grede, LLC -	Iron	Mountain
--------------	------	----------

Kingsford, MI Pace Project No. 20-04074

Appendix B Bias Adjustment Summary Cupola Baghouse Inlet Test 1

Oxygen (O2), %v/v, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	10.9	10.9	10.9
Pre-Run Zero Reading	0.0946	0.0306	0.00460
Post-Run Zero Reading	0.0306	0.00460	-0.0205
Pre-Run Span Reading	10.9	10.9	10.8
Post-Run Span Reading	10.9	10.8	10.8
Run Period Analyzer Average	9.16	8.91	8.31
	~	~ ~ -	
Bias Adjusted Run Result	9.16	8.95	8.40
Bias Adjusted Run Result	9.16	8.95	8.40
Bias Adjusted Run Result Carbon Dioxide, %v/v, Dry	9.16 Interval 1	8.95 Interval 2	8.40 Interval 3
Carbon Dioxide, %v/v, Dry	Interval 1	Interval 2	Interval 3
Carbon Dioxide, %v/v, Dry Date of Run	<u>Interval 1</u> 12/15/2020	<u>Interval 2</u> 12/15/2020	<u>Interval 3</u> 12/15/2020
Carbon Dioxide, %v/v, Dry Date of Run Time of Run	<u>Interval 1</u> 12/15/2020 0855-0955	<u>Interval 2</u> 12/15/2020 1045-1145	<u>Interval 3</u> 12/15/2020 1230-1401
Carbon Dioxide, %v/v, Dry Date of Run Time of Run Span Cylinder Concentration	Interval 1 12/15/2020 0855-0955 9.93	Interval 2 12/15/2020 1045-1145 9.93	<u>Interval 3</u> 12/15/2020 1230-1401 9.93

Pre-Run Span Reading	9.82	9.87	9.95
Post-Run Span Reading	9.87	9.95	9.88
Run Period Analyzer Average	11.3	11.8	12.3
Bias Adjusted Run Result	11.4	11.8	12.3

Total Hydrocarbons, PPM, Wet	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	15.0	15.0	15.0
Pre-Run Zero Reading	0.0466	0.263	0.240
Post-Run Zero Reading	0.263	0.240	0.0683
Pre-Run Span Reading	15.2	15.4	15.3
Post-Run Span Reading	15.4	15.3	15.2
Run Period Analyzer Average	0.173	0.120	0.0808
Bias Adjusted Run Result	0.0184	-0.130	-0.0729
Result Adjusted to Method MDL	0.1	0.1	0.1

Kingsford, MI Pace Project No. 20-04074

Appendix B Bias Adjustment Summary Cupola Baghouse Inlet Test 1

Carbon Monoxide, PPM, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	49.6	49.6	49.6
Pre-Run Zero Reading	0.636	0.963	1.28
Post-Run Zero Reading	0.963	1.28	1.19
Pre-Run Span Reading	48.8	48.5	48.1
Post-Run Span Reading	48.5	48.1	51.0
Run Period Analyzer Average	14.2	10.8	14.0
Bias Adjusted Run Result	13.9	10.2	13.1

Sulfur Dioxide, PPM, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	49.0	49.0	49.0
Pre-Run Zero Reading	0.688	1.08	1.80
Post-Run Zero Reading	1.08	1.80	1.91
Pre-Run Span Reading	47.4	47.4	46.9
Post-Run Span Reading	47.4	46.9	46.6
Run Period Analyzer Average	13.5	11.1	10.4
Bias Adjusted Run Result	13.3	10.4	9.37

Gas Monitoring Log

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	r		DAQ C	hannels			Comments
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 %v/v, Dry	Ch - 3 THC PPM, Wet	Ch - 4 CO PPM, Dry	Ch - 5 SO2 <u>PPM, Dry</u>	Ch - 6	
12/15/2020 7:37	20.86	0.07	1.3	3.4	0.0		System Response Time
12/15/2020 7:38	20.87	0.06	1.4	4.0	0.0		To Zero 1
12/15/2020 7:39	20.85	0.08	1.4	4.9	0.1		Up-scale 1
12/15/2020 7:40	20.84	0.09	1.4	4.7	0.1		Minutes
12/15/2020 7:41	20.82	0.09	1.4	4.5	0.1		
12/15/2020 7:42	20.85	4.21	1.4	4.3	0.1		
12/15/2020 7:43	20.91	19.51	1.4	1.5	0.1		
12/15/2020 7:44	20.90	19.59	1.4	-0.1	0.1		
12/15/2020 7:45	20.95	19.80	1.4	0.1	0.1		04/00
12/15/2020 7:46	21.05	20.07	1.4	0.1	0.1		21/20
12/15/2020 7:47	21.00 12.06	17.51 9.83	1.4	0.2 1.5	0.1 0.1		
12/15/2020 7:48 12/15/2020 7:49	12.06	9.83 9.89	1.4 1.4	1.5	0.1		
12/15/2020 7:50	11.05	9.89	1.4	1.5	0.2		10.9/9.93
12/15/2020 7:51	11.04	9.88	1.4	1.6	0.2		10.0/0.00
12/15/2020 7:52	16.98	3.44	1.4	2.5	0.2		
12/15/2020 7:53	18.68	0.43	1.4	16.5	12.6		
12/15/2020 7:54	0.32	0.01	1.4	127.7	104.6		
12/15/2020 7:55	0.14	-0.01	1.4	110.0	113.8		
12/15/2020 7:56	0.09	-0.01	1.4	109.7	111.6		
12/15/2020 7:57	0.08	-0.02	1.4	109.8	112.0		
12/15/2020 7:58	0.07	-0.02	1.4	110.0	110.9		
12/15/2020 7:59	0.06	-0.02	1.4	110.0	111.1		110/110
12/15/2020 8:00	0.16	-0.02	1.4	108.9	105.6		
12/15/2020 8:01	1.27	0.04	1.4	58.3	52.4		
12/15/2020 8:02	0.05	-0.03	1.4	48.6	50.4		
12/15/2020 8:03	0.04	-0.03	1.4	48.4	50.1		
12/15/2020 8:04	0.04	-0.03	1.4	48.5	50.0		49.6/49
12/15/2020 8:05	2.81	0.01	1.4	56.7	57.8		
12/15/2020 8:06	0.25	-0.03	1.4	208.2	208.1		
12/15/2020 8:07	0.05	-0.04	1.4	247.2	210.5		0.40
12/15/2020 8:08	0.04	-0.04	1.4	247.8	210.5		246
12/15/2020 8:09	2.31	-0.01	1.4	207.7	176.9		
12/15/2020 8:10	19.11	0.09	1.4	35.1	30.1		
12/15/2020 8:11 12/15/2020 8:12	20.67	0.10	1.4	4.7	8.5		
12/15/2020 8:12	20.81 13.22	0.08 8.32	1.4 1.4	3.5 9.4	2.9 7.2		
12/15/2020 8:13	9.20	0.32 11.18	1.4 1.4	9.4 10.8	7.2 14.5		
12/15/2020 8:14	9.20 8.59	11.75	1.4	12.2	14.5		

RM Data Log Page 1 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ C	hannels			Comments1
Date/Time	Ch - 1 O2 %v/v, Dry	Ch - 2 CO2 %v/v, Dry	Ch - 3 THC PPM, Wet	Ch - 4 CO <u>PPM, Dry</u>	Ch - 5 SO2 PPM, Dry	Ch - 6	
12/15/2020 8:16	9.91	10.09	1.4	13.8	13.3		system
12/15/2020 8:17	10.89	9.80	1.4	5.4	3.0		-
12/15/2020 8:18	10.89	9.81	1.4	0.8	1.1		
12/15/2020 8:19	10.89	9.81	1.4	0.7	0.9		
12/15/2020 8:20	10.89	9.82	1.4	0.7	0.8		
12/15/2020 8:21	10.89	9.82	1.4	0.6	0.7		10.9/9.93/0/0
12/15/2020 8:22	16.39	3.71	1.4	0.9	0.7		
12/15/2020 8:23	9.35	0.62	1.4	23.2	19.2		
12/15/2020 8:24	0.16	0.01	1.4	47.9	42.3		
12/15/2020 8:25	0.13	-0.01	1.4	48.3	45.0		
12/15/2020 8:26	0.11	-0.02	1.4	48.5	46.5		
12/15/2020 8:27	0.10	-0.02	1.4	49.0	47.3		
12/15/2020 8:28	0.09	-0.03	1.4	48.8	47.4		0/0/49.6/49
12/15/2020 8:29	0.09	-0.03	1.4	48.8	47.5		
12/15/2020 8:30	11.59	0.04	1.4	27.4	20.4		
12/15/2020 8:31	20.85	-0.03	19.6	2.1	1.8		
12/15/2020 8:32	20.90	-0.04	1.4	1.3	1.2		
12/15/2020 8:33	20.80	0.03	7.7	1.6	0.9		
12/15/2020 8:34	20.74	0.06	37.9	2.2	0.8		
12/15/2020 8:35	20.53	0.04	10.1	2.6	1.7		
12/15/2020 8:36	20.90	-0.03	1.1	2.1	1.1		
12/15/2020 8:37	20.90	-0.03	0.0	1.3	0.8		0
12/15/2020 8:37	20.97	-0.04	0.2	1.2	0.8		0
12/15/2020 8:39	20.93	-0.04	50.7	1.4	0.7		
12/15/2020 8:39	20.93	-0.03	40.2	1.4	0.6		
12/15/2020 8:40	20.97	-0.04	40.2 39.9	1.5	0.6		39.9
12/15/2020 8:41					0.6		59.9
	20.93	-0.04	28.9	1.5			
12/15/2020 8:43	20.87	-0.04	25.2	1.4	0.6		25.0
12/15/2020 8:44	20.87	-0.05	25.1	1.4	0.6		25.9
12/15/2020 8:45	20.84	-0.04	20.5	1.4	0.6		
12/15/2020 8:46	20.63	-0.03	15.2	1.7	0.7		15
12/15/2020 8:47	20.65	-0.05	15.2	1.5	0.6		15
12/15/2020 8:48	20.65	-0.05	10.5	1.5	0.6		
12/15/2020 8:49	17.02	4.40	0.5	2.8	4.9		
12/15/2020 8:50	9.14	11.45	0.3	10.3	21.7		In Stack
12/15/2020 8:51	8.51	12.04	0.3	10.6	19.4		
12/15/2020 8:52	8.39	12.00	0.3	6.9	19.2		
12/15/2020 8:53	9.28	11.01	0.3	8.7	19.5		
12/15/2020 8:54	8.46	11.98	0.3	13.9	16.9		_
12/15/2020 8:55	8.28	12.13	0.3	8.3	16.2		Run 1
12/15/2020 8:56	8.58	11.83	0.3	6.7	17.9		

RM Data Log Page 2 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

				h a m m a la			Commonte
			DAQ CI	hannels		I	Comments
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
	02	CO2	THC	CO	SO2		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 8:57	9.54	10.81	0.3	7.6	17.5		
12/15/2020 8:58	9.48	10.88	0.3	10.3	17.8		
12/15/2020 8:59	9.07	11.35	0.3	17.2	20.5		
12/15/2020 9:00	8.11	12.35	0.3	11.0	18.1		
12/15/2020 9:01	8.91	11.44	0.3	8.1	18.1		
12/15/2020 9:02	9.17	11.12	0.3	8.0	18.7		
12/15/2020 9:03	9.48	10.94	0.3	13.1	15.4		
12/15/2020 9:04	7.95	12.51	0.3	11.4	16.8		
12/15/2020 9:05	8.04	12.31	0.3	6.9	18.9		
12/15/2020 9:06	9.67	10.65	0.3	7.7	15.8		
12/15/2020 9:07	9.69	10.72	0.2	9.5	14.3		
12/15/2020 9:08	9.87	10.46	0.2	11.6	15.7		
12/15/2020 9:09	9.13	11.27	0.2	15.9	13.2		
12/15/2020 9:10	8.70	11.59	0.2	9.5	14.4		
12/15/2020 9:11	9.00	11.26	0.2	7.8	16.0		
12/15/2020 9:12	9.38	10.98	0.2	8.1	16.1		
12/15/2020 9:13	9.32	11.12	0.2	11.1	15.4		
12/15/2020 9:14	8.99	11.50	0.2	15.5	13.5		
12/15/2020 9:15	8.33	12.09	0.2	7.7	14.5		
12/15/2020 9:16	9.41	10.95	0.2	7.1	14.6		
12/15/2020 9:17	9.84	10.55	0.2	10.4	13.8		
12/15/2020 9:18	9.03	11.45	0.1	15.4	13.3		
12/15/2020 9:19	8.97	11.46	0.1	10.3	13.2		
12/15/2020 9:20	9.19	11.23	0.1	9.2	14.5		
12/15/2020 9:21	9.88	10.47	0.1	8.5	13.6		
12/15/2020 9:22	9.92	10.62	0.1	12.3	13.4		
12/15/2020 9:23	9.12	11.42	0.1	14.5	14.1		
12/15/2020 9:24	8.64	11.90	0.1	8.2	14.2		
12/15/2020 9:25	9.68	10.78	0.1	7.7	13.8		
12/15/2020 9:26	9.73	10.71	0.1	12.1	12.0		
12/15/2020 9:27	8.80	11.70	0.1	16.4	7.8		
12/15/2020 9:28	8.80	11.67	0.1	8.9	9.9		
12/15/2020 9:29	9.33	11.11	0.1	7.6	11.0		
12/15/2020 9:30	9.83	10.64	0.1	8.4	10.8		
12/15/2020 9:31	9.60	10.91	0.1	11.7	11.0		
12/15/2020 9:32	9.34	11.06	0.1	12.3	10.1		
12/15/2020 9:33	9.17	11.41	0.1	8.7	9.7		
12/15/2020 9:34	9.28	11.21	0.1	7.5	11.0		
12/15/2020 9:35	9.82	10.67	0.1	9.3	11.9		
12/15/2020 9:36	10.09	10.38	0.1	16.8	10.6		
12/15/2020 9:37	8.55	11.95	0.2	12.9	10.6		

RM Data Log Page 3 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	I		DAQ C	hannels		I	Comments
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 %v/v, Dry	Ch - 3 THC <u>PPM, Wet</u>	Ch - 4 CO <u>PPM, Dry</u>	Ch - 5 SO2 <u>PPM, Dry</u>	Ch - 6	
12/15/2020 9:38	9.03	11.31	0.1	7.0	13.8		
12/15/2020 9:39	9.65	10.84	0.3	9.1	11.9		
12/15/2020 9:40	9.55	11.05	0.2	240.9	10.6		
12/15/2020 9:41	7.60	13.02	0.1	13.1	12.8		
12/15/2020 9:42	8.73	11.73	0.1	6.5	12.2		
12/15/2020 9:43	9.31	11.12	0.1	8.2	10.7		
12/15/2020 9:44	8.56	12.06	0.1	12.3	11.4		
12/15/2020 9:45	8.90	11.48	0.1	9.5	12.5		
12/15/2020 9:46	9.41	11.21	0.1	11.3	11.8		
12/15/2020 9:47	9.14	11.31	0.1	9.1	10.9		
12/15/2020 9:48	9.16	11.26	0.1	11.8	11.3		
12/15/2020 9:49	8.92	11.54	0.1	12.9	11.3		
12/15/2020 9:50	8.76	11.62	0.1	8.2	11.8		
12/15/2020 9:51	9.51	10.85	0.1	8.6	13.1		
12/15/2020 9:52	9.86	10.54	0.1	11.3	11.0		
12/15/2020 9:53	9.68	10.75	0.1	14.2	10.6		
12/15/2020 9:54	8.87	11.61	0.1	10.3	10.8		
12/15/2020 9:55	9.77	10.70	0.1	8.5	10.8		End R1
12/15/2020 9:56	9.37	11.20	0.1	11.3	10.9		
12/15/2020 9:57	7.94	12.64	0.1	11.0	11.9		
12/15/2020 9:58	12.09	7.64	1.3	6.4	12.8		
12/15/2020 9:59	20.73	0.09	0.8	3.3	3.4		
12/15/2020 10:00	20.89	0.02	0.6	1.5	1.8		
12/15/2020 10:01	20.91	0.01	0.4	1.5	1.4		
12/15/2020 10:02	20.92	0.00	0.3	1.5	1.3		0
12/15/2020 10:03 12/15/2020 10:04	20.93	-0.01	0.3	1.5	1.2 1.1		0
12/15/2020 10:04	20.90 20.58	0.00 -0.02	5.5 15.0	1.5 1.9	1.1		
							15
							10
							10.9/9.93
12/15/2020 10:15				48.2	45.7		
12/15/2020 10:16	0.08			48.3	46.5		
12/15/2020 10:17	0.06	-0.01	-0.1	48.1	46.7		
12/15/2020 10:18	0.05	-0.02	-0.1	48.2	46.7		
12/15/2020 10:16 12/15/2020 10:17	0.06			48.3 48.1	46.5 46.7		15 10.9/9.93

RM Data Log Page 4 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	r		Comments				
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 <u>%v/v, Dry</u>	Ch - 3 THC <u>PPM, Wet</u>	Ch - 4 CO PPM, Dry	Ch - 5 SO2 PPM, Dry	Ch - 6	
12/15/2020 10:19	0.05	-0.02	-0.1	48.3	47.0		
12/15/2020 10:20	0.04	-0.02	-0.1	48.5	47.2		
12/15/2020 10:21	0.04	-0.03	-0.1	48.3	47.3		
12/15/2020 10:22	0.03	-0.03	-0.1	48.3	47.4		
12/15/2020 10:23	0.03	-0.03	-0.1	48.5	47.4		49.6-49
12/15/2020 10:24	0.03	-0.03	-0.1	48.2	47.4		
12/15/2020 10:25	3.99	-0.01	0.3	42.1	37.7		
12/15/2020 10:26	20.54	0.02	0.7	5.1	4.0		
12/15/2020 10:27	20.66	0.02	1.0	3.2	2.2		
12/15/2020 10:28	20.68	0.02	1.0	3.9	1.8		
12/15/2020 10:29	20.70	0.02	0.8	3.4	1.6		
12/15/2020 10:30	20.71	0.02	0.7	2.7	1.5		
12/15/2020 10:31	20.72	0.02	0.8	3.2	1.4		
12/15/2020 10:32	20.73	0.02	1.0	2.9	1.4		
12/15/2020 10:33	20.73	0.01	0.5	3.0	1.3		
12/15/2020 10:34	20.73	0.01	0.5	2.1	1.3		
12/15/2020 10:35	20.74	0.01	0.5	2.1	1.3		
12/15/2020 10:36	20.74	0.01	0.9	2.5	1.3		
12/15/2020 10:37	20.74	0.01	0.8	3.7	1.3		
12/15/2020 10:38	20.74	0.03	0.8	3.3	1.3		In Stack
12/15/2020 10:39	10.60	10.84	0.3	8.0	3.2		
12/15/2020 10:40	9.22	11.66	0.1	15.5	11.6		
12/15/2020 10:41	8.39	12.33	0.1	7.7	15.3		
12/15/2020 10:42	9.36	11.31	0.1	7.8	13.4		
12/15/2020 10:43	9.75	10.87	0.1	9.6	11.4		
12/15/2020 10:44	8.88	11.81	0.1	13.1	10.9		
12/15/2020 10:45	8.50	12.13	0.1	12.6	9.9		Start R2
12/15/2020 10:46	8.96	11.63	0.1	9.5	9.8		
12/15/2020 10:47	9.24	11.30	0.2	8.7	11.0		
12/15/2020 10:48	9.26	11.30	0.1	13.8	11.0		
12/15/2020 10:49	8.76	11.85	0.1	12.5	9.9		
12/15/2020 10:50	9.04	11.44	0.2	8.4	11.3		
12/15/2020 10:51	9.57	11.03	0.1	11.0	10.2		
12/15/2020 10:52	8.70	11.85	0.1	10.3	11.9		
12/15/2020 10:53	9.03	11.69	0.1	14.8	10.0		
12/15/2020 10:54	8.30	12.28	0.1	7.9	10.7		
12/15/2020 10:55	9.23	11.31	0.1	8.2	11.4		
12/15/2020 10:56	9.22	11.30	0.2	11.2	11.9		
12/15/2020 10:57	8.43	12.25	0.2	13.6	10.9		
12/15/2020 10:58	8.52	12.03	0.2	8.1	11.7		
12/15/2020 10:59	8.97	11.57	0.2	7.6	12.5		

RM Data Log Page 5 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ CI	hannels		1	Comments
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6	
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 11:00	9.38	11.07	0.1	9.7	13.3		
12/15/2020 11:01	8.67	11.90	0.1	14.9	11.7		
12/15/2020 11:02	8.66	11.79	0.2	9.0	12.3		
12/15/2020 11:03	9.11	11.33	0.1	7.1	13.1		
12/15/2020 11:04	9.70	10.85	0.1	9.9	12.9		
12/15/2020 11:05	8.99	11.65	0.1	13.9	11.9		
12/15/2020 11:06	8.65	11.96	0.1	12.2	11.1		
12/15/2020 11:07	8.76	11.75	0.1	7.3	13.1		
12/15/2020 11:08	9.69	11.02	0.1	9.5	12.1		
12/15/2020 11:09	9.37	11.33	0.1	15.3	13.0		
12/15/2020 11:10	8.38	12.56	0.1	12.7	10.4		
12/15/2020 11:11	8.66	12.14	0.1	6.6	11.9		
12/15/2020 11:12	9.84	10.92	0.1	8.2	11.8		
12/15/2020 11:13	10.07	10.73	0.1	13.5	11.2		
12/15/2020 11:14	8.86	12.02	0.1	12.9	11.0		
12/15/2020 11:15	9.29	11.45	0.1	9.1	12.9		
12/15/2020 11:16	9.76	10.98	0.1	9.4	12.7		
12/15/2020 11:17	9.84	11.10	0.1	18.9	11.3		
12/15/2020 11:18	8.03	13.02	0.1	12.6	10.4		
12/15/2020 11:19	9.13	11.60	0.1	7.1	11.3		
12/15/2020 11:20	9.27	11.46	0.1	7.6	11.4		
12/15/2020 11:21	9.55	11.27	0.2	12.6	10.5		
12/15/2020 11:22	8.47	12.34	0.2	11.9	10.0		
12/15/2020 11:23	8.23	12.59	0.1	7.5	10.9		
12/15/2020 11:24	9.37	11.20	0.1	8.9	11.9		
12/15/2020 11:25	9.03	11.80	0.1	16.2	10.7		
12/15/2020 11:26	8.14	12.60	0.2	11.8	12.2		
12/15/2020 11:27	8.22	12.42	0.1	9.2	11.7		
12/15/2020 11:28	8.79	11.72	0.1	9.0	12.0		
12/15/2020 11:29	8.57	12.00	0.1	11.4	11.4		
12/15/2020 11:30	8.34	12.33	0.1	13.6	10.3		
12/15/2020 11:31	7.89	12.67	0.1	8.4	12.1		
12/15/2020 11:32	9.32	11.27	0.1	9.8	10.0		
12/15/2020 11:33	8.86	11.78	0.1	10.0	11.1		
12/15/2020 11:34	8.91	11.96	0.1	20.2	8.5		
12/15/2020 11:35	7.46	13.28	0.1	6.4	10.6		
12/15/2020 11:36	8.76	11.92	0.1	7.1	11.4		
12/15/2020 11:37	9.54	11.07	0.1	10.0	10.1		
12/15/2020 11:38	9.12	11.76	0.1	19.3	9.3		
12/15/2020 11:39	8.05	12.69	0.1	10.8	9.7		
12/15/2020 11:40	8.71	11.98	0.1	8.0	10.3		

RM Data Log Page 6 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	· · · · · · · · · · · · · · · · · · ·		DAQ C	hannels			Comments
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 <u>%v/v, Dry</u>	Ch - 3 THC <u>PPM, Wet</u>	Ch - 4 CO <u>PPM, Dry</u>	Ch - 5 SO2 <u>PPM, Dry</u>	Ch - 6	
12/15/2020 11:41	9.04	11.59	0.1	8.7	10.0		
12/15/2020 11:42	8.77	11.88	0.2	10.9	11.3		
12/15/2020 11:43	9.31	11.42	0.1	13.9	8.0		
12/15/2020 11:44	8.23	12.45	0.1	8.6	9.7		
12/15/2020 11:45	9.73	10.85	0.1	9.4	10.0		End R2
12/15/2020 11:46	9.15	11.54	0.1	12.0	9.5		
12/15/2020 11:47	8.72	11.99	0.1	17.2	8.6		
12/15/2020 11:48	7.71	12.93	0.1	8.9	10.6		
12/15/2020 11:49	15.33	4.52	0.7	6.9	8.3		
12/15/2020 11:50	19.95	0.14	0.3	5.1	3.6		
12/15/2020 11:51	20.82	0.01	0.2	2.1	2.1		
12/15/2020 11:52	20.84	0.00	0.2	1.7	1.8		
12/15/2020 11:53	20.85	-0.01	0.2	1.6	1.7		0
12/15/2020 11:54	20.78	0.01	5.1	1.6	1.7		
12/15/2020 11:55	20.45	-0.01	15.2	2.3	1.8		
12/15/2020 11:56	20.51	-0.03	15.4	1.9	1.7		
12/15/2020 11:57	20.51	-0.03	15.6	1.9	1.7		
12/15/2020 11:58	20.51	-0.03	15.4	1.8	1.6		
12/15/2020 11:59	20.51	-0.03	15.3	1.9	1.7		15
12/15/2020 12:00	20.51	-0.03	12.7	1.9	1.6		
12/15/2020 12:01	20.45	0.55	1.2	2.1	1.7		
12/15/2020 12:02	11.25	9.75	0.0	2.0	1.8		
12/15/2020 12:03	10.83	9.94	0.0	1.2	1.7		
12/15/2020 12:04	10.82	9.95	0.0	1.3	1.8		10.9/9.93
12/15/2020 12:05	10.83	9.81	0.4	1.3	1.8		
12/15/2020 12:06	5.50	0.98	0.0	27.8	26.6		
12/15/2020 12:07	0.07	0.01	-0.1	48.4	45.8		
12/15/2020 12:08	0.04	-0.01	-0.1	48.2	46.6		
12/15/2020 12:09	0.03	-0.02	-0.1	48.1	46.7		
12/15/2020 12:10	0.02	-0.03	-0.1	48.3	46.8		
12/15/2020 12:11	0.01	-0.03	-0.1	48.1	47.0		
12/15/2020 12:12	0.01	-0.03	-0.1	47.9	46.9		
12/15/2020 12:13	0.00	-0.04	-0.1	48.1	46.9		49.6/49
12/15/2020 12:14	5.04	-0.01	0.5	40.4	35.5		
12/15/2020 12:15	20.52	0.01	0.6	4.3	4.6		
12/15/2020 12:16	20.60	0.01	0.9	3.3	2.7		
12/15/2020 12:17	20.62	0.01	0.8	3.6	2.3		
12/15/2020 12:18	20.64	0.00	0.7	3.3	2.1		
12/15/2020 12:19	20.65	0.01	1.2	3.2	2.0		
12/15/2020 12:20	20.66	0.00	1.0	4.1	1.9		
12/15/2020 12:21	20.66	0.01	0.6	3.8	1.8		

RM Data Log Page 7 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			1	Comments			
Data/Timo	Ch - 1 02	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6	
<u>Date/Time</u> 12/15/2020 12:22	<u>%v/v, Dry</u> 20.66	<u>%v/v, Dry</u> 0.01	PPM, Wet 0.9	PPM, Dry 3.2	<u>PPM, Dry</u> 1.8		
12/15/2020 12:22	20.67	0.00	0.5	3.5	1.8		
12/15/2020 12:24	18.53	2.89	0.4	2.6	1.8		
12/15/2020 12:25	8.33	12.23	0.2	5.5	5.1		
12/15/2020 12:26	8.88	11.52	0.2	7.5	13.9		
12/15/2020 12:27	8.78	11.66	0.1	12.5	13.6		
12/15/2020 12:28	8.20	12.25	0.1	13.9	11.2		
12/15/2020 12:29	8.04	12.30	0.1	7.8	11.6		
12/15/2020 12:30	9.23	11.10	0.1	9.4	10.6		Run 3
12/15/2020 12:31	8.84	11.50	0.1	10.1	11.3		
12/15/2020 12:32	9.22	11.14	0.1	10.0	9.7		
12/15/2020 12:33 12/15/2020 12:34	8.94 8.37	11.41 12.19	0.1 0.1	11.2 10.2	9.3 9.6		
12/15/2020 12:34	8.85	12.19	0.1	11.0	8.8		
12/15/2020 12:36	8.22	12.41	0.1	12.7	7.6		
12/15/2020 12:37	8.66	11.76	0.1	7.9	8.7		
12/15/2020 12:38	8.64	11.87	0.2	9.3	9.1		
12/15/2020 12:39	9.17	11.25	0.1	11.8	9.0		
12/15/2020 12:40	8.28	12.22	0.1	14.8	8.3		
12/15/2020 12:41	8.20	12.20	0.1	9.0	9.2		
12/15/2020 12:42	8.50	11.75	0.1	7.6	10.4		
12/15/2020 12:43	9.49	10.75	0.1	19.8	9.9		
12/15/2020 12:44	8.31	12.15	0.1	22.8	7.2		
12/15/2020 12:45	7.83	12.65	0.0	10.4	9.3		Cupala off Plaat
12/15/2020 12:46 12/15/2020 12:47	13.94 18.17	5.99 2.57	1.5 0.3	369.7 143.6	8.5 3.5		Cupola off Blast Cupola off Blast
12/15/2020 12:48	17.47	2.83	0.3	76.0	3.0		Cupola off Blast
12/15/2020 12:49	15.77	4.29	0.2	20.2	3.1		Cupola off Blast
12/15/2020 12:50	14.12	5.50	0.2	6.2	4.1		Cupola off Blast
12/15/2020 12:51	15.74	4.19	0.3	5.8	3.1		Cupola off Blast
12/15/2020 12:52	20.33	0.13	0.9	4.7	2.2		Cupola off Blast
12/15/2020 12:53	20.60	0.03	0.5	3.8	2.0		Cupola off Blast
12/15/2020 12:54	20.61	0.03	0.6	2.6	1.9		Cupola off Blast
12/15/2020 12:55	20.62	0.02	0.8	2.5	1.8		Cupola off Blast
12/15/2020 12:56	20.63	0.02	0.8	2.8	1.8		Cupola off Blast
12/15/2020 12:57	20.63	0.01	0.6	2.9	1.7		Cupola off Blast
12/15/2020 12:58	20.64	0.01	0.6	2.6	1.7		Cupola off Blast Cupola off Blast
12/15/2020 12:59 12/15/2020 13:00	20.65 20.65	0.01 0.01	0.8 0.7	2.7 2.9	1.7 1.7		Cupola off Blast
12/15/2020 13:00	20.65	0.01	0.7	2.9 2.9	1.7		Cupola off Blast
12/15/2020 13:02	20.66	0.01	0.0	2.9	1.7		Cupola off Blast
12, 10, 2020 10.0Z	20.00	5.01	0. r	<i>L</i> . <i>L</i>			

RM Data Log Page 8 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	r		DAQ C	hannels			Comments
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 <u>%v/v, Dry</u>	Ch - 3 THC <u>PPM, Wet</u>	Ch - 4 CO <u>PPM, Dry</u>	Ch - 5 SO2 <u>PPM, Dry</u>	Ch - 6	
12/15/2020 13:03	20.65	0.00	0.4	1.8	1.8		Cupola off Blast
12/15/2020 13:04	20.65	0.00	0.5	2.1	1.8		Cupola off Blast
12/15/2020 13:05	20.66	0.00	0.7	2.3	1.7		Cupola off Blast
12/15/2020 13:06	20.66	0.00	0.5	3.1	1.7		Cupola off Blast
12/15/2020 13:07	20.67	0.00	0.8	2.8	1.7		Cupola off Blast
12/15/2020 13:08	20.67	0.00	0.6	3.6	1.7		Cupola off Blast
12/15/2020 13:09	20.66	0.00	0.8	3.0	1.7		Cupola off Blast
12/15/2020 13:10	12.69	8.39	0.3	341.4	2.3		Cupola off Blast
12/15/2020 13:11	9.35	11.06	0.2	42.7	9.2		
12/15/2020 13:12	7.19	13.31	6.2	339.2	14.3		start up mode
12/15/2020 13:13	6.18	14.42	0.8	525.0	24.2		start up mode
12/15/2020 13:14	6.61	14.28	0.1	374.2	23.0		start up mode
12/15/2020 13:15	7.16	14.18	0.1	21.7	13.8		start up mode
12/15/2020 13:16	6.87	14.28	0.1	12.5	12.7		
12/15/2020 13:17	6.50	14.96	0.1	60.0	17.6		Resume R3
12/15/2020 13:18	8.17	12.86	0.1	21.2	13.5		
12/15/2020 13:19	8.42	12.70	0.1	23.8	15.1		
12/15/2020 13:20	8.24	12.92	0.1	20.4	9.0		
12/15/2020 13:21	7.58	13.52	0.2	12.1	11.2		
12/15/2020 13:22	8.41	12.60	0.2	11.9	12.7		
12/15/2020 13:23	9.69	11.12	0.1	16.9	11.1		
12/15/2020 13:24	8.66	12.49	0.2	18.8	9.6		
12/15/2020 13:25	7.79	13.39	0.1	11.5	10.1		
12/15/2020 13:26	8.22	12.92	0.1	10.1	10.6		
12/15/2020 13:27	8.58	12.25	0.1	10.6	11.5		
12/15/2020 13:28	8.76	12.32	0.1	14.0	10.6		
12/15/2020 13:29	8.56	12.43	0.1	11.5	9.2		
12/15/2020 13:30	8.46	12.70	0.1	11.7	9.4		
12/15/2020 13:31	9.11	11.27	0.1	11.9	10.3		
12/15/2020 13:32	8.25	12.38	0.1	17.8	8.6		
12/15/2020 13:33	7.23	13.35	0.1	10.6	9.8		
12/15/2020 13:34	7.74	12.74	0.1	8.6	10.3		
12/15/2020 13:35	8.82	11.52	0.1	11.2	10.0		
12/15/2020 13:36	8.03	12.48	0.1	14.2	10.1		
12/15/2020 13:37	8.33	12.10	0.1	14.5	9.4		
12/15/2020 13:38	7.73	12.73	0.0	12.5	10.1		
12/15/2020 13:39	7.92	12.51	0.1	10.4	11.0		
12/15/2020 13:40	8.23	12.12	0.0	13.3	10.4		
12/15/2020 13:41	8.31	12.17	0.1	16.8	8.0		
12/15/2020 13:42	8.00	12.38	0.0	9.7	10.7		
12/15/2020 13:43	8.85	11.71	0.0	13.3	10.0		

RM Data Log Page 9 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	I		DAQ C	hannels		1	Comments
Date/Time	Ch - 1 O2 <u>%v/v, Dry</u>	Ch - 2 CO2 %v/v, Drv	Ch - 3 THC <u>PPM, Wet</u>	Ch - 4 CO PPM, Dry	Ch - 5 SO2 PPM, Dry	Ch - 6	
12/15/2020 13:44	7.95	12.67	0.0	13.0	10.1		
12/15/2020 13:45	7.50	13.24	0.0	12.0	9.5		
12/15/2020 13:46	7.64	12.97	0.1	9.2	11.1		
12/15/2020 13:47	8.11	12.46	0.0	9.1	10.5		
12/15/2020 13:48	8.82	11.68	0.0	15.1	10.2		
12/15/2020 13:49	7.43	13.26	0.0	18.1	8.6		
12/15/2020 13:50	7.29	13.09	0.0	13.5	12.4		
12/15/2020 13:51	8.50	11.79	0.0	10.8	11.4		
12/15/2020 13:52	8.62	11.71	0.1	14.2	9.7		
12/15/2020 13:53	7.41	12.95	0.1	14.7	9.2		
12/15/2020 13:54	7.51	12.92	0.0	14.5	16.6		
12/15/2020 13:55	8.24	12.05	0.0	15.2	12.7		
12/15/2020 13:56	8.58	11.89	0.0	18.8	14.7		
12/15/2020 13:57	8.61	11.77	0.0	17.9	10.8		
12/15/2020 13:58	8.65	11.80	0.0	16.5	9.0		
12/15/2020 13:59	8.05	12.41	0.0	8.7	10.5		
12/15/2020 14:00	8.53	11.88	0.0	9.0	12.0		
12/15/2020 14:01	9.36	11.00	0.1	16.2	10.1		
12/15/2020 14:02	8.04	12.20	0.2	15.3	9.3		
12/15/2020 14:03	19.01	0.46	0.4	6.2	7.6		
12/15/2020 14:04	20.74	0.02	0.2	2.3	2.9		
12/15/2020 14:05	20.76	0.00	0.2	1.6	2.3		
12/15/2020 14:06	20.78	-0.01	0.2	1.6	2.0		
12/15/2020 14:07	20.78	-0.02	0.1	1.6	1.9		0
12/15/2020 14:08 12/15/2020 14:09	20.79 20.79	-0.02	0.1	1.6	1.9		0
12/15/2020 14:09	20.79	-0.03 -0.02	0.1 12.1	1.6 1.7	1.9 1.9		
12/15/2020 14:10	20.39	-0.02	12.1	2.0	1.9		
12/15/2020 14:11	20.45	-0.03	15.9	2.0 1.9	1.9		
12/15/2020 14:12	20.45	-0.04	16.0	1.8	1.9		
12/15/2020 14:14	20.45	-0.04	16.0	2.0	2.0		adjusted backpressure
12/15/2020 14:14	20.45	-0.04	15.2	1.9	2.0		15
12/15/2020 14:16	20.45	-0.01	9.9	1.8	2.0		
12/15/2020 14:17	11.94	9.20	0.0	2.1	2.1		
12/15/2020 14:18	10.79	9.85	0.0	1.5	2.0		
12/15/2020 14:19	10.78	9.87	0.0	1.3	1.9		
12/15/2020 14:20	10.77	9.88	0.0	1.2	1.9		10.9/9.93
12/15/2020 14:21	10.76	9.88	0.0	1.2	1.9		
12/15/2020 14:22	6.66	4.18	0.0	18.0	16.8		
12/15/2020 14:23	0.05	0.02	-0.1	50.3	43.8		
12/15/2020 14:24	0.02	-0.01	-0.1	50.8	45.4		
, .0,2020 17.27	0.02	0.01	0.1	00.0	10.4		

RM Data Log Page 10 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	· · · · · ·		DAQ C	hannels			Comments -	
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>		PPM, Dry	PPM, Dry			
12/15/2020 14:25	0.01	-0.02	-0.1	51.1	45.8			
12/15/2020 14:26	0.00	-0.03	-0.1	51.1	45.9			
12/15/2020 14:27	-0.01	-0.04	-0.1	51.1	46.1			
12/15/2020 14:28	-0.01	-0.04	-0.1	51.1	46.2			
12/15/2020 14:29	-0.01	-0.04	-0.1	51.1	46.4			
12/15/2020 14:30	-0.02	-0.04	-0.1	51.1	46.5			
12/15/2020 14:31	-0.02	-0.05	-0.1	51.1	46.5			10.014
12/15/2020 14:32	-0.02	-0.05	-0.1	51.0	46.6			49.6/4
12/15/2020 14:33	2.49	-0.02	0.4	46.8	40.5			
12/15/2020 14:34	20.29	0.00	0.9	7.8	7.2			
12/15/2020 14:35	20.53	0.00	0.8	3.5	3.5			
12/15/2020 14:36	20.56	0.00	0.6	4.0	2.7			
12/15/2020 14:37	20.57	0.01	0.6	2.8	2.4			
12/15/2020 14:38	20.57	0.03	0.7	2.7	2.1			
12/15/2020 14:39								
12/15/2020 14:40		Electronic	Data Log A	Attestation				
12/15/2020 14:41			Row	Date/Time	2			
12/15/2020 14:42		Start:	13	12/15/20	20 7:37			
12/15/2020 14:43		End:	434	12/15/20	20 14:38			
12/15/2020 14:44		I certify t	his to be	a comple	ete and un	altered		
		record of	f instrume	ent output	t as logge	d.		
				•	e made by			
		5		Borge				

RM Data Log Page 11 of 11

Subcontract Laboratory Report

Terry Borgerding Pace Analytical – MN Field Services 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 EMSL Analytical, Inc. 3410 Winnetka Avenue North New Hope, MN 55427 (763) 449-4922

December 30, 2020 EMSL Order #: 352011173

RE: Grede – 20-04074

Dear Terry Borgerding:

EMSL Analytical, Inc. received samples for the project identified above on December 11, 2020. The sample(s) were analyzed in the EMSL Analytical, Inc. laboratory unless otherwise noted. Analytical results are summarized in the following report.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 60 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use EMSL Analytical, Inc. for this project. We are committed to being your vendor of choice to meet your analytical needs.

If you have any questions please contact me at the above phone number.

Sincerely,

) En (

Mark Erickson Laboratory Manager

Pace Analytical Services - MN Field Department

352011173

M5 analysis

26 samples, 25 runs and 1 blank

20-04074 - Grede

Custody	The samples were received on 12/11/2020 by Amanda Lindahl. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in EPA Method 5, Determination of Particulate Matter Emissions from Stationary Sources (40 CFR Part 60, Appendix A).
QC Notes	For M5 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The reagent blank was calculated but not applied to the runs.
Reporting Notes	 Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M5 analysis, no reported weights were greater than -0.5 mg. For M5 analysis, probe was fraction for sample Disa Exh (324678) run 3 (352011173-0013) glass fragments were removed from the beaker prior to performing the final weights.

LIMS ID	3520111	73-0001	3520111	73-0002	3520111	73-0003
Sample ID	No. 5 HMP (324848) Run	No. 5 HMP (324848) Run	No. 5 HMP (324848) Run
	1	-		2		3
Filter ID	0-0648	Date/Time	0-0691	Date/Time	0-0668	Date/Time
Final Weight 1 (g)	0.50863	12/28/20 2P	0.50822	12/28/20 2P	0.50519	12/28/20 2P
Final Weight 2 (g)	0.50866	12/29/20 9A	0.50816	12/29/20 9A	0.50510	12/29/20 9A
Tare Weight (g)	0.50654	6/30/2020	0.50563	6/30/2020	0.50267	6/30/2020
Net Filter Catch (mg)	2.12		2.53		2.43	
Tin ID	0-1395	Date/Time	0-1396	Date/Time	0-1397	Date/Time
Weight 1 (g)	3.35602	12/28/20 2P	3.54805	12/28/20 2P	3.44769	12/28/20 2P
Weight 2 (g)	3.35585	12/29/20 9A	3.54768	12/29/20 9A	3.44736	12/29/20 9A
Tare Weight (g)	3.33742	12/7/2020	3.53266	11/17/2020	3.43267	11/17/2020
Net Acetone Residue (mg)	18.43		15.02		14.69	
Acetone Volume (mL)	126		80		70	
Total Particulate (mg)	20.55		17.55		17.12	
LIMS ID	3520111	73-0004	3520111	73-0005	3520111	73-0006
Sample ID	\mathbf{D}_{inc}^{i} CC (22)	4(92) Dave 1	Dias CC (22	4692) D 2	Dian CC (22	4(92) Due 2
_	Disa CC (32	4082) Run I	Disa CC (52	4682) Run 2	Disa CC (32	4082) Run 3
				_		
Filter ID	0-0624	Date/Time	0-0692	Date/Time	0-1180	Date/Time
Final Weight 1 (g)	0.50817	12/28/20 2P	0.50255	12/28/20 2P	0.50738	12/28/20 2P
Final Weight 2 (g)	0.50830	12/29/20 9A	0.50249	12/29/20 9A	0.50737	12/29/20 9A
Tare Weight (g)	0.50656	6/30/2020	0.50116	6/30/2020	0.50613	11/4/2020
Net Filter Catch (mg)	1.74		1.33		1.24	
Tin ID	0-1398	Date/Time	0-1399	Date/Time	0-1400	Date/Time
Weight 1 (g)	3.32476	12/28/20 2P	3.40311	12/28/20 2P	3.48283	12/28/20 2P
Weight 2 (g)	3.32438	12/29/20 9A	3.40264	12/29/20 9A	3.48250	12/29/20 9A
Tare Weight (g)	3.32153	11/17/2020	3.39841	11/17/2020	3.47815	11/17/2020
Net Acetone Residue (mg)	2.85		4.23		4.35	
Acetone Volume (mL)	76		58		88	
Total Particulate (mg)	4.59		5.56		5.59	
			_	-		
Reagent Blank	Ace	tone				
			-			
Tin ID	0-1393					
Initial Volume (ml)	200	Date/Time				
Weight 1 (g)	3.31503	12/28/20 2P				
Weight 2 (g)	3.31505	12/29/20 9A				
Tare Weight (g)	3.31476	11/17/2020				
Residue (mg)	0.29		-			
Max Residue (mg)	0.00145					

LIMS ID	3520111	73-0007	3520111	73-0008	3520111	73-0009
Sample ID	Disa CC (32	4682) Run 4		324662) Run l	No. 7 HMP (,
Filter ID	0-1178	Date/Time	0-1147	Date/Time	9-1040	Date/Time
Final Weight 1 (g)	0.51092	12/28/20 2P	0.51255	12/28/20 2P	0.50907	12/28/20 2P
Final Weight 2 (g)	0.51088	12/29/20 9A	0.51256	12/29/20 9A	0.50891	12/29/20 9A
Tare Weight (g)	0.50965	11/4/2020	0.50564	11/4/2020	0.50387	12/10/2019
Net Filter Catch (mg)	1.23		6.92		5.04	
Tin ID	0-1401	Date/Time	0-1402	Date/Time	0-1403	Date/Time
Weight 1 (g)	3.33489	12/28/20 2P	3.34849	12/28/20 2P	3.26554	12/28/20 2P
Weight 2 (g)	3.33474	12/29/20 9A	3.34834	12/29/20 9A	3.26521	12/29/20 9A
Tare Weight (g)	3.32965	12/21/2020	3.31549	12/21/2020	3.23690	12/21/2020
Net Acetone Residue (mg)	5.09		32.85		28.31	
Acetone Volume (mL)	96		90		110	
Total Particulate (mg)	6.32		39.77		33.35	
						<u> </u>
LIMS ID			3520111	73-0011	3520111	73-0012
Sample ID	No. 7 HMP (324662) Run	Disa Exh (32	24678) Run 1	Disa Exh (32	4678) Run 2
		3	Disu Exil (32	21070) Run 1	Disu Exil (52	(1070) Rull 2
			r	I		
Filter ID		Date/Time		Date/Time		Date/Time
Final Weight 1 (g)		12/28/20 2P		12/28/20 2P		12/28/20 2P
Final Weight 2 (g)		12/29/20 9A		12/29/20 9A		12/29/20 9A
Tare Weight (g)		11/4/220		11/4/2020		11/4/2020
Net Filter Catch (mg)	4.36		3.06		2.94	
	0 1404	Data /Times	0 1405	Data /Time	0 1406	Data /Times
Tin ID		Date/Time		Date/Time 12/28/20 2P		Date/Time 12/28/20 2P
Weight 1 (g)		12/28/20 2P				
Weight 2 (g)		12/29/20 9A		12/29/20 9A		12/29/20 9A
Tare Weight (g)		12/21/2020		12/21/2020		12/21/2020
Net Acetone Residue (mg)	21.69		16.45		12.93	
Acetone Volume (mL)	86 26.05		92		90	
Total Particulate (mg)	20.03		19.51		15.87	
Reagent Blank	Ace	tone	ľ			
Reagent Dialik	nee		l			
Tin ID	0-1393					
Initial Volume (ml)		Date/Time				
Weight 1 (g)		12/28/20 2P	Ī			
Weight 2 (g)		12/29/20 21 12/29/20 9A	L I			
Tare Weight (g)		11/17/2020	L I			
Residue (mg)		11/1//2020	I			
Max Residue (mg)						
max Residue (ilig)	0.00145					

LIMS ID	352011173-0013	352011173-0014	352011173-0015
Sample ID	Disa Exh (324678) Run 3	Disa Pouring (324484)	Disa Pouring (324484)
_	Disa Exfi (324078) Rufi 3	Run 1	Run 2
Filter ID	0-1146 Date/Time	0-1177 Date/Time	0-1179 Date/Time
Final Weight 1 (g)	0.50692 12/28/20 2P	0.50783 12/28/20 2P	
Final Weight 2 (g)	0.50698 12/29/20 9A	0.50766 12/29/20 9A	0.51608 12/29/20 9A
Tare Weight (g)	0.50377 11/4/2020	0.50525 11/4/2020	0.51269 11/4/2020
Net Filter Catch (mg)	3.21	2.41	3.39
Tin ID	0-1407 Date/Time	0-1408 Date/Time	0-1409 Date/Time
Weight 1 (g)	3.28806 12/28/20 2P	3.30848 12/28/20 2P	
Weight 2 (g)	3.28810 12/29/20 9A	3.30814 12/29/20 9A	
Tare Weight (g)	3.26964 12/21/2020	3.30037 12/21/2020	3.32971 12/21/2020
Net Acetone Residue (mg)	18.46	7.77	8.98
Acetone Volume (mL)		82	100
Total Particulate (mg)	21.67	10.18	12.37
LIMS ID	352011173-0016	352011173-0017	352011173-0018
Sample ID	Disa Pouring (324484)	Mod PLT Exh (334176)	Mod PLT Exh (334176)
	Run 3	Run 1	Run 2
	0.117(D)		
Filter ID	0-1176 Date/Time	0-0667 Date/Time	0-0611 Date/Time
Final Weight 1 (g)	0.51471 12/28/20 2P	0.51065 12/28/20 2P	
Final Weight 2 (g)	0.51483 12/29/20 9A	0.51077 12/29/20 9A	
Tare Weight (g)	0.51196 11/4/2020 2.87	0.50799 6/30/2020	0.50616 6/30/2020
Net Filter Catch (mg)	2.87	2.78	1.01
Tin ID	0-1410 Date/Time	0-1411 Date/Time	0-1412 Date/Time
Weight 1 (g)	3.27743 12/28/20 2P	3.45457 12/28/20 2P	
Weight 2 (g)		3.45419 12/29/20 9A	
Tare Weight (g)	3.26533 12/21/2020	3.44042 12/21/2020	3.50014 12/21/2020
Net Acetone Residue (mg)	12.05	13.77	10.56
Acetone Volume (mL)		116	110
Total Particulate (mg)		16.55	12.17
Reagent Blank	Acetone		
0			
Tin ID	0-1393		
Initial Volume (ml)	200 Date/Time		
Weight 1 (g)	3.31503 12/28/20 2P		
Weight 2 (g)	3.31505 12/29/20 9A		
Tare Weight (g)	3.31476 11/17/2020		
Residue (mg)			
Max Residue (mg)			
	<u> </u>		

LIMS ID	3520111	73-0019	3520111	73-0020	3520111	73-0021
Sample ID	Mod PLT E		Mod PLT E		Mod PLT E	
	Ru	· ,	Ru	· ,	Ru	· · · · ·
		-				
Filter ID	0-0614	Date/Time	0-0643	Date/Time	0-0641	Date/Time
Final Weight 1 (g)		12/28/20 2P		12/28/20 2P		12/28/20 2P
Final Weight 2 (g)		12/29/20 9A	0.50625	12/29/20 9A		12/29/20 9A
Tare Weight (g)	0.49992	6/30/2020	0.50170	6/30/2020		6/30/2020
Net Filter Catch (mg)	2.28		4.55		6.06	
Tin ID	0-1413	Date/Time	0-1414	Date/Time	0-1415	Date/Time
Weight 1 (g)	3.34507	12/28/20 2P	3.45474	12/28/20 2P	3.43760	12/28/20 2P
Weight 2 (g)	3.34470	12/29/20 9A	3.45441	12/29/20 9A	3.43725	12/29/20 9A
Tare Weight (g)	3.33427	12/21/2020	3.44083	12/21/2020	3.42279	12/21/2020
Net Acetone Residue (mg)	10.43		13.58		14.46	
Acetone Volume (mL)	78		98		120	
Total Particulate (mg)	12.71		18.13		20.52	
LIMS ID	3520111	73-0022	3520111	73-0023	3520111	73-0024
Sample ID	Mod PLT E	xh (334116)	No. 6 HMP (324632) Run	No. 6 HMP (324632) Run
	Ru	n 3]	1		2
				1		
Filter ID		Date/Time		Date/Time		Date/Time
Final Weight 1 (g)		12/28/20 2P		12/28/20 2P		12/28/20 2P
Final Weight 2 (g)		12/29/20 9A		12/29/20 9A		12/29/20 9A
Tare Weight (g)		6/30/2020		11/4/2020		11/4/2020
Net Filter Catch (mg)	2.72		1.54		2.50	
			(l		
Tin ID		Date/Time		Date/Time		Date/Time
Weight 1 (g)		12/28/20 2P		12/28/20 2P		12/28/20 2P
Weight 2 (g)		12/29/20 9A		12/29/20 9A		12/29/20 9A
Tare Weight (g)		12/21/2020		12/21/2020		12/21/2020
Net Acetone Residue (mg)	10.08		10.48		10.40	
Acetone Volume (mL)	136		98		90	
Total Particulate (mg)	12.80		12.02		12.90	
			T			
Reagent Blank	Ace	tone	l			
	I					
Tin ID	0-1393					
Initial Volume (ml)		Date/Time	т			
Weight 1 (g)		12/28/20 2P				
Weight 2 (g)		12/29/20 9A				
Tare Weight (g)		11/17/2020	l			
Residue (mg)	0.29					
Max Residue (mg)	0.00145					

M5 Weights

LIMS ID	3520111	73-0025	3520111	73-0026	
	No. 6 HMP (
•		3	Aceton	e Blank	
Filter ID	0-1148	Date/Time	NA		
Final Weight 1 (g)		12/28/20 2P			
Final Weight 2 (g)		12/29/20 9A			
Tare Weight (g)	0.50946	11/4/2020			
Net Filter Catch (mg)	2.53				
		r		1	
Tin ID		Date/Time		Date/Time	
Weight 1 (g)		12/28/20 2P		12/28/20 2P	
Weight 2 (g)		12/29/20 9A		12/29/20 9A	
Tare Weight (g)		12/21/2020		12/21/2020	
Net Acetone Residue (mg)	14.43		3.47		
Acetone Volume (mL)	100		210		
Total Particulate (mg)	16.96		3.47		
LIMS ID					
Sample ID					
Filter ID		ſ			
Final Weight 1 (g)					
Final Weight 2 (g)					
Tare Weight (g)					
Net Filter Catch (mg)					
iter i ner euten (ing)		L			
Tin ID]			
Weight 1 (g)					
Weight 2 (g)					
Tare Weight (g)					
Net Acetone Residue (mg)					
Acetone Volume (mL)		ľ			
Total Particulate (mg)		ľ			
		L			
Reagent Blank	Ace	tone			
		-			
Tin ID	0-1393				
Initial Volume (ml)		Date/Time			
Weight 1 (g)	3.31503	12/28/20 2P			
Weight 2 (g)		12/29/20 9A			
Tare Weight (g)	3.31476	11/17/2020			
Residue (mg)	0.29				
Max Residue (mg)	0.00145				

Pace Analytical	CHAIN	-OF-CU	STODY	Analyti	cal Req	uest Do	cume	nt			LAB	USE O	NLY- A	ffix W				ei Here or Li Jumber Her	ist Pace Workorder Number or re
	Chain-	of-Custody			IT - Comple	te all releve	nt fields							5	$\mathbf{\dot{s}}$	(C)	117	13	
Company: Pace NAN		よ	Billing Inf	ormation:											DED	ARE		re for L	AB USE ONLY
Address: 1700 El.	n St.										Lor	ita <u>iner</u>	Preser	vative	Type 1	<u> </u>		Lab Proj	ect Manager:
Report Ton Borgardin	ą		Email To:						(6) m	ethan	iol, (7) si	odium bi	sulfate,	(8) soc	lium th	iosulfate	e, (9) he) sodlum hydroxide, (5) zinc acetate, orbic acid, (6) ammonium sulfate,
Copy TO: Beth Kel	'n		Site Colle	ction Info//	Address:				(C) at	mmon	ium hyd	lroxide, (D) TSP, Analy:		presen	/ed, (O)	Other _	lah Brof	ile/Line:
Customer Project Name/Number: Greate 20-	04070	Η.	State: /	County/C	•	me Zone Co] PT [] M1		[]ET					Allaly	>=>				Lab S	Sample Receipt Checklist:
Phone Terry Booseching Email: & Parcel abs. Com	Site/Facility II	D #:			[]Yes	ce Monitori [] No	ing?		r									Custo	ody Signatures Present Y N NA ector Signature Present Y N NA les Intact Y N NA
Callected By (print): Terry 130 . Derching	Durchasa Ord	ier #:			DW PWS DW Locat	ID #: tion Code:												Suffi	ect Bottles Y N NA Icient Volume Y N NA Les Received on Ice Y N NA
Collected By (signature):	Turnaround D	Date:Requir	ed:		Immediat	ely Packed ([] No	on Ice:		d								1	VOA - USDA	- Headspace Acceptable Y N NA Regulated Soils Y N NA Les in Holding Time Y N NA
Sample Disposal: [] Dispose as appropriate [] Return [] Archive:	[] 2 Day				[]Yes	red (if appli [] No	-		6 m, β	1								Resid Cl St Sampl	Le pH Acceptable Y N NA crips:
* Matrix Codes (Insert in Matrix box Product (P), Soil/Solid (SL), Oil (OL	x below): Drini	king Water	(DW), Grou						ط - ل									Lead	ide Present Y N NA Acetate Strips: JSE ONLY:
Customer Sample ID	Matrix *	Comp / Grab	1	ted (or site Start) Time	Compo Date	osite End	Res Cl	# of Ctns	M2										Sample # / Comments:
No.5 HAR (324848) Run 1	AR	ح		0750	Date			2									+		
LI I' RUNZ			i	0935				2						-					
" " RUN3				1206				2	\checkmark										
Disa CC (324682) R.1				0743				2											
IL IN RUN 2				0935				2	~	/									· · · · · · · · · · · · · · · · · · ·
" " Run 3				1215				2	V										
No.7 HMP (324662) R.1				0748			_	2	1										
11 11 _ Run 2				0959				2	\square										
" 1 Rug3				1225		_		2	-										
Disa Exh (324678) Run	Y		12-9-20	1052				2					· .						
Customer Remarks / Special Conditi	ions / Possible	Hazards:	Type of Ic	e Used:	Wet	Blue Dr	y No	one		SHC	ORT HO	LDS PR	ESENT	(<72 h	ours):	Y	N N,	Ά	Lab Sample Temperature Info:
ship to EMSL	-		Packing N	laterial Use	ed:					Lab	Trackii	ng #:		2	230	62!	519	9	Temp Blank Received: Y N NA Therm ID#: Cooler 1 Temp Upon Receipt:oC
F_pq_of3			Radchem	sample(s)	screened (<	500 cpm):	Y N	NA		Sam	nples re FEDEX	ceived UP		Client	Co	urier	Pace	Courier	Cooler 1 Therm Corr. Factor:oC Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC
Delinquistred by/Company: (Signatu	re) C		e/Time:		Rezeived			ure) Pac	e,		Date/1	Fime:	, <i>a</i>	:19	Table	MTJLL	AB USI	ONLY	Comments:
Velinguished by/sompany: (Signatu		Date	e/Time:			y/Company					Date/1		1		Acctn Temp				Trip Blank Received: Y N NA
Delinquished by/Company, Signatu	lface_		<u> 2/11(2</u> い e/Time:	9:19	Received L	y/Company					Date/1				Prelo PM:	gin:			HCL MeOH TSP Other Non Conformance(s): Page:
ୁ ୦ <u>Pace Analytical</u>					[U/U	vilinh	V F	MS	<u>لہ</u>		12-11	202	o 1:	05	PB:			<i></i>	YES / NO of:

Pace Analytical	CHAIN	-OF-CU	STODY	Analyti	cal Req	uest Do	cume	nt			LAB	USE O	NLY- Aff	fix Wo		VITILIO	g-in Nu	mber Here		
Company:	Chain-	of-Custody	is a LEGAL Billing Inf		T - Complet	te all releve	nt fields											1173		
Pace MN		<u>d</u>		, mation.							Cor	tainer	ALL S				\S ar	1	AB USE ONLY	
1700 EI	<u>n st.</u>		L																-	
Report To: T, Borge	erding		Email To:						(6) m	ethan	ol, (7) se	odium bi	isulfate, (8) sod	ium thic	osulfate,	(9) hexa		sodium hydroxide, (5) zinc acetate, bic acid, (B) ammonium sulfate,	
Copy To: Beth	Keln		Site Colle	tion Info/A	Address:				(C) an	nmoni	ium hyd	lroxiđe, i	(D) TSP, (Analyse		reserve	d, (O) O1	ther	Lab Profil	e/line:	
Customer Project Name/Number:	20-04	074	State: /	County/Ci		me Zone Co] PT [] M1		[]ET					Analyse					Lab Sa	ample Receipt Checklist:	
Phone: terry, burgenting @ Email: Accelants, com	Site/Facility ID) #:			Complian [] Yes	ce Monitori [] No	-		l u i									Custor Collec	iý Signatures Present Y N NA stor Signature Present X N NA es Intact Y N NA	
Collected By (brint): Terry Bargerding	Purchase Orde Quote #:	er#:			DW PWS DW Locat	ID #: ion Code:			12									Correc Suffic	ct Bottles Y N NA cient Volume Y N NA	
Collected By (signature):	Turnaround D	ate Requir	ed:		Immediat	ely Packed	on Ice:		10									VOA -	es Received on Ice Y N NA Headspace Acceptable Y N NA	
Sample Disposal:	Rush:	5.	d															Sample	Regulated Soils Y N NA es in Holding Time Y N NA Hal Chlorine Present Y N NA	
[] Dispose as appropriate [] Return [] Archive:	[] Sa [] 2 Day	[] 3 Day			[]Yes	[] No			6									C1 St	cips: pH Acceptable Y N NA	
Hold: Matrix Codes (Insert in Matrix box	÷	xpedite Cha		ind Water i			w).		Z									Sulfic	le Present Y N NA Acetate Strips:	
Product (P), Soil/Solid (SL), Oil (OL		Air (AR), Ti	ssue (TS), B	ioassay (B))		1										SE ONLY:	
Customer Sample ID	Matrix *	Comp / Grab		ted (or lite Start) Time	Compo Date	site End	Res Cl	# of Ctns	Me									Lab Si	ample # / Comments:	
Disa Ed. (324678) R.2	AR	C	12-9-21	· · ·			1	2	~										· · · · · · · · · · · · · · · · · · ·	4
····· Run 3				1435				2	~			-					-			
Disa Buring (324484) Rul				0826				Z								_			······································	
" " Ryn 2	 	\square		1015	ļ			2	4											
" " Byn 3	<u> </u>		╎╞	1205	ł			2	4							_				
Mal Alt Ext. (334176) Run1		┼╌┼╌	- -	0815	h			2								_ <u> </u>		· · ·	 ,, 	
	<u> </u>			1035				2	レ								-	<u> </u>	<u></u>	
Med RIFERA (334116) Run 1	¥		12-10-20	1228			_	2	-	,	·		+						<u> </u>	
11_11_Run 2		$\uparrow \checkmark$	1	0940	1	-	1	2	7	/		h				1				
Customer Remarks / Special Conditi	ions / Possible	Haza rds :	Type of Ic	· ·	Wet I	Blue Dr	γ No	ne		SHC	ORT HO	LDS PR	ESENT (<72 h	ours):	ΥN	N/A		Lab Sample Temperature Info:	
			Packing N	laterial Use	:d:					Lab	Tracki	ng #:		2	26	525	() ()		Temp Blank Received: Y N NA Therm ID#:	:
E Ship to EN	15L	2 of 3	Radchem	sample(s) s	creened (<	500 cpm):	YN	NA			ples re FEDEX	ceived UP		∠ ient					Cooler 1 Temp Upon Receipt:oC Cooler 1 Therm Corr. Factor:oC	
Velinquished by/Company: (Signatu	re) Pg :	Date	/Time:	1	Received b	v/Company	/:/Signat	ure)		<u> </u>	Date/1	· · · · ·	<u> </u>		1111	MTJL LA			Cooler 1 Corrected Temp:oC Comments:	
In Pace		12	114/20	1910	10	Me		Pac	e		121	1/20	9:1	9	Table]	
	re) Pace	[=/Time: 2/11/20	ana	Received b	y/Company	/: (Signat	ure)			Date/1		<u> </u>		Acctnu Templ	ate:			Trip Blank Received: Y N NA HCL MeOH TSP Other	
Pace Analytical	re)		2 <u>{ II (200</u> 2/Time:		Received b	y/Company	/: (Signat	ure)			Date/1	lime:			Prelog PM:	n:			Non Conformance(s): Page:	
O															PB:			_ · _	YES / NO of: Grede, LLC - Iron Mountain — -	

Pace Analytical				DY Analytical Request Document							LAB	USE C)NLY- A	ffix We		• -	g-in Nu	mber Her		
Company: Pace MN - F		-custouy	Billing Info			le all leicve							ALL	SHA	DED	ARE			WINTS AB USE ONLY	
Address: 1700 AM St													Presen						ect Manager:	
Report To: To Borgerda	ing		Email To:	tion Info/A	dalar oo a		-· <u>-</u>		(6) m	hethan	ol, (7) so	dium t	isulfate,	(8) sod	lium thi	osulfate,	(9) hexa		sodium hydroxide, (5) zinc acetate, rbic acid, (B) ammonium sulfate,	
Deth Kel		-		County/Ci		me Zone Co	lected:			mmoni	um nya	roxiae,	Analy:		preserv	ed, (O) C	-1-	Lab Profi	le/Line: ample Receipt Checklist:	
Greade 120	- 0407	Ч	/]PT[]M1	г[]ст	[] ET										Custo	dy Seals Present/Intact Y N N.	
Phone: fory, bog 2 ding 0 S Email: parelans, com	Site/Facility ID #	:			Complian [] Yes	ce Monitori [] No	ing?											Colle	dy Signatures Present YNN ctor Signature Present YNN es Intact YNN	A,
Collected By (print):	Purchase Order Quote #:	#:		-	DW PWS DW Locat	ion Code:			77									Suffi	ct Bottles YNN cient Volume YNN es Received on Ice YNN	А
Collected By (signature):	furnaround Dat	e Require	:d)	Immediatēly Pācked on Ice: [] Yes [] No Field Filtered (if applicable):					1/1	ļ								VOA - USDA	Headspace Acceptable Y N N Regulated Soils Y N N	A A
Sample Disposal: []Dispose as appropriate [] Return []Archive: []Hold:	[]2 Day [] 3 Day	 A Day I A Day I ges Apply 		Field Filte [] Yes	red (if appli [] No	•		5- PW		1							Resid Cl St Sampl pH St	es in Holding Time Y N N. ual Chlorine Present Y N N. rips: e pH Acceptable Y N N. rips: de Present Y N N.	A
* Matrix Codes (Insert in Matrix box I Product (P), Soil/Solid (SL), Oil (OL),																		Lead	Acetate Strips:	
Customer Sample ID	Matrix *	Comp / Grab	1	ted (or ite Start) Time	Compc Date	site End	Res Cl	# of Ctns	Method									Lab S	ample # / Comments:	
Med Plt. Exh (334116) Run 3	AR	Ċ	12-10-2	t	Dutt			2	~											
No 6 HMP (324632) Run1				0720				2	4					_	_					
11 11 Run 3		\checkmark		1210				2	~	_										
Acetone Blank	<u> </u>	G		1330				1.									_			
			 										<i></i>						· · · · · · · · · · · · · · · · · · ·	
													-+	_						
					<u> </u>	<u> </u>														
Customer Remarks / Special Condition		izards:	Type of Ice Packing M	e Used: aterial Use		Blue Dr	γ <u>N</u>	one	•		RT HO Trackir		RESENT	·	i	<u>×</u> 525		· · · ·	Lab Sample Temperature Info: Temp Blank Received: Y N Therm ID#:	NA
Ship to EM	USL-		Radchem	sample(s) s	crgened (<	500 cpm):	Y N				ples re FEDEX			 Client	<u> </u>	urier	Pace C		Cooler 1 Temp Upon Receipt: Cooler 1 Therm Corr. Factor: Cooler 1 Corrected Temp:	oC oC oC
telinquished by/company: (Signature	2)		- /Time: [4] 2 3/		keceiyed b	fl Competity	: (Signat		ku		Date/T	ime:	o 9:		Table	MTJL L			Comments:	
		Date	Time: F		Received b	y/Company	/: (Signat			•	נק Date/T	_	~ ~[·	-	Acctri Temp Prelog	late:			Trip Blank Received: Y N HCL MeOH TSP Othe	
Velinquished by/Company: (Signature	;)	Date	/Time:		Received b	y/Company	/: (Signat	:ure)			Date/1	ime:			PM: PB:				Non Conformance(s): Page: YES / NO of:	

•

Terry Borgerding Pace Analytical – MN Field Services 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 EMSL Analytical, Inc. 3410 Winnetka Avenue North New Hope, MN 55427 (763) 449-4922

January 05, 2021 EMSL Order #: 352011456

RE: Iron Mountain Grede 20-04074

Dear Terry Borgerding:

EMSL Analytical, Inc. received samples for the project identified above on December 18, 2020. The sample(s) were analyzed in the EMSL Analytical, Inc. laboratory unless otherwise noted. Analytical results are summarized in the following report.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 60 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use EMSL Analytical, Inc. for this project. We are committed to being your vendor of choice to meet your analytical needs.

If you have any questions please contact me at the above phone number.

Sincerely,

)En(

Mark Erickson Laboratory Manager

Pace Analytical Services - MN Field Department

352011456

M5 analysis

4 samples, 3 runs and 1 blank

20-04074 – Iron Mountain Grede

Custody	The samples were received on 12/18/2020 by Mark Erickson. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in EPA Method 5, Determination of Particulate Matter Emissions from Stationary Sources (40 CFR Part 60, Appendix A).
QC Notes	For M5 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The reagent blank was calculated but not applied to the runs.
Reporting Notes	Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M5 analysis, no reported weights were greater than -0.5 mg.

LIMS ID	352011456-0001	352011456-0002	352011456-0003
Sample ID	Cupola Exhaust T1R1	Cupola Exhaust T1R2	Cupola Exhaust T1R3
Filter ID	0-1143 Date/Time	0-0606 Date/Time	0-0674 Date/Time
Final Weight 1 (g)	0.50624 1/4/21 10A	0.50636 1/4/21 10A	0.50876 1/4/21 10A
Final Weight 2 (g)	0.50617 1/5/21 9A	0.50647 1/5/21 9A	0.50874 1/5/21 9A
Tare Weight (g)	0.50494 11/4/2020	0.50517 6/30/2020	0.50759 6/30/2020
Net Filter Catch (mg)	1.23	1.30	1.15
Tin ID	0-1421 Date/Time	0-1422 Date/Time	0-1423 Date/Time
Weight 1 (g)	3.27718 1/4/21 10A	3.37942 1/4/21 10A	3.36830 1/4/21 10A
Weight 2 (g)	3.27722 1/5/21 9A	3.37902 1/5/21 9A	3.36797 1/5/21 9A
Tare Weight (g)	3.26055 12/29/2020	3.37467 12/29/2020	3.36126 12/29/2020
Net Acetone Residue (mg)	16.67	4.35	6.71
Acetone Volume (mL)	164	122	154
Total Particulate (mg)	17.90	5.65	7.86
-			
LIMS ID	352011456-0004		
Sample ID	Cupola Blank T1R0		
r			
Filter ID	0-1174 Date/Time		
Final Weight 1 (g)	0.50452 1/4/21 10A		
Final Weight 2 (g)	0.50449 1/5/21 9A		
Tare Weight (g)	0.50407 11/4/2020		
Net Filter Catch (mg)	0.42		
Tin ID	0-1424 Date/Time		
Weight 1 (g)	3.34790 1/4/21 10A		
Weight 2 (g)	3.34796 1/5/21 9A		
Tare Weight (g)	3.34670 12/29/2020		
Net Acetone Residue (mg)	1.26		
Acetone Volume (mL)	114		
Total Particulate (mg)	1.68		
Reagent Blank	Acetone		
		•	
Tin ID	0-1429		
Initial Volume (ml)	200 Date/Time		
Weight 1 (g)	3.33613 1/4/21 10A		
Weight 2 (g)	3.33607 1/5/21 9A		
Tare Weight (g)	3.33592 12/29/2020		
Residue (mg)	0.15		
Max Residue (mg)	0.00075		

Pace Analytical Services - MN Field Department

352011456

M202 analysis

4 samples, 3 runs and 1 blank

20-04074 – Iron Mountain Grede

Custody	The samples were received on 12/18/2020 by Mark Erickson. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in Appendix M to Part 51 (202 eCFR) Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources.
QC Notes	 For M202 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The train blank was calculated but not applied to the runs.
Reporting Notes	 Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M202 analysis, no reported weights were greater than -0.5 mg.

M202 Weights

LIMS ID	352011456-0001	352011456-0002	352011456-0003	352011456-0004		
Sample ID	Cupola Exhaust T1R1	Cupola Exhaust T1R2	Cupola Exhaust T1R3	Cupola Blank T1R0		
Organic Catch						
Beaker ID	0-1425	0-1426	0-1427	0-1428		
Initial Solvent Vol. (ml)	132 Date/Time	108 Date/Time	140 Date/Time	106 Date/Time		
Organic FW 1 (g)	3.39009 1/4/21 10A	3.55383 1/4/21 10A	3.34344 1/4/21 10A	3.27442 1/4/21 10A		
Organic FW 2 (g)	3.38995 1/5/21 9A	3.55372 1/5/21 9A	3.34359 1/5/21 9A	3.27462 1/5/21 9A		
Tare Weight (g)	3.38847 12/29/2020	3.55182 12/29/2020	3.34142 12/29/2020	3.27427 12/29/2020		
Organic Catch (mg)	1.48	1.90	2.17	0.35		
Inorganic Catch	40712225	40712226	4.0712227	4.0712220		
Vessel ID	A0713325 128	A0713326	A0713327	A0713328 50		
Sample Vol. (mL)		90 75 Data /Time	128 75 Dete /Time			
DI Added (mL)	75 Date/Time	75 Date/Time	75 Date/Time	75 Date/Time		
Weight 1 (g)	3.90665 1/4/21 10A	3.89286 1/4/21 10A	3.83609 1/4/21 10A	3.91114 1/4/21 10A		
Weight 2 (g)	3.90654 1/5/21 9A 3.90328 12/16/2020	3.89278 1/5/21 9A 3.88789 12/16/2020	3.83592 1/5/21 9A 3.83336 12/16/2020	3.91098 1/5/21 9A 3.91027 12/16/2020		
Tare Weight (g) Net Inorg Catch (mg)	3.26	4.89	2.56	0.71		
Resp. DI added (mL)	0	4.69	2.30	0.71		
Volume Titrated (mL)	0	0	0	0		
NH3 Correction (mg)	0.00	0.00	0.00	0.00		
Corrected Inorg Catch (mg)	3.26	4.89	2.56	0.71		
CPM (mg)	4.74	6.79	4.73	1.06		
CI WI (IIIg)	7./7	0.79	ч.75	1.00		
Reagent Blanks	Acetone	Hexane	DI Water			
Beaker ID	0-1429	0-1430	A0713329			
Initial Volume (ml)	200 Date/Time	200 Date/Time	200 Date/Time			
Weight 1 (g)	3.33613 1/4/21 10A	3.36508 1/4/21 10A	3.88292 1/4/21 10A			
Weight 2 (g)	3.33607 1/5/21 9A	3.36497 1/5/21 9A	3.88305 1/5/21 9A			
Tare Weight (g)	3.33592 12/29/2020	3.36475 12/29/2020	3.88319 12/16/2020			
Residue (mg)	0.15	0.22	-0.14			
Max Residue (mg)	0.00075	0.00110	-0.00070			

Pace Analytical*	CHAIN	OF-CU	STODY	Analyti	cal Req	uest Do	cume	nt			LAE	USEC	DNLY-	Affix W				Here or Lis umber Here	st Pace Workorder Number or e
· · ·	Chain-o	of-Custody			IT - Comple	te all releve	nt fields		352010156										
Company: Pace Analol	Lical		Billing Inf			-15	ì			ALL SHADED AREAS are for LAB USE ONLY					AB USE ONLY				
Company: Pace Analp) Address: 1800 ElM	54.		1	Pace Air FSD All To: Ciara Ruikke						Container Preservative Type ** Lab Project Manager:					ect Manager:				
Report TO COLA ROLG	erding		Email To:	Ciara	. Ru	ikke			Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) s (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascori										
Copy To: Beth Kelm			Site Colle	ction Info//	Address:								(D) TS	P, (U) Vi		ed, (O) O			
Customer Project Name/Number:	ede 20-	0H074	State: MI/	County/C		me Zone Co] PT [] MT		[]ET					Anal	yses_		Τ			le/Line: ample Receipt Checklist: dy Seals Present/Intact Y N NA
Phone: Email: 6/2 - 723-0/8/	Site/Facility ID		1			ce Monitori [] No												Custo	dy Signatures Present Y N NA ctor Signature Present Y N NA es Intact Y N NA
	Purchase Orde Quote #:	er #:				ion Code:						~						Corre	ct Bottles Y N NA cient Volume Y N NA es Received on Ice Y N NA
Collected By (signature):	Turnaround Da	ate Require	ed:			ely Packed i	on Ice:					N.	V.						Headspace Acceptable Y N NA Regulated Soils Y N NA
Sample Disposal:	Rush:				Field Filte	[] No red (if appli	cable):		3	0	2	N	4,						es in Holding Time Y N NA ual Chlorine Present Y N NA
Dispose as appropriate [] Return Archive:	[]2 Day [] 3 Day			[]Yes	[] No	,		٩	3	$ \gamma$							C1 St:	rips: e pH Acceptable Y N NA
[] Hold: * Matrix Codes (Insert in Matrix box		xpedite Cha ing Water		und Water		tewater (W	<i>N</i>).		N	2	2	2	02						de Present Y N NA Acetate Strips:
Product (P), Soil/Solid (SL), Oil (OL									5	202	707	202	2					LAB U	SE ONLY:
Customer Sample ID	Matrix *	Comp / Grab		ted (or site Start) Time	Compo	osite End	Res Cl	# of Ctns	N	R	₹	X	К					Lab S	ample # / Comments:
Cupola Exhant RI	AR	COMP	12/15	830	12/16	Time 1056	•	5	1	7	1	1	7						
Cupala Exposit T.R.	AR	comp	12/16	1230	1416	1456		5	1	1	1	1	7			_ <u>_</u>	-		
cupala Exhaust T. R.	AR	comp	12/17	753	12/17	1017		5	1	1	1	ノ	7					1., ,	
Cupala Extensit T, R, Cupala Extensit T, R, Cupala Blank T, D	AR	6106		1600	12/16	1600		5	/	/	Ζ.	1	1						
														_					
					<u> </u>														
		<u> </u>								Ļ									
Customer Remarks / Special Conditi	ons / Possible I	lazards:	Type of Ic Packing N	e Used: Iaterial Use		Blue Dr	y No	ne 			Tracki		RESEN			v № 525			Lab Sample Temperature Info: Temp Blank Received: Y N NA Therm ID#:
0 1 1			Radchem	sample(s) :	screened (<	500 cpm):	YN	NA		Sarr	ples re FEDEX			Client				Courier	Cooler 1 Temp Upon Receipt:oC Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC
- ⊰elinquished by/Company: (Signatu	re)	Date	/Time:		Rezeared to	y/Company	7 (Signat	ure)		-	Date/				,	MTJL LA	1.0		Comments:
mother notest	pace	/z	/18/20	1000	11	MS	L 1Pace 12/18/20 11:00 Table #:					4							
Alinduished by/Company: (Vienatu	re) Pace	Date	-/Time: -//8/20		Received to	Dy/Company	ISIgnat	ure)	v زل		Date/	_		B:33	Acctnu Tempi Prelog	ate:			Trip Blank Received: Y N NA HCL MeOH TSP Other
Distinguished by/Company: (Signatu	re)	Date	/Time:		Rèceived b	y/Company	r: (Signat	ure)			Date/	Time:			РМ: РВ:			. <u></u>	Non Conformance(s): Page: YES / NO of: Grede, LLC - Iron Mountain

•

Appendix C

Calculation Equations and Report Nomenclature

Intermediate Calculation Summaries

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling Disa Pouring - 324484 Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.431	28.431	28.431
Static Pressure Of Duct, Inches H ₂ O	-1.5	-1.5	-1.5
Absolute Pressure Of Duct, Inches Hg	28.32	28.32	28.32
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.250	0.250	0.250
Area Of Nozzle Opening, Square Feet	0.000341	0.000341	0.000341
Average Sq. Root of ΔPs , Inches H ₂ O	0.7482	0.7609	0.7613
Average ΔH , Inches H ₂ O	2.50	2.65	2.66
Average Stack Temperature, °F	90.08	89.17	91.38
Average Stack Temperature, °R	549.75	548.84	551.05
Average Meter Temperature, °F	52.27	64.83	68.21
Average Meter Temperature, °R	511.94	524.50	527.88
Meter Volume, Cubic Feet	70.38	73.54	73.85
Dry Standard Sample Volume, Cubic Feet	68.84	70.23	70.08
Collected Condensate Volume, ml	25.0	34.8	26.2
Moisture Content Of Flue Gas, % v/v	1.68	2.28	1.73
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.78	28.71	28.77
Source Gas Velocity, Feet Per Second	44.13	44.89	44.96
Actual Gas Volume Flow, ACFM	8,318	8,462	8,474
Standard Gas Volume Flow, SCFM	7,562	7,706	7,686
Dry Standard Gas Volume Flow, DSCFM	7,435	7,530	7,553
Isokinetic Variation, %	101.6	102.4	101.9

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling No. 6 HMP - 324632 Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	84	84	84
Barometric Pressure, inches Hg	28.66	28.66	28.66
Static Pressure Of Duct, Inches H ₂ O	-0.35	-0.35	-0.35
Absolute Pressure Of Duct, Inches Hg	28.63	28.63	28.63
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.371	0.371	0.371
Area Of Nozzle Opening, Square Feet	0.000751	0.000751	0.000751
Average Sq. Root of ΔPs , Inches H ₂ O	0.3982	0.4119	0.4050
Average Δ H, Inches H ₂ O	3.46	3.63	3.57
Average Stack Temperature, °F	83.67	89.46	94.13
Average Stack Temperature, °R	543.34	549.13	553.80
Average Meter Temperature, °F	54.31	55.60	66.73
Average Meter Temperature, °R	513.98	515.27	526.40
Meter Volume, Cubic Feet	82.92	84.98	85.33
Dry Standard Sample Volume, Cubic Feet	81.63	83.48	82.04
Collected Condensate Volume, ml	15.7	15.8	7.0
Moisture Content Of Flue Gas, % v/v	0.90	0.88	0.40
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.86	28.86	28.92
Source Gas Velocity, Feet Per Second	23.19	24.11	23.78
Actual Gas Volume Flow, ACFM	4,371	4,545	4,483
Standard Gas Volume Flow, SCFM	4,065	4,182	4,091
Dry Standard Gas Volume Flow, DSCFM	4,028	4,145	4,074
Isokinetic Variation, %	101.0	100.4	100.4

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling No. 7 HMP - 324662 Test 1

Parameter Sample Duration, Minutes	Run 1 96	Run 2 72	Run 3 72
Barometric Pressure, inches Hg	28.65	28.65	28.65
Static Pressure Of Duct, Inches H ₂ O	-0.5	-0.5	-0.5
Absolute Pressure Of Duct, Inches Hg	28.61	28.61	28.61
Meter Coefficient	0.996	0.996	0.996
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.260	0.260	0.260
Area Of Nozzle Opening, Square Feet	0.000369	0.000369	0.000369
Average Sq. Root of ΔPs , Inches H ₂ O	0.721	0.734	0.726
Average ΔH , Inches H ₂ O	2.45	2.54	2.51
Average Stack Temperature, °F	90.67	94.54	95.75
Average Stack Temperature, °R	550.34	554.21	555.42
Average Meter Temperature, °F	67.40	72.63	80.06
Average Meter Temperature, °R	527.07	532.30	539.73
Meter Volume, Cubic Feet	86.19	66.30	66.20
Dry Standard Sample Volume, Cubic Feet	82.86	63.12	62.16
Collected Condensate Volume, ml	13.6	10.8	11.6
Moisture Content Of Flue Gas, % v/v	0.77	0.80	0.87
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.88	28.87	28.86
Source Gas Velocity, Feet Per Second	42.27	43.17	42.75
Actual Gas Volume Flow, ACFM	8,645	8,830	8,744
Standard Gas Volume Flow, SCFM	7,932	8,045	7,950
Dry Standard Gas Volume Flow, DSCFM	7,871	7,980	7,880
Isokinetic Variation, %	101.4	101.6	101.3

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling Disa Pouring - 324678 Test 1

Parameter Sample Duration, Minutes	Run 1 72	Run 2 72	Run 3 72
Barometric Pressure, inches Hg	28.45	28.45	28.45
Static Pressure Of Duct, Inches H ₂ O	-0.25	-0.25	-0.25
Absolute Pressure Of Duct, Inches Hg	28.43	28.43	28.43
Meter Coefficient	0.9959	0.9959	0.9959
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.310	0.310	0.310
Area Of Nozzle Opening, Square Feet	0.000524	0.000524	0.000524
Average Sq. Root of ΔPs , Inches H ₂ O	0.531	0.526	0.530
Average ΔH , Inches H ₂ O	2.85	2.90	2.92
Average Stack Temperature, °F	70.58	61.13	65.63
Average Stack Temperature, °R	530.25	520.80	525.30
Average Meter Temperature, °F	79.29	86.08	85.67
Average Meter Temperature, °R	538.96	545.75	545.34
Meter Volume, Cubic Feet	70.50	70.98	71.23
Dry Standard Sample Volume, Cubic Feet	65.89	65.52	65.80
Collected Condensate Volume, ml	5.5	0.7	1.0
Moisture Content Of Flue Gas, % v/v	0.39	0.05	0.07
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.92	28.95	28.95
Source Gas Velocity, Feet Per Second	30.60	30.06	30.38
Actual Gas Volume Flow, ACFM	17,666	17,353	17,539
Standard Gas Volume Flow, SCFM	16,716	16,718	16,753
Dry Standard Gas Volume Flow, DSCFM	16,650	16,709	16,741
Isokinetic Variation, %	100.9	100.0	100.3

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling Disa Pouring - 324682 Test 1

Parameter Sample Duration, Minutes	Run 2 84	Run 3 84	Run 4 84
Barometric Pressure, inches Hg	28.634	28.634	28.634
Static Pressure Of Duct, Inches H ₂ O	-0.45	-0.45	-0.45
Absolute Pressure Of Duct, Inches Hg	28.60	28.60	28.60
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.310	0.310	0.310
Area Of Nozzle Opening, Square Feet	0.000524	0.000524	0.000524
Average Sq. Root of ΔPs , Inches H ₂ O	0.4489	0.4451	0.4501
Average ΔH , Inches H ₂ O	2.23	2.20	2.24
Average Stack Temperature, °F	63.46	66.04	66.63
Average Stack Temperature, °R	523.13	525.71	526.30
Average Meter Temperature, °F	52.31	56.50	54.85
Average Meter Temperature, °R	511.98	516.17	514.52
Meter Volume, Cubic Feet	66.45	66.05	66.63
Dry Standard Sample Volume, Cubic Feet	65.40	64.48	65.26
Collected Condensate Volume, ml	8.2	9.7	15.1
Moisture Content Of Flue Gas, % v/v	0.59	0.70	1.08
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.90	28.88	28.84
Source Gas Velocity, Feet Per Second	25.65	25.50	25.82
Actual Gas Volume Flow, ACFM	14,807	14,720	14,902
Standard Gas Volume Flow, SCFM	14,286	14,133	14,291
Dry Standard Gas Volume Flow, DSCFM	14,202	14,033	14,137
Isokinetic Variation, %	100.7	100.5	100.9

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Main Plant Pouring & Cooling No. 5 HMP - 324848 Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.64	28.64	28.64
Static Pressure Of Duct, Inches H ₂ O	-2	-2	-2
Absolute Pressure Of Duct, Inches Hg	28.49	28.49	28.49
Meter Coefficient	0.9958	0.9958	0.9958
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.210	0.210	0.210
Area Of Nozzle Opening, Square Feet	0.000241	0.000241	0.000241
Average Sq. Root of ΔPs , Inches H ₂ O	0.9915	1.0047	1.0035
Average ΔH , Inches H ₂ O	2.27	2.34	2.36
Average Stack Temperature, °F	77.42	78.79	80.38
Average Stack Temperature, °R	537.09	538.46	540.05
Average Meter Temperature, °F	52.42	56.38	60.48
Average Meter Temperature, °R	512.09	516.05	520.15
Meter Volume, Cubic Feet	66.14	67.42	67.75
Dry Standard Sample Volume, Cubic Feet	65.38	66.15	65.95
Collected Condensate Volume, ml	5.8	8.8	7.8
Moisture Content Of Flue Gas, % v/v	0.42	0.62	0.55
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.91	28.89	28.90
Source Gas Velocity, Feet Per Second	57.49	58.35	58.36
Actual Gas Volume Flow, ACFM	10,836	10,999	11,001
Standard Gas Volume Flow, SCFM	10,145	10,271	10,242
Dry Standard Gas Volume Flow, DSCFM	10,103	10,207	10,186
Isokinetic Variation, %	100.7	100.8	100.7

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Module Pouring & Cooling Exhaust - 334116 Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.69	28.69	28.69
Static Pressure Of Duct, Inches H_2O	-0.07	-0.07	-0.07
Absolute Pressure Of Duct, Inches Hg	28.68	28.68	28.68
Meter Coefficient	0.9958	0.9958	0.9958
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.346	0.346	0.346
Area Of Nozzle Opening, Square Feet	0.000653	0.000653	0.000653
Average Sq. Root of ΔPs , Inches H ₂ O	0.4419	0.4314	0.4308
Average ΔH , Inches H ₂ O	3.26	3.11	3.11
Average Stack Temperature, °F	85.75	92.08	97.33
Average Stack Temperature, °R	545.42	551.75	557.00
Average Meter Temperature, °F	55.06	61.94	68.44
Average Meter Temperature, °R	514.73	521.61	528.11
Meter Volume, Cubic Feet	79.59	78.35	78.90
Dry Standard Sample Volume, Cubic Feet	78.61	76.33	75.92
Collected Condensate Volume, ml	15.3	2.9	12.5
Moisture Content Of Flue Gas, % v/v	0.91	0.18	0.77
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.86	28.94	28.88
Source Gas Velocity, Feet Per Second	25.76	25.26	25.37
Actual Gas Volume Flow, ACFM	7,587	7,439	7,472
Standard Gas Volume Flow, SCFM	7,041	6,825	6,790
Dry Standard Gas Volume Flow, DSCFM	6,977	6,813	6,738
Isokinetic Variation, %	100.9	100.3	100.9

Appendix C

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary Module Pouring & Cooling Exhaust - 334176 Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.47	28.47	28.47
Static Pressure Of Duct, Inches H_2O	-0.14	-0.14	-0.14
Absolute Pressure Of Duct, Inches Hg	28.46	28.46	28.46
Meter Coefficient	0.9958	0.9958	0.9958
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.425	0.425	0.425
Area Of Nozzle Opening, Square Feet	0.000985	0.000985	0.000985
Average Sq. Root of ΔPs , Inches H ₂ O	0.2287	0.2373	0.2383
Average ΔH , Inches H ₂ O	2.07	2.23	2.27
Average Stack Temperature, °F	80.13	82.25	85.04
Average Stack Temperature, °R	539.80	541.92	544.71
Average Meter Temperature, °F	59.71	64.10	68.13
Average Meter Temperature, °R	519.38	523.77	527.80
Meter Volume, Cubic Feet	63.41	66.27	66.85
Dry Standard Sample Volume, Cubic Feet	61.41	63.66	63.74
Collected Condensate Volume, ml	6.1	14.2	5.7
Moisture Content Of Flue Gas, % v/v	0.47	1.04	0.42
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.91	28.85	28.91
Source Gas Velocity, Feet Per Second	13.30	13.85	13.92
Actual Gas Volume Flow, ACFM	3,918	4,078	4,101
Standard Gas Volume Flow, SCFM	3,645	3,779	3,781
Dry Standard Gas Volume Flow, DSCFM	3,628	3,740	3,765
Isokinetic Variation, %	100.5	101.0	100.5

Kingsford, MI Pace Project No. 20-04074

Appendix C Intermediate Data Summary Cupola Baghouse Inlet Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	40	56	45
Barometric Pressure, In. Hg	29.106	29.106	29.106
Static Pressure Of Duct, In. H ₂ O	-1.251	-1.251	-1.251
Absolute Pressure Of Duct, In. Hg	29.01	29.01	29.01
Meter Coefficient Average Δ H, Inches H ₂ O	0.9959	0.9959	0.9959
Average Stack Temperature, °F	680.0	680.0	695.8
Average Stack Temperature, °R	1139.7	1139.7	1155.4
Average Meter Temperature, °F	33.8	46.1	49.7
Average Meter Temperature, °R	493.4	505.8	509.3
Meter Volume, CF	21.75	30.29	25.21
Dry Standard Sample Volume, DSCF	22.61	30.71	25.38
Collected Condensate Volume, ml	37.9	167.7	167.8
Condensate Moisture Content, % v/v	7.31	20.45	23.73
100% rH Moisture Content, % v/v	NA (>BP)	NA (>BP)	NA (>BP)
Dry Molecular Wt of Flue Gas, LB/LB-m	30.19	30.24	30.30
Wet Molecular Wt of Flue Gas, LB/LB-m	29.29	27.74	27.38

Report Date 2/5/2021

Kingsford, MI Pace Project No. 20-04074

Appendix C Intermediate Data Summary Cupola Baghouse Inlet Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	45	46	60
Barometric Pressure, In. Hg	28.862	28.862	28.82
Static Pressure Of Duct, In. H_2O	-1.337	-1.337	-1.200
Absolute Pressure Of Duct, In. Hg	28.76	28.76	28.73
Meter Coefficient	0.9959	0.9959	0.9959
Average Δ H, Inches H ₂ O	1.0	1.0	1.0
Average Stack Temperature, °F	687.0	692.8	678.9
Average Stack Temperature, °R	1146.7	1152.4	1138.6
Average Meter Temperature, °F	48.7	50.8	57.9
Average Meter Temperature, °R	508.3	510.5	517.6
Meter Volume, CF	25.27	25.12	33.95
Dry Standard Sample Volume, DSCF	25.28	25.02	33.31
Collected Condensate Volume, ml	88.2	88.3	106.7
Condensate Moisture Content, % v/v	14.11	14.24	13.10
100% rH Moisture Content, % v/v	NA (>BP)	NA (>BP)	NA (>BP)
Dry Molecular Wt of Flue Gas, LB/LB-m	30.21	30.16	30.12
Wet Molecular Wt of Flue Gas, LB/LB-m	28.49	28.43	28.53

Kingsford, MI Pace Project No. 20-04074

Appendix C

Intermediate Data Summary Cupola Baghouse Exhaust Test 1

Parameter Sample Duration, Minutes	Run 1 120	Run 2 120	Run 3 120
Barometric Pressure, inches Hg	28.92	28.92	28.87
Static Pressure Of Duct, Inches H ₂ O	0.001	0.001	0.001
Absolute Pressure Of Duct, Inches Hg	28.92	28.92	28.87
Meter Coefficient	0.9922	0.9922	0.9922
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	1.000	1.000	1.000
Area Of Nozzle Opening, Square Feet	0.005454	0.005454	0.005454
Average Sq. Root of ΔPs , Inches H ₂ O	0.0530	0.0598	0.0481
Average ΔH , Inches H ₂ O	2.44	3.21	2.08
Average Stack Temperature, °F	172.46	176.46	174.71
Average Stack Temperature, °R	632.13	636.13	634.38
Average Meter Temperature, °F	78.79	87.67	81.52
Average Meter Temperature, °R	538.46	547.34	541.19
Meter Volume, Cubic Feet	106.70	123.14	98.98
Dry Standard Sample Volume, Cubic Feet	100.96	114.85	92.94
Collected Condensate Volume, ml	75.0	70.8	60.1
Moisture Content Of Flue Gas, % v/v	3.38	2.82	2.95
Dry Molecular Wt of Flue Gas, LB/LB-mole	29.21	29.12	29.16
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.83	28.81	28.83
Source Gas Velocity, Feet Per Second	3.53	3.36	3.22
Actual Gas Volume Flow, ACFM	187,622	178,387	170,789
Standard Gas Volume Flow, SCFM	151,478	143,116	137,161
Dry Standard Gas Volume Flow, DSCFM	146,360	139,081	133,109
Isokinetic Variation, %	93.3	111.7	94.4

Calculation Equations

Appendix C - Calculation Equations

Kingsford, MI

Pace Project No. 20-04074

EPA Method 2 Calculations Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 22

Flue Gas Linear Velocity: 324484 $V_s = 85.49 \times C_p \times \overline{\sqrt{\Delta P}} \times \sqrt{\frac{I_s}{P_s \times M_s}}$

$$\overline{\overline{P}}_{\times}$$
 $\overline{\overline{T_s}}$

$$\overline{T_s}$$
 44.89

Volumetric Flow Rates - ACFM, SCFM, DSCFM:

$Q = 60 \times v_s \times A$	8,462	=	60	х	44.89	Х	3.14
$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$	7,706	=	8,462	х	528	х	28.32
$\mathfrak{L}_s \mathfrak{L} \land \left(T_s \right) \land \left(29.92 \right)$				-			29.92
$Q_{sd} = Q_s \times (1 - B_{ws})$	7,530	=	7,706	х	(1	-	0.023)

Mass Flow Rate Wet Flue Gas

$\cdot m = \frac{4.995 \times Q_{sd} \times G_d}{1000}$	35,093	=	4.995	Х	7,530	х	0.91176
$m_g = \frac{1 - B_{ws}}{1 - B_{ws}}$			(1	-	0.023)		

Actual Gas Density

$\alpha = \frac{0.04585 \times P_s \times M_s}{0.04585 \times P_s \times M_s}$	0.0679	0.0459	х	28.32	х	28.71
$p = \frac{\overline{T_{-}}}{T_{-}}$				549		

 C_p

 P_s

Where:

- Cross-sectional area of duct at sample point (sq. ft.). А =
- B_{ws} Water vapor in gas stream (proportion by volume). =
 - Pitot tube calibration coefficient. =
- Gd Flue gas specific gravity relative to air, dimensionless. =
- Mass flow rate of wet flue gas (LB/HR). m_a =
- M_s Molecular weight of wet flue gas (LB/LB-mole). =
 - Absolute gas pressure of duct (Inches Hg). =
- ΛP Velocity pressure measured by pitot tube (Inches WC). =
- Q Actual flue gas volumetric flow rate (ACFM). =
- Q_{s} = Volumetric gas flow at standard conditions (SCFM).
- Q_{sd} = Dry standard volumetric gas flow rate (DSCFM).
- Flue gas temperature (°R). Ts =
- V_s Flue gas linear velocity (feet per second). =
- Actual flue gas density (LB/CF). ρ =

Appendix C - Calculation Equations

Kingsford, MI

Pace Project No. 20-04074

EPA Method 3 Calculations Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2 As reported on Table 11

Dry Molecular Weight of Flue Gas

$$M_{d} = (0.44 \times \% CO_{2}) + (0.32 \times \% O_{2}) + (0.28 \times (\% N_{2} + \% CO))$$

28.84 = (0.44 x 0.04) + (0.32 x 20.95) + (0.28 x 79.01) + (0.28 x 0.000)
Md = 28.96 by default for non-combustion sources (includes Argon).

Wet Molecular Weight of Flue Gas

 $M_{s} = M_{d} \times (1 - B_{ws}) + (18 \times B_{ws})$ 28.71 = 28.96 x (1 - 0.023) + (18 x 0.023)

Percent Excess Air

$$\% EA = 100 \times \frac{\% O_2 - (0.5 \times \% CO)}{(0.264 \times \% N_2) - (\% O_2 - (0.5 \times \% CO))}$$

Not Applicable = 100 x 20.95 - (0.50 x 0.000)
(No Combustion) (0.264 x 79.01) - (21.0 - (0.5 x 0.000))

Fuel F-factor (for comparison)

$$F_o = \frac{20.9 - \% O_2}{\% CO_2}$$
 NA $= \frac{20.9 - 21.0}{0.04}$

Where:

1010.		
Bws	=	Water vapor in gas stream (proportion by volume).
%CO	=	Carbon monoxide in gas stream (percent).
$%CO_2$	=	Carbon dioxide in gas stream (percent).
%EA	=	Excess air for combustion (percent).
F_{\circ}	=	Fuel F-factor for results comparison.
M_{d}	=	Molecular weight of dry flue gas (LB/LB-mole).
M_s	=	Molecular weight of wet flue gas (LB/LB-mole).
$%N_2$	=	Nitrogen in gas stream (percent).
%O ₂	=	Oxygen in gas stream (percent).

Grede, LLC - Iron Mountain Appendix C - Calculation Equations

Kingsford, MI

Pace Project No. 20-04074

EPA Method 4 Calculations Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2 As reported on Table 11

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 70.23 = 17.647 \times 73.54 \times 0.9916 \times \frac{28.43 + 2.65}{525}$$

Volume of Water Vapor Sampled

 $V_w = 0.047070 \times V_{lc}$ 1.64 = 0.0471 x 34.8

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_w}{V_w + V_{std}} \qquad \qquad 0.0228 = \frac{1.64}{1.64 + 70.23} \qquad \qquad x \quad 100 \quad \text{\%MC} = 2.28$$

B_{ws}	=	Water vapor in gas stream (proportion by volume).
ΔH	=	Orifice meter differential pressure (Inches WC).
P_{b}	=	Barometric pressure (Inches Hg).
T_{m}	=	Sampling train meter temperature (°R).
V_{lc}	=	Total volume of liquid collected in sampling train (mls
V_{m}	=	Volume of gas sample measured by gas meter (CF).
V_{std}	=	Gas volume corrected to standard conditions (DSCF)
V_{w}	=	Volume of water vapor in gas sample (SCF).
Y	=	Dry gas meter calibration coefficient.

Appendix C - Calculation Equations

Kingsford, MI

Pace Project No. 20-04074

EPA Method 5 Calculations Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 22

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 70.23 = 17.647 \times 73.54 \times 0.9916 \times \frac{28.43 + 2.65}{13.6} \times \frac{13.6}{525}$$

Isokinetic Variation

$$I = \left(\frac{0.09450 \times \overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})}\right)$$
 102.4 =
$$\frac{0.0945 \times 549 \times 70.23}{28.32 \times 44.9 \times 0.0003 \times 84 \times 0.98}$$

Particulate Concentration

Particulate Mass Rate

$m_p = 0.008571 \times C_s \times Q_{sd}$	0.1642	= 0.008571 x 0.00254 x 7,530 Dry Catch PM Only
$\begin{array}{c} Where: A_n \\ B_{ws} \\ C_s \\ \Delta H \\ I \\ m_n \\ m_p \\ P_b \\ P_s \\ Q_{sd} \\ T_m \\ T_s \\ V_m \\ V_{std} \\ V_s \\ Y \\ \theta \end{array}$		Cross-sectional area of nozzle opening (square feet). Water vapor in gas stream (proportion by volume). Particulate concentration of gas stream (GR/DSCF). Orifice meter differential pressure (Inches WC). Isokinetic variation of sampling rate (percent). Total particulate collected in sampling train (grams). Particulate mass flow rate (LB/HR). Barometric pressure (Inches Hg). Absolute gas pressure of duct (Inches Hg). Dry standard volumetric gas flow rate (DSCFM). Sampling train meter temperature (°R). Flue gas temperature (°R). Volume of gas sample measured by gas meter (CF). Gas volume corrected to standard conditions (DSCF) Flue gas linear velocity (feet per second). Dry gas meter calibration coefficient. Total sampling time of run (minutes).

Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

EPA Method 2 Calculations Cupola Baghouse Exhaust

> **Test 1, Run 3** As reported on Table 30

Flue Gas Linear Velocity:

Volumetric Flow Rates - ACFM, SCFM, DSCFM:

$Q = 60 \times v_s \times A$	170,789 =	= 60	Х	3.22	х	884.63
$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$	136,721 =	= 170,789	х	528	x	28.78
$\mathfrak{L}_s \mathfrak{L} \cap \left(T_s \right) \cap \left(29.92 \right)$				634		29.92
$Q_{sd} = Q_s \times (1 - B_{ws})$	132,683 =	= 136,721	х	(1	-	0.030)

Mass Flow Rate Wet Flue Gas

$m_{g} = \frac{4.995 \times Q_{sd} \times G_{d}}{1 \times Q_{sd} \times G_{d}}$	549,688 =	4.995	х	132,683	х	0.80491
$m_g = \frac{1 - B_{ws}}{1 - B_{ws}}$		(1	-	0.030)		

Actual Gas Density

$\rho = \frac{0.04585 \times P_s \times M_s}{-}$	0.0600	0.0459	Х	28.78	х	28.83	
$p = \frac{\overline{T_c}}{T_c}$				634			

 C_p

 P_s

- A = Cross-sectional area of duct at sample point (sq. ft.).
- B_{ws} = Water vapor in gas stream (proportion by volume).
 - = Pitot tube calibration coefficient.
- G_d = Flue gas specific gravity relative to air, dimensionless.
- $m_g = Mass$ flow rate of wet flue gas (LB/HR).
- M_s = Molecular weight of wet flue gas (LB/LB-mole).
 - Absolute gas pressure of duct (Inches Hg).
- ΔP = Velocity pressure measured by pitot tube (Inches WC).
- Q = Actual flue gas volumetric flow rate (ACFM).
- Q_s = Volumetric gas flow at standard conditions (SCFM).
- Q_{sd} = Dry standard volumetric gas flow rate (DSCFM).
- T_s = Flue gas temperature (°R).
- V_s = Flue gas linear velocity (feet per second).
- ρ = Actual flue gas density (LB/CF).

Kingsford, MI Pace Project No. 20-04074 **Appendix C - Calculation Equations**

EPA Method 3 Calculations Cupola Baghouse Exhaust

Test 1, Run 3 As reported on Table 19

Dry Molecular Weight of Flue Gas

$$M_{d} = (0.44 \times \% CO_{2}) + (0.32 \times \% O_{2}) + (0.28 \times (\% N_{2} + \% CO))$$

29.16 = (0.44 × 2.69) + (0.32 × 18.25) + (0.28 × 79.06) + (0.28 × 0.000)

Wet Molecular Weight of Flue Gas

 $M_{s} = M_{d} \times (1 - B_{ws}) + (18 \times B_{ws})$ 28.83 = 29.16 x (1 - 0.030) + (18 x 0.030)

Percent Excess Air

$$\% EA = 100 \times \frac{\% O_2 - (0.5 \times \% CO)}{(0.264 \times \% N_2) - (\% O_2 - (0.5 \times \% CO))}$$

Fuel F-factor (for comparison)

$$F_{o} = \frac{20.9 - \% O_{2}}{\% CO_{2}} \qquad \qquad 0.985 = \frac{20.9 - 18.3}{2.69}$$

1010.		
Bws	=	Water vapor in gas stream (proportion by volume).
%CO	=	Carbon monoxide in gas stream (percent).
$%CO_2$	=	Carbon dioxide in gas stream (percent).
%EA	=	Excess air for combustion (percent).
F_{o}	=	Fuel F-factor for results comparison.
M_{d}	=	Molecular weight of dry flue gas (LB/LB-mole).
M _s	=	Molecular weight of wet flue gas (LB/LB-mole).
$%N_2$	=	Nitrogen in gas stream (percent).
% O ₂	=	Oxygen in gas stream (percent).

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074 EPA Method 4 Calculations Cupola Baghouse Exhaust

Test 1, Run 3

As reported on Table 19

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 92.94 = 17.647 \times 98.98 \times 0.9922 \times \frac{28.87 + 2.08}{541}$$

Volume of Water Vapor Sampled

 $V_w = 0.047070 \times V_k$ 2.83 = 0.0471 x 60.1

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_w}{V_w + V_{std}} \qquad \qquad 0.0295 = \frac{2.83}{2.83 + 92.94} \qquad \qquad x \quad 100 \quad \% MC = 2.95$$

B_{ws}	=	Water vapor in gas stream (proportion by volume).
ΔH	=	Orifice meter differential pressure (Inches WC).
P_{b}	=	Barometric pressure (Inches Hg).
T_{m}	=	Sampling train meter temperature (°R).
V_{Ic}	=	Total volume of liquid collected in sampling train (mls
V_{m}	=	Volume of gas sample measured by gas meter (CF).
V_{std}	=	Gas volume corrected to standard conditions (DSCF)
V_{w}	=	Volume of water vapor in gas sample (SCF).
Y	=	Dry gas meter calibration coefficient.

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074 EPA Method 5 Calculations

Cupola Baghouse Exhaust

Test 1, Run 3 As reported on Table 30

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 92.94 = 17.647 \times 98.98 \times 0.9922 \times \frac{28.87 + 2.08}{13.6} \times \frac{28.87}{541} + \frac{2.08}{13.6} \times \frac{13.6}{541}$$

Isokinetic Variation

$$I = \left(\frac{0.09450 \times \overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})}\right) \qquad 94.7 = \frac{0.0945 \times 634 \times 92.94}{28.78 \times 3.2 \times 0.0055 \times 120 \times 0.97}$$

Particulate Concentration

Particulate Mass Rate

$m_p = 0.008571 \times C_s \times Q_{sd}$	1.2539	= 0.008571 x 0.00110 x 132,683 Dry Catch PM Only
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Cross-sectional area of nozzle opening (square feet). Water vapor in gas stream (proportion by volume). Particulate concentration of gas stream (GR/DSCF). Orifice meter differential pressure (Inches WC). Isokinetic variation of sampling rate (percent). Total particulate collected in sampling train (grams). Particulate mass flow rate (LB/HR). Barometric pressure (Inches Hg). Absolute gas pressure of duct (Inches Hg). Dry standard volumetric gas flow rate (DSCFM). Sampling train meter temperature (°R). Flue gas temperature (°R). Volume of gas sample measured by gas meter (CF). Gas volume corrected to standard conditions (DSCF) Flue gas linear velocity (feet per second). Dry gas meter calibration coefficient. Total sampling time of run (minutes).

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Grede. LLC - Iron Mountain Page C-23 of 30

Emission Rate:

$$E_R = 6.243 \times 10^{-8} \times C_{mg/dscm} \times DSCFM \times 60$$

$$0.673 = 6.24E-08 \times 11.8926 \times 15,106 \times 60$$

 $C_{mg/dscm} = C_{Gas} \times \frac{M_{Gas}}{24.04}$ 11.893 = 10.2134 x 28.01 24.055

See equation nomenclature on following page.

 $C_{Gas} = \left(\overline{C} - C_{0_{SR}}\right) \frac{C_{Cyl}}{\left(\frac{C_{SR_{I}} + C_{SR_{F}}}{2}\right) - C_{0_{SR}}}$ CO PPM, Dry 49.60 PPM, Dry 10.21 = (10.8 - 1.12)(48.5 48.1) Х +1.12 2

Gas Concentration Corrected for System Bias:

Conversion to Weight/Volume Basis:

System Drift:

$$D_{Sys} = \frac{C_{SR_F} - C_{SR_I}}{S_{FS}} \times 100 \quad \text{(absolute)} \quad 0.40\% = \frac{48.08 - 48.52}{110} \times 100 \quad \text{(upscale)} \quad CO \text{ PPM}$$

$$B_{Sys} = \frac{C_{SR} - C_{AR}}{S_{FS}} \times 100 \qquad 0.01\% = \frac{48.52 - 48.50}{110} \times 100 \qquad (upscale)$$
CO PPM

 $0.01\% = 110.0 - 110.0 \times 110.0$

Kingsford, MI Pace Project No. 20-04074

Analyzer Calibration Error:

 $A_E = \frac{C_{AR} - C_{Cyl}}{S_{rec}} \times 100$

 $B_{Sys} = \frac{C_{SR} - C_{AR}}{C} \times 100$

Grede, LLC - Iron Mountain

100

100

Instrumental Method Calculations **Cupola Baghouse Inlet** Test 1, Run 2

Page 1 of 2

(high gas) CO PPM

(upscale) _ _ _ _ .

CO mg/dscm

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074 Instrumental Method Calculations Cupola Baghouse Inlet Test 1, Run 2 Page 2 of 2

Where:		
A _E	=	Analyzer calibration error, percent of span.
B _{Sys}	=	System calibration bias, percent of span.
D _{Sys}	=	System calibration drift, percent of span.
ō	=	Average gas concentration response from analyzer, PPM (or %).
C _{0SR}	=	Average of initial and final system calibration bias
		check responses for the zero gas, PPM (or %).
C _{AR}	=	Analyzer direct calibration response, PPM (or %).
C _{Cyl}	=	Actual concentration of calibration gas, PPM (or %).
C _{SR}	=	System calibration response, PPM (or %).
	=	Final system calibration response, PPM (or %).
C _{SRI}	=	Initial system calibration response, PPM (or %).
C _{gas}	=	Concentration adjusted for system bias, PPM (or %).
C _{mg/dscm}	=	Constituent concentration converted to mg/dscm.
M _{Gas}	=	Molecular weight of target constituent, lb/lb-mole.
E _R	=	Emission rate of constituent, LB/HR.
S _{FS}	=	System measurement span, full scale.
DSCFM	=	Dry standard cubic feet per minute.
6.243x10 ⁻⁸	=	Conversion factor, mg/cm to LB/CF.
60	=	Conversion factor, minutes to hours.

Grede, LLC - Iron I	Mountain	Appendix C - Calculation Equations		
Kingsford, MI		Gas Concentration and Emission Rate		
Pace Project No. 20-04074		Cupola Baghouse Inlet		
		Test 1, Run 2		
		As reported on Table 10		
Mass Analysis to Weight/Vo	lume Concentration:	NA - Analyzed as gas		
$C_{mg/dscm} = \frac{m}{V_{std}}$	NA = NA NA	(Carbon Monoxide)		

Volume/Volume Concentration to Weight/Volume Concentration:

$C_{mg/dscm} = C_{PPM-d} \times \frac{MW}{24.055}$	11.9	=	10.2	х	28.01 24.055		(Carbon Monoxide)
GR/DSCF	0.00520 7.4E-07	=	11.9 11.9	x x	0.0004370 6.24E-08	Conversion Factor Conversion Factor Conversion Factor	

 $C_{PPM-d} = C_{mg/dscm} \times \frac{24.055}{MW}$ 10.2 = 11.9 × 24.055 28.01 (Carbon Monoxide)

Constituent Emission Rate:

 $E_{Gas} = (6.243 \times 10^{-8}) \times 60 \times C_{mg/dscm} xDSCFM$

Grede LLC - Iron Mountain

0.673 6.243E-08 x 60 x 11.9 x 15,106 Carbon Monoxide)	0.673	6.243E-08 x	60	х	11.9	х	15,106	Carbon Monoxide)
---	-------	-------------	----	---	------	---	--------	------------------

Where:		
C _{mg/dscm}	=	Constituent Concentration, mg/cubic meter.
C _{PPM-d}	=	Constituent Concentration, PPM v/v, dry basis.
DSCFM	=	Volumetric Airflow, dry standard cubic feet per minute.
E _{gas}	=	Constituent Emission Rate, LB/HR.
m	=	Mass of Constituent Collected, µg.
MW	=	Molecular Weight of Constituent.
V _{std}	=	Standard Volume of Air Sample, dry standard cubic meters.
24.055	=	Ideal gas molar volume at 293 °K and 760 mm Hg, liters/g-mole.
6.243x10 ⁻⁸	=	Conversion From mg/dscm To LB/CF.
60	=	Conversion From Minutes to Hours.

Note: Calculations on this page are shown for dry basis concentrations.

Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

Gas Concentration and Emission Rate

Cupola Baghouse Inlet

Test 1, Run 2 As reported on Table 10

Wet to Dry Concentration Correction:

$$C_{dry} = \frac{C_{wet}}{\left(1 - \frac{MC_{source}}{100}\right)}$$

$$10.2 = \boxed{\begin{array}{c} 8.12 \\ 1 & - 20.45 \\ \hline 100 \end{array}}$$
(Carbon Monoxide)

Dry to Wet Concentration Correction:

 $C_{wet} = C_{dry} \times \left(1 - \frac{MC_{source}}{100}\right)$ 8.12 = 10.2 x | 1 - <u>20.45</u> (Carbon Monoxide)

Wet Analytical Basis to Wet Stack Basis

$$C_{wet-s} = \frac{C_{wet-a}}{\left(1 - \frac{MC_{analyses}}{100}\right)} \times \left(1 - \frac{MC_{source}}{100}\right)$$

Not applicable to this data set.

Wh	ere:
• • • • •	CIC.

C _{dry}	=	Constituent Concentration, PPM v/v, dry basis.
C _{wet}	=	Constituent Concentration, PPM v/v, wet basis.
C _{wet-a}	=	Constituent Analyzed Concentration, PPM v/v, wet basis.
C _{wet-s}	=	Constituent Stack Concentration, PPM v/v, wet basis.
MC _{analyses}	=	Gas Moisture Content at Analyses, %v/v.
MC _{source}	=	Gas Moisture Content of Source Gas, %v/v.

Report Nomenclature

Abbreviations, Symbols, and Nomenclature

"Hg "C °F °K °R % v/v % w/w ACFM AP-42	Inches of Mercury (pressure) Inches Water Column (pressure) Degrees Centigrade or Celsius Degrees Fahrenheit Degrees Kelvin (absolute) Degrees Rankin (absolute) Percent by volume Percent by volume Percent by weight Actual Cubic Feet per Minute Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point
BACT BH BHP BTU c c ³ cc	and Area Sources. Best Available Control Technology Baghouse Brake Horsepower British Thermal Unit Centimeter Cubic Centimeter Cubic Centimeter
CAA CAAA CE CE CEM CEMS	Clean Air Act Clean Air Act Amendments Control Equipment (in Reg. ID Nos.) Control Efficiency Continuous Emissions Monitor Continuous Emissions Monitoring System
$\begin{array}{c} CF\\ CFR\\ C_1\\ CH_4\\ C_3H_8\\ cm\\ CO\\ CO_2\\ DGS\\ DDGS\\ \end{array}$	Cubic Feet Code of Federal Regulations Carbon (as carbon) Methane Propane Cubic Meter Carbon Monoxide Carbon Dioxide Distiller's Grains with Solubles Dry Distiller's Grains with Solubles
DRE DSCF DSCFM dscm dscmm dsl EPA EP ESP EU FID	Destruction/Reduction Efficiency Dry Standard Cubic Feet Dry Standard Cubic Feet per Minute Dry Standard Cubic Meter Dry Standard Cubic Meter per Minute Dry Standard Liter Environmental Protection Agency Emission Point Electrostatic Precipitator Emission Unit Flame Ionization Detector
FGR FPD FPM FPS FR FT or ft FT ³	Flue Gas Recirculation Flame Photometric Detector Feet Per Minute Feet Per Second Federal Register Foot or Feet Cubic Feet

FTIR	Fourier Transform Infrared
g	Gram
ĞC	Gas Chromatograph(y)
GPD	Gallons Per Day
GPH	Gallons Per Hour
GR	Grains
H ₂ O	Water
H₂S	Hydrogen Sulfide
HAP	Hazardous Air Pollutant
HAPs	Hazardous Air Pollutants
Hg	Mercury
HP	Horsepower
HR	Hour Inch or Inches
ln. KLB	Thousand Pounds
kW	Kilowatt
kWH	Kilowatt Hour
	liter
LB	Pound or Pounds
LDAR	Leak Detection and Repair
m	Meter
m ³	Cubic Meter
MACT	Maximum Achievable Control
	Technology
MC	Moisture Content
μg	Microgram
μΙ	Microliter
μm	Micrometer (micron)
mg	Milligram
MGAL	Thousand Gallons
Min.	Minute or Minutes
ml	Milliliter
	Millimeter
MMBTU	Million British Thermal Units
MMSCF MS	Million Standard Cubic Feet
MSDS	Mass Spectrometry Material Safety Data Sheet
mW	Megawatt
MW	Molecular Weight
N ₂	Nitrogen
NA	Not Applicable
NAAQS	National Ambient Air Quality
	Standards
NESHAP	National Emission Standards for
	Hazardous Air Pollutants
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides (quantified as NO ₂)
NSPS	New Source Performance Standard
O ₂	Oxygen
PEMS	Parametric (or Predictive) Emissions
	Monitoring System
PID	Photo Ionization Detector
PM	Particulate Matter

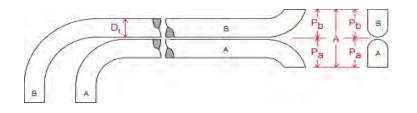
Abbreviations, Symbols, and Nomenclature

PM ₁₀	Particulate Matter with an aerodynamic diameter equal to or less than 10 microns
PM-10	PM ₁₀
PM _{2.5}	Particulate Matter with an
	aerodynamic diameter equal to or less
	than 2.5 microns
PM-2.5	PM _{2.5}
PPB PPM	Parts Per Billion (see variation below) Parts Per Million
PPMv	Part Per Million by volume
	Parts Per Million by volume, dry basis
	t Parts Per Million by volume, wet basis
PPMw	Parts Per Million by Weight (mg/l)
PSIA	Pounds per Square Inch, Absolute
PSIG	Pounds per Square Inch, Gauge
PTE	Permanent Total Enclosure
RA	Relative Accuracy
RATA rH	Relative Accuracy Test Audit Relative Humidity
RTO	Regenerative Thermal Oxidizer or
NIO -	Recuperative Thermal Oxidizer
SCF	Standard Cubic Feet
SCFM	Standard Cubic Feet per Minute
scm	Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
Scr.	Scrubber
SIC	Standard Industrial Classification
SO2 SOx	Sulfur Dioxide Sulfur Oxides
SO _x Sq. Ft.	Square Feet
TCD	Thermal Conductivity Detector
TO	Thermal Oxidizer
TPD	Tons Per Day
TPH	Tons Per Hour
TPY	Tons per year
TRS	Total Reduced Sulfur
TSP	Total Suspended Particulate Matter
TTE USEPA	Temporary Total Enclosure United States Environmental
USEFA	Protection Agency
VHAP	Volatile Hazardous Air Pollutant
VOC	Volatile Organic Compound
VOCs	Volatile Organic Compounds
WC	Water Column
WDGS	Wet Distiller's Grains with Solubles

Abbreviations, Symbols, and Nomenclature

State Environmental Agency Acronyms

ADEM	Alabama Department of
ADEC	Environmental Management Alaska Department of Environmental
ADEQ	Conservation Arizona Department of Environmental
ADEQ	Quality Arkansas Department of
CARB CDPHE	Environmental Quality California Air Resources Board Colorado Department of Public Health
CDEP	& Environment Connecticut Department of
DNREC	Environmental Protection Delaware Natural Resources &
FDEP	Environmental Control Florida Department of Environmental
GEPD	Protection Georgia Environmental Protection
IDEQ	Division Idaho Department of Environmental
IEPA	Quality Illinois Environmental Protection
IDNR	Agency Iowa Department of Natural
KDHE	Resources Kansas Department of Health &
KDEP	Environment Kentucky Department for
LDEQ	Environmental Protection Louisiana Department of
MDEP	Environmental Quality Maine Department of Environmental
MDE	Protection Maryland Department of the
MDEP	Environment Massachusetts Department of
EGLE	Environmental Protection Michigan Department of Environment,
MPCA	Great Lakes, and Energy Minnesota Pollution Control Agency
MDEQ	Mississippi Department of Environmental Quality
MDNR	Missouri Department of Natural Resources
MDEQ	Montana Department of
NDEE	Environmental Quality Nebraska Department of Environment
NDEP	and Energy Nevada Division of Environmental Protection

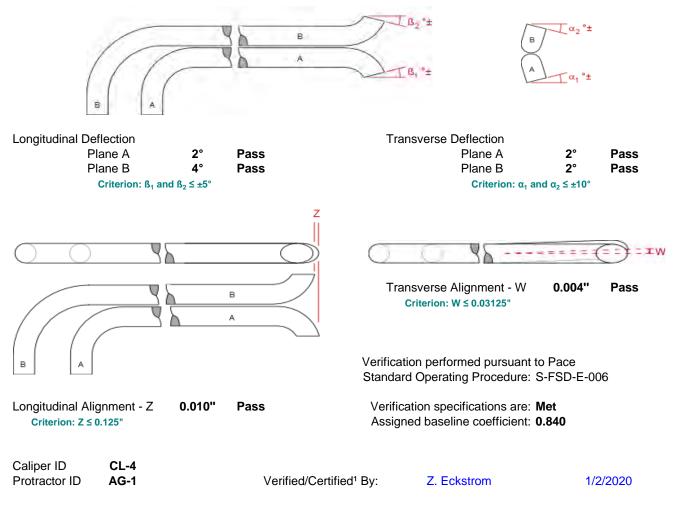

NHDES	New Hampshire Department of
	Environmental Services
NJDEP	New Jersey Department of
	Environmental Protection
NMED	New Mexico Environment Department
	New York State Department of
NI OD LO	Environmental Conservation
	North Carolina Department of
NODENIX	Environment & Natural Resources
NDDEQ	North Dakota Department of
NUDLQ	Environmental Quality
OEPA	Ohio Environmental Protection
UEPA	
	Agency
ODEQ	Oklahoma Department of
0050	Environmental Quality
ODEQ	Oregon Department of Environmental
	Quality
PDEP	Pennsylvania Department of
	Environmental Protection
RIDEM	Rhode Island Department of
	Environmental Management
SCDHEC	South Carolina Department of Health
	& Environmental Control
SDDENR	South Dakota Department of
	Environment & Natural Resources
TDEC	Tennessee Department of
	Environment & Conservation
TCEQ	Texas Commission on Environmental
	Quality
UDEQ	Utah Department of Environmental
	Quality
VANR	Vermont Agency of Natural
	Resources
VDEQ	Virginia Department of Environmental
	Quality
WSDNR	Washington State Department of
	Natural Resources
WVDEP	West Virginia Division of
	Environmental Protection
WDNR	Wisconsin Department of Natural
	Resources

Appendix D

Quality Assurance Information

Sampling Train Calibration Data

S-Type Pitot Contruction and Mechanical Integrity Verification



Tube Obstruction CheckFCheck for Tip DamageFFace Planes ParallelFPart of an Assemby?YNozzle ClearanceFThermocouple ClearanceF

Pass
Pass
Pass
Yes
Pass
Pass

Tubing Diameter - $D_t (\frac{3}{16}" \text{ to } \frac{3}{8}")$	5/16"	Pass
Distance Between Face Planes - A	0.930"	Pass
Base to Face Plane A Distance - P _a	0.450"	Pass
Base to Face Plane B Distance - P_b	0.480"	Pass
Criterion: 1.05Dt $\leq P \leq 1.5Dt$, $P_a=P_{b(\pm 2\% \text{ of } A)}$		

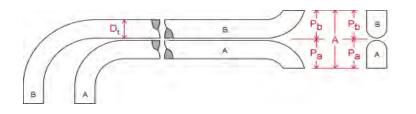
Face Plane Alignment Verification

5/16"

0.940"

0.470"

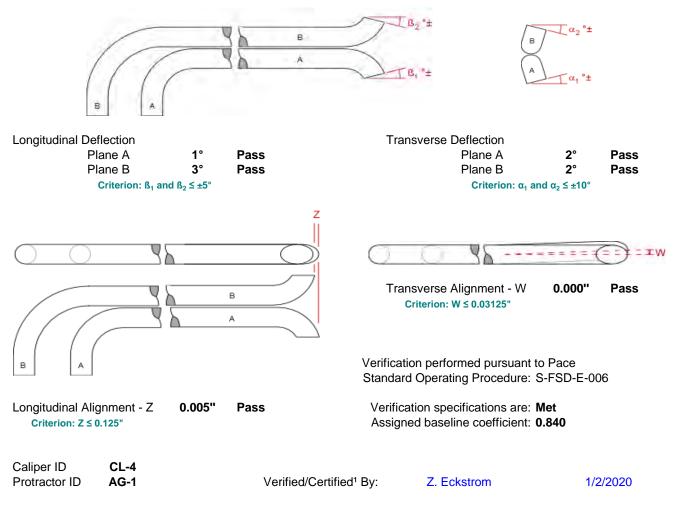
0.470"

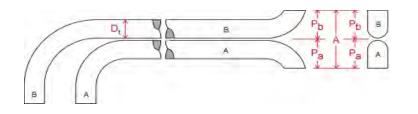

Pass

Pass

Pass

Pass

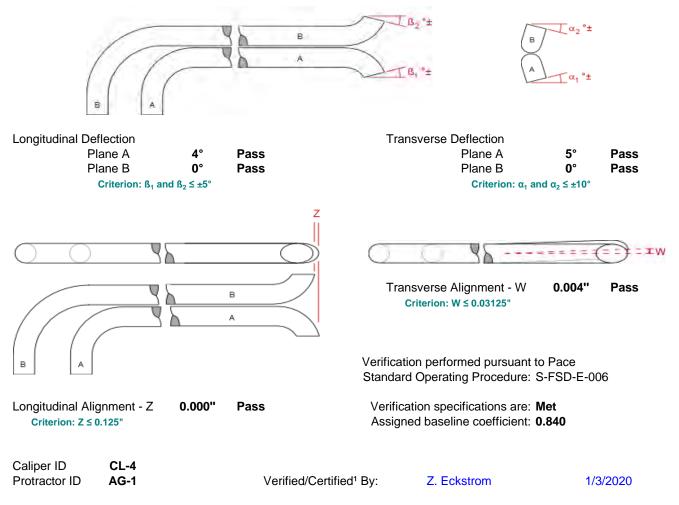

S-Type Pitot Contruction and Mechanical Integrity Verification


Tube Obstruction CheckPassCheck for Tip DamagePassFace Planes ParallelPassPart of an Assemby?YesNozzle ClearancePassThermocouple ClearancePass

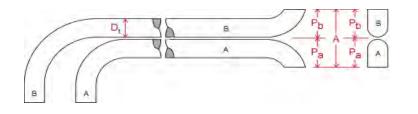
Tubing Diameter - $D_t (^3/_{16}")$	to ³ / ₈ ")
Distance Between Face Pla	anes - A
Base to Face Plane A Dist	ance - P _a
Base to Face Plane B Dist	ance - P _b
Criterion:1.05Dt \leq P \leq 1.5Dt,	$P_a = P_b (\pm 2\% \text{ of } A)$

Face Plane Alignment Verification

S-Type Pitot Contruction and Mechanical Integrity Verification



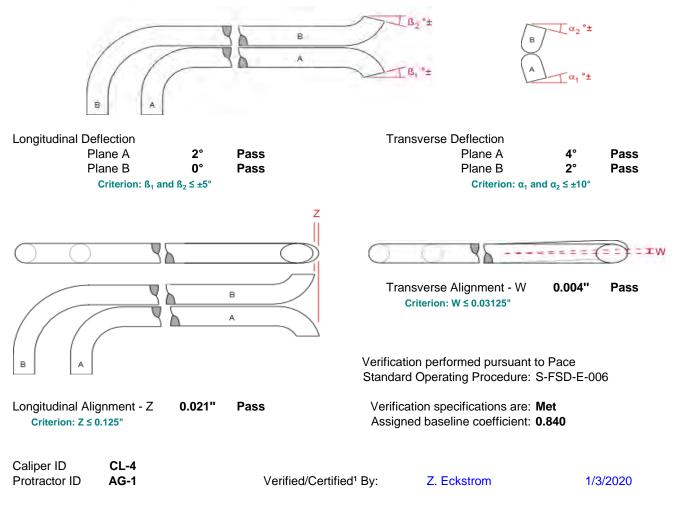
Tube Obstruction CheckFCheck for Tip DamageFFace Planes ParallelFPart of an Assemby?YNozzle ClearanceFThermocouple ClearanceF


Pass
Pass
Pass
Yes
Pass
Pass

Tubing Diameter - $D_t (\frac{3}{16}" \text{ to } \frac{3}{8}")$	5/16"	Pass
Distance Between Face Planes - A	0.935"	Pass
Base to Face Plane A Distance - P _a	0.460"	Pass
Base to Face Plane B Distance - P_b	0.475"	Pass
Criterion: 1.05Dt $\leq P \leq 1.5Dt$, $P_a=P_{b(\pm 2\% \text{ of } A)}$		

Face Plane Alignment Verification

S-Type Pitot Contruction and Mechanical Integrity Verification



Tube Obstruction CheckPaCheck for Tip DamagePaFace Planes ParallelPaPart of an Assemby?YeNozzle ClearancePaThermocouple ClearancePa

ISS			
ISS			
ISS			
es			
ISS			
ISS			

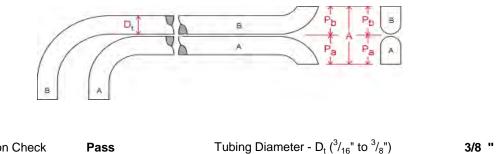
Tubing Diameter - $D_t (^3/_{16}" \text{ to } ^3/_8")$	5/16"	Pass
Distance Between Face Planes - A	0.932"	Pass
Base to Face Plane A Distance - P _a	0.482"	Pass
Base to Face Plane B Distance - P_b	0.450"	Pass
Criterion: 1.05Dt $\leq P \leq 1.5Dt$, $P_a=P_b (\pm 2\% \text{ of } A)$		

Face Plane Alignment Verification

Pass

Pass

Pass

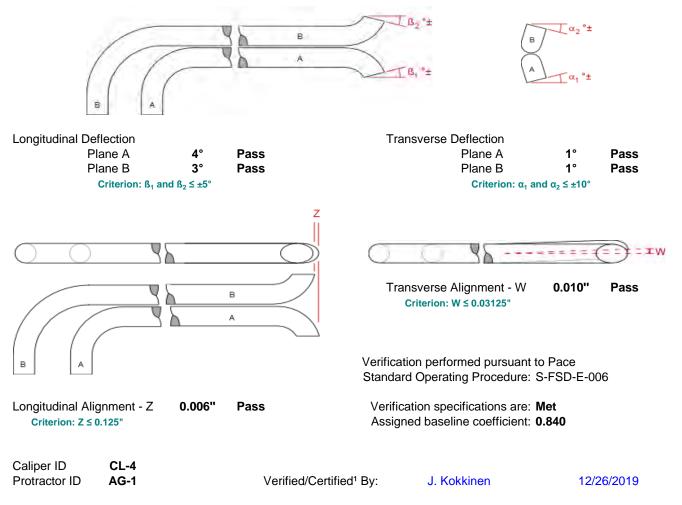

Pass

1.098"

0.555"

0.543"

Distance Between Face Planes - A


Base to Face Plane A Distance - Pa

Base to Face Plane B Distance - Pb

Criterion: 1.05Dt $\leq P \leq 1.5Dt$, $P_a = P_{b(\pm 2\% \text{ of } A)}$

Tube Obstruction Check	Pass
Check for Tip Damage	Pass
Face Planes Parallel	Pass
Part of an Assemby?	No
Nozzle Clearance	NA
Thermocouple Clearance	NA

Face	Plane	Alignment	Verification

Kingsford, MI Pace Project No. 20-04074

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_1 DTM Serial No. 33227

		hermocouple	Displays (°F]	Temperature Ref	erence Standard	No. Omega CL23	3A
	on: % Difference≤ 1. Stack Display		Me	ter Inlet Displ	av	Met	er Outlet Dis	olav
Target	Results	% Diff.	Target	Results	<u>% Diff.</u>	Target	Results	<u>% Diff.</u>
1800	1798	0.09%	200	198	0.30%	200	201	0.15%
1500	1499	0.05%	150	146	0.66%	150	148	0.33%
1000	999	0.07%	100	96	0.71%	100	96	0.71%
500	498	0.21%	75	71	0.75%	75	71	0.75%
200	201	0.15%	50	46	0.78%	50	46	0.78%
100	100	0.00%	25	21	0.82%	25	21	0.82%
0	3	0.65%	0	-2	0.43%	0	-2	0.43%
Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	Verific	cation Status:	Pass
		5 criterion is 1.5% °R.		criterion of 5.4°F for high			criterion of 5.4°F for hig	
	nger Outlet Di			Oven Display			Probe Display	
Target	Results	<u>% Diff.</u>	Target	<u>Results</u>	<u>% Diff.</u>	Target	<u>Results</u>	<u>% Diff.</u>
200	194	0.91%	350	340	1.23%	350	348	0.25%
150	144	0.98%	300	292	1.05%	300	298	0.26%
100	94	1.07%	250	242	1.13%	250	248	0.28%
75	69	1.12%	200	192	1.21%	200	198	0.30%
50	46	0.78%	150	141	1.48%	150	147	0.49%
25	21	0.82%	100	92	1.43%	100	97	0.54%
0	-1	0.22%	50	43	1.37%	50	51	0.20%
Verifi	cation Status:	Pass		cation Status: prion of 5.4°F for highligh	Pass	-	cation Status: criterion of 5.4°F for hig	Pass
			El Ativi o onic	non or o.+ r tor nigningr	ited range is normet.	Eritmot	Since for 0.0 0.4 1 for hig	inighted range is met.
			Verifie	ed/Certified ¹ :	K. A	thoff	10/15	/2020
Dry Test Met	er and Orific	e Periodic Ca	libration	Volume Referenc	o Standard W/TM	No WTM-2		
Dry rest met				volume reference		1140. 001101-2		
Orifice Diff.	Dry Test	Wet Test	Drv Tes	st Meter	Wet Test	Elapsed	Gas Meter	Orifice
Press., ∆H	Meter Vol.	Meter Vol.		ature, °F	Meter	Time	Coefficient	Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	Inlet	Outlet	<u>Temp., °F</u>	<u>Minutes</u>	α	<u>ΔH@</u>
0.5	5.412	5.3	77.0	76.0	67.4	13.294	0.9944	1.780
1	6.100	6.0	77.0	75.0	67.1	10.754	0.9982	1.815
1.75	6.745	6.7	75.0	72.5	66.6	9.137	1.0039	1.840
2.5	10.871	10.6	79.5	75.5	67.1	12.055	0.9875	1.829
3.5	20.470	20.1	80.0	77.0	67.3	19.439	0.9954	1.840
		lange 0.99 - 1.		Met		e Coefficients	0.9959	1.821
		Spec. ± 0.02 c		Pass		from Average	0.0084	
	Orifice Range	e Spec. ± 0.2 o	f Avg	Pass	Max. Δ	from Average		0.041

Verified/Certified¹:

K. Althoff

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

10/15/2020

Kingsford, MI Pace Project No. 20-04074

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_3 DTM Serial No. 661003

		hermocouple	Displays (°F)	Temperature Ref	erence Standard	No. Omega CL23	3A
Acceptance Crtierio	n: % Difference≤1. Stack Displa y		Me	eter Inlet Disp	lav	Met	er Outlet Dis	olav
Target	Results	% Diff.	Target	Results	<u>% Diff.</u>	Target	Results	<u>% Diff.</u>
1800	1799	0.04%	200	198	0.30%	200	199	0.15%
1500	1499	0.05%	150	147	0.49%	150	148	0.33%
1000	998	0.14%	100	96	0.71%	100	98	0.36%
500	498	0.21%	75	71	0.75%	75	73	0.37%
200	201	0.15%	50	46	0.78%	50	48	0.39%
100	100	0.00%	25	22	0.62%	25	24	0.21%
0	2	0.43%	0	-1	0.22%	0	0	0.00%
Verifi	cation Status:	Pass		cation Status:	Pass		cation Status:	Pass
		5 criterion is 1.5% °R.		criterion of 5.4°F for hig			riterion of 5.4°F for hig	
-	iger Outlet Di			Oven Display			Probe Display	
<u>Target</u>	Results	<u>% Diff.</u>	<u>Target</u>	<u>Results</u>	<u>% Diff.</u>	Target	<u>Results</u>	<u>% Diff.</u>
200	196	0.61%	350	357	0.86%	350	354	0.49%
150	146	0.66%	300	307	0.92%	300	304	0.53%
100	96	0.71%	250	257	0.99%	250	254	0.56%
75	71	0.75%	200	207	1.06%	200	204	0.61%
50	48	0.39%	150	156	0.98%	150	153	0.49%
25	23	0.41%	100	106	1.07%	100	104	0.71%
0	0	0.00%	50	57	1.37%	50	55	0.98%
Verific	cation Status:	Pass		Verification Status: Pass EPA M-5 criterion of 5.4°F for highlighted range is not met.			cation Status:	Pass
		JZ CITTEHOLTIS 1.5 % K.	EFA M-5 Chie	non of 5.4 F for highing	nieu range is not met.	EFA M-5 C	Interior of 5.4 P for flig	inighted range is met.
			Verifie	ed/Certified ¹ :	K. Al	thoff	12/4/	2020
Dry Toot Mat	or and Orifia	- Doriodio Col	libration	Malana Defense				
Dry rest wet		e Periodic Ca	indiation	volume Reference	ce Standard WTM	NO. VV I IVI-2		
Orifice Diff.	Dry Test	Wet Test	Dry Tes	st Meter	Wet Test	Elapsed	Gas Meter	Orifice
Press., ∆H	Meter Vol.	Meter Vol.		ature, °F	Meter	Time	Coefficient	Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	Inlet	Outlet	Temp., °F	<u>Minutes</u>	α	<u>ΔH@</u>
0.5	5.784	5.7	84.5	81.0	72.5	14.277	0.9944	1.828
1	5.429	5.3	85.5	81.0	72.7	9.473	0.9925	1.833
1.75	6.128	6.0	81.5	80.0	72.8	8.251	0.9898	1.899
2.5	11.165	10.9	85.0	80.5	72.4	12.482	0.9933	1.862
3.5	13.351	13.1	87.0	82.0	73.0	12.684	0.9910	1.889
	Destance		04	N# = 4		0	0.0000	4 000
		lange 0.99 - 1.	01	Met	Average	e Coefficients	0.9922	1.862

Meter Range Spec. \pm 0.02 of Avg Orifice Range Spec. \pm 0.2 of Avg

Verified/Certified1:

Pass

Pass

K. Althoff

Max. Δ from Average

Max. Δ from Average

12/4/2020

0.037

0.0024

Kingsford, MI Pace Project No. 20-04074

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_5 DTM Serial No. 351158

Verification of			Displays (°F) .	Temperature Ref	erence Standard	No. Omega CL23	3A
	ance Crtierion: % Difference≤ 1.5% (°R - absolute) Stack Display Meter Inlet Display				Ме	Meter Outlet Display		
Target	Results	<u>% Diff.</u>	Target	Results	<u>% Diff.</u>	Target	Results	% Diff.
1800	1800	0.00%	200	198	0.30%	200	205	0.76%
1500	1499	0.05%	150	146	0.66%	150	154	0.66%
1000	999	0.07%	100	95	0.89%	100	101	0.18%
500	497	0.31%	75	70	0.93%	75	76	0.19%
200	198	0.30%	50	45	0.98%	50	51	0.20%
100	96	0.71%	25	21	0.82%	25	27	0.41%
0	-1	0.22%	0	-2	0.43%	0	3	0.65%
Verific	cation Status:	Pass		cation Status:	Pass	-	ication Status:	Pass
Impin	ger Outlet Di	5 criterion is 1.5% °R.		criterion of 5.4°F for high Oven Display			criterion of 5.4°F for hig Probe Display	
Target	Results	Spiay % Diff.	Target	Results	% Diff.	Target	Results	/ % Diff.
200	199	0.15%	350	349	0.12%	350	354	0.49%
150	147	0.49%	300	299	0.12%	300	305	0.66%
100	96	0.71%	250	249	0.14%	250	242	1.13%
75	71	0.75%	200	199	0.15%	200	204	0.61%
50	46	0.78%	150	149	0.16%	150	154	0.66%
25	22	0.62%	100	98	0.36%	100	104	0.71%
0	-2	0.43%	50	50	0.00%	50	55	0.98%
Verific	cation Status:	Pass	Verifi	cation Status:	Pass	Verif	ication Status:	Pass
	EPA M-2 & 20	02 criterion is 1.5% °R.	EPA M-5	criterion of 5.4°F for high	nlighted range is met.	EPA M-5 crit	erion of 5.4°F for highlig	hted range is not met.
			Verifie	ed/Certified1 :	K. Al	thoff	11/13	/2020
Dry Test Met	er and Orifice	Periodic Ca	libration	Volume Referenc	o Standard W/TM	No WTM-2		
Dry rest met			libration	volume reference		1110. 1111-2		
Orifice Diff.	Dry Test	Wet Test	Dry Tes	st Meter	Wet Test	Elapsed	Gas Meter	Orifice
Press., ∆H	Meter Vol.	Meter Vol.		ature, °F	Meter	Time	Coefficient	Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	Inlet	Outlet	<u>Temp., °F</u>	<u>Minutes</u>	α	<u>∆H@</u>
0.5	5.728	5.7	76.5	78.0	70.2	15.143	0.9982	2.032
1	5.399	5.3	77.0	77.0	70.1	10.083	0.9914	2.053
1.75	5.376	5.3	74.0	76.5	70.2	7.701	0.9903	2.098
2.5	12.567	12.4	77.0	77.0	70.2	14.958	0.9899	2.076
3.5	13.308	13.1	79.5	79.0	71.2	13.468	0.9880	2.108

Preferential Range 0.99 - 1.01 Meter Range Spec. \pm 0.02 of Avg Orifice Range Spec. \pm 0.2 of Avg

Verified/Certified1:

Met

Pass

Pass

11/13/2020

0.9916

0.0067

2.074

0.041

Average Coefficients

Max. Δ from Average

Max. Δ from Average

K. Althoff

Kingsford, MI Pace Project No. 20-04074

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_11 DTM Serial No. 352457

	Verification of Mounted Thermocouple Displays (°F) Temperature Reference Standard No. Omega CL23A Acceptance Crtierion: % Difference ≤ 1.5% (°R - absolute)							
	Stack Display		Me	eter Inlet Disp	lav	Met	er Outlet Dis	olav
Target	Results	, <u>% Diff.</u>	Target	Results	<u>% Diff.</u>	Target	Results	<u>% Diff.</u>
1800	1804	0.18%	200	204	0.61%	200	206	0.91%
1500	1505	0.26%	150	153	0.49%	150	154	0.66%
1000	1004	0.27%	100	103	0.54%	100	103	0.54%
500	500	0.00%	75	78	0.56%	75	78	0.56%
200	202	0.30%	50	53	0.59%	50	54	0.78%
100	100	0.00%	25	28	0.62%	25	29	0.82%
0	2	0.43%	0	4	0.87%	0	5	1.09%
Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	Verific	cation Status:	Pass
		5 criterion is 1.5% °R.		criterion of 5.4°F for high			riterion of 5.4°F for hig	
-	nger Outlet Di			Oven Display			Probe Display	•
<u>Target</u>	Results	<u>% Diff.</u>	Target	<u>Results</u>	<u>% Diff.</u>	Target	<u>Results</u>	<u>% Diff.</u>
200	202	0.30%	350	351	0.12%	350	352	0.25%
150	152	0.33%	300	301	0.13%	300	301	0.13%
100	102	0.36%	250	251	0.14%	250	251	0.14%
75	77	0.37%	200	200	0.00%	200	201	0.15%
50	53	0.59%	150	150	0.00%	150	151	0.16%
25	29	0.82%	100	100	0.00%	100	101	0.18%
0	6	1.30%	50	51	0.20%	50	52	0.39%
Verifi	cation Status:	Pass 02 criterion is 1.5% °R.		cation Status:	Pass phlighted range is met.		erification Status: Pass	
		JZ CITIENDITIS 1.5 /6 K.	EFA MIS		gringriteu range is met.	EFA M-5 C	interiori of 5.4 F for hig	inighted range is met.
			Verifie	ed/Certified ¹ :	K. Al	thoff	11/10	/2020
Dry Test Mot	or and Orifia	e Periodic Ca	libration					
Dry rest met			libration	volume Relefen	ce Standard WTM	NO. W 1 W-2		
Orifice Diff.	Dry Test	Wet Test	Dry Tes	st Meter	Wet Test	Elapsed	Gas Meter	Orifice
Press., ∆H	Meter Vol.	Meter Vol.	Tempera	ature, °F	Meter	Time	Coefficient	Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	Inlet	<u>Outlet</u>	<u>Temp., °F</u>	<u>Minutes</u>	α	<u>ΔH@</u>
0.5	6.152	6.0	89.0	84.0	73.4	15.755	0.9985	1.974
1	7.955	7.8	86.5	84.0	73.6	14.729	0.9954	2.061
1.75	5.759	5.7	82.5	82.0	73.8	8.157	0.9922	2.102
2.5	13.291	13.1	86.0	82.5	73.8	15.862	0.9960	2.121
3.5	22.279	21.9	87.5	84.5	73.4	22.603	0.9971	2.136
	Preferential R	Range 0.99 - 1.	.01	Met	Average	e Coefficients	0.9958	2.079
		Spec. ± 0.02 (Pass	•	from Average	0.0036	
				_	••			

Meter Range Spec. \pm 0.02 of Avg Orifice Range Spec. \pm 0.2 of Avg

Verified/Certified¹:

Pass

K. Althoff

Max. Δ from Average

11/10/2020

0.105

Kingsford, MI Pace Project No. 20-04074

Barometric Pres	sure Barometer R	dg Difference	Barometer Rdg	Difference
Reference	As	Found	As Le	eft
Serial Number: Barometer Range:	TA4310EWR9 11-31 Inches Hg	Reference Standard: Acceptance Criterior		Inches Hg
Make and Model:	Motorola Razr	Pace SOP No.:	ENV-SOP-FIELD-	0030

Inches Hg	Inches Hg	Inches Hg	Inches Hg	Inches Hg
29.58	29.61	0.03	29.61	0.03
	Acceptance Criterion	0.10		0.10
	Acceptance Status	Pass		Pass

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.58 and applying the appropriate temperature correction factor of 0 for 67°F at the time and place of calibration/verification.

Verified/Certified¹ By: Stanley Broome 9/22/2020

Kingsford, MI Pace Project No. 20-04074 Appendix D Atmospheric Barometer Certificate Barometer No.: DB_60 Calibration Date: 8/6/2020

Make and Model: Serial Number: Barometer Range:	iPhone 6 FK1VJWZUHFLR 11628 Inches Hg	Pace SOP No.: Reference Standard: Acceptance Criterion:		0-0030 Inches Hg
Deferreres		A. Farmel	A - 1	- 64

Reference	As Fou	nd As Left				
Barometric Pressure Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg		
29.14	29.10	0.05	29.10	0.05		
	Acceptance Criterion	0.10		0.10		
	Acceptance Status	Pass		Pass		

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.25 and applying the appropriate temperature correction factor of -0.109 for 70°F at the time and place of calibration/verification.

Verified/Certified¹ By: K. Althoff 8/6/2020

Kingsford, MI Pace Project No. 20-04074

Make and Model: Serial Number: Barometer Range:	Apple iPhone 7 DX3XCJXMHG6W Inches Hg	Pace SOP No.: Reference Standard: Acceptance Criterion:	30 :hes Hg

Reference	As Fou	nd	As Left		
Barometric Pressure Inches Hg	Barometer Rdg Inches Hg	6		Barometer Rdg Inches Hg	Difference Inches Hg
29.14	29.16	0.02		29.16	0.02
	Acceptance Criterion	0.10			0.10
	Acceptance Status	Pass			Pass

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.25 and applying the appropriate temperature correction factor of -0.109 for 70°F at the time and place of calibration/verification.

Verified/Certified¹ By: K. Althoff 8/6/2020

Grede, LLC - Iron Mountain Kingsford, MI

Pace Project No. 20-04074

Appendix D Digital Manometer Calibration Certificate Digital Manometer No.: DM_46 Calibration Date: 7/15/2020

Make and Model: Serial Number: Pressure Range:	Fluke 922 44280430 16.5 Inches of Water		No.: Standard: e Criterion:	ENV-SOP-FIE Manometer #7 1.00%	
Reference	As Fo	ound		As l	_eft
Pressure	EDM Rdg	Difference		EDM Rdg	Difference
In. H₂O	In. H₂O	% of Scale		In. H ₂ O	% of Scale
-14.90	-14.86	0.27%		-14.86	0.27%
-8.30	-8.31	0.04%		-8.31	0.04%
-0.80	-0.80	0.02%		-0.80	0.02%
0.00	0.00	0.00%		0.00	0.00%
0.80	0.80	0.01%		0.80	0.01%
8.30	8.30	0.01%		8.30	0.01%
14.90	14.86	0.24%		14.86	0.24%
	Average % Difference	0.08%	Average	e % Difference	0.08%
	Maximum % Difference	0.27%	Maximum	n % Difference	0.27%
	Acceptance Status	Pass	Acce	ptance Status	Pass
				Leak Check	Pass
	Verified/0	Certified ¹ By:	T. R	ehling	7/15/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Grede, LLC - Iron Mountain Kingsford, MI

Pace Project No. 20-04074

Appendix D Digital Manometer Calibration Certificate Digital Manometer No.: DM_48 Calibration Date: 10/1/2020

Make and Model: Serial Number: Pressure Range:	Fluke 922 49810028 16.5 Inches of Water	Pace SOP Reference Acceptanc		ENV-SOP-FIE Manometer #7 1.00%	
Reference	As Fo	ound		As l	_eft
Pressure	EDM Rdg	Difference		EDM Rdg	Difference
In. H ₂ O	In. H ₂ O	% of Scale		In. H ₂ O	% of Scale
-14.90 -8.30	-14.91 -8.33	0.07% 0.19%		-14.91 -8.33	0.07% 0.19%
-0.80	-0.82	0.10%		-0.82	0.10%
0.00	0.00	0.00%		0.00	0.00%
0.80	0.82	0.09%		0.82	0.09%
8.30	8.35	0.33%		8.35	0.33%
14.90	14.94	0.22%		14.94	0.22%
	Average % Difference Maximum % Difference	0.14% 0.33%	•	e % Difference	0.14% 0.33%
	Acceptance Status	Pass		ptance Status	Pass
	Acceptance Status	1 035		Leak Check	Pass
	Verified/0	Certified ¹ By:	K. A	lthoff	10/1/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Scale/Balance Calibration Certificate Electronic Digital Scale No.: DS_38 Calibration Date: 7/8/2020

Make and Model: Serial Number: Weight Range:	Smart Weigh Pro Pocket A17-286 2000 Grams	Pace SOP N Reference S Acceptance	standard:	ENV-SOP-FI HWS-001 & (0.50%	
Reference	As F	Found		As	Left
Weight Grams	Scale Rdg Grams	Difference % of Ref. Wt.		Scale Rdg Grams	Difference % of Ref. Wt.
200	200	0.15%		200	0.15%
300	300	0.13%		300	0.13%
500	501	0.12%		501	0.12%
1000	1001	0.12%		1001	0.12%
1500	1502	0.13%		1502	0.13%
	Average % Difference	0.13%	Averade	e % Difference	0.13%
	Maximum % Difference		0	% Difference	
	Acceptance Status	Pass	Acce	ptance Status	Pass

Verified/Certified¹ By: K. Althoff 7/8/2020

Kingsford, MI Pace Project No. 20-04074

Appendix D Scale/Balance Calibration Certificate Electronic Digital Scale No.: DS_42 Calibration Date: 4/7/2020

Make and Model: Serial Number: Weight Range:	Smart Weigh Pro Pocket A18-242 2000 Grams	Pace SOP I Reference S Acceptance	Standard:	ENV-SOP-FI HWS-001 & 6 0.50%	
Reference Weight Grams	As I Scale Rdg Grams	Found Difference % of Ref. Wt.		As Scale Rdg Grams	Left Difference % of Ref. Wt.
200 300 500 1000 1500	200 300 500 1000 1500	0.00% 0.03% 0.02% 0.02% 0.03%		200 300 500 1000 1500	0.00% 0.03% 0.02% 0.02% 0.03%
	Average % Difference Maximum % Difference Acceptance Status	e 0.03%	Maximun	e % Difference n % Difference eptance Status	0.03%
	Verified	d/Certified ¹ By:	T. R	tehling	4/7/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Scale/Balance Calibration Certificate Electronic Digital Scale No.: DS_45 Calibration Date: 7/8/2020

Make and Model: Serial Number: Weight Range:	Smart Weigh Pro Pocket A18-242 2000 Grams	Pace SOP N Reference S Acceptance	Standard:	ENV-SOP-FI HWS-001 & 6 0.50%	
Reference Weight Grams	As I Scale Rdg Grams	Found Difference % of Ref. Wt.		As Scale Rdg Grams	Left Difference % of Ref. Wt.
200 300 500 1000 1500	200 300 500 1000 1501	0.00% 0.03% 0.02% 0.03% 0.03%		200 300 500 1000 1501	0.00% 0.03% 0.02% 0.03% 0.03%
	Average % Difference Maximum % Difference Acceptance Status	0.03%	Maximun	e % Difference n % Difference eptance Status	0.03%
	Verified	d/Certified ¹ By:	K. /	Althoff	7/8/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_33 Calibration Date: 3/9/2020

Make and Model: Serial Number:	Omega HH12B 111305	Pace SOF Reference	PNo.: Standard:	ENV-SOP-FIE Omega CL23/	A
Temperature Range:	2000 Fahrenheit - °F	Acceptanc	ce Criterion:	1.50%	°R (°F+460)
Reference	As F	ound		As L	_eft
Temperature	Display Rdg	Difference		Display Rdg	Difference
°F	°F	% of Rdg		°F	% of Rdg
1900	1900	0.00%		1900	0.009/
1800	1800	0.00%		1800	0.00%
1500	1500	0.00%		1500	0.00%
1000	1000	0.00%		1000	0.00%
500	500	0.00%		500	0.00%
200	200	0.06%		200	0.06%
100	100	0.07%		100	0.07%
0	0	0.04%		0	0.04%
	Average % Difference	0.03%	Average	e % Difference	0.03%
	Maximum % Difference	0.07%	Maximun	n % Difference	0.07%
	Acceptance Status	Pass	Acce	eptance Status	Pass
	·			l 2 Verification	Pass
	Verified	/Certified ¹ By:	T. R	ehling	3/9/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_38 Calibration Date: 3/9/2020

Make and Model: Serial Number: Temperature Range:	Omega HH12B 130634 2000 Fahrenheit - °F	Reference		ENV-SOP-FIE Omega CL23/ 1.50%		
					,	
Reference	As F	ound		As I	_eft	
Temperature	Display Rdg	Difference		Display Rdg	Difference	
°F	°F	% of Rdg		°F	% of Rdg	
1800	1800	0.00%		1800	0.00%	
1500	1500	0.00%		1500	0.00%	
1000	1000	0.00%		1000	0.00%	
500	500	0.00%		500	0.00%	
200	201	0.15%		201	0.15%	
100	100	0.04%		100	0.04%	
0	0	0.02%		0	0.02%	
	Average % Difference	0.03%	Average	e % Difference	0.03%	
	Maximum % Difference		•	n % Difference	0.15%	
	Acceptance Status	Pass	Acce	eptance Status	Pass	
	·			l 2 Verification	Pass	
	Verified	Certified ¹ By:	T. R	ehling	3/9/2020	

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_41.1 Calibration Date: 2/12/2020

Make and Model: Serial Number: Temperature Range:			Pace SOP No.: Reference Standard: Acceptance Criterion:		ENV-SOP-FIELD-0031 Omega CL23A 1.50% °R (°F+460)	
Reference Temperature		und Difference		As Left Display Rdg Difference		
°F	°F	% of Rdg		°F	% of Rdg	
1800 1500 1000 500 200 100 0	1799 1499 1000 500 200 100 0	0.03% 0.03% 0.01% 0.03% 0.03% 0.02% 0.00%		1799 1499 1000 500 200 100 0	0.03% 0.03% 0.01% 0.03% 0.03% 0.02% 0.00%	
	Average % Difference Maximum % Difference Acceptance Status Verified/	0.02% 0.03% Pass Certified ¹ By:	Maximun Acce Channe	e % Difference n % Difference eptance Status I 2 Verification ehling	0.02% 0.03% Pass Pass 2/12/2	020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_41.2 Calibration Date: 2/12/2020

Make and Model: Serial Number: Temperature Range:	Omega HHC201 180082 2000 Fahrenheit - °F	Reference		ENV-SOP-FIE Omega CL23/ 1.50%	
Reference Temperature °F		ound Difference % of Rdg		As I Display Rdg °F	_eft Difference % of Rdg
1800 1500 1000 500 200 100 0	1799 1499 1000 500 200 100 0	0.03% 0.04% 0.03% 0.02% 0.03% 0.05% 0.00%		1799 1499 1000 500 200 100 0	0.03% 0.04% 0.03% 0.02% 0.03% 0.05% 0.00%
	Average % Difference Maximum % Difference Acceptance Status Verified/	0.05%	Maximun Acce Channe	e % Difference n % Difference eptance Status I 2 Verification ehling	0.03% 0.05% Pass Pass 2/12/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_44.1 Calibration Date: 10/31/2020

Make and Model: Serial Number: Temperature Range:	Omega HHC201 180097 2000 Fahrenheit - °F	Reference	Pace SOP No.: Reference Standard: Acceptance Criterion:		LD-0031 \ °R (°F+460)	
Reference	As F	ound		As l	_eft	
Temperature	. , ,			Display Rdg	Difference	
°F	°F	% of Rdg		°F	% of Rdg	
1800	1799	0.03%		1799	0.03%	
1500	1500	0.03%		1500	0.03%	
1000	999	0.06%		999	0.06%	
500	500	0.03%		500	0.03%	
200	200	0.06%		200	0.06%	
100	100	0.07%		100	0.07%	
0	0	0.07%		0	0.07%	
	Average % Difference		0	e % Difference	0.05%	
	Maximum % Difference	0.07%		n % Difference	0.07%	
	Acceptance Status	Pass		ptance Status	Pass	
			Channe	I 2 Verification	NA	
	Verified/	Certified ¹ By:	К. А	lthoff	10/31/2020	

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_44.2 Calibration Date: 10/31/2020

Make and Model: Serial Number: Temperature Range:	Omega HHC201 180097 2000 Fabrenheit - °F	Reference	Pace SOP No.: Reference Standard: Acceptance Criterion:		ELD-0031 A °R (°F+460)
remperature range.		riccoptane	e entenen.	1.50%	
Reference		ound		As I	off
Temperature				Display Rdg	Difference
°F	°F	% of Rdg		°F	% of Rdg
1800	1799	0.03%		1799	0.03%
1500	1499	0.03%		1499	0.03%
1000	1000	0.03%		1000	0.03%
500	500	0.03%		500	0.03%
200	199	0.09%		199	0.09%
100	99	0.11%		99	0.11%
0	0	0.09%		0	0.09%
	Average % Difference	0.06%	Average	e % Difference	0.06%
	Maximum % Difference	0.11%	Maximum	n % Difference	0.11%
	Acceptance Status	Pass		eptance Status	Pass
			Channe	I 2 Verification	NA
	Verified/	Certified ¹ By:	K. A	lthoff	10/31/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_47.1 Calibration Date: 4/10/2020

Make and Model: Serial Number: Temperature Range:	Omega HCC201 190033 2000 Fahrenheit - °F	Reference		ENV-SOP-FIELD-0031 Omega CL23A 1.50% °R (°F+460)		
Reference		ound		As I		
Temperature °F	e Display Rdg °F	Difference % of Rdg		Display Rdg °F	Difference % of Rdg	
1800	1799	0.04%		1799	0.04%	
1500	1499	0.03%		1499	0.03%	
1000	999	0.04%		999	0.04%	
500	500	0.04%		500	0.04%	
200	200	0.06%		200	0.06%	
100	100	0.04%		100	0.04%	
0	0	0.04%		0	0.04%	
	Average % Difference Maximum % Difference Acceptance Status	0.06%	Maximun Acce	e % Difference n % Difference eptance Status I 2 Verification	0.04% 0.06% Pass NA	
	Verified/	Certified ¹ By:	T. R	ehling	4/10/2	2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI Pace Project No. 20-04074

Appendix D Thermocouple Display Calibration Certificate Thermocouple Display No.: TC_47.2 Calibration Date: 4/10/2020

Make and Model: Serial Number: Temperature Range:	Omega HCC201 190033 2000 Fahrenheit - °F		No.: Standard: e Criterion:	ENV-SOP-FIE Omega CL23/ 1.50%		
Reference	As F	ound		As l	eft	
Temperature °F	e Display Rdg °F	Difference % of Rdg		Display Rdg °F	Difference % of Rdg	
1800	1800	0.02%		1800	0.02%	
1500	1500	0.02%		1500	0.02%	
1000	1000	0.00%		1000	0.00%	
500	500	0.04%		500	0.04%	
200	200	0.03%		200	0.03%	
100	100	0.05%		100	0.05%	
0	1	0.13%		1	0.13%	
	Average % Difference Maximum % Difference Acceptance Status	0.13%	Maximun Acce	e % Difference n % Difference eptance Status I 2 Verification	0.04% 0.13% Pass NA	
	Verified/	Certified ¹ By:	T. R	ehling	4/10/20	20

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Calibration Gas Certifications

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 **PGVP ID: F12018**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717 Customer Reference: NO2=1.1ppm

Certificate Issuance Date: 10/08/2018 Praxair Order Number: 70730454 Part Number: NI CO245NS1ZEAS

Fill Date: 09/21/2018 Lot Number: 700018264GB Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration						
Expiration Date:	10/02/2026	NIST Traceable				
Cylinder Number:	CC93519	Expanded Uncertainty				
246 ppm	Carbon monoxide	± 0.4 %				
247 ppm	Nitric oxide	± 0.3 %				
247 ppm	Sulfur dioxide	± 0.6 %				
Balance	Nitrogen					

Certification Information:

Certification Date: 10/02/2018 Term: 96 Months Expiration Date: 10/02/2026

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

	ytical Data:				ence stan	uaru, z=zer	o Gas,	C=Gas Ca	indidate)									
1.	Component:	Carb	on mono	xide					Reference	Standard	:	Туре /	Cylinder #:	GMIS	/ EB000	5134		
	Requested Conce	entratio	n: 245 p	pm							Concen	tration / L	Incertainty:	250.6	ppm ±0.3	3%		
	Certified Concent	tration:	246 p	pm								Expir	ation Date:	03/16	/2026			
	Instrument Used:		Horiba	a VIA 51	0				Traceable	to: SR	M # / Sa	ample # /	Cylinder #:	2636	a / 57-F-1	5 / FF3079	2	
	Analytical Method	d:	NDIR							SRM	Concen	tration / L	Incertainty:	247.1	PPM / ±	0.5 PPM		
	Last Multipoint C	alibratio	n: 10/04	/2018							S	RM Expir	ation Date:	03/26	/2018			
	First Analysis	Data:				Date	09/25	5/2018	1	Secon	d Anal	ysis Data	:			Date		
	Z : 0	R:	250.8	C:	246	Conc:	246			z:	0	R:	0	C:	0	Conc:	0	
	R: 250.8	Z:	0	C:	246	Conc:	246			R:	0	Z:	0	C:	0	Conc:	0	
	Z : 0	C:	246	R:	250.8	Conc:	246			z:	0	C:	0	R:	0	Conc:		
	UOM: ppm			N	lean Tes	t Assay:	246	ppm		UOM:	ppm			М	ean Test	Assay:		ppm
2.	Component:	Nitrio	c oxide						- Reference	Standard	d:	Type /	Cylinder #:	GMIS	/ CC192	721		
	Requested Conc	entratio	n: 245 p	pm							Concen	tration / L	Incertainty:	255 p	pm ±0.3%	6		
	Certified Concent		247 p										ation Date:					
	Instrument Used:		Therm	าo-42i L:	S				Traceable	to: SR	M # / Sa	ample # /	Cylinder #:	1687	o / 41-L-1	2 / FF1041	5	
	Analytical Method	d:	Chem	ilumines	scence								Incertainty:					
	Last Multipoint C		n: 09/17	/2018									ation Date:					
	First Analysis					Date	09/25	5/2018	ר	Secon		ysis Data				Date	10/02	2/2018
	z : 0	R:	255	C:	247	Conc:	247			Z:	0	R:	255	C:	247	Conc:		2010
	R: 255	Z:	0	C:	247	Conc:	247			R:	-	к: Z:		C:	247 247			
	Z : 0	2. C:	247	R:	255	Conc:	247			R:	255 0	Z: C:	0			Conc:	247	
	UOM: ppm	0.	241			t Assay:	247	ppm			-	U:	248	R:	255	Conc:	248	
					icali ica	r Assay.	241	ppin	J	UOM:					ean Test	-	247	ppm
3.	Component:	Sulfu	ır dioxide	9					Reference	Standard	1:	Туре /	Cylinder #:	GMIS	/ EB001	5349		
	Requested Conc										Concen		Incertainty:		•	'3%		
	Certified Concent	tration:	247 p	pm								Expir	ation Date:	01/04	/2026			
	Instrument Used:			EK 921					Traceable			•	Cylinder #:				j.	
	Analytical Method			pectrome	etry					SRM			Incertainty:			0794		
	Last Multipoint C	alibratio	n: 09/17/	/2018					_		S	RM Expir	ation Date:	09/14	/2018			
	First Analysis	Data:				Date	09/25	5/2018		Secon	d Anal	ysis Data	:			Date	10/02	2/2018
	Z : 0	R:	506	C:	248	Conc:	248			Z:	0	R:	506	C:	247	Conc:	247	
	R: 506	Z:	0	C:	247	Conc:	247			R:	506	Z:	0	C:	247	Conc:	247	
	Z : 0	C:	248	R:	506	Conc:	248			Z:	0	C:	248	R:	506	Conc:	248	
	UOM: ppm			N	lean Tes	t Assay:	248	ppm		UOM:	ppm			М	ean Test	Assay:	247	ppm
				2	100				-									
		N	11	M	1-	-						1	-	-	>			
		1	Marcu	Apr	ly							(1.6	Lab	/			
		//		1	/								Jun	And and and and and and and and and and a				
	Analyzed By	Mai	cus Hug	uley					Certifi	ed By		Jack	Fu					
			-															

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc. arising out of the use of the information. Greede, LLC - Iron Mountain Control of the user of the information of the user of the information.

FSD 20-04074

Report Date 2/5/2021

Page D-29 of 45

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 **PGVP ID: F12020**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 06/24/2020 Praxair Order Number: 71360746 Part Number: NI CD10028E-AS Customer PO Number: 79351935

Fill Date: 06/04/2020 Lot Number: 700010156F3 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

	Certified Conce	ntration	ProSpec EZ Cert
Expiration Date:	06/24/2028	NIST Traceable	
Cylinder Number:	CC95749	Expanded Uncertainty	
9.93 %	Carbon dioxide	± 1.2 %	D-320-200
10.9 %	Oxygen	± 0.4 %	
Balan	ce Nitrogen		自然东东的

Certification Information:

Certification Date: 06/24/2020 Term: 96 Months Expiration Date: 06/24/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

O2 responses have been corrected for CO2 interference

Oxygen

Requested Concentration: 11.0 %

Last Multipoint Calibration: 06/22/2020

R: 22.49

Z: 0

C: 10.9

Certified Concentration:

First Analysis Data:

Instrument Used:

Analytical Method:

Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Date

Conc:

Conc:

Conc:

06/24/2020

10.9

10.9

10.9

10.9 %

1.	Component:
	Requested Con

Component:

Z: 0

R: 22.5

Z: 0

UOM: %

2.

inponent. Carb	on aloxide	
Requested Concentration	n: 10.0 %	
Certified Concentration:	9.93 %	
Instrument Used:	MKS 2030	
Analytical Method:	FTIR	
Last Multipoint Calibratio	n: 06/01/2020	
First Analysis Data:		Date
7 . 0 B .	15.3 C : 10.1	Con

10.9 %

Servomex 575

Paramagnetic

C: 10.9

C: 10.9

R:

Min Mount

22.5

Mean Test Assay:

Carbon diavida

First	Analysis	Data:				Date	06/24/202	20
Z:	0	R:	15.3	C:	10.1	Conc:	9.93	
R:	15.3	Z:	0	C:	10.1	Conc:	9.93	
Z:	0	C:	10.1	R:	15.3	Conc:	9.93	
UOM	l: %			N	lean Tes	t Assay:	9.93 %	

late)			
Reference Sta	andard:	Type / Cylinder #:	GMIS / EB0054692
	Cond	entration / Uncertainty:	15.05 % ±0.27%
		Expiration Date:	08/02/2026
Traceable to:	SRM #	Sample # / Cylinder #:	2745 / 9-C-03 / CAL016000
	SRM Cond	centration / Uncertainty:	15.633% / ±0.037%
		SRM Expiration Date:	02/07/2025

Secor	nd Analy	sis Data	:			Date		
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			M	ean Tes	t Assay:		%

Reference Standard: Type / Cylinder #: GMIS / SGAL2224 Concentration / Uncertainty: 22.49 % ±0.3% Expiration Date: 12/02/2027 Traceable to: SRM # / Sample # / Cylinder #: 2659a / 71-D-04 / CAL015785 SRM Concentration / Uncertainty: 20.72 / ±0.043 SRM Expiration Date: 08/23/2021

Secon	d Analy	sis Data	:			Date		
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			M	ean Tes	t Assay:		%

Elhard & Grow

Edward E Zucal

Analyzed By

Mike Monnette

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information. Grede, LLC - Iron Mountain

Certified By

Page D-30 of 45

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 PGVP ID: F12020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 03/17/2020 Praxair Order Number: 71274090 Part Number: NI CO112NS1ZEAS Customer PO Number: 79263469

Fill Date: 03/04/2020 Lot Number: 700010064WE CGA 660 Cylinder Style & Outlet: AS Cylinder Pressure and Volume: 2000 psig 140 ft3

	Certified Concentration		ProSpec EZ Cert
Expiration Date:	03/17/2028	NIST Traceable	
Cylinder Number:	CC128093	Expanded Uncertainty	
116 ppm	Nitric oxide	± 0.4 %	
110 ppm	Sulfur dioxide	± 0.8 %	
110 ppm	Carbon monoxide	± 0.6 %	
Balance	Nitrogen		

For Reference Only:

Certification Information:

Term: 96 Months Certification Date: 03/17/2020

Expiration Date: 03/17/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

NO2 0.8 ppm

Requested Cor Certified Conce						Reference S	Standard	1:	Type /	Cylinder #:	GMIS	5 / DT000	6335		
•	centration: 112 pp	om								Incertainty:					
										ation Date:					
Instrument Use		o-42i LS				Traceable to	o: SR	M # / Sar	•	Cylinder #:			2 / FF1041	5	
Analytical Meth	od: Chemi	luminescence							•	Incertainty:					
Last Multipoint	Calibration: 03/03/	2020						SR	RM Expir	ation Date:	05/01	1/2020			
First Analysis	Data:		Date	03/10)/2020	1	Secon	nd Analys	sis Data	1:			Date	03/17	/2020
Z : 0	R: 255	C: 115	Conc:	115			Z:	0	R:	255	C:	117	Conc:	117	
R: 255	Z: 0	C: 115	Conc:	115			R:	255	Z:	0	C:	117	Conc:	117	
Z : 0	C: 115	R: 255	Conc:	115			Z:	0	C:	117	R:	255	Conc:		
UOM: ppm		Mean Test	Assay:	115	ppm		UOM:	ppm			м	lean Test	Assay:	117	ppm
Component:	Sulfur dioxide					Reference S	Standard	d:	Type /	Cylinder #:	GMIS	S / DT002	9404		
Requested Cor	centration: 112 pr	om						Concentr		Jncertainty:					
Certified Conce										ation Date:		•			
Instrument Use		EK 921				Traceable to	o: SR	M # / Sar	•	Cylinder #:			X / FF2230	9	
Analytical Meth	od: UV Sp	ectrometry					SRM	Concentr	ation / L	Jncertainty:	495 /	0.38			
•	calibration: 03/04/	•								ation Date:					
First Analysis	Data:		Date	03/10)/2020		Secon	nd Analys	sis Data	1:			Date	03/17	/2020
Z: 0	R: 509	C: 111	Conc:	111			Z:	0	R:	509	C:	110	Conc:	110	
R: 509	Z: 0	C: 111	Conc:	111			R:	509	Z:	0	C:	110	Conc:	110	
Z: 0	C: 111	R: 509	Conc:	111			Z:	0	C:	110	R:	509	Conc:	110	
UOM: ppm		Mean Test	Assay:	111	ppm		UOM:	ppm			M	lean Test	Assay:	110	ppm
Component:	Carbon mono	xide				Reference S	Standard	d:	Type /	Cylinder #:	GMIS	S/CC179	337		
Requested Cor	centration: 112 pp	om						Concentr	ation / L	Jncertainty:	249.9	9 ppm ±0.3	27%		
Certified Conce	ntration: 110 pp	om							Expir	ation Date:	03/16	6/2026			
Instrument Use	l: Horiba	VIA 510				Traceable to	o: SR	M # / Sar	mple # /	Cylinder #:	2636	a / 57-F-1	5 / FF3079	2	
Analytical Meth	d: NDIR						SRM	Concentr	ation / L	Incertainty:	247.1	1 / ±0.5 PF	PM		
Last Multipoint	Calibration: 02/20/	2020						SR	RM Expir	ation Date:	03/26	6/2018			
First Analysis	Data:		Date	03/10)/2020		Secon	nd Analys	sis Data	1:			Date		
Z : 0	R: 250	C: 110.4	Conc:	110			Z:	0	R:	0	C:	0	Conc:	0	
R: 250	Z: 0	C: 110.2	Conc:	110			R:	0	Z:	0	C:	0	Conc:	0	
Z : 0	C: 110.3	R: 250	Conc:	110			Z:	0	C:	0	R:	0	Conc:	0	
UOM: ppm		Mean Test	Assay:	110	ppm		UOM:	ppm			M	lean Test	Assay:		ppm
Analyzed By	Abu Gregory Bro	led				Certifie	ed By			nd E fin					

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc. arising out of the use of the information. Grede, LLC - Iron Mountain

FSD 20-04074

Report Date 2/5/2021

Page D-31 of 45

MINNEAPOLIS, MN 55414

GARAGE

Customer & Order Information:

Praxair Order Number: 73931383

Customer PO Number: BETH KELM EMAIL

PACE ANALYTICAL SERVICES INC

1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR

Praxair Distribution. Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445 Fax: 1-281-880-4449

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX40MC-AS

DocNumber: 67205 Expiration Date: 4/11/2024

CERTIF	FICA	TE	OF	AN.	ALY	SIS
	-		-			

Certified Standard Requested Certified Concentration Concentration Analytical Analytical Component (Molar) (Molar) Reference Uncertainty ± 5 % n-Hexane 40.0 ppm 39.9 ppm 1 Air **Balance Balance** Cylinder Style: AS Fill Date: 4/11/2019 Filling Method: Gravimetric Cylinder Pressure @ 70 F: 2000 psig Analysis Date: 4/12/2019 Cylinder Volume: 142.8 ft3 Valve Outlet Connection: CGA 590 Cylinder Number(s): CC158131

Certifier: Brian Courts

the la

Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Reference Analytical Instrument - Analytical Principle

1 Varian 450-GC - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information.

Customer & Order Information:

PACE ANALYTICAL SERVICES INC 1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR GARAGE MINNEAPOLIS, MN 55414

Praxair Order Number: **73931383** Customer PO Number: **BETH KELM EMAIL**

Praxair Distribution. Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445 Fax: 1-281-880-4449

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX25MC-AS

DocNumber: **67206** Expiration Date: **4/11/2024**

CERTI	FIC	;AT	E OF	' ANA	LYSIS
	-				

Certified Standard Requested Certified Concentration Concentration Analytical Analytical Component (Molar) (Molar) Reference Uncertainty ± 5 % n-Hexane 25.0 ppm 25.9 ppm 1 Air **Balance Balance** Cylinder Style: AS Fill Date: 4/11/2019 Filling Method: Gravimetric Cylinder Pressure @ 70 F: 2000 psig Analysis Date: 4/12/2019 Cylinder Volume: 142.8 ft3 Valve Outlet Connection: CGA 590 Cylinder Number(s): CC171522 the 11

Certifier: Brian Courts

Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Reference Analytical Instrument - Analytical Principle

1 Varian CP-4900 Micro GC - Gas Chromatography with TCD

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information.

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 PGVP ID: F12020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 02/05/2020 Praxair Order Number: 71228421 Part Number: NI CO50MNS3ZEAS Customer PO Number: 79216841

Fill Date: 01/22/2020 Lot Number: 700010022WH Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3

	Certified Concentra	ution	ProSpec EZ Cert
Expiration Date:	02/03/2028	NIST Traceable	
Cylinder Number:	CC350671	Expanded Uncertainty	
51.0 ppm	Nitric oxide	± 0.5 %	
49.0 ppm	Sulfur dioxide	± 0.8 %	
49.6 ppm	Carbon monoxide	± 0.2 %	
Balance	Nitrogen		

For Reference Only:

Certification Information:

Term: 96 Months Certification Date: 02/03/2020

Expiration Date: 02/03/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

NO2 0.3 ppm

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

 tical Data: Component:	Nitric oxi	(R=Refere de					Reference S	Standard	4-	Type /	Cylinder #	±∙ GMIS	S / DT002	27997		
Requested Conc							Neierende c				Jncertaint					
Certified Concent		1.0 ppm									ration Date					
Instrument Used:		hermo-42i L	S				Traceable to	: SR	M#/S					/ N/A / APE	X12239	951
Analytical Method	l: C	hemilumines	scence					SRM	Concer	htration / l	Jncertaint	y: 100. ⁻	1 / .2997			
Last Multipoint C	alibration: 0	1/10/2020							S	RM Expi	ration Date	e: 07/27	7/2020			
First Analysis	Data:			Date	01/27	/2020	1	Secor	d Anal	ysis Data	a:			Date	02/03	/2020
Z: 0	R: 103	.3 C :	50.8	Conc:	50.8			Z:	0	R:	103.3	C:	51.3	Conc:	51.3	
R: 103.3	Z: 0	C:	50.9	Conc:	50.9			R:	103.2	Z:	0	C:	51.2	Conc:	51.2	
Z: 0	C: 50.	7 R:	103.4	Conc:	50.7			Z:	0	C:	51.3	R:	103.2	Conc:	51.3	
UOM: ppm		N	lean Tes	t Assay:	50.8	ppm		UOM:	ppm			N	lean Tes	t Assay:	51.3	ppm
Component:	Sulfur die	oxide					Reference S	Standard	d:	Type /	Cylinder #	#: GMI	S / DT000	06731		
Requested Conc	entration: 5	0 ppm							Concer	• •	Jncertaint					
Certified Concent		9.0 ppm									ration Date		• •			
Instrument Used:		METEK 921					Traceable to	: SR	M#/S					88 / CAL016	706	
Analytical Method	l: L	IV Spectrome	etry							•	Jncertaint					
Last Multipoint C	alibration: 0	1/10/2020							S	RM Expi	ration Date	e: 12/1 [.]	1/2015			
First Analysis	Data:			Date	01/27	/2020	1	Secor	d Anal	ysis Data	a:			Date	02/03	/2020
Z : 0	R: 97.	2 C :	49.5	Conc:	49.5			Z:	0	R:	97.2	C:	48.6	Conc:	48.6	
R: 97.1	Z: 0	C:	49.4	Conc:	49.4			R:	97.2	Z:	0	C:	48.7	Conc:	48.7	
Z: 0	C: 49.	4 R:	97.3	Conc:	49.4			Z:	0	C:	48.6	R:	97.3	Conc:	48.6	
UOM: ppm		N	lean Tes	t Assay:	49.4	ppm		UOM:	ppm			N	lean Tes	t Assay:	48.6	ppm
Component:	Carbon n	nonoxide					Reference S	Standard	1:	Type /	Cylinder #	#: GMI	S / DT00	12181		
Requested Conc	entration: 5	mag 0							Concer		Jncertaint					
Certified Concent		9.6 ppm									ration Date		• •			
Instrument Used:	F	loriba VIA 51	0				Traceable to	: SR	M#/S	ample # /	Cylinder #	¥: 1678	c/4-L-26	6 / FF18339		
Analytical Method	I: N	IDIR						SRM	Concer	, tration / l	Jncertaint	y: 49.13	36 ppm /	±0.065 PPN	1	
Last Multipoint Ca	alibration: 0	1/13/2020							S	RM Expi	ration Date	e: 02/04	1/2021			
First Analysis	Data:			Date	01/27	/2020	[Secor	d Anal	ysis Data	a:			Date	02/03	/2020
Z: 0	R: 50.	2 C :	49.7	Conc:	49.7			Z:	0	R:	0	C:	0	Conc:	0	
R: 50.2	Z: 0	C:	49.6	Conc:	49.6			R:	0	Z:	0	C:	0	Conc:	0	
Z: 0	C: 49.	6 R :	50.2	Conc:	49.6			Z:	0	C:	0	R:	0	Conc:	0	
UOM: ppm		N	lean Tes	t Assay:	49.6	ppm		UOM:	ppm			N	lean Tes	t Assay:		ppm
Analyzed By	Ĥ	haller	L				' I			Un	nd & H	had				

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc. arising out of the use of the information. Grede, LLC - Iron Mountain

FSD 20-04074

Report Date 2/5/2021

Page D-34 of 45

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 **PGVP ID: F12020**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 07/16/2020 Praxair Order Number: 71382017 Part Number: NI CD2003E-AS Customer PO Number: 79373728

Fill Date: 06/25/2020 Lot Number: 700010177F2 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

	Certified Concent	ration	ProSpec EZ Cert
Expiration Date:	07/16/2028	NIST Traceable	
Cylinder Number:	DT0033087	Expanded Uncertainty	
20.0 %	Carbon dioxide	± 0.6 %	
21.0 %	Oxygen	± 0.4 %	A MARKEN
Balance	Nitrogen		司及其外的

Certification Information:

Certification Date: 07/16/2020 Term: 96 Months Expiration Date: 07/16/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

O2 responses have been corrected for CO2 interference

Analytical Data:

1.

2.

Component:

Z: 0

R: 22.5

Z: 0

Analyzed By

UOM: %

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Date

Conc: 21

Conc: 21

Conc: 21

21

07/16/2020 20 20.1 20 20

%

Component:	:	Carbor	dioxide			
Request	ted Concent	tration:	20.0 %			
Certified	Concentra	tion:	20.0 %			
Instrume	ent Used:		MKS 203	0		
Analytic	al Method:		FTIR			
Last Mu	Itipoint Calib	oration:	07/01/202	20		
First A	nalysis Da	ta:				Date
z:	0	R: 1	7.1	C:	16.8	Conc:
R: 1	17.1	Z:	0	C:	16.9	Conc:
Z:	0	C : 1	6.8	R:	16.9	Conc:
UOM:	%			М	ean Test A	ssay:

Oxygen

21.0 %

Servomex 575

Paramagnetic

C: 21

C: 21

R:

Min Mount

22.5

Mean Test Assay:

Requested Concentration: 21.0 %

Last Multipoint Calibration: 06/22/2020

R: 22.5

Z: 0

C: 21

Mike Monnette

Certified Concentration:

First Analysis Data:

Instrument Used:

Analytical Method:

,			
Reference Sta	andard:	Type / Cylinder #:	GMIS / CC110516
	Conce	ntration / Uncertainty:	20.23 % ±0.235%
		Expiration Date:	01/13/2026
Traceable to:	SRM # / S	Sample # / Cylinder #:	PRM# 3222577.01 / n/a / FF27613
	SRM Conce	ntration / Uncertainty:	20.008% / ±0.028%
	:	SRM Expiration Date:	04/01/2020

Secon	d Analy	sis Data:			Date			
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			Me	ean Tes	t Assay:		%

Reference Standard: Type / Cylinder #: GMIS / SGAL2224 Concentration / Uncertainty: 22.49 % ±0.3% Expiration Date: 12/02/2027 SRM # / Sample # / Cylinder #: 2659a / 71-D-04 / CAL015785 Traceable to: SRM Concentration / Uncertainty: 20.72 / ±0.043 SRM Expiration Date: 08/23/2021

Secon	d Analy	sis Data	:			Date		
Z :	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			м	ean Tes	t Assay:		%

Elhard & Grad

Edward E Zucal

%

07/16/2020

Certified By

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information. Grede, LLC - Iron Mountain

Page D-35 of 45

MINNEAPOLIS, MN 55414

GARAGE

Customer & Order Information:

PACE ANALYTICAL SERVICES INC

Praxair Order Number: C73931383

Customer PO Number: BETH KELM EMAIL

1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR

Praxair Distribution, Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445 Fax: 1-281-880-4449

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX15MC-AS

DocNumber: **67210** Expiration Date: **4/11/2024**

	Certi	ried Standard			
Component		Requested Concentration (Molar)	Certified Concentration (Molar)	Analytical Reference	Analytical Uncertainty
n-Hexane		15.0 ppm	15.0 ppm	1	±5%
Air		Balance	Balance		
Cylinder Style: AS Cylinder Pressure @ 70 F: 2000 psig Cylinder Volume: 142.8 ft3 Valve Outlet Connection: CGA 590 Cylinder Number(s): LCCO-SA3511	Analysis	Date: 4/11/2019 Date: 4/12/2019		/lethod: Gra	vimetric
0. 0.				11.1	-

CERTIFICATE OF ANALYSIS

Din Cat

in the

Certifier: Brian Courts

Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Reference	Analytic	al Instrument	Analyt	ical Principle
Reference	Analytic	armoundinent	- Analyt	ical i micipic

1 Varian CP-4900 Micro GC - Gas Chromatography with TCD

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information.

Gas Stratification Determination

Appendix D Gas Stratification Determination Cupola Baghouse Inlet Test 1

Kingsford, MI Pace Project No. 20-04074

Traverse Point 1 2	Distance From Wall 8.0 24.0	<u>%v/v</u> 8. 8.	-	<u>%v/v</u> 11 11	D2 7 , Dry .69 .57	0.: 0.:	<u>, Wet</u> 28 28	<u>РРМ</u> 9. 11	5 0 1 , Dry 13 .05	18.	<mark>, Dry</mark> 14 83
-	40.0 oncentration from Mean		79	11	.55 .60 %	0.:		9.	87 68 %	17.	
1 2 3	ITOITI Mean	<u>Conc.</u> -0.07 0.02 0.05	<u>%</u> 0.8% 0.3% 0.6%	<u>Conc.</u> 0.09 -0.03 -0.05	<u>%</u> 0.8% 0.3% 0.5%	<u>Conc.</u> 0.01 0.01 -0.02	<u>%</u> 3.9% 2.4% 6.3%	<u>Conc.</u> -0.55 1.37 -0.82	<u>%</u> 5.7% 14.2% 8.4%	<u>Conc.</u> -0.34 1.36 -1.02	<u>%</u> 1.9% 7.8% 5.9%
3 Max Devia	tion (abs)	0.03	0.8%	0.09	0.8%	0.02	6.3%	1.37	14.2%	1.36	7.8%
Stratification Status Sampling Traverse			atified oint		atified oint	Not I	Jsed	Not	Used	Not l	Jsed

Sample Traverse Point Specifications Required Traverse Points 1

System Response Time:	1	Minutes
Pause between Points:	1	Readings
Dwell Time Per Point:	4	Readings

Point Locations for Round Duct Use Most Representative Point

Stratification Specification - EPA 7E, Section 8.1.2
--

Unstratified:	\leq 5% or 0.5 PPM ¹ max deviation
Minimal Strat:	≤ 10% or 1.0 PPM ¹ max deviation
Stratified:	> 10% or 1.0 PPM ¹ max deviation

Gas Monitor Calibration Summary

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Monitor Calibration Summary Cupola Baghouse Inlet

Test 1

Oxyge	n (O2), %v/v	<u>Cal Set 1</u>	Cal Set 2	Cal Set 3
	r: Zero Gas Value	0.00		
	Low Gas Value			
	Mid Gas Value	10.90		
	High Gas Value	21.00		
	Cal Date	12/15/2020		
	Cal Time	7:46		
	Zero Reading	0.06		
	Low Reading			
	Mid Reading	11.05		
	High Reading	21.05		
	Zero Gas Error, %	0.29%		
		0.29%		
	Low Gas Error, %	0.70%		
	Mid Gas Error, %	0.70%		
	High Gas Error, %	0.26%		
System Bias:	Cal Date	12/15/2020	12/15/2020	12/15/2020
	Pre Bias Start	8:21	10:11	12:04
	Post Bias End	10:23	12:13	14:32
	CE Rdg for Span	11.05	11.05	11.05
	Pre Zero Reading	0.09	0.03	0.00
	Post Zero Reading	0.03	0.00	-0.02
	Pre Span Reading	10.89	10.88	10.82
	Post Span Reading	10.88	10.82	10.77
	Pre Zero Bias, %	0.16%	-0.14%	-0.27%
	Post Zero Bias, %	-0.14%	-0.27%	-0.39%
	Pre Span Bias, %	-0.75%	-0.80%	-1.08%
	Post Span Bias, %	-0.80%	-1.08%	-1.32%
	Zero Drift, %	0.30%	0.12%	0.12%
	Upscale Drift, %	0.06%	0.28%	0.24%
	Dioxide, %v/v	<u>Cal Set 1</u>	Cal Set 2	Cal Set 3
	r: Zero Gas Value	<u>Cal Set 1</u> 0.00	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value	0.00	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value	0.00	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value	0.00 9.93 20.00	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date	0.00 9.93 20.00 12/15/2020	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time	0.00 9.93 20.00 12/15/2020 7:46	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading	0.00 9.93 20.00 12/15/2020	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time	0.00 9.93 20.00 12/15/2020 7:46	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading	0.00 9.93 20.00 12/15/2020 7:46	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07	<u>Cal Set 2</u>	<u>Cal Set 3</u>
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11%	<u>Cal Set 2</u>	Cal Set 3
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22%	<u>Cal Set 2</u>	Cal Set 3
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35%		
	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020	12/15/2020	12/15/2020
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21	12/15/2020 10:11	12/15/2020 12:04
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23	12/15/2020 10:11 12:13	12/15/2020 12:04 14:32
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89	12/15/2020 10:11 12:13 9.89	12/15/2020 12:04 14:32 9.89
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03	12/15/2020 10:11 12:13 9.89 -0.03	12/15/2020 12:04 14:32 9.89 -0.04
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03	12/15/2020 10:11 12:13 9.89 -0.03 -0.04	12/15/2020 12:04 14:32 9.89 -0.04 -0.05
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Pre Span Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Pre Span Reading Post Span Reading	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 9.87	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Pre Span Reading Post Span Reading Pre Zero Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 -0.03 9.82 9.87 -0.02%	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03%	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07%
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 9.87	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07% -0.12%
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Pre Span Reading Post Span Reading Pre Zero Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.89 -0.03 -0.03 9.82 9.87 -0.02%	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03%	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07%
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.87 -0.02% -0.02% -0.02% -0.02% -0.03%	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.03% -0.07%	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07% -0.12%
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Zero Reading Pre Span Reading Pre Zero Bias, % Post Zero Bias, % Post Span Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.87 -0.02% -0.02% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.02% -0.02% -0.02% -0.02% -0.03% -0.02% -0.02% -0.03% -0.02% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.02% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.03% -0.02% -0.03% -0.03% -0.03% -0.02% -0.03%	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.07% -0.06%	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07% -0.12% 0.32% -0.04%
Calibration Erro	r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, % Pre Span Bias, %	0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 9.89 -0.03 9.89 -0.03 9.82 9.87 -0.02% -0.02% -0.03% -0.03% -0.02% -0.03% -0.02% -0.03% -0.02% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.03% -0.02% -0.02% -0.03% -0.02% -0.02% -0.03% -0.03% -0.02% -0.02% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.02% -0.03% -0.03% -0.03% -0.02% -0.03% -0.06%	12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.07% -0.06% 0.32%	12/15/2020 12:04 14:32 9.89 -0.04 -0.05 9.95 9.88 -0.07% -0.12% 0.32%

Grede, LLC - Iron Mountain Page D-40 of 45

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Monitor Calibration Summary Cupola Baghouse Inlet

Test 1

	rbons (C3H8), PPM	Cal Set 1	Cal Set 2	Cal Set 3
Calibration Erro	r: Zero Gas Value	0.00		
	Low Gas Value	15.00		
	Mid Gas Value	25.90		
	High Gas Value	39.90		
	Cal Date	12/15/2020		
	Cal Time	8:37		
	Zero Reading	0.05		
	Low Reading	15.21		
	Mid Reading	25.11		
	High Reading	39.87		
	Zero Gas Error, %	0.12%		
	Low Gas Error, %	0.12%		
	Mid Gas Error, %	-1.97%		
	High Gas Error, %	-0.08%		
System Bias:	Cal Date	12/15/2020	12/15/2020	12/15/2020
	Pre Bias Start	8:37	10:03	11:53
	Post Bias End	10:07	11:59	14:15
	CE Rdg for Span	15.21	15.21	15.21
	Pre Zero Reading	0.05	0.26	0.24
	Post Zero Reading	0.26	0.24	0.07
	Pre Span Reading	15.21	15.44	15.34
	Post Span Reading	15.44	15.34	15.22
	Pre Zero Bias, %	0.00%	0.54%	0.49%
	Post Zero Bias, %	0.54%	0.49%	0.05%
		0.00%	0.49%	0.03%
	Pre Span Bias, %			
	Post Span Bias, %	0.57%	0.31%	0.01%
	Zero Drift, %	0.54%	0.06%	0.43%
	Upscale Drift, %	0.57%	0.26%	0.30%
	Upscale Drift, %			
	Upscale Drift, %	0.57%	0.26%	0.30%
	Upscale Drift, %	0.57% <u>Cal Set 1</u>	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM vr: Zero Gas Value	0.57% <u>Cal Set 1</u>	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM or: Zero Gas Value Low Gas Value Mid Gas Value	0.57% <u>Cal Set 1</u> 0.00	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM or: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12	0.26%	0.30%
	Upscale Drift, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 48.50	0.26%	0.30%
	Upscale Drift, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01	0.26%	0.30%
	Upscale Drift, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 48.50	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11%	0.26%	0.30%
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00%	0.26%	0.30%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01%	0.26% Cal Set 2	0.30%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00%	0.26%	0.30%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01%	0.26% Cal Set 2	0.30% Cal Set 3
	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % Cal Date	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020	0.26% Cal Set 2 12/15/2020	0.30% Cal Set 3
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13	0.30% Cal Set 3 12/15/2020 12:04 14:32
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50	0.30% Cal Set 3 12/15/2020 12:04 14:32 48.50
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50 0.96	0.30% <u>Cal Set 3</u> 12/15/2020 12:04 14:32 48.50 1.28
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50 0.96 1.28	0.30% <u>Cal Set 3</u> 12/15/2020 12:04 14:32 48.50 1.28 1.19
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Pre Span Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52	0.30% <u>Cal Set 3</u> 12/15/2020 12:04 14:32 48.50 1.28 1.19 48.08
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Post Span Reading	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08	0.30% <u>Cal Set 3</u> 12/15/2020 12:04 14:32 48.50 1.28 1.19 48.08 51.00
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52 0.47%	0.26% <u>Cal Set 2</u> 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08 0.77%	0.30% <u>Cal Set 3</u> <u>12/15/2020</u> 12:04 14:32 48.50 1.28 1.19 48.08 51.00 1.05%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52 0.47% 0.77%	0.26% Cal Set 2 (12/15/2020 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08 0.77% 1.05%	0.30% <u>Cal Set 3</u> <u>12/15/2020</u> 12/15/2020 12:04 14:32 48.50 1.28 1.19 48.08 51.00 1.05% 0.97%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, % Pre Span Bias, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52 0.47% 0.77% 0.28%	0.26% Cal Set 2 (12/15/2020 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08 0.77% 1.05% 0.01%	0.30% <u>Cal Set 3</u> <u>12/15/2020</u> 12/04 14:32 48.50 1.28 1.19 48.08 51.00 1.05% 0.97% -0.39%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Zero Bias, % Post Zero Bias, % Post Span Bias, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52 0.47% 0.77% 0.28% 0.01%	0.26% Cal Set 2 Cal Set 2 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08 0.77% 1.05% 0.01% -0.39%	0.30% <u>Cal Set 3</u> <u>12/15/2020</u> 12/04 12:04 14:32 48.50 1.28 1.19 48.08 51.00 1.05% 0.97% -0.39% 2.27%
Calibration Erro	Upscale Drift, % Ionoxide, PPM r: Zero Gas Value Low Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, % Pre Span Bias, %	0.57% <u>Cal Set 1</u> 0.00 49.60 110.00 12/15/2020 7:46 0.12 48.50 110.01 48.50 110.01 0.11% -1.00% 0.01% 12/15/2020 8:21 10:23 48.50 12/15/2020 8:21 10:23 48.50 0.64 0.96 48.81 48.52 0.47% 0.77% 0.28%	0.26% Cal Set 2 (12/15/2020 12/15/2020 10:11 12:13 48.50 0.96 1.28 48.52 48.08 0.77% 1.05% 0.01%	0.30% <u>Cal Set 3</u> <u>12/15/2020</u> <u>12/04</u> <u>12/04</u> <u>12:04</u> <u>14:32</u> <u>48.50</u> <u>1.28</u> <u>1.19</u> <u>48.08</u> <u>51.00</u> <u>1.05%</u> <u>0.97%</u> <u>-0.39%</u>

Grede, LLC - Iron Mountain Page D-41 of 45

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Monitor Calibration Summary Cupola Baghouse Inlet

Test 1

Sulfur I	Dioxide, PPM	<u>Cal Set 1</u>	Cal Set 2	Cal Set 3
Calibration Erro	or: Zero Gas Value	0.00		
	Low Gas Value			
	Mid Gas Value	49.00		
	High Gas Value	110.00		
	Cal Date	12/15/2020		
	Cal Time	7:46		
	Zero Reading	0.13		
	Low Reading			
	Mid Reading	49.97		
	High Reading	111.07		
	Zero Gas Error, %	0.12%		
	Low Gas Error, %			
	Mid Gas Error, %	0.88%		
	High Gas Error, %	0.97%		
System Bias:	Cal Date	12/15/2020	12/15/2020	12/15/2020
	Pre Bias Start	8:21	10:11	12:04
	Post Bias End	10:23	12:13	14:32
	CE Rdg for Span	49.97	49.97	49.97
	Pre Zero Reading	0.69	1.08	1.80
	Post Zero Reading	1.08	1.80	1.91
	Pre Span Reading	47.39	47.35	46.88
	Post Span Reading	47.35	46.88	46.62
	Pre Zero Bias, %	0.50%	0.86%	1.51%
	Post Zero Bias, %	0.86%	1.51%	1.62%
	Pre Span Bias, %	-2.34%	-2.38%	-2.81%
	Post Span Bias, %	-2.38%	-2.81%	-3.04%
	Zero Drift, %	0.36%	0.65%	0.11%
	Upscale Drift, %	0.04%	0.43%	0.24%

Calibration Gas Parameter		High Level Ca	alibration Gas	Mid Level Ca	libration Gas	Low Level Ca	alibration Gas
Calibration	i Gas Parainielei	Certified Value	Certificate No.	Certified Value	Certificate No.	Certified Value	Certificate No.
O2	Oxygen (O2)	21	DT0033087	10.9	CC95749		
CO2	Carbon Dioxide	20	DT0033087	9.93	CC95749		
THC	Propane	39.9	CC158131	25.9	CC171522	15	SA3511
CO	Carbon Monoxide	246	CC93519	110	CC128093	49.6	CC350671
SO2	Sulfur Dioxide	110	CC128093	49	CC350671		

VE Observer Certifications

Certification of Visible Opacity Reading

Zachary Eckstrom

qualified to conduct EPA Method 9 Tests for visible opacity in accordance with the methods established for such qualification in 40 CFR Part 60 Appendix A.

Certification Date: November 04, 2020

Expiration Date: May 04, 2021

Douglas young

AeroMet Instructor: Douglas Young

Questions? Call 573.636.6393

ssued: 11/04/2020

Expires: 05/04/2021

Appendix A USEPA Method

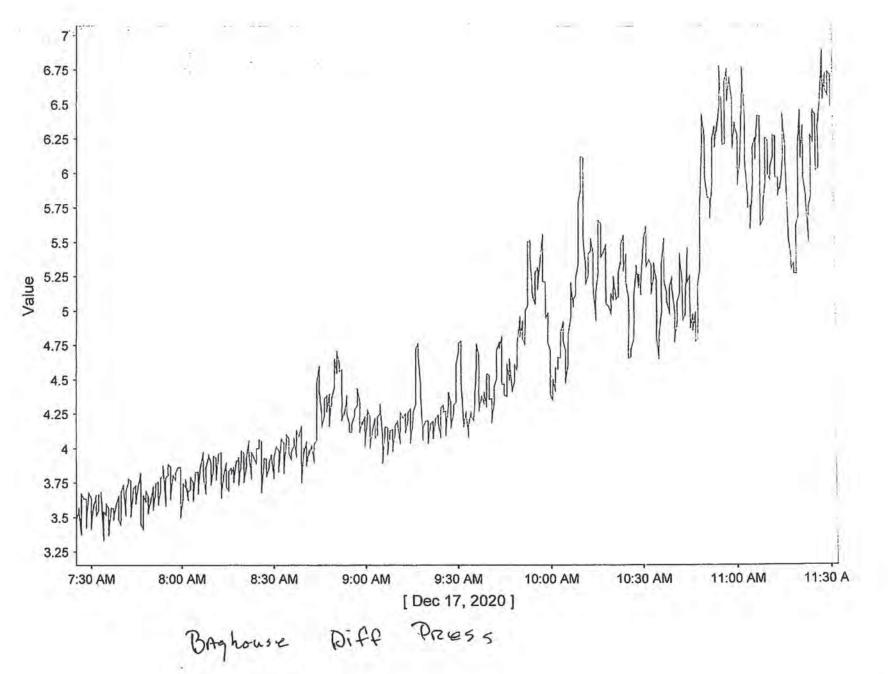
per Tille 40 Part 60

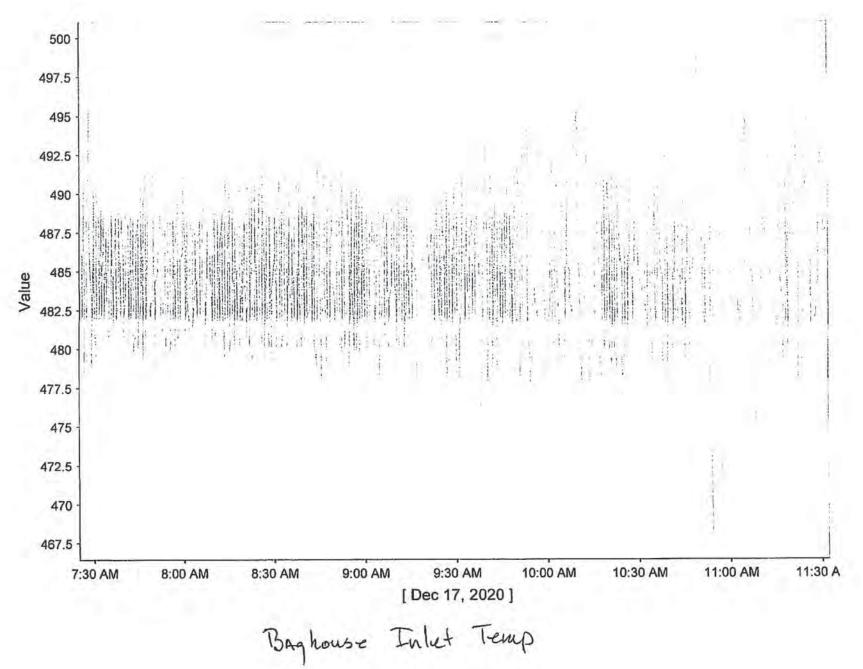
STIFIED VISIBLE

nas qualified

Eckstrom

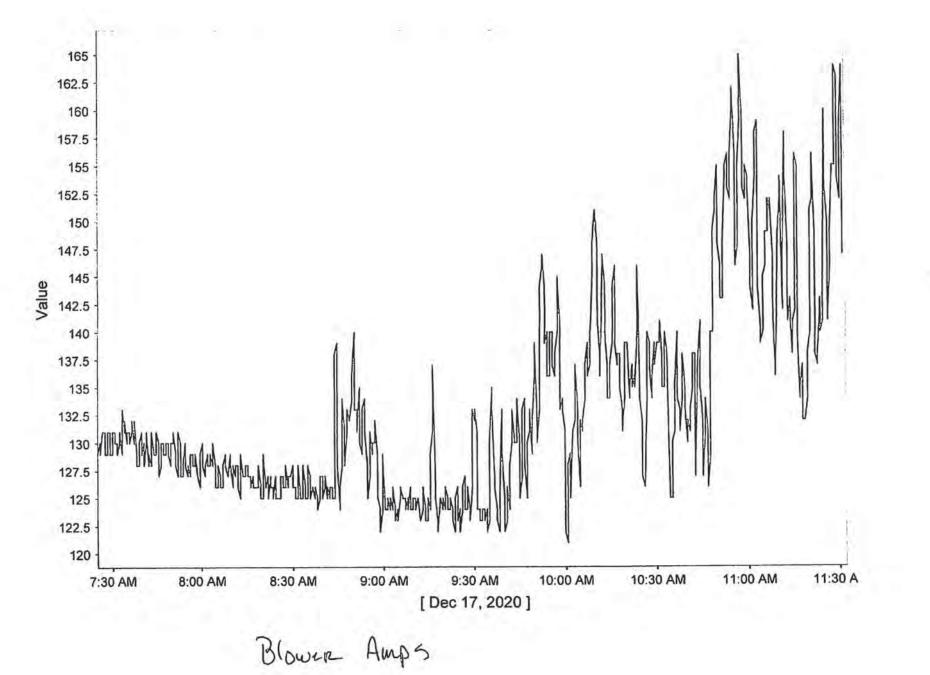
achary

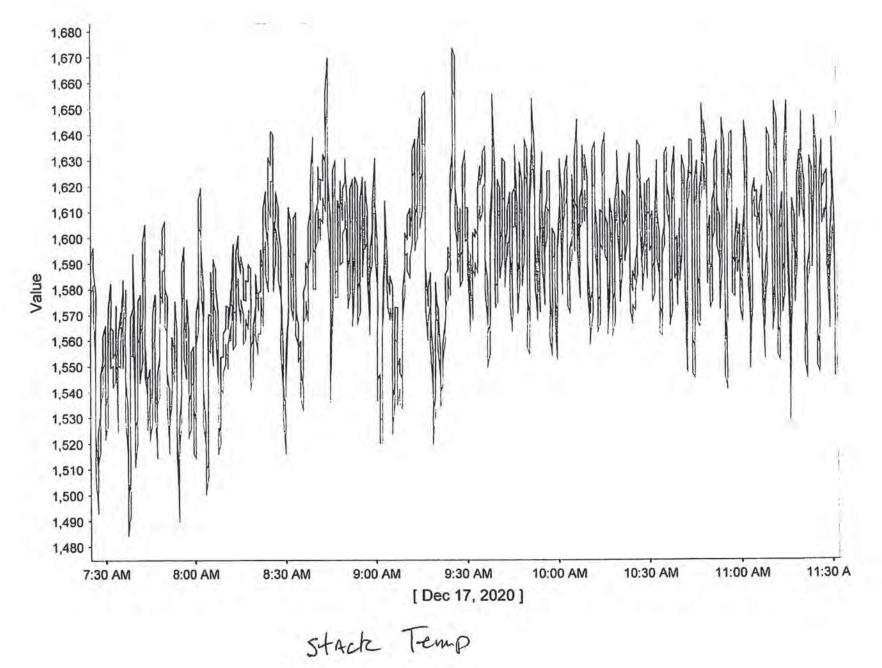

Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page D-45 of 45


AEROMET ENGINEERING INC. CERTIFIES THAT

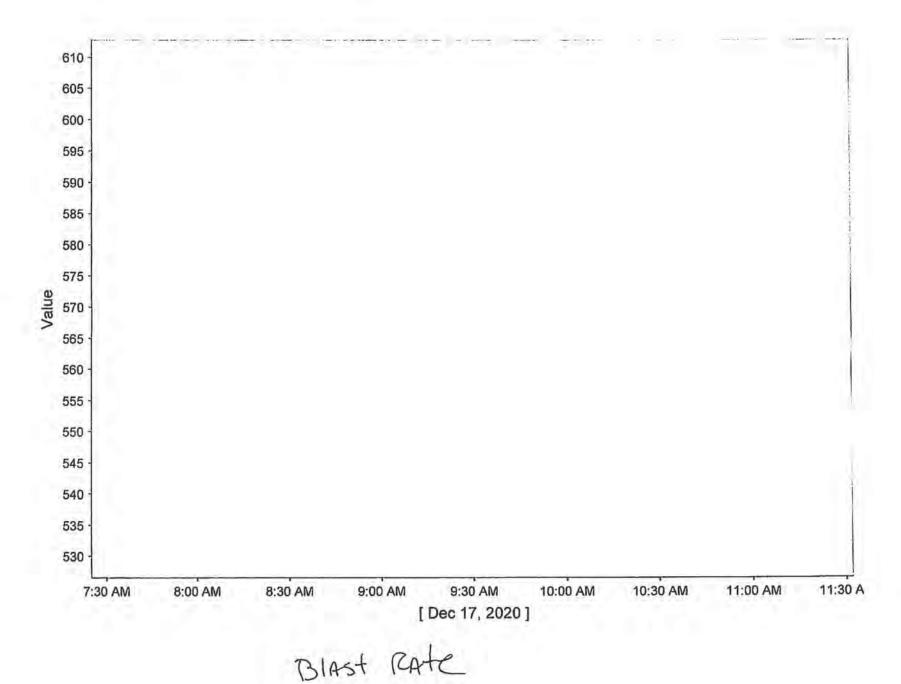
Appendix E

Source/Process/Plant Information


Process Operating Data



Report Date 2/5/2021


Grede, LLC - Iron Mountain Page E-4 of 51

Grede, LLC - Iron Mountain Page E-5 of 51

Grede, LLC - Iron Mountain Page E-6 of 51

DAILY CHARGE LOG

DATE: 12 / 17 / 20

WEIGHT VARIANCE CHECK

1. Record the weight on one complete charge.

2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

				BED S	TONE:	200)				
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHAI CLO
432	1	1500	1000	0	235	2/2	120	15	100	
435	2									
439	3						·			
439 442	4 5					2			1	
445	5				+500	P			2	
449	6	S - 0				1				
457	7	12504	1250	0	235	2/2	120	104	(100)	
454	8								\bigcirc	
457	9			(Hisol	PTI			(HO)	-
518	10			C		PI				
518 522	1		1		Č		f			
525	2								1	
529	3									
542	4							1000		
546	5			·						
52/9	· 6									
553	7				153					
5-5-9	8	1100*	14004	0	235	2/2	120	10	100	
602,	9									
607"	20		der 1	1.1.1						
610	1									
614	2									

SCALE TOLERANCE CHECK

	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::_	WEIGHT IN:				
EMPL ID NO.:	WEIGHT OUT:				
	LUMP SCALE (ACTUAL):		1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

Grede, LLC - Iron Mountain Page E-8 of 51 Date Revised: 05/15/10 Revision 4A

DAILY CHARGE LOG (CONTINUED)

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKÉ	ILMENITE / FEMIN	SI CARBIDE	75% LUMP FESI	LIME	CHARG
617	23									1.6.1
620	29									2.20
627	25	14.7			1	1.1.1				1.14
630	26									-
637	27	4								
640	28				1	u = 1		$\mathbb{P}_{\mathcal{C}} = \mathbb{P}_{\mathcal{C}}$	×	1
643	29	1			2.27		- 10 m		1	
646	30	1100	1400	Ø	235	2/2	120	ØX	(00)	
650	1	1.00	142.03		1000				1 7	
656	2	1								1
655	3	14				C	100			1.
707	4									
710	5		1.77	- i	1			1.5	· ·	
713	6	1.000	1.	16			1.2	1000	1.5%	
717	7		1.1	1				1.1.12		
724	.8	1				-			11119	
727	e		141	1.00		1.00				
736	40	1		1.5	1	1923	1		1.2.00	
737	1				1.77	1.1			1	
741	2	1								
748			12	1.4				1000	1.20	f
757	4	1	1				1:50			1
754	5		10000		235	1	1.20		- S ²	
800	6	100	140E	0	235	52/2	120	0	120	
805	7		11.00							
81	8	1.			ST.		1	s		
814	1 9		1.2.23				1		1000	
817	50	(and				1	1			
826	1	25				1	· · · ·		1	
830			4							
834			1							1

4

2

DAILY CHARGE LOG

DATE: 12/17/20

48

WEIGHT VARIANCE CHECK

1. Record the weight on one complete charge.

2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

				BED S	TONE:					
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHL
837	54	1100	12/00	ø	235	2/2	120	Ø	1.20	
841	5		2							
848	6			ł.						
854	7					÷ .				
857	8	1.22				1			1000	
900	5								*	
907	60		1							-
914	1									
918	. 2								L.,	
923	3	1993	1.0	1.24	11	1. Sec. 1.		×.	ð	
927	4							8		us.
933	5							÷.	1	
936	6									
940	7							1		
995	8		-					4		
949	5	1i		0		1.1				
9.56	20		1					1		
1000	1							N.		
1007	2		1	1.1			1.		<u>N</u>	
1010	3		1.1			/	14.5	1 2	14	
1013	4						al and and and and and and and and and and	19		
1022	5				500		C.	34	1	in the
Man Carlos and a second second			the second second second second second second second second second second second second second second second s	Contract of the local division of the	NAME AND ADDRESS OF TAXABLE PARTY.	CE CHECK	and the second day of the second day	21	1 - 2	
TIMECHE	CKED:		CHA	RGESC	Date of the second second	ZERO	STEEL	RETURNS	PIGS	12.
					EIGHT IN: GHT OUT:				4.94	
EMPL ID	NO.:		THUMP SO							

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

Grede, LLC - Iron Mountain Page E-10 of 51

	TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHARO
	1025	76	1100	1400	0	235	2/2	120	ø	120	
1	1030	7		1.1		1000			$r \ge C$	121	
	1033	8									
	1037	5									0
	104)	86				0.01			1		-
	1047	1					1.1	i:	1.0	1.2	
	1052	2	1000				1				1.1
	1057	7	**	12		+100	ľ		1		
1	1100	4.	1500*	10000	0	236	2/2	120	Ø	120	_
2	1105	1 5.	1	-	1		6	1.000			
3	1108	6.	1		. ionas	•				+200	
4	1113	7.		1	-FIRE	1.20		-			-
5	1119	8.	1500	1000	0	235	2/2	Q4	40*	120	-
4	1123	.5		1			Sec.	1.1		1	5
7	1128	90					1	· · · · ·	(+200	K)
	1131	1	1	1.		-		-			K
-		1	-	1.0 S							-
		3	1	NA	1/0		2				1
		4.		AF	+1		()	1.	0		-
		5	-	N	VU	1			-		-
		6		V 17	1		1	-		12-23	
		7		1		1	100	10	-	a series	-
		8	1		1 1	1/1	WC	1	-		-
		5	1		1	4U	VC	1	-	1 1	
		100				-		_			100
		1	-		-		1	-	1		
	1000	2				-	1	10000	1		
		2		1	-	-		100	-		-
		4	-	-		-	-		+		
		5	-		4	100	1		1		-
		6						-		1	1

t

DAILY CHARGE LOG

DATE: 12/16/20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

				BED S	TONE	200)					
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHAR	
429	1	1500	1000	0	235	2/21/2	120	15	100		
433	2								11 A.		
437	3				5			1.		1.1	
441	4			(+252	1					
446	5									12	
450	6			2	1.24					12	
454	7	1250#	1250*	0	235	2/21/2	120	104	100		
458	8		ter.							1	
502	9		1 A						+100/	1	
522	10						<u></u>				
526 .	1			(+100	Y				1	
531	2				1						
535	3							· · · · · · · · · · · · · · · · · · ·			
539	4										
543	5										
547	6										
552	7		10	1.1.2		/17				-	
556	8	1100#	1400*	0	235	2/2/2	120	10	100	-	
602	9										
605	20						252-1			-	
608	/								1		
611	2						i i i i i i i i i i i i i i i i i i i		-		

SCALE TOLERANCE CHECK

	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::_	WEIGHT IN:			10.38	
EMPL ID NO.:	WEIGHT OUT:	Tone of the later			
EMIPL ID NO .:	LUMP SCALE (ACTUAL);	Change Concertanting	1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

Grede, LLC - Iron Mountain Page E-12 of 51 Date Revised: 05/15/10 Revision 4A

DAILY CHARGE LOG (CONTINUED)

TIME	CHARGE	FRAG. STEEL	RETURN / DUCT	PIG	COKĖ	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	STONE	CHARG
614.	3	1100	1400	ø	235	2/2/2	120	10	100	076184
619-	4									
636	5	1.4.2						9 E I	16	11-22
629	6			1.27				See 1	1.	
632	7	-				(4	1.
636	8			45	· · · · · ·	1				1
640	9						1000			
644	30							()		
651	1				1.2	Υ.				1
654	2	1100	1400	Ø	235	2/2%	120	Ø	100	Bef
657	3					1	1.1			1 miles
705	Ч	1			1		1.2.2			
708	5	la barren			1					
711	6	·	12.5			100.000	÷.		• •	4
744	7	1				1-26-21		Sec.	1-22	
718	8									
723	9								1.1	
726	40	1		1.00				· · · · · ·	$\hat{\mathbf{x}} = \hat{\mathbf{x}}$	
733	1	125					1			1 - 10
736	2.						-	1	1.	
740	3		1					1	-645	1
755	4						-	H		
800 .	5	1.000			11	1.20	· · · · · ·		1.5	
804	6						1		1.00	
807	7			1.0	112.11			Ru.		
810	8	- 1	-				1	1	1.10	
814	9								-	
820	50		1 hours					_		
824	- 1		•	*				-		-
827				1.00	1	1				
830	3		ļ							

Pace Analy**ffCRM 030036** FSD 20-04074

as

Report Date 2/5/2021

· ;

Grede, LLC - Iron Mountain Page E-13 of 51

DAILY CHARGE LOG DATE: 12/16/20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

8_				BED S	STONE:	/				
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHAI
833	4	1100	1400	Þ	235	2/2%	100	Ø	100	076 18
936	5							100		
839	6	L								
843	.7	1.1								
\$50 .	8									
853.	9		1		0					1/
901	60	1			(+50 3)	1			+1000	X
904	1		1				1.1			
907	2				1					
911	3									
914	4								,	
918	5									
925	6								1	
935	9									
938	8									
941	9.			2.3						
944	70								Sec. 1	1.1
948	1	1								
951	2	1.041								
954	3					<u> </u>				
1000	4 .									-
1005	5									

SCALE TOLERANCE CHECK

	CHARGESCALE.	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::	WEIGHT IN:				
EMPL ID NO.:	WEIGHT OUT:				
	LUMP SCALE (ACTUAL):		1	-	

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

Grede, LLC - Iron Mountain Page E-14 of 51

Date Revised: 05/15/10 Revision 4A

DAILY CHARGE LOG (CONTINUED)

	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHARG
100%	6	1100	1400	6	235	2/2	120	Ø	160	07618
1013	7			1						
1016	8									
1022	9									
1026	80		19.00		1.1	12 2				1
1029	1									-
1032	2									
1037	3									
1040	4									
1044	5				4					
1051	6			24	• (
1054	7						1			
1057	8						,			
1104	9						1.5			1
1107	90						1		1.5	
1110	[1.	125					1.1
1141	2		T = 1					1.1.1	100	1.1
1145	3									1
1148	4					(204	1 -		12
1154	5						-	•	12	1
1158	6		H Ar Ar		-	1.				
12.07	7	-						-	1	-
1220	8					(200	T		
1215	9						-	1		
1218	100						10			1.000
1223	1				1			E)		-
1227	2					1		-)	1	-
1232	3		1		-			1		_
12:35	4				1.	-				1
12:40	5		1 1 1 1 1		-	_		10		
1244	6									

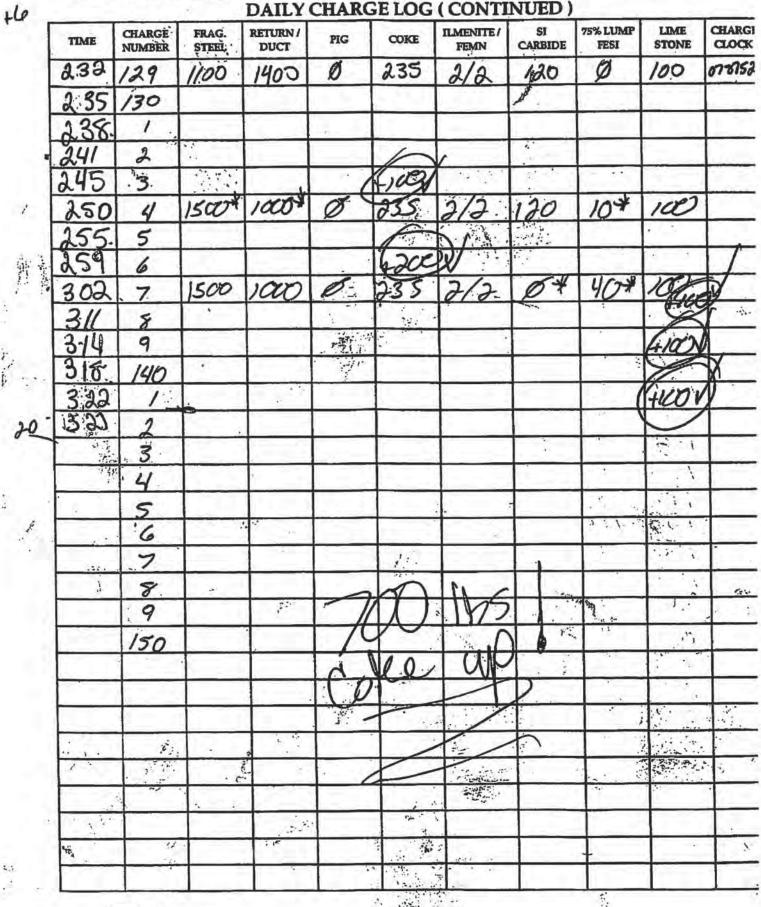
DAILY CHARGE LOG DATE: <u>2/16/20</u>

WEIGHT VARIANCE CHECK

1. Record the weight on one complete charge.

2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

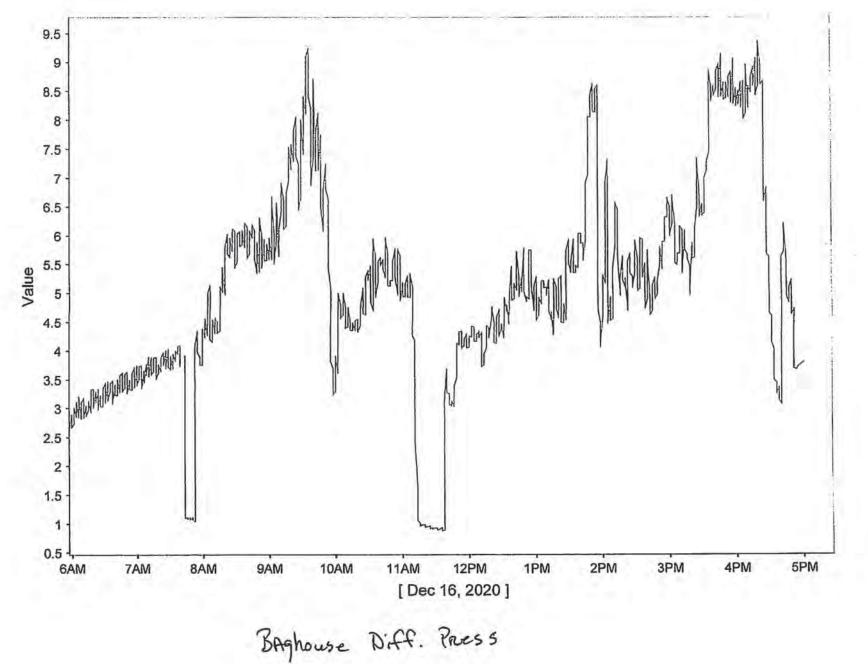

)					BED S	TONE:					
[TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHL
T	1247	107	1100	1400	Q	235	2/2	120	0	100	
T	1253	8					1				
	1250	9	1-1	1			· · · · · · · · ·	12			
	10:2	110									
	108.	1									-
	111	2			1						
	114	3				· · · · · · · · · · · · · · · · · · ·					
	117.	У								N.	
	127.	5								1	
L	130	6	4-								
	130	2								18	
	142.	8					3		5		
L	145.	5							ANGER 18	р. (4. т.	
	153	120									
	156.	1	ŀ.,		140						11
1	159	2-									
6	2:02	3									
	211	4						1		- 11	
L	214	5	1								
	218.	6								1	
	225	7								1	
L	229	8							20	39	
-		All provides the root particular	and the second second second second second second second second second second second second second second second	and the second se	other state of the state of the local day is the	and the second	CE CHECK	STREET, DESCRIPTION, STREET, S			
1	TMECHE	CKED:		CHA	RGE SC.	· SALENAR ME HERBINES WITH	ZERO	STEEL	RETURNS	PIGS	
					and the second sec	EIGHT IN: GHT OUT:					
11	EMPL ID I			LUMP S	Contraction of the state	a web to be a subscription of the					E

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

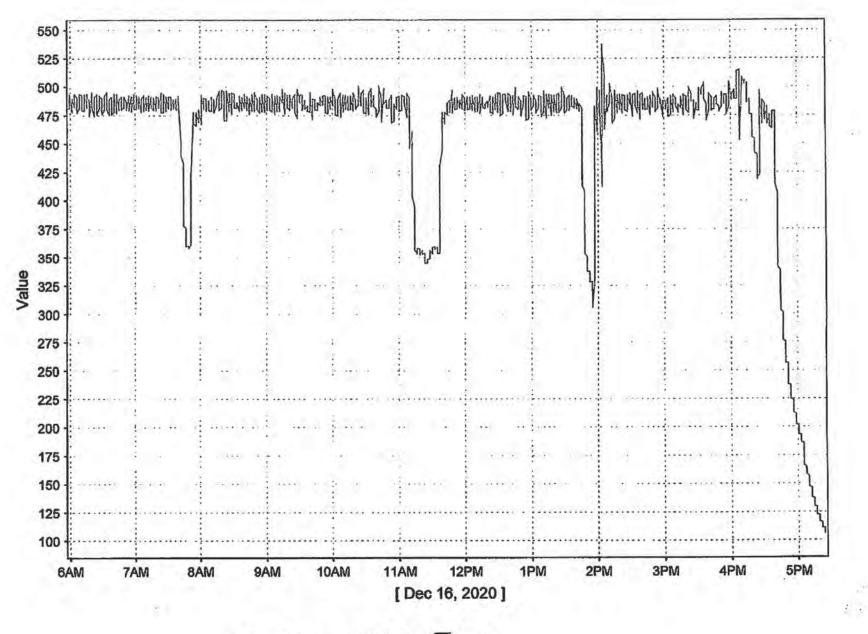
Date Revised: 05/15/10 Revision 4A

14 4

DAILY CHARGE LOG (CONTINUED)


Pace Analytical 030036 FSD 20-04074

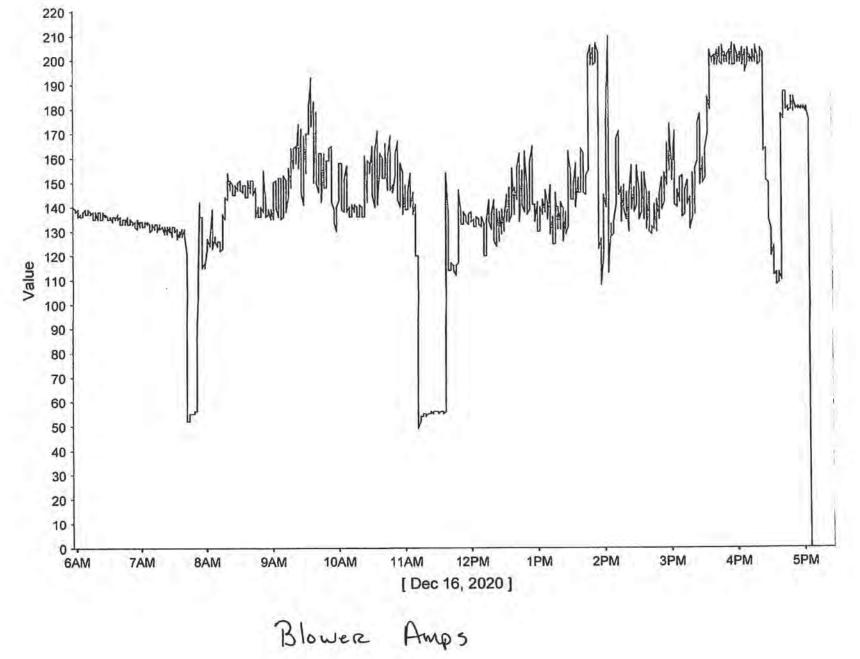
. .

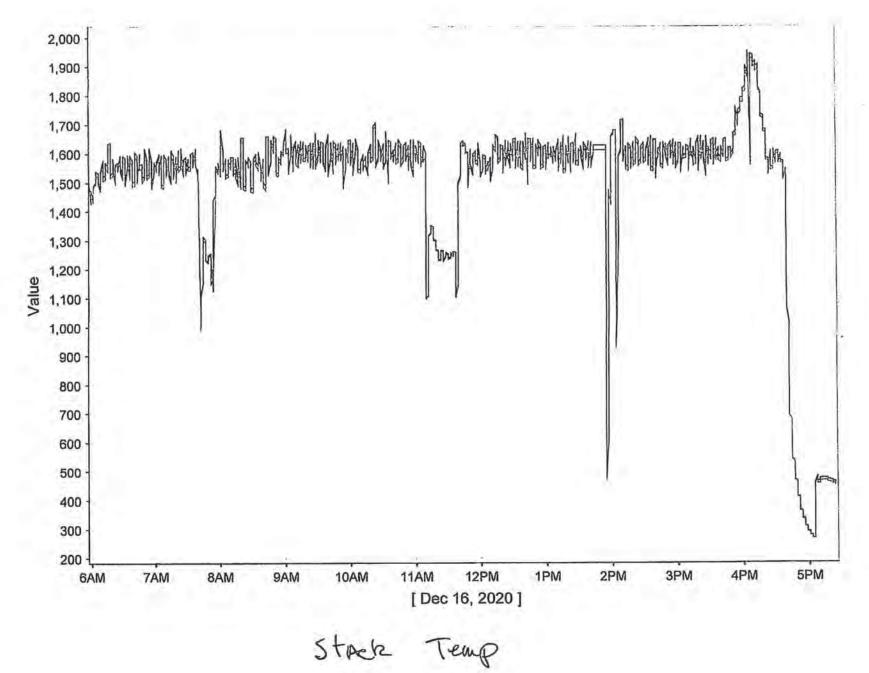

11.32.

Report Date 2/5/202

Grede, LLC - Iron Mountain Page E-17 of 51

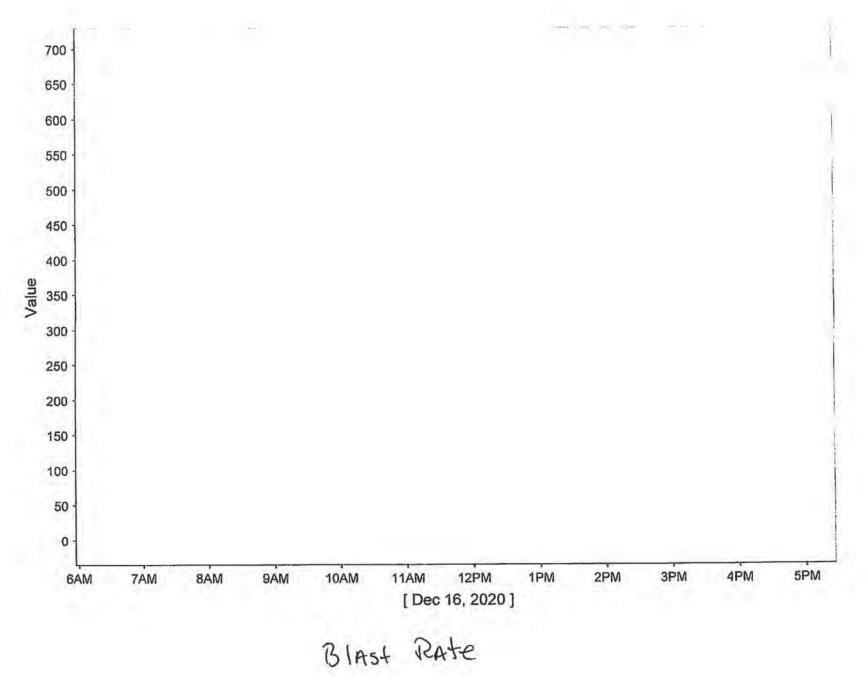
Grede, LLC - Iron Mountain Page E-18 of 51

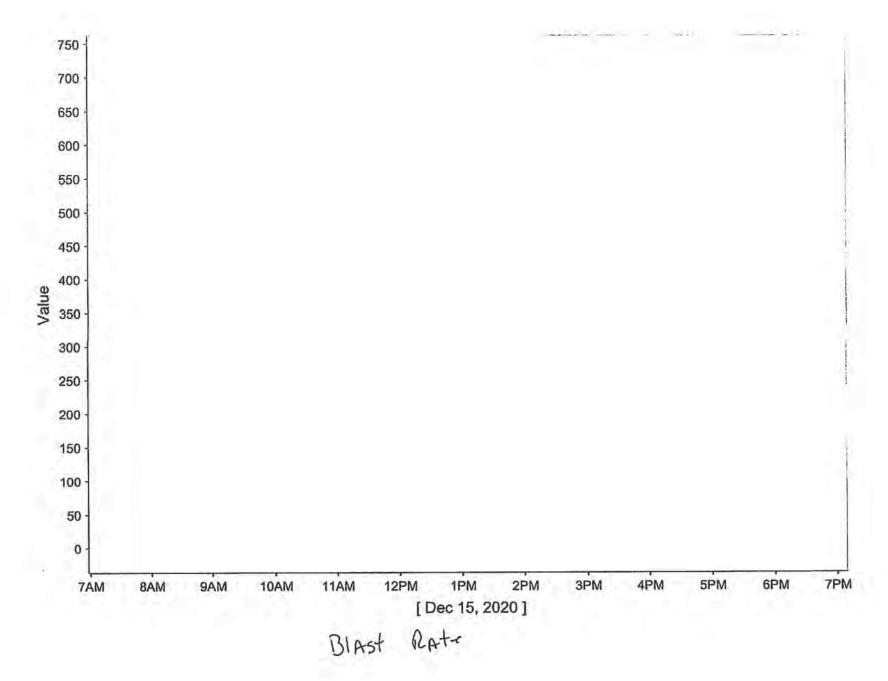

BAghouse Inlet Temp

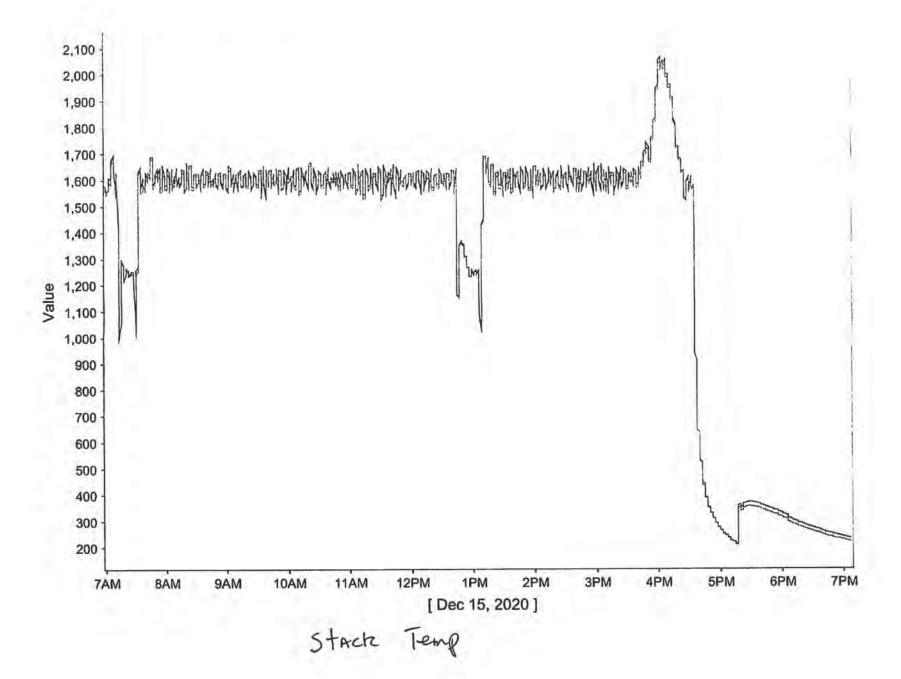

Grede, LLC - Iron Mountain Page E-19 of 51 ł

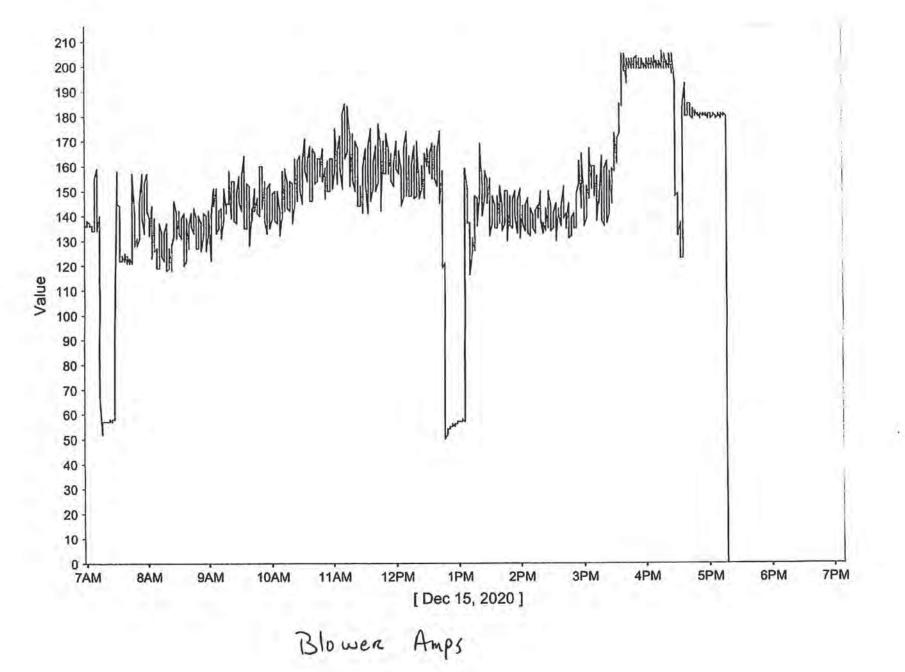
ŝ.,

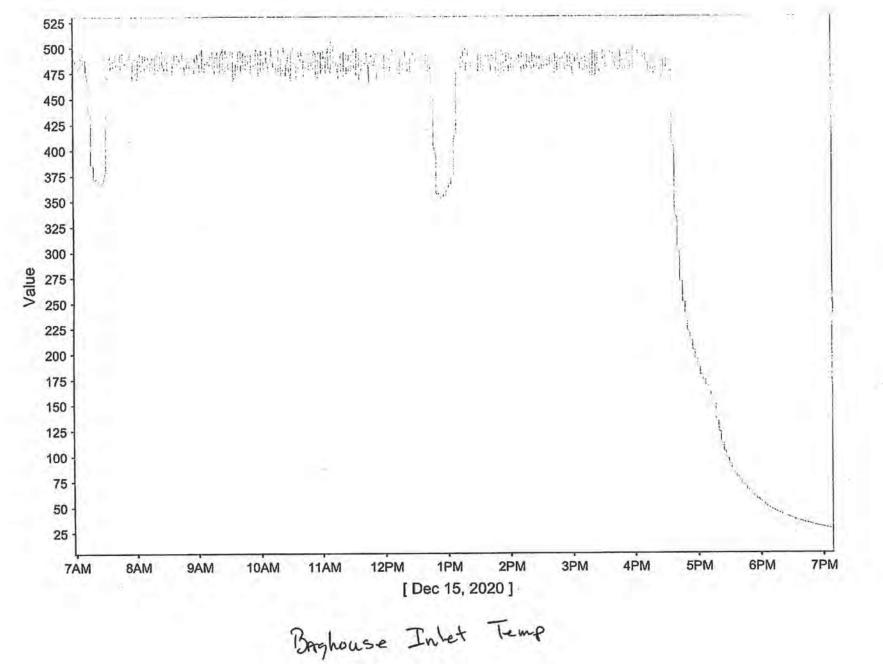
21

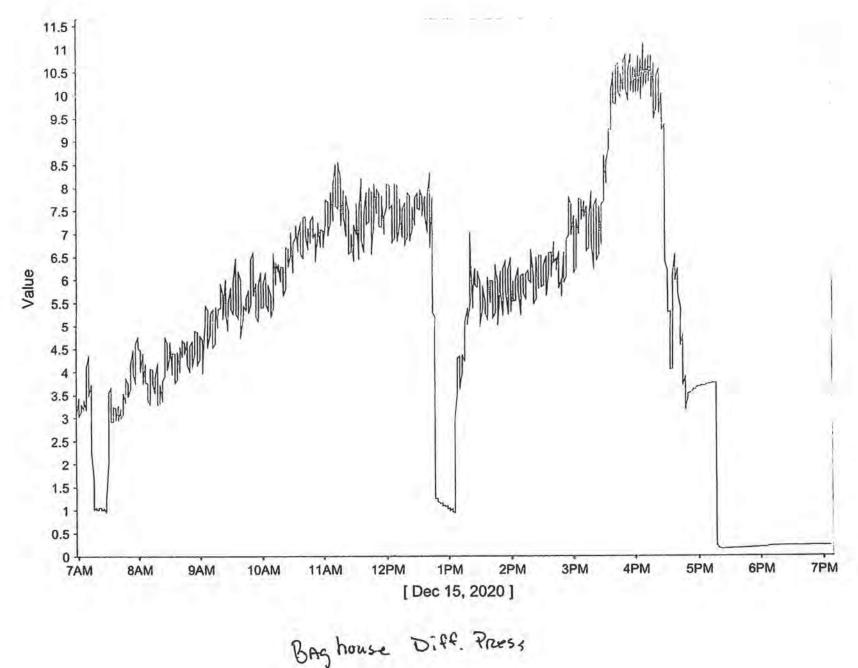

-




Report Date 2/5/2021


Grede, LLC - Iron Mountain Page E-21 of 51


Report Date 2/5/2021


Grede, LLC - Iron Mountain Page E-25 of 51

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page E-26 of 51

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page E-27 of 51

DAILY CHARGE LOG

DATE: <u>/2 / 15 / 20</u>

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

				BED S	STONE: 2	009				
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STOŅE	CHA
445	1	1500	1000	Ø	235	2/212	120	15	100	
448	2					1.1		4	1	
451	3		1.1		Sec. A.A.					
494	4				13-		1-71	199	a	
457	5							5		
501	6				1.22			- and 1		
504	7	1250*	1250	ø	235	2/2/2	120	10+	100	
507	8						12.14		47	1
510	9					/			(+100)	1
545	10				(4100)	1	U . I	1.		Derf
548	1			1					0.50	
554	2		S	1			1			
600	3									
603	4				1					
606	5		1			1			1.1	
609	4		3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1.2.7		1		1.1		
612	7			(+100,		· · · · · · · · ·		- n	
617	8	1100*	1400 4	ø	235	2/22	120	10	100	
622	9	- 7						1		
628	20						125, 11			1
631	1					1				-
639	2			(+250	Y				

SCALE TOLERANCE CHECK

	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::	WEIGHT IN:			1	4
THE TO NO.	WEIGHT OUT:			1.1	5.
EMPL ID NO.:	LUMP SCALE (ACTUAL):		1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS: _

Date Revised: 05/15/10 Revision 4A

2

1.

Nil.

DAILY CHARGE LOG (CONTINUED)

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHARG
642	. 3	1100	1400	ø	235	2/2/2	120	10	100	076.19
645	4			5 1 3	1.2.2					
651.	.5				1		-		1	
Teles Contract	6			+		1			1	
658	7					1.00	1.	(i	1	-
701	8	1.1	1.	" "				14.0		1.5
705	9	·		1.27				1.		1
731 3	30	Koes	MOO	ø	235	2/2/2	/20	Øbe	100	
736	11		1.		1.2 5.4	1.00				
741	2						1		· · ·	
745	3			100		1.00	1000			
752	4			1	1		1		1.00	
757	5				10.51	CONTRACTOR	1		41.	-
802	6	1.1	12 2.00		1	1	100.000			
807	7			1.00	11000		<i>t</i> i.	1.2		
811	8	1		-	1	1-12		1	45	10.00
8 16	9				1.1			1	1	
820	40	1	1		10.00			1.11	$\sim \sim 10^{-10}$	17
824	70		1				1	1.1	1	
828	2		×.		12.20	1 2 4		1		
833	1.11		10 1	1 I. I.	<u> </u>	1			1	1
837	4			17	+100	-20				
841	5	1	1		+	1	11-21	14	112	1
850	6		1						10,500	. a it
854	7	-						1		
859	8	0.0	-		:	10			1	in the second second
904	9	1	1			1	1	1. A.	1	157 1
909	50	1			1			18		
913	1	1	NA NA	1.00		100	1	60.00		1.
918	2				10.00		4.7			1
922						1	112	1		

Pace Analytical 030036 FSD 20-04074 .

Grede, LLC - Iron Mountain Page E-29 of 51

DAILY CHARGE LOG

DATE: 12/15/20

r

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)

7

3. Notify Melt Supervisor if variation exceeds limits.

18_				BED S	STONE:					
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHAR
926	4	1100	1400	ø	235	2/21/2	120	d	100	076A
931	5							-		
936	6									
940	7	22.5								
944	8				1.20					
948	9	1							12	
952	60			6.72						
957	1	1.11				1			i ei	
1001	2									
1005	3						1			
1009	Ч							1.1.1		÷
1013	5				φr.					
1017	6									
1022	7									
1026	8						.[]			
031	9									
1035	70									
1040	1									
1044	2	1								
104B	3							1.1.1.1		
1052	ц					1				
1057	5	1								

SCALE TOLERANCE CHECK

	CHARGE SCALE.	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED:	WEIGHT IN:				
	WEIGHT OUT:				
EMPL ID NO.:	LUMP SCALE (ACTUAL):	and the second second	1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

Grede, LLC - Iron Mountain Page E-30 of 51 Date Revised: 05/15/10 Revision 4A

1.

DAILY CHARGE LOG (CONTINUED)

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKÉ	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHARC
1101	6	1100	1400	0	235	2/2/2	120	0	100	1275
1105	7		1.111							
1109	8			÷.						
1113	.9	1.1.20	1.5		1.000			-		
117	80			4.9			10 A.			
1121	t									
1125	2					1.	1			
1125	3	1.1.1.1	1					1.5	(e 5)	
1134	ч	1							1. P. 1	
1138	5									
142	6				126.11		1.00		•2	44
1146	7	1.00	1.000					1 . And	% , 4	4
1150	¥				1.00			1.2.2.4.3		
1154	9							122	2244	1.00
115-8	90									1.
1202	1					1				1.2
1205	2	1000					-	11.20		
1211	3		() Salahi							
1215	4	1.0		1			·	1	- de	
1219	5		1					1.4	1.0	
1223	6		22			1			(*	0.1-
1227	7	-					10	1.000		1.0
123]	8		1.2						2.2	1
1235	9							1.0.5	12.	
1235	100	-								
1243	1	1.1.2		(-	12		1
rug	2	1					10000	S	0.1	
111	3				1	-				
115	4								1.1.2.	1
119	5		1.1			1.5-3.4				
123	6	NI				1	1 2 4 2			1000

Pace Analytical 030036 FSD 20-04074

Grede, LLC - Iron Mountain Page E-31 of 51

.3

14

DAILY CHARGE LOG DATE: 12 / 15 / 20

WEIGHT VARIANCE CHECK

1. Record the weight on one complete charge.

2. Place clock number (Charger)

3. Notify Melt Supervisor if variation exceeds limits.

SCALE IOLEIGAINCE CITE

	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::_	WEIGHT IN:				
MPL ID NO.:	WEIGHT OUT:				-
EMPLID NO.:	LUMP SCALE (A CTUAL):		1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	FIG	COKE	ILMENITE/	SI CARBIDE	75% LUMP FESI	LIME	CH
302	9	1500	1000	0	23 200	521212	120	10	100	
307	130	1500	1000	Ø	235	2/212	04	40%	1000	K
311	1				ъ.,			1.0	Ela	2
316.	2								\$100)	1
320	3	·							6	Y
324	4							(· · · · · ·	HOW	
	5									
	6								0	
	7									
	8		12.00			1.00				
	5	1000								1.
	140.				li i i i			1		L
	1.10		0		1.00	0	S		1	
· · · · · · ·	-									T
		1								T
		1.		76	T				1 × 4	T
				VII	(f)				· · ·	T
	1		17	0	1	M.				T
			t	10	the second	1			1. 10	T
	1		1.5.2		+	5				T
			12	F	+	1	1999 S		1.1.1	T
		1			1	1.2.2.2				T
	1	11111	1	V					1	
			1 /	1						T
	1 1		1	1	U	1.1			4 1 ml	
1				1					1	T
-					1					T
	1	1	1	1						+
		1		1		e	1	1		+
-	+		-	-	+	+			1	\dagger

Pace Analytican 030036 FSD 20-04074 Grede, LLC - Iron Mountain Page E-33 of 51

#6 Hünter Pouring Production Entry

12-10-20 Date:

Operator Name: Storman

Shift: Operator Clock 26123 Page No:

•

Time	Part Number	Process Card Temp Range	Ladie Temp	Ladie Number	Molds Poured	Run Cuts	Pour Shart.	Total Good Molds Poured	Corrective Action
8991	3995E1695	2590 - 2620	ZM		20	440		200	
da tui		4	CEDB.		Do			20	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			pees	3	20	-	-	20	
			2597	¥ .	20.	-	-	20	
		<u> </u>	2012	5	:00	-		20	•
100		-	2593	6.	:20	-	-	3	
			25	2	20	-	-	30	
		-	2602	8	20.	-	$\pm \frac{1}{2}$	20	
			2003	4	20	-	1	20	
194) 		-	24795	10.	20			20	
1.5		<u>. A</u>	Calo	81	200			30	- 5 <u>11 - 14</u>
		The second	378	12	de.	-		20	
			0L04	19-	20	-		20	
	<u>Rafe (a server)</u> References		2612	P.	20	-		200	
			2011	0	20	-	-	30	
		- An	9612	-	مد	-	-	20	·
12.4.	1 A		Hor	12.	20	-		20	
-	· · · · · · · · · · · · · · · · · · ·		1	18	30	-	-	20	
	•		1.13	19	20	-	-	20	
			1-1. YEL	20	20	-	-	20	••••••••••••••••••••••••••••••••••••••
			2 CANY -	D 1	20	5.4.		20	
0.0	8F6783	2570 -200		1	20	35		16	

FORM 030707 4.

aze No ŧ

Pace Analytical FSD 20-04074

... 47 2. ÷ Report Date 2/5/2021

Grede, LLC - Iron Mountain Page E-34 of 51

_	Part Number	Process Card Temp Range	Ladle Temp	Ladie - Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Supervisor Corrective Action
CON	875783	2570 -200	2599	2	18	-	-	18	1
10A	246963	250 260	2586	1	18	35	-	18	1
		the second	2528	2	15	-	-	18	2
	XG7008950	25% - 3570	0541	1.	18	34	-	18	î
			2540	A	18	-		18	
	14 2 3 3	2009-00 A	2556	3	IE	52	-	C	
DS9	0207090	2570-2600	1 15 Mar	1	9	600.		9	
4-2 1		-	2:20	2	9	-	8	9	
		-	2022	3	9	0	00	9	
,			2788	1	4		-	9	n (63
	ĸ		2000	154	9	1	~	Q	
			011	R			-	7	
205	VI MADOST	0100-0120	ala >	1	nn	1.5.	NOC	20	14
*12 3	ALCOND/	-	Aran		Se.	1.14	anu.	30	
		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	21.24	2	20	1.000		205	рт.
332	Sullen 2	2570-2600	(De)	1	18	54	-	120	1
a eres	10103 ···	as no genes	2175	39P	12	-	000	Æ	
			12212-23		18		-	18	
			75K-			1	35	10	
		<u> </u>		7.4		*	1		and the second sec
					11 1 1. 1721 - 1		- 1. 		
	,				e e	-		a.	1993
								-	N. S. S. S. S. S. S. S. S. S. S. S. S. S.
		1 8 · •		2	*			-	4
	•	- 5			*			-	
		-			(÷:				
						-3>		i III î	*
h i	g								
22					6.51				
111		2.5425							
1.1	S	1 - 4	12-1		(11.)				
				1. 1					

.

717.4

1

1114

....

Grede, LLC - Iron Mountain Page E-35 of 51

-4

Y.

AND PARTY.

 γ^{*}

Module Hunterc Pouring Production Entry Form

12-10-20 Date: Operator Name: JS . AUS C Machine Number: Model

WE ARE IRON MOUNTAIN

> Operator Clock: 07604 Co Page No:

Time	Part Number	Process Card Temp Range	Ladie Temp	Ladle Number	- Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	Corrective Action
	29599325	2585 - 4	2637	1	14	308	3	14	
			2625	2	14	1	1	13	C
		and the second	2630	3	14			14	
26		- 198	2633	Y	14			14	
		-	2630	5	14			14	
		-	2637	6	14			19	n ge
			2620	2	14			17	
			2646	8	14	artice.		14	
		-	2626	6	14			14	
- 1	1	3	2622	10	14			14	and the second
			2626	11	14			14	
_		-	21.42	12	14	and a		14	
		- 4- ×	2616	17	14	14-1		14	an an an an an an an an an an an an an a
_		-	2145	14	14			14	
			2645	15	14	,		19	
			2666	16	14			14	an an an an an an an an an an an an an a
			6/3		KI			14	
		- 2	160	8%	14		1	14	A long

* If More Than Two Runouts Stop And Notify Supervisor Corrective Action Required

** All Out Of Range Temperature Readings Must Include Corrective Action Taken (Wait, Chill, Pig)

HOUR	GOAL	ACTUAL	COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1	H65 DM90 DF110			7	H65 DM90 DF110		
2	H65 DM90 DF110			8	H65 DM90 DF110		
3	H65 DM90 DF110			9	H65 DM90 DF110		
4	H65 DM90 DF110			10	H65 DM90 DF110		
5	H65 DM90 DF110			11	H65 DM90 DF110		
6	H65 DM90 DF110			12	H65 DM90 DF110	1.00	

Machine Number: Modules

Page No: _____

l

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	If More Than Two Runnout Stop And Notify Superviso Corrective Action
	29549325	2585- 4	2656	18	14			14	
		-	2649	20	14	1	E.	13	
		-	2165	21	14			1-4	
			2661	22	14	1		13	
	29505904	2520 - 2550	2541	23	19	283		19	
		-	2536	24	19			19	
			2549	25	19			19	
			2526	26	19			19	
			2522	27	19			19	
		-	2546	28	29			12	
		-	2549	29	19			19	
		-	2549	30	19			19	· · · ·
		-	2542	31	19			19	
		-	2544	32	19			19	
			2530	3.3	19			19	
			2536	34	19			19	9
	ž	-	2534	35	19			19	
		S. 2.4	2541	26	19			19	
			2537	37	17			17	
	1		1	38	(=)				
		-		39					
		-		40	1.5				
		-							
		-							<u>i ()</u>
		-							
		-			<u>£</u>				1
		-		_	_		-		
		-				-			

1989

14.04

ş

ļ

te: erator	WE ARE MININALIN IRON MOUNTAIN 12-9-20 Name: 15-12052 Sumber: Associate	POL	Modu		duc	Shife: Operator	1 Clock	ntry I	
Time	Part Number	Process Card Temp Range	Ladia Temp	Ladie Number	Molds	Page No: Run Outs	Pour	Tatel Good Matds' Poured	Corrective Action
	29549325	2585- +	2586	1	14	1	-	13	
			2683	2	14	1	1.	13	
1	(4) ±	.8	2101	3	14	1.1	1	14	
7		- Anger	2605	4	14	1		13	
		-	2604	5	14	2		12	
	· · · · · · · · · · · ·	1 · · · · · · · · · · · · · · · · · · ·	2607	Ľ	14	6	•	8	
		-	26/0	37	14	1	-	13	1122
		1.2	2617	8	RI			14	
		-	0105	5	14	+	-	14	
	1		2612	10	14	-		14	1.000
		1.50	2600	11.	14		l al l	14	
		i = 4 = 1	2605	n	14			14	
		2 - 3 - als	2615	13	14			14	_
		1.1.2	LIS	14.	14			14	
		80 -	2618	15	14	1.1		14	1.1
	27505904			16	19			19	
	A		2548	17.	19	100	1	19	
I		-	2550	14	19			19	

• If More Than Two Runouts Stop And Notify Supervisor Corrective Action Required •• All Out Dr Range Temperature Readings Must Include Corrective Action Taken (Walt, Chil, Pig)

۰.

ŀ !

ľ.

HOUR	GOAL	ACTUAL	COMMENTS	KOUR	GOAL	ACTUAL	1.1.1	COMMENTS	
1	H65 DM90 DF110			7	H85 DM90 DF110	1.34			1.444
2	H85 DM90 DF110				H65 DM90 DF110	8. ·	1.1		
Pace A FSD 20	nalytical 90 DF110 -04074		Report Date 2	/5/2021	1655 DINSO DE110		Grede, LL	C - Iron Mounta Page E-38 of 5	n 🔨 🖓

48

10

..

A MARKAN AND A MARKAN AND A MARKAN AND A MARKAN AND A MARKAN AND A MARKAN AND A MARKAN AND A MARKAN AND A MARKA

112 5

يا مصفرة المعدية المستحا المعقات

11

6

r. Machine Number: MOQUI

1.34.10

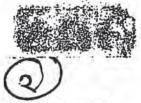
.....

1.

Page No: 2 Total Good If More Than Two Runnouts Ladle Molds Pour Molds Stop And Notify Supervisor Time Part Number Process Card Temp Range Ladle Temp Number Poured Run Outs Short Poured **Corrective Action** 2520-2550 2549 1.9 296 19 19 1G4 O 19 20 19 2544 ٠ 19 9 2548 21 -9 19 2537 22 ÷ • 1 9 2533 19 2 23 2526 19 --24 -19 9 -40 25 9 19 -2 21 19 25 19 -27 9 9 28 28 -9 9 9 ÷ 7 25 12 -28 20 2585- 4 28549325 2640 ÷., 4 М 31 26 37 -۰. 21 3 3 4 i. 34 2625 19 -35 --U.Y 1 1. --÷ --÷ UN: ... ÷., ÷ Grede, LLC - Iron Mountain Pace Analytical ÷ FSD 20-04074 Report Date 2/5/2021 Page E-39 of 51

Casting Integrity

DISA FORMA Pouring Production Entry Form


12-920 Date: Operator Names Machine Number: Por

Operator Clock 26063 Page No: 1

ι.

Time	/ Part Number	Process Card Temp Rang	tadio Temp	Ladie Number	Molds	Run Guts	Pour	Total Good Molds Poured	Corrective Action
600	K084638	25/15-2013	2m		20	r		20	
	Carl and		2581	: 2	20			20	
			2824	. 3	26			26	
	*		25.86	1 4	21	1	1	æ	
	- 101 -	7	2874	5	20			21	
		3 (J. 1997)	2594	N.C	20			200	· · ·
	1	5.1	2587	1	26		1.1	24	
	1	. 5	2596	S.	20			20	6
			2587	9	21	1		20	1266
-		7	2.574	N	20	ĺm		20	
			2389	N.	20-			25	1.1
-	:05	-17-1	2594	n	20			20	. 1
-			2834	13	20			20	
to	238129	230200	2635	19	13			13.	e
2.5		15.2 - 5.5	2632	10	15			15	07
	1		2639	3	m			17	097
	N. Ja		2633	14	15	· . Al		15	1 T Bar
	1	1	2637	S	12			12	
4X	K034455	2570 2680	280	11	20			20	
	н		2584	2	20			20	
	- C. R		2874	3	20	4		26	100/
· · ·			2694	4	10	-		se	$\underline{\checkmark}$
e Analyt	ical	44 B.	2595	S	20	(***) 	G	Di Capa	- Iron Mountain

1"

	the second second second second second second second second second second second second second second second se							A	
Г	Part Number	Process Card Temp Range	Ladle Temp	Ladie Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Superviso Corrective Action
938	3535400 :	2620 -2650	2633	1	20	1		20	
150	1.		262-	12	20	1.1		20	
		-1. K+ (2624	3	205			20	
		(1990) - Cal	2626	4	20			20	
			2636	5	20			20	3
1	11	-/ 1	2638	. 6	20	1 .		20	(3.3)
1	Y	. /د	2130	12	20			20	
	1.1	-1 :	2630	. 8	20			200	
			236	.9	20			20	4.1
		<u> </u>	2626	W			1	20	80
	· Y	-1	2644	И	20			20	a ga ka s
		-1	2642	12	20		1	20	
	1 - (Ĩ	264)	13	20	1.0	1.1	2\$	
· · · · · ·	- ¥ X		2638	14			4	24	
	*	i na li	2620	IS	20			20	2
	Koules	200		D		-	-		
nes	K034655	2570 - 2/60	2583	V	ST.	1	• . • • •	101	
(AL)	Ka 3707		2583	2	20		1	20	6
	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	2.1.8	2593		20	1.3	11.	2.	192
			2596	-4	20		123	20	
- ?	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- 1 X	2595	9	1 0		T.		
incu.	29512746	2600 - 2670		and the owner where the owner where the owner where the owner where the owner where the owner where the owner w	in	1		16	
1220	216110	-	209.	2	17	1		1-	
			2633	2	15	-		17	0,1 1, 1
			2539	. 4	17			17	
. ;	- 4	-+ \.`	2625	1	1.1.1			In	
-			2473	6	1			1-	2
ce Analyt			2631	1	+++	0	1	Grad	C - Iron Mountain
D 20-040	74	Rep	ort Date 2/5	/2021	1.01	-	-		Page E-41 of 51

5.00

Pouring Production Entry Form

Date: 12-9-9-9 Operator Name: RM / SADAK Machine Number: PormA

Shift: Operator Clock: 76053 Page No: 3

Time	Part Number	Process Card Temp Range	Ladie Temp	Ladie Number	Molds	Run Outs	Pour		d Corrective Action
ar.	29512740	200-2000	2620	is	17			17	
			2626	. 13	12			17	
		-	2020	14	117			V	(202)
		-	2632	15	h	-		17	820
			2632	. 66	17			17	1
_			2636	n	m			17	
			2638	18	17	1		M	
		-	2642	19	17			17	
		-	2642	20	G			4	NIN-DECO
	Rer34658	2870-2600	2577	1	t		12:21	20	
		-	2581	L	20		anda	20	
	-	-	2581	3	20			20	
		11.41	2590	4	20			20	
		-	2524	S	20	E.	1.	21)	
				4		- Sector			an an an an an an an an an an an an an a
				2					
				ø			1		
		-							
				. 2	4			9 4 V. 19	
							1.1.	22	
								1.045	
						10		Section 1	
Analy	tical					-		Grede II	C - Iron Mountain

Page E-42 of 51

Casting Integrity 12-8-20 Oate:

Pouring Production Entry Form

Operator Name: Pohl at 1 Machina Number: Porwa

Operator Clack: 26063 \$8739 Page No: 1

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladie Number	Molds	Run Outs	Pour	Total Good Molds :Poured	Corrective Action
\$32	15034658 19819766	2570-2000 2000 1200	2.89%	L	20			20	
			2582	: 2	21		1	21	
			2476	3	20			20	
			2571	1 4	20		14	20	
			2872		20	1	1	19	
			2575	1.6	20			20	0
		t there is	25 79	. 2	144			14	1288
	4		2574	8	20			20	Day
	(~1	i1.	2898	. 9	20		1. 1. 1. 1.	20	
	and the second		2573	10	20			20	199 .
	·** `}		1,580	n	20	がない いとや	湖市	20	* * * *
		33 .	2593	12	20	Within .		20	
- 1	1 1		2592	:13	-	ttan.		20	
	A	1 - IN	2587	1.4	20			20	
1	¥1.9		2591	:15	20			20	
	F ¹		2594	16	20			20	1. 10 ⁻⁰ 10-0
	1 1		200	in	20			20	
	6.1		2394	:18	20	2.1		20	
335	29512740	200 200	2014		17			17	1
_	4			- 2	m			n	2
-			pe	3	11		1	17	-
×.			2614	4	18	-	1	n	
e Analy	tical)74	Į.	621	-5	11	-			- Iron Mountain Page E-43 of 51

	Part Number	Process Card Temp Range	Ladie Temp	Ladle Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Supervisor Corrective Action
ate	29512740	2600 - 2670	260-)	6	n			n	
			2613	1	17			5	
		-	2624	8	n			12	
			205	9	17		-	17	
			2631	10	n			12	
	5 K		2023	N	FL	1. 1		17	5 (?r
	-	1	2622	n	n			n	
41		- 5 /	2609	13	17			17	
-	• • •		2615	M	n	15-1		n	
	·*1		3 ℃\$\$	13	17			17	
	5.		2605:	16	17		4.4	17	
		÷2 (2604	.17	17			17	
·	1		2606	118	n			12	1.1.1
`		-1-S .	2510	19	17			.17	
	. *		2609	00	17			17	395
		÷.,	2001	21	17	1	÷χ	n	0
) ×		2607	22	18	1		17	μ. H
	1	▲ 1	204	23	17			17	
		() たら	2611	20	12			17	7.1.4.1
	l X		2004	25	17		* e	17	
	1		2668	26	и			1	
	• :		204	:27	In the second second			17	
	. 9	10% .	2601	. 28	n		4	רן	
			2004	29	17			17	5 . · · · ·
			2613	30	n			n	498
			2607	.31				13	<u>.</u>
	1 .		2604	- 32	17			120	27 27
	tical	1	2600	in	n	0		n	C - Iron Mountain Page E-44 of 51

الالفان المعتق اللام

....

.

A.

a.

ł

.

A STATE

1

r:

1 4

...

asting Integrity 12-8-20 Date 78h Operator Name: Machine Number: Porrid

Pouring Production Entry Form

Shift: 1 Operator Cleck: 2:0.53 Page No: 3

Time	Part Number	Process Card Temp Range	Ladia Temp	Ladie Number	Molds Poured	Run Outs	Pour	Total Good Molds Poured	Corrective Action
esh	Part Number 29512748	2600 - 2671	2646	38	8			8	
		(1.18.1	39				22.0	12-2
				10					
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1 					1		
		4					de 1		
	. IT	· · · · · · · · · · · · · · · · · · ·			• •		85.00	· · ·	
1			•	215				· ·	
					÷				
1		-	4			-			1
		-						* in 1	
	2	-		11.81	10				1 THE REAL
		-	1						the second
- 11			321						
		-	1.77	•	5	1		1	¥
		-						1-23	
	5.	-		1	6.1	Fit	N.		÷
	No.	0.0	125.1	•		10			et
								-	
			1	8.24					
		() () () () () () () () () ()				2.1			
					9		1.7	0.00	
e Analy			-	1			11.1		: - Iron Mountain

FSD 20-04074

Report Date 2/5/2021

Page E-45 of 51

Pouring Production Entry Form

q B Operator Name: Machine Number: 50

Casting Integrity

Date

1

1...

shift: 151 Operator Glock: 01688.7 Page No: 1

Time	Part Number	Process Card Temp Range	Ladie Temp	Ladie Number	Molds Poured	Run Outs	Pour	Total Good Molds Poured	Corrective Action
5:45	969987	0570 0030	2599	1	12			12	·
		1	2000	2	12	-	1.5	12	
÷.,		•	2594	3	12			12	-
	·		2587	4	12	=	2	12	
		- (2584	5	12		1	12	
	- ABA		2591	G	12			12	· · · · ·
			2609	. 7	12		1.10	R	
ξ		- (2588	8	12			12	
			2594	9	12			12	
	÷.	- (2594	10	12		Î.	12	4
		4	2600	.71	12			12	
			2611	12	12			12	
- 1		-	2684	13	12			12	
		1	9605	14	12		12	12	
1 34	Г.н., 1. э.,		2610	15	2			2	
7:55	3687801	2570-0000	1 C	1	11	2.		11	
	Heavy Job		2599	8	11			115	
	poors at 18		9592	3	- U - S		1	11	

• If More Than Two Runnins Stop And Notify Supervisor Corrective Action Required •• All Out Of Range Temperature Readings Must Include Corrective Action Taken (Walt, Chill, Pig)

HOUR !	GOAL	ACTUAL	COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1	H85 DM90 DF110	0.10		7.	K85 DM90 DF110	12.24	
2	H65 DM90 DF110			8	H65 DM90 DF110		
	lytical 4074		Report Dat	2/5/2029	H85 DM90 DF110	Grea	le, LLC - Iron Mountain Page E-46 of 51

Part Number	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 million 1 million 1 million 1 million 1 million 1 million 1 million 1 million 1 million 1 million 1 million 1	
1 64 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Outs	Pour	Total Good Molds Poured	If More Than Two Runnouts Stop And Notify Supervisor Corrective Action
3687801	2570 2200	2598	4	11			11	
Heavy Tob.		2600	5	11		i e	11	•
pours 510 185	c i	2890	6	11	1		11	
	-	2595	7	211		172	11	1
. #	- 14	2000	8	5	1.1	,	5	5 pigs
2835602	SCOOLERO	2631	1.	14			14	
		2621	2	14		-	14	
•. ·····W		2037	3	14			14	
		Tak	4	14		-	14-	
Υ.		2650	5	14		19	14	
		2648	6	14		-	14	
	- "9 ₁	2646	9	14			14	
1		2633	9	14			14	
1 hr.	1.3.3.3	2630	9	14	12		14	1 44M - 24
Ser and	-	2643	10	14	1.3		14	Antering .
4 S 4		2623	41	14			14	
	-		17:	14			14	1
		0033	13	14				
¥.		10.00	14	14			14	
				14	1		14	
4	7.1	02020	16	14			14	
1		12641	17	.14				4
		26.25	18	14				n
		2621	19	14		-		
	POURS 51052 1850	pours story 18 sec.	pours story 18 sec. - 25 90 - - 3500 2835602 56000000000000000000000000000000000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

***** E**

÷

ŧ

1

errane in

Д.

14.

1.

14

Date: Opérator M Machine N	Harre: 5, Reynalds								
Time	Part Number	Process Card Temp Range	Ladie Temp	tadle Number	Molds Poured	Run · Outs	Pour	Total Good Molds Poured	Corrective Action
ON	2835000	DADG DERO	2629	24	14			14	
			2633	25	14			14	
	X.		2649	26	14			14	
			0649	27	14			14	
			rac	88	14		1 C	14	
	1. A A A A A A A A A A A A A A A A A A A	- 1	2031	29	14		1	13	
		. E good	0630	30	14			14	
			8627	31	14			14	4 4
		4	2639	32	14			14	
÷			C C	33	14	I.		13	
		- 0	7.4K	34	14	1.1		14	÷.
			2019	35	14			14	
			2640		14		1	14	
		1	\$640		14			14	
			2022		14			14	
		-	2621		4		05	4	
3.8	GE1350	2630 0602		. 4	-19			12	
1	CE MER.		2632	8	12			12	

1.1

31.7

4

ý.

i.

3.04

- :

1

ne jerio e

.....

.

** All Out Officance appendix Readings Must Include Corrective Action Taken (Walt, Chill, Pig)

HOUR	GOAL	ACTUAL	COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1 .	H65 DM90 DF110			7	H85 DM90 DF110		19 A.
.2	H85 DM80 DF110		- 4	8	H85 DM90 DF110		
ace An SD 20-0	alytical 04074 DMB0 DF110		Report Date 2/5	2029	H85 DM90 DF110	Gr	ede, LLC - Iron Mountain Page E-48 of 51

Time Part Number	Process Card Temp Range	Ladle Temp	Ladie Number	Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	If More Than Two Run Stop And Notify Super Corrective Action
Time Part Number	CRACE CERRE	1.222410.241	3	12			12	
4:00 2835602	2020-2050		1	14	201		14	
no (x v) repour	-	2634	R	14			14	
P		2630	3	14			14	
	1000	-70						1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					*		L
	-							
	-		-					1247
			1.1		NE?			
	1					1		1
	1.00	1	6.2			*	1	· · · · · ·
		1						
	. Dr	1.00		1				
	1 1993	1				5.3		
	-			1		1.7		1
				1.5				C
	-				100		1	
	-					-		
					1	1.	2	1
				-				
	-			-		1	1	
1.1.1		1				1		1.12
	-		1,5					-
		1000		1		1		

14

asting Inte 12-8-20

Date: 17-5-30 Operator Name: Erenk Sunk Dars Machine Number: 7

Pouring Production Entry Form

Shift: _____ Operator Clock: ______ Paga No: _____

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladia Number	Molds Poured	Run Guts	Pour	Total Good Molds Poured	Corrective Action
5:50	29505904	0570 - 2550	2527	1	18	-	-	18	
			2524	2	18	-	-	18	
	1.000	10.20	2523		18	-	-	18	
	L		2537	4	18.	-	-	18	
		-	2525	5	19	-	t	18	
			2537	6	18	-	-	18	
	1-1-1-1		2502	7	18/	-	-	18	
		-	2549	8	19.	-	-	19	1
		-	2542	9	19.	-	-	19	
-			0550	10	19:	-	-	19	
			2537	11	19.	-	-	19	
	4	-	2539	12	19:	-	-	19	
4.1		1. 2.5	2543	13	19:	-	~	19	
		-	2548	14	19.	-	-	A	_
			2550	15	19.	-	-	19	
		- 14	2539	16	19:	-	-	19	
			2548	17	19.	-	-	19	
			2535	18	19	-	-	19	1
		a province and a second s	2530	19	19-	-	-	19	
			2531	30	19!	-	-	19	
_			2524	21	12.	-	-	19	-
-			2572	1	19:	-	-	19	
Pace An	alytical	1	2550	>3	19:	-	1	Igrede, LL	<u>C - Iron Mountain</u> Page E-50 of 51

FSD 20-04074

Report Date 2/5/2021

Page E-50 of 51

15

ļ.ε.

÷.,

•

×

1

٠.

1

	Part Number	Process Card Temp Range	Ladle Temp	Ledie Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Supervise Corrective Action
2.24	29505304	2530 - 2550	2524	24	19.	-	-	19	
			2533	25	19.	-	-	19	10
			2525	20	19:	-	-	19	
		D. Car	2548	22	19:	-		19	
(2.2)		-	2540	28	19.	-	-	19	1
	1	10 -	25.20	24	19	-	-	19	
		- 19 - 19	2530	30	19	-	-	19.	
			2546,	31	18	-	-	18	1
	*Au. 1	-	2523	34	19:	-	-	19	
	1	-	2543	33	19	-	-	19	
		1.24.25	2543.	34	19	-	-	19	
	*		2548	35	19	-	-	19	1 - 1 - L
		1000	2542	36	19	-	-	19	
		-	2545	37	19	-	-	19	
			2550		19	-	-	19	
-		-	25418		19.	-	-	11	
	attive:		2530	1		12	-	19	
-		ä			1				-
-		1000			10				
-	1	1	-				T		1
-		-	1		1			-	1
-	1	1 .					T	12	
-	1	1		1					
-					1	1			
-		-						1	
-	-		1	1	1.5		1	1	
-	+	-					1		
-	-			•	1	1			1
ce Analy D 20-04		Rep	oort Date 2/5	12024	+	-		Grede, Ll	C - Iron Mountain Page E-51 of 51

Appendix F

Test Protocol and Pretest Correspondence

Test Plan Approval Letter

GRETCHEN WHITMER

GOVERNOR

STATE OF MICHIGAN

DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

CADILLAC DISTRICT OFFICE

December 4, 2020

VIA E-MAIL ONLY

Mr. Tom White Grede, LLC – Iron Mountain 801 South Carpenter Avenue Kingsford, Michigan 49802

SRN: B1577, Dickinson County

Dear Mr. White:

SUBJECT: Approval of Protocol for Emissions Testing.

The Michigan Department of Environment, Great Lakes, and Energy (EGLE), Air Quality Division (AQD) has completed our review of the protocol for the emissions testing at Grede, LLC – Iron Mountain located in Kingsford, Dickinson County. This protocol was received by the DEQ on November 17, 2020. Testing is scheduled to begin December 8, 2020. Testing is required by Renewable Operating Permit MI-ROP-B1577-2020 and Title 40 of the Code of Federal Regulations (CFR), Part 63, Subpart EEEEE. Emissions will be determined as listed below:

Source	Method*	Parameter	Limit	Unit	
	9	VE	0	%OP	
	1,2,3/3A,4,10	со	21.0	lb/hr	
	1,2,3/3A,4,10	00	250.0	mg/scm	
	1,2,3/3A,4,6C	SO2	13.8	lb/hr	
	1,2,3/37,4,00	502	170	mg/scm	
		PM10	1.30	lb/hr	
		PM	0.011	lb/1000lb	
EU-P009 CUPOLA	1,2,3/3A,4,5D,202		0.006	gr/dscf	
		PM	or		
			0.10	lb/tn	
		or		ſ	
			0.0005	gr/dscf	
	1,2,3/3A,4,29	TMHAP or		pr	
			0.008	lb/tn	
	3/3A,4,25A	VOHAP	20	ppmvd @10%O2	
EU-P016 MAIN		PM	0.010	gr/dscf	
PLANT POURING	1,2,3/3A,4,5,29		or		
		TMHAP	0.0008	gr/dscf	
EU-P036 MODULE		PM	0.010	gr/dscf	
POURING	1,2,3/3A,4,5,29		or		
		TMHAP	0.0008	gr/dscf	

120 WEST CHAPIN STREET • CADILLAC, MICHIGAN 49601-2158

Mr. Tom White Grede, LLC – Iron Mountain Page 2 of 4 December 4, 2020

Appendix
*EPA Method
VE = visual emissions
CO = carbon monoxide
SO2 = sulfur dioxide
PM10 = particulate matter ten microns or less in diameter
PM = particulate matter
TMHAP = total metal hazardous air pollutants as defined in Subpart EEEEE
VOHAP = volatile organic hazardous air pollutants as defined in Subpart EEEEE
%OP = percent opacity
lb/hr = pounds per hour
mg/scm = milligrams per standard cubic meter, corrected to 70F and 29.92"Hg
lb/1000lb = pounds per thousand pounds of exhaust gases
gr/dscf = grains per dry standard cubic foot
lb/tn = pounds per ton of metal charged
ppmvd @10%O2 = part per million as hexane by volume, dry basis
@10%O2 = corrected to ten percent oxygen, dry basis

The proposed methods are acceptable given the following stipulations:

- TESTING
 - EMC GD-008 is approved in stacks having cyclonic flow in excess of 20 degrees.
 - EU-P009 CUPOLA sampling
 - Each cupola baghouse exit run will require a corresponding inlet flow run.
 - Each cupola baghouse exit run sampling will begin within one hour of the corresponding inlet flow run's sampling end.
 - Temperature will be used as the diluent.
 - Visual emissions from each building or structure housing any iron and steel foundry emissions source will be tested to ensure discharges of fugitive emissions to the atmosphere from foundry operations will not exhibit opacity greater than 20 percent (6-minute average), except for one 6-minute average per hour that does not exceed 27 percent opacity.
 - Process conditions that need to be recorded for each test run:
 - EU-P009 CUPOLA
 - Number and weight of charges added to the cupola in tons per hour
 - Afterburner combustion zone temperature on a continuous basis in degrees Fahrenheit
 - Baghouse overall static pressure drop on a continuous basis in inches of water column
 - Baghouse inlet temperature on a continuous basis in degrees Fahrenheit
 - Amperage of the emission control system fan on a continuous basis in amperes
 - EU-P016 MAIN PLANT POURING
 - Main plant pour rate in tons per hour
 - EU-P036 MODULE POURING
 - Module plant pour rate in tons per hour

Mr. Tom White Grede, LLC – Iron Mountain Page 3 of 4 December 4, 2020

- Testing will be performed in accordance with EGLE, AQD, Air Pollution Control Rules, Part 10, Intermittent Testing and Sampling.
- All requirements and specifications of the above methods apply; any modifications of the test methods onsite must be approved by the AQD.
- The stacks that need to be tested for each source:
 - EU-P009 CUPOLA
 - SV-S009-324644
 - EU-P036 MODULE POURING
 - SV-S036-334116
 - SV-S036-334176
 - EU-P016 MAIN PLANT POURING
 - SV-S016-324632
 - SV-S016-324662
 - SV-S016-324678
 - SV-S016-324682
 - SV-S016-324484
 - SV-S016-324848
- REPORT
 - All process data listed above to include:
 - Each individual reading.
 - Average/total for each run.
 - Results from audit samples.
 - All pre-test and post-test meter box calibration, pitot tube calibration, nozzle calibration and field data sheets.
 - All calibration and cyclonic flow checks.
 - All data reported in tabular format.
 - o Certificate of Analysis sheets for all calibration gases used.
 - All aborted, failed or repeated runs must be included in the report.

Please submit a complete copy of the final test report to both:

Mr. Michael Conklin Environmental Engineer Upper Peninsula District Office EGLE-Air Quality Division 1504 West Washington Street Marquette, Michigan 49855 Ms. Karen Kajiya-Mills Supervisor Technical Programs Unit EGLE-Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48909 Mr. Tom White Grede, LLC – Iron Mountain Page 4 of 4 December 4, 2020

Please inform Michael Conklin, of the Marquette District Office, at 906-202-0013 or <u>conklinm1@michigan.gov</u> and me of any change in the test date. If you have any questions regarding this letter, please contact me at the telephone number or email address listed below.

Sincerely,

24e

Jeremy Howe Environmental Quality Analyst Air Quality Division 231-878-6687 / <u>howej1@michigan.gov</u>

cc/via email: Mr. Tyler Hill, Grede, LLC - Iron Mountain

Mr. Thomas Halverson, Pace Analytical

Mr. Terry Borgerding, Pace Analytical

Mr. Paul Blindauer, GEI Consultants

Ms. Karen Kajiya-Mills, EGLE

Mr. Ed Lancaster, EGLE

Mr. Michael Conklin, EGLE

Test Protocol Document

Environmental Sciences Field Services Division Pace Analytical Services, LLC 1700 Elm Street SE Minneapolis, MN 55414 Phone: 612.607.1700 www.pacelabs.com

Particulate, Metals, VOC, SO₂, CO, Opacity Emissions Testing Protocol

Plant Name: Grede, LLC - Iron Mountain Protocol Date: November 13, 2020 Revision Date: No revisions to date Testing Dates: Dec. 8-10 & 15-17, 2020

Client Test Coordinator:

Tyler Hill Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Telephone No.: (906) 779-0201 E-mail Address: tyler.hill@grede.com

Testing Firm Coordinator:

Terry Borgerding Pace Analytical Services, LLC 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Telephone No.: (612) 607-6374 Facsimile No.: (612) 607-6388 E-mail Address: terry.borgerding@pacelabs.com

Subject Facility:

Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Regulatory Permit No.: MI-ROP-B1577-2020 SRN: B1577

Subject Emission Sources:

Cupola	EU-P009
Module Pouring & Cooling	EU-P036
Main Plant Pouring & Cooling	EU-P016

Test Locations:

Cupola Baghouse Exhaust324644Module Pouring & Cooling2 StacksMain Plant Pouring & Cooling6 Stacks

Pace Analytical FSD 20-04074

Test Protocol

Table of Contents

Cover Page	1
Table of Contents	2
Plant Contact Information	3
Testing Firm Information	3
Regulatory Contact Information	3
Pace Project Organization	4
Facility and Process Description	5
Testing Schedule	6
Individual Source Requirements	
EU-P009 - Cupola	7
EU-P016 & EU-P036 - Main Plant Pouring and Cooling &	
Module Pouring and Cooling	10
Test Report	12
Safety Consideration	13
Attachments	14
Attachment 1 - Test Location Schematics	15
Attachment 2 - Abbreviations, Symbols, and Nomenclature 2	25
Attachment 3 - Calculation Equations	29
Attachment 4 - Test Method Summaries	39
Attachment 5 - Quality Statement	52

Pace Analytical FSD 20-04074

Plant/Source Information

Subject Facility:	Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802
Plant Contact: Company Affiliation: Office Address:	Tom White Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802
Telephone Number: Facsimile Number: E-mail Address:	(906) 779-0257 - tom.white@grede.com
Reason for Test:	ROP Permit Requirement 40 CFR Part 63 Subpart EEEEE (Steel Foundry MACT)

Testing Firm Information

Project Contact:	Terry Borgerding
Testing Firm:	Pace Analytical Services, LLC
Office Location:	1700 Elm Street, Suite 200
	Minneapolis, MN 55414
Telephone Number:	(612) 607-6374
Facsimile Number:	(612) 607-6388
E-mail Address	terry.borgerding@pacelabs.com
Subcontractors:	EMSL Analytical

Element One

Regulatory Contact Information

Regulatory Agency:	Michigan Department of Environmental Quality
Testing Contact:	Jeremy Howe
Office Location:	Cadillac District Office 120 West Chapin Street Cadillac, MI 49601
Telephone Number:	(231) 878-6687
Facsimile Number:	(231) 775-4050
E-mail Address	howej1@michigan.gov

Pace Analytical FSD 20-04074

Note: Chart based on anticipated participants at the time of protocol development and is subject to change.

Pace Analytical FSD 20-04074

Facility and Process Description

Target Operating Conditions:

Single Condition at 90+% Capacity

The Grede, LLC - Iron Mountain (Grede) facility produces gray iron castings, typically for industrial machinery and various transportation industry customers. The major processes at Grede include raw material handling (metals, fluxes, and metallurgical coke), metal melting, mold and core production, casting and finishing.

Grede operates a main foundry and a module foundry under one roof. A single WRIB Company high efficiency cupola (EU-P009) provides all of the molten iron used by the main and module foundry. The cupola has a maximum melt rate of 20 tons per hour. Molten iron is stored in an electric holding furnace with a capacity of 28 tons prior to pouring. Emission control equipment for the cupola exhaust includes four natural gas afterburners for VOC and CO, a low efficiency scrubber (quench tank) for SO₂, and a Hartzell Engineering Corp. baghouse for particulate.

Sources to be tested include: EU-P009 – Cupola EU-P016 & EU-P036 Pouring & Cooling 334176 – Module Plant Exhaust

- 334116 Module Plant Exhaust
- 324662 No. 7 Hunter
- 324848 No. 5 Hunter
- 324632 No. 6 Hunter
- 324484 Main Plant Pouring Disa
- 324678 Main Plant Pouring Disa
- 324682 Main Plant Pouring Disa

Test related process and operational details will be recorded by Grede personnel and included in the final report.

FSD 20-04074

Testing is presently planned to be conducted over a two week time frame as follows and is subject to change based on production schedules:

Week 1							
Monday	Tuesday	Wednesday	Thursday	Friday			
12/7/2020	12/8/2020	12/9/2020	12/10/2020	12/11/2020			
Travel / Safety Review / Set Up	Test 3 Stacks Main Plant 324484, 324632, 324662 (PM)	Test 3 Stacks Main Plant 324678, 324682, 324848 (PM)	Test 2 Stacks Module Plant 334116, 334176 (PM)				

Week 2							
Monday	Tuesday	Wednesday	Thursday	Friday			
12/14/2020	12/15/2020	12/16/2020	12/17/2020	12/18/2020			
Travel / Safety Review / Set Up	Test Cupola Inlet 324644 (VOC, SO ₂ , CO)	Test Cupola Exhaust 324644 (PM & Fugitive Emissions)	Test Cupola Exhaust 324644 (Total Metal HAPs)				

The final test report will be submitted by Grede to the Michigan Department of Environmental Quality (MDEQ) within 60 days of the completion of testing. In cases where multiple sources are tested during a single mobilization, the last day of testing will dictate the start of the 60 days. All sources evaluated during a mobilization will be summarized in a single report.

EU-P009 - Cupola Testing Requirements

	Emissions Testing Constituents							
Source No.	Source Identification	Regulated Constituents	Applicable Rules or Regulations	Emission Limits				
	Cupola Baghouse Exhaust			≤21.0 LB/HR				
		Carbon Monoxide	R 336.1201(3)	≤250.0 mg/m³, corrected to 70°F and 29.92 inches Hg				
		Total Metals HAP	40 CFR 63.7690(a)(2)(i) or (ii) or (iii) or (iv)	≤0.0005 GR/DSCF or ≤0.008 LB/Ton metal charged				
		Particulate (filterable)	R 336.1331	≤0.011 LB/1000 LB exhaust gas				
EU-P009		PM-10	R 336.1331	≤1.30 LB/HR				
324644		Sulfur Dioxide	R 336.1201(3)	≤170 mg/m ³ , corrected to 70°F and 29.92 inches Hg				
				≤13.8 LB/HR				
		Volatile Organic HAP (VOHAP)	40 CFR 63.7690(a)(8)	≤20 PPMv @ 10% O₂ as hexane				
			Opacity (fugitive)	40 CFR 63.7690(a)(7)	≤20% 6-minute average, except for one 6-minute average per hour that does not exceed 27%			

Process Monitoring Parameters				
Source No.	Process Parameter	Monitoring Method	Target Range	
EU-P009	Cupola Melt Rate	Manual Log	20 TPH	
	Baghouse Pressure Drop	Pressure Transducer	≥1 Inch WC	
	Afterburner Temperature	Thermocouple	≥1,300°F	
	Control System Fan Amperage		115 - 281 amps	

Emissions Testing Methods						
Parameter	Test Method	No. of Runs	Length of Run	Sample Vol/Rate	Report Units	Detection Limit
Locate Test Ports & Traverse Points	EPA Method 1 (details below)	1	NA	NA	NA	NA
Volumetric Airflow (Inlet)	EPA Method 2	3	NA	NA	ACFM SCFM DSCFM	4 Ft./Sec.
Gas Composition (Inlet & Outlet)	Modified EPA Method 3/3A	3	1 Hour	30 Liters	% v/v Mole. Wt. %EA	0.1% v/v
Moisture Content (Outlet for all testing, Inlet during THC, CO, and SO ₂ testing)	EPA Method 4	3	2 Hour	0.5 CFM	% v/v Mole. Wt.	0.3% v/v
Moisture Content (Inlet during PM and Metals testing)	EPA Method 4 Alternative, Wet/dry bulb temp	3	NA	NA	% v/v Mole. Wt.	0.2% v/v
Particulate (Filterable) (Outlet, with PM-10)	EPA Method 5	3	2 Hour	60 DSCF	LB/1000 LB exhaust gas	0.0008 GR/DSCF
PM-10 Particulate (Outlet)	EPA Method 5 EPA Method 202	3	2 Hour	60 DSCF	LB/HR	0.0008 GR/DSCF
Sulfur Dioxide (Inlet)	EPA Method 6C	3	1 Hour	>0.5 LPM	LB/HR mg/m ³	5 PPM v/v
Carbon Monoxide (Inlet)	EPA Method 10	3	1 Hour	>0.5 LPM	LB/HR mg/m ³	1 PPM v/v
Visible Emissions (Fugitive) Observations at the north and south side of the process operation building.	EPA Method 9	3	1 Hour	NA	% Opacity	0 Percent (5% Incr.)
Total Hydrocarbons (Inlet)	EPA Method 25A	3	1 Hour	1 LPM	PPMv @ 10% O ₂ as hexane	2 PPM v/v
Multiple Metals (Outlet) (Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Nickel, Selenium, and Mercury)	EPA Method 29	3	2 Hour	60 DSCF	GR/DSCF LB/Ton metal charged	Varies

Test Location Details:

See test location schematic in Attachment 1.

Special Considerations:

The baghouse outlet test location is a mono-vent. The baghouse outlet sampling points are above the baghouse compartments. Using a 12' probe, 24 points will be monitored

as diagramed in Figure 1. Airflow, VOC, SO₂, and CO will be measured at the inlet duct on the baghouse.

Audit samples will be provided for Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Nickel, Selenium, and Mercury.

Mass rate results for measurements collected at the monovent outlet will be adjusted following the temperature differential dilution calculations from EPA Method 5D or other procedure as approved by the regulatory administrator. Concentration results are not adjusted.

EU-P016 & EU-P036 - Main Plant Pouring and Cooling & Module Pouring and Cooling (8 Stacks) Testing Requirements

	Emissions Testing Constituents				
Source No.Source IdentificationRegulated ConstituentsApplicable Rules or RegulationsEmission Limits					
	EU-P016 Main Plant Pouring and Cooling & Module Pouring and Cooling	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	
LO-F 030		PM-10	R 336.1331	≤9.0 LB/HR	

Process Monitoring Parameters				
Source No.	Process Parameter	Monitoring Method	Target Range	
EU-P016	Main Plant Pour Rate	Process Log	9-34 TPH	
EU-P036	Module Pour Rate	Process Log	7-13 TPH	

Emissions Testing Methods						
Parameter	Test Method	No. of Runs	Length of Run	Sample Vol/Rate	Report Units	Detection Limit
Locate Test Ports & Traverse Points	EPA Method 1 (details below)	1	NA	NA	NA	NA
Volumetric Airflow	EPA Method 2	3	NA	NA	ACFM SCFM DSCFM	4 Ft./Sec.
Gas Composition Emitting Essentially Air	EPA Method 3 EPA Method 2.8.6	NA	NA	NA	% v/v Mole. Wt.	Assigned Values
Moisture Content	EPA Method 4	3	1.5+ Hour	0.5 CFM	% v/v Mole. Wt.	0.3% v/v
Particulate (Filterable) (with PM-10)	EPA Method 5	3	1.5+ Hour	60 DSCF	GR/DSCF	0.0008 GR/DSCF
PM-10 Particulate	EPA Method 5 EPA Method 202	3	1.5 Hour+	60 DSCF	GR/DSCF LB/HR	0.0008 GR/DSCF

Test Location Details:

See test location schematics in Attachment 1. The Pouring and Cooling Stack structures will be modified to meet EPA Method 1 minimum distance criteria to mitigate cyclonic flow.

Special Considerations: While significant investment was made to modify some stacks to mitigate cyclonic flow, if cyclonic flow in excess of 20 degrees is encountered, we will implement the procedures EPA Guidance Document 8 – Particulate Matter Sampling in Cyclonic Flow or the Draft Revision to GD-8 (2003) upon

approval from a regulatory administrator. If EPA Guidance Document 8 procedures are not approved, cyclonic flow stacks will not be tested.

Test Report

A final test report will be compiled by Pace Analytical at the completion of testing. The report will be submitted to the client within 30 days of the last day of sampling. The client will be responsible for submitting report copies as required by regulatory agencies. An electronic copy of the test report will be delivered via e-mail. The final test report will include the following information:

- Name and location of emission facility.
- Identification of emission unit.
- Date of tests.
- Name and address of testing company.
- Certification of project information (client signatures also required).
- Reasons and constituents for test.
- Names of observers and witnesses
- Emission results expressed in the units of the emission limitation criteria.
- Process descriptions as provided by the client.
- Process rate information as provided by the client.
- Descriptions of maintenance activities as provided by the client.
- Discussions of problems or errors encountered.
- Sampling and analytical procedures.
- Analytical results of fuels or process samples as appropriate.
- Dimensioned drawing of sampling location.
- Copies of raw field data.
- Copies of laboratory analytical reports.
- Calculation equations.
- Sampling train calibration data
- Laboratory quality assurance information as appropriate
- Copy of this test plan and other pertinent pretest correspondence.

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Safety Considerations

Safety is an important aspect of sampling programs, especially when test teams and observers are in unfamiliar plant surroundings. Plants are required to provide test ports, safe test platforms and access routes. The test firm is required to follow plant safety protocols and rules as well as their own safety program. Attention must be given to special considerations related to testing such as overhead work, solvent usage, compressed gases, flammable materials, open ports and electrical appliances. Observers and regulatory witnesses must comply with both plant and test firm safety protocols. Pace cannot provide PPE for visitors and observers. The following protocols and Personal Protection Equipment (PPE) will be required for this site.

Safety Requirements	Pace Protocol	Plant Protocol
No Smoking		
Safety Shoes	X X	X
Metatarsal Guards	^	^
ESD Shoes or Strap		
Hard Hat	Х	Х
Safety Glasses	<u>Х</u>	X
Full-Face Shield	Λ	~
Chemical Resistant Gloves		
Abrasion Resistant Gloves	Х	
Temperature Insulating Gloves	<u> </u>	
Full Length Trousers (Waist to Ankle)	X X	Х
Long-Sleeved Shirt	Λ	Λ
Fire Retardant Clothing		
Chemical Resistant Suit/Clothing		
Hearing Protection		Х
No Facial Hair		
Dust Respirator		
Half-Face Air Purifying Respirator		
Full-Face Air Purifying Respirator		
Self Contained Breathing Apparatus		
Supplied Air Respirator		
Plant Security Log In		Х
Plant Safety Training - Facility EHS training will		V
be provided at the facility prior to testing.		Х
Facility point-of-contact will be assigned to		V
Pace personnel while on-site.		Х
Spark Permit/Protocols		
Electronic Device Restrictions		
Designated Break/Smoking Areas		Х
Safety Climb System		
Fall Protection (Harness/Tie-off)		Х

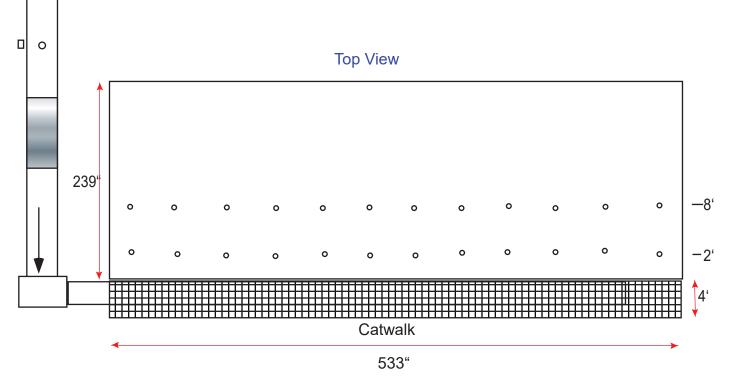
Attachments

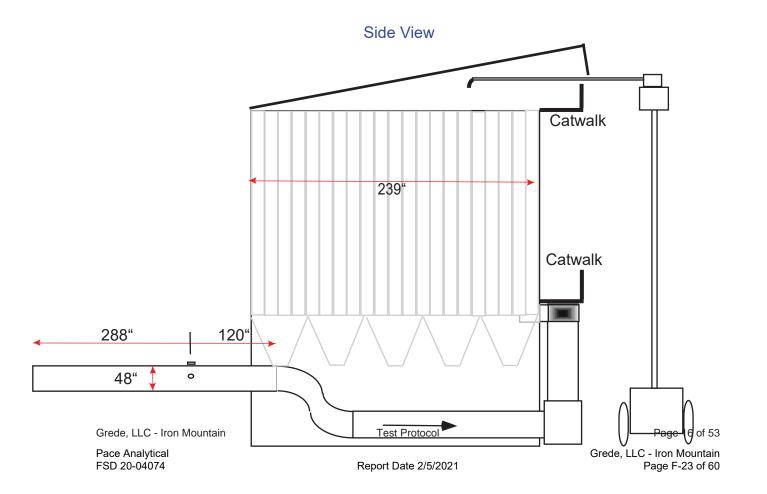
- Attachment 1 Test Location Schematics
- Attachment 2 Abbreviations, Symbols, and Nomenclature
- Attachment 3 Calculation Equations
- Attachment 4 Test Method Summaries
- Attachment 5 Quality Statement

Attachment 1 Test Location Schematics

Grede, LLC - Iron Mountain

Pace Analytical FSD 20-04074 Test Protocol


Page 15 of 53


Grede, LLC - Iron Mountain Page F-22 of 60

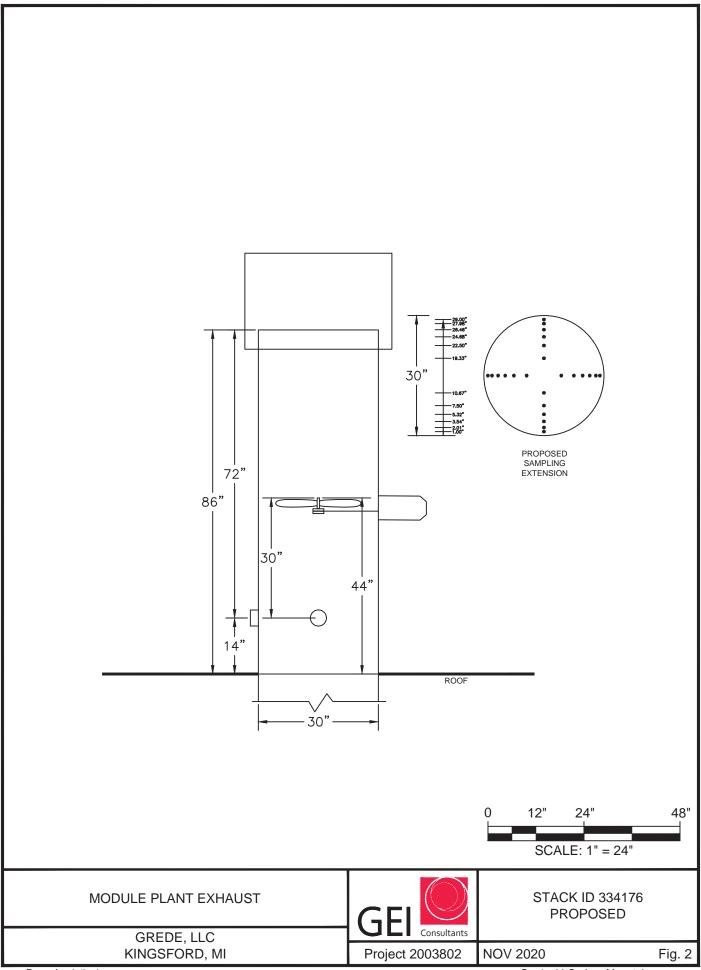
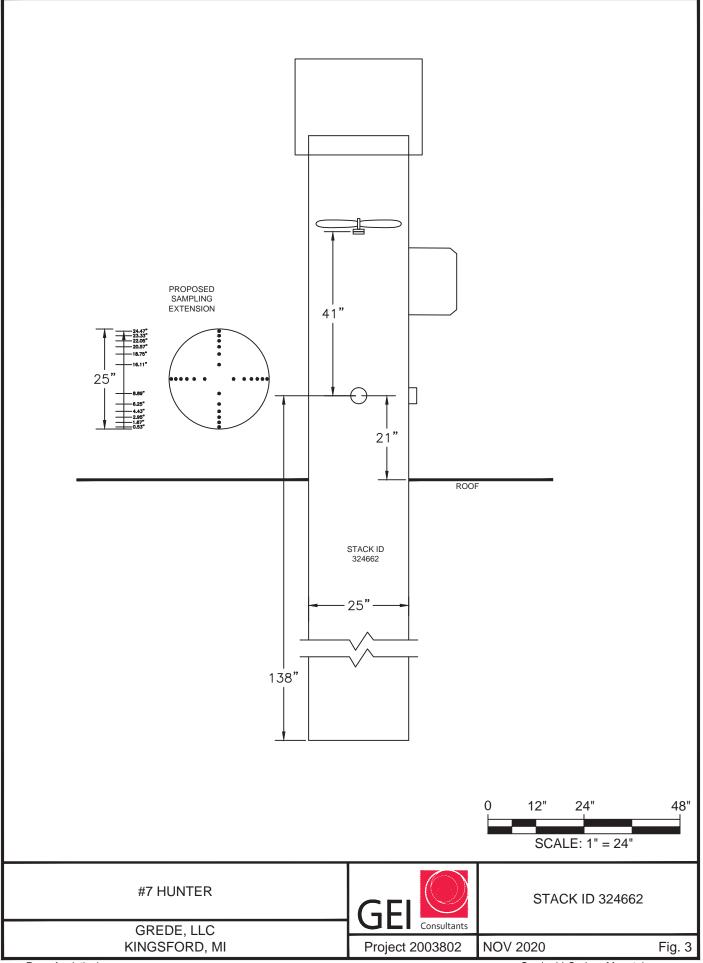
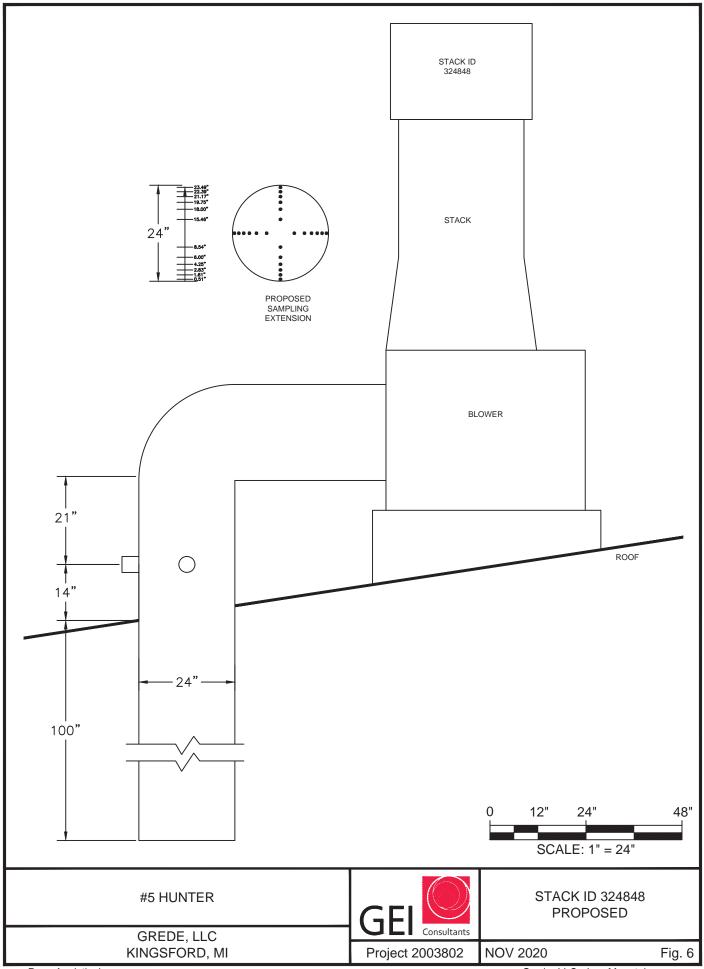
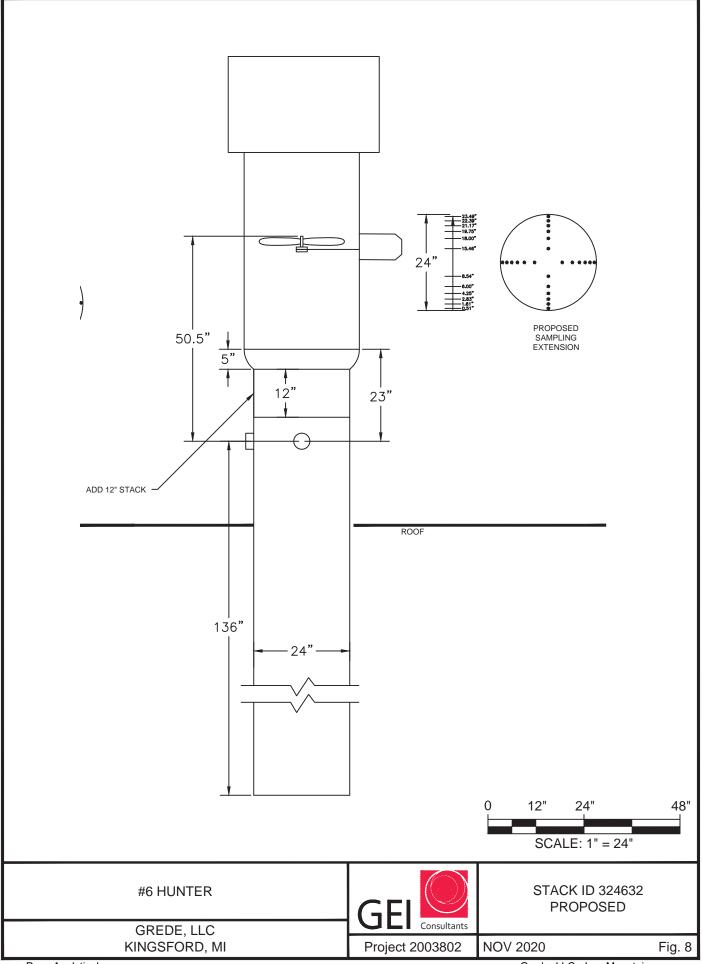
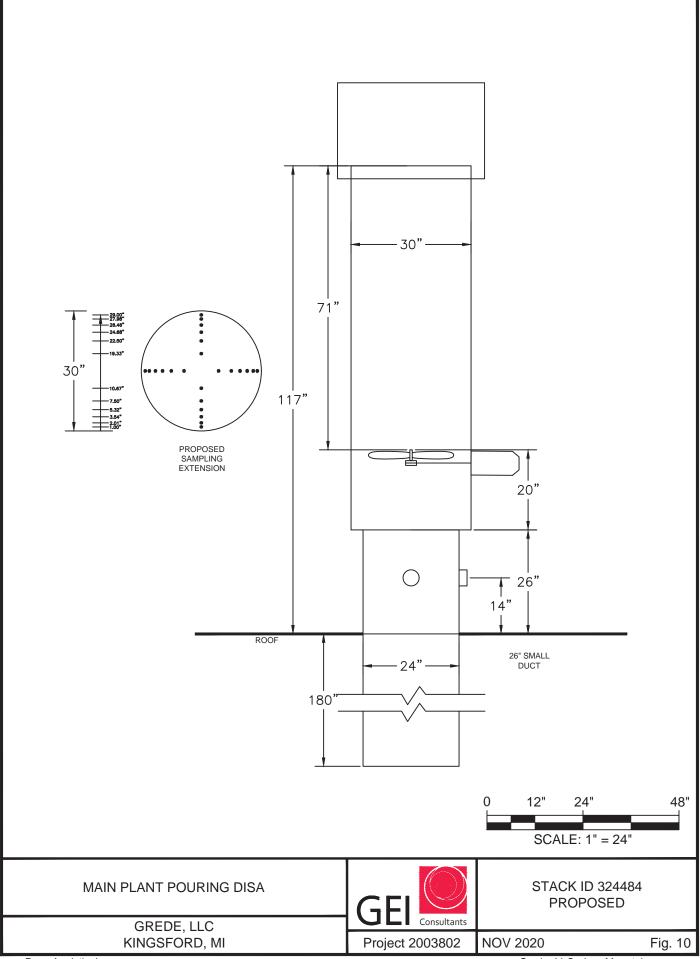

Report Date 2/5/2021

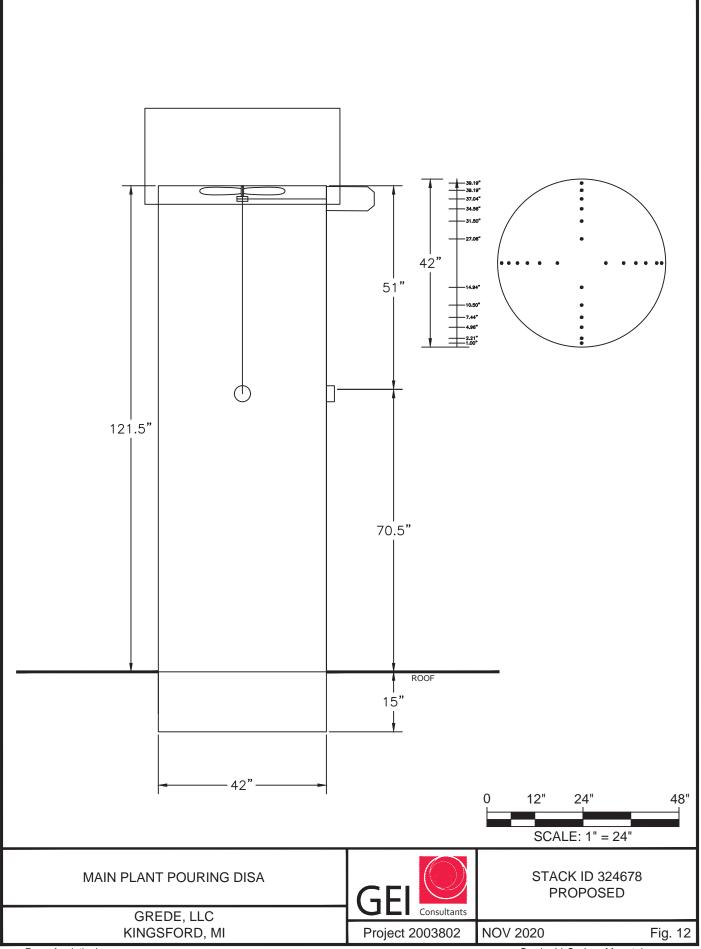
Figure 1 Grede, LLC Kingsford, MI Cupola Baghouse Exhaust (EU-P009) TJB \ 08/05

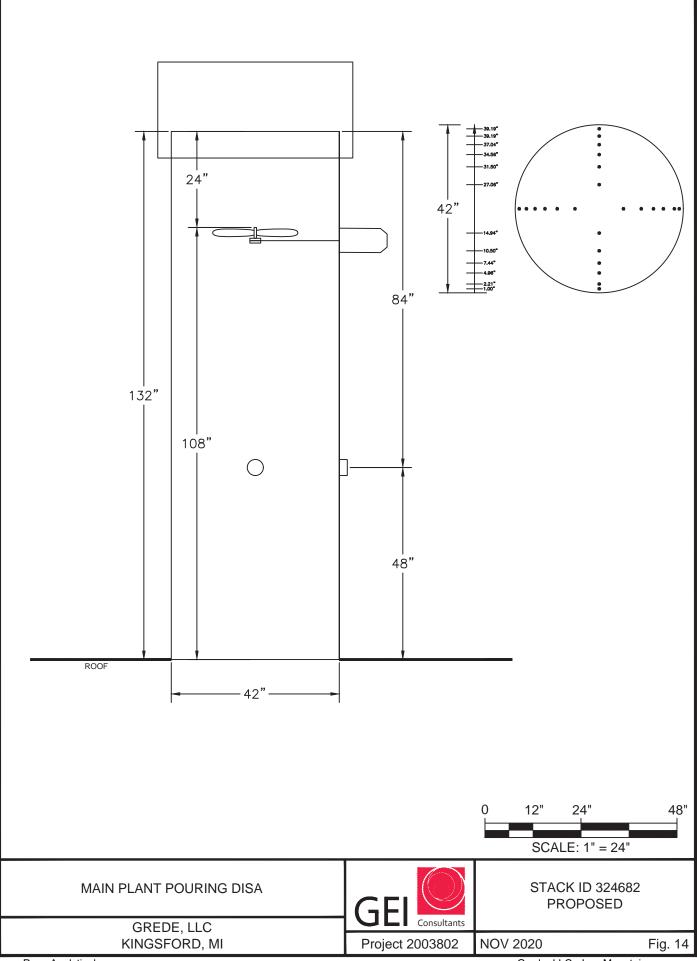



\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteeksLec Motor Mountain 10/19/2020 Report Date 2/5/2021 Page F-24 of 60


\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteeksLec Motor Mountain 10/19/2020 Report Date 2/5/2021 Page F-25 of 60


\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede Steeks Lec Motor Mountain 10/19/2020 Report Date 2/5/2021 Page F-26 of 60


\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede Stekts Lec Motor Mountain 10/19/2020 Report Date 2/5/2021 Page F-27 of 60


\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteeksLec Motor Mountain 10/19/2020 Report Date 2/5/2021 Page F-28 of 60

\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteksslackMotor-Mountain 10/19/2020 Report Date 2/5/2021 Page F-29 of 60

\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteksslackMotorTMountain 10/19/2020 Report Date 2/5/2021 Page F-30 of 60

\\GRB1L-AGOFF C:\Users\agoff\OneDrive - GEI Consultants, Inc\Desktop\Grede SteksslackMotor-Mountain 10/19/2020 Report Date 2/5/2021 Page F-31 of 60

Attachment 2

Abbreviations, Symbols, and Nomenclature

Report Date 2/5/2021

"Hg "WC °F °K °R % v/v % w/w ACFM AP-42	Inches of Mercury (pressure) Inches Water Column (pressure) Degrees Centigrade or Celsius Degrees Fahrenheit Degrees Kelvin (absolute) Degrees Rankin (absolute) Percent by volume Percent by volume Percent by weight Actual Cubic Feet per Minute Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and
BACT BH BHP BTU c c ³ cc CAA CAAA CE CE CE CEM CEMS	Area Sources. Best Available Control Technology Baghouse Brake Horsepower British Thermal Unit Centimeter Cubic Centimeter Cubic Centimeter Clean Air Act Clean Air Act Clean Air Act Amendments Control Equipment (in Reg. ID Nos.) Control Efficiency Continuous Emissions Monitor Continuous Emissions Monitor
CF CFR C ₁ CH ₄ C ₃ H ₈ cm CO CO ₂ DGS DDGS DDGS DRE DSCF DSCFM dscm dscm dsl EPA EP ESP EU FID FGR FPD FPM FPS FR	System Cubic Feet Code of Federal Regulations Carbon (as carbon) Methane Propane Cubic Meter Carbon Monoxide Carbon Dioxide Distiller's Grains with Solubles Dry Distiller's Grains with Solubles Destruction/Reduction Efficiency Dry Standard Cubic Feet Dry Standard Cubic Feet per Minute Dry Standard Cubic Meter Dry Standard Cubic Meter per Minute Dry Standard Cubic Meter per Minute Dry Standard Cubic Meter per Minute Dry Standard Liter Environmental Protection Agency Emission Point Electrostatic Precipitator Emission Unit Flame Ionization Detector Flue Gas Recirculation Flame Photometric Detector Feet Per Minute Feet Per Second Federal Register Toot or Feet Cubic Feet

FTIR	Fourier Transform Infrared
g	Gram
GC	Gas Chromatograph(y)
GPD	Gallons Per Day
GPH	Gallons Per Hour
GR	Grains
H ₂ O	Water
H_2S	Hydrogen Sulfide
HAP	Hazardous Air Pollutant
HAPs	Hazardous Air Pollutants
Hg	Mercury
HP	Horsepower
HR	Hour
ln.	Inch or Inches
KLB	Thousand Pounds
kW	Kilowatt
kWH	Kilowatt Hour
I	liter
LB	Pound or Pounds
LDAR	Leak Detection and Repair
m	Meter
m ³	Cubic Meter
MACT	Maximum Achievable Control
	Technology
MC	Moisture Content
μg	Microgram
μΙ	Microliter
μm	Micrometer (micron)
mg	Milligram
MGAL	Thousand Gallons
Min.	Minute or Minutes
ml	Milliliter
mm	Millimeter
	Million British Thermal Units
MMSCF	Million Standard Cubic Feet
MS	Mass Spectrometry
MSDS	Material Safety Data Sheet
mW	Megawatt
MW	Molecular Weight
N ₂	Nitrogen
NA	Not Applicable
NAAQS	National Ambient Air Quality Standards
NESHAP	National Emission Standards for
	Hazardous Air Pollutants
NO ₂	Nitrogen Dioxide
NOx	Nitrogen Oxides (quantified as NO ₂)
NSPS	New Source Performance Standard
O ₂	Oxygen
PEMS	Parametric (or Predictive) Emissions
	Monitoring System
PID	Photo Ionization Detector
PM	Particulate Matter

PM ₁₀	Particulate Matter with an aerodynamic diameter equal to or less than 10
	microns
PM-10 PM _{2.5}	PM ₁₀ Particulate Matter with an aerodynamic
1 1012.5	diameter equal to or less than 2.5
	microns
PM-2.5	PM _{2.5}
PPB PPM	Parts Per Billion (see variation below)
PPM	Parts Per Million Part Per Million by volume
	Parts Per Million by volume, dry basis
	et Parts Per Million by volume, wet basis
PPMw	Parts Per Million by Weight (mg/l)
PSIA	Pounds per Square Inch, Absolute
PSIG	Pounds per Square Inch, Gauge
PTE	Permanent Total Enclosure
RA	Relative Accuracy
RATA	Relative Accuracy Test Audit
rH RTO	Relative Humidity
RIU	Regenerative Thermal Oxidizer or Recuperative Thermal Oxidizer
SCF	Standard Cubic Feet
SCFM	Standard Cubic Feet per Minute
scm	Standard Cubic Meter
scmm	Standard Cubic Meter per Minute
Scr.	Scrubber
SIC	Standard Industrial Classification
SO ₂	Sulfur Dioxide
SO _x Sq. Ft.	Sulfur Oxides Square Feet
TCD	Thermal Conductivity Detector
TO	Thermal Oxidizer
TPD	Tons Per Day
TPH	Tons Per Hour
TPY	Tons per year
TRS	Total Reduced Sulfur
TSP	Total Suspended Particulate Matter
TTE	Temporary Total Enclosure United States Environmental Protection
USEPA	Agency
VHAP	Volatile Hazardous Air Pollutant
VOC	Volatile Organic Compound
VOCs	Volatile Organic Compounds
WC	Water Column
WDGS	Wet Distiller's Grains with Solubles

State Environmental Agency Acronyms

ADEM	Alabama Department of Environmental Management
ADEC	Alaska Department of Environmental Conservation
ADEQ	Arizona Department of Environmental Quality
ADEQ	Arkansas Department of Environmental Quality
CARB CDPHE	California Air Resources Board Colorado Department of Public Health & Environment
CDEP	Connecticut Department of Environmental Protection
DNREC	Delaware Natural Resources & Environmental Control
FDEP	Florida Department of Environmental Protection
GEPD	Georgia Environmental Protection
IDEQ	Idaho Department of Environmental Quality
IEPA	Illinois Environmental Protection Agency
IDNR KDHE	Iowa Department of Natural Resources Kansas Department of Health & Environment
KDEP	Kentucky Department for Environmental Protection
LDEQ	Louisiana Department of Environmental Quality
MDEP	Maine Department of Environmental Protection
MDE	Maryland Department of the Environment
MDEP	Massachusetts Department of Environmental Protection
MDEQ	Michigan Department of Environmental Quality
MPCA MDEQ	Minnesota Pollution Control Agency Mississippi Department of Environmental Quality

MDNR	Missouri Department of Natural Resources
MDEQ	Montana Department of Environmental Quality
NDEQ	Nebraska Department of
NDEP	Environmental Quality Nevada Division of Environmental
NHDES	Protection New Hampshire Department of
NJDEP	Environmental Services New Jersey Department of
NMED	Environmental Protection New Mexico Environment Department
	New York State Department of
	Environmental Conservation
NCDENR	North Carolina Department of
NDDH	Environment & Natural Resources North Dakota Department of Health
OEPA	Ohio Environmental Protection Agency
ODEQ	Oklahoma Department of
ODEQ	Environmental Quality
ODEQ	Oregon Department of Environmental Quality
PDEP	Pennsylvania Department of Environmental Protection
RIDEM	Rhode Island Department of
SCDHEC	Environmental Management South Carolina Department of Health &
	Environmental Control
SDDENR	South Dakota Department of Environment & Natural Resources
TDEC	Tennessee Department of Environment & Conservation
TCEQ	Texas Commission on Environmental
UDEQ	Quality Utah Department of Environmental
ODEQ	Quality
VANR	Vermont Agency of Natural Resources
VDEQ	Virginia Department of Environmental Quality
WSDNR	
WVDEP	West Virginia Division of Environmental Protection
WDNR	Wisconsin Department of Natural Resources

Pace Analytical FSD 20-04074

Attachment 3 Calculation Equations

EPA Method 2 Calculations

Flue Gas Linear Velocity

$$V_{s} = 85.49 \times C_{p} \times \sqrt{\Delta P} \times \sqrt{\frac{\overline{T_{s}}}{P_{s} \times M_{s}}}$$

Volumetric Flow Rates - ACFM, SCFM & DSCFM

$$Q = 60 \times v_s \times A$$
$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right) = Q \times 17.647 \times \left(\frac{P_s}{T_s}\right)$$

 $Q_{sd} = Q_s \times (1 - B_{ws})$

Mass Flow Rate of Wet Flue Gas

$$m_g = \frac{4.995 \times Q_{sd} \times G_d}{1 - B_{ws}}$$

Actual Gas Density

$$\rho = \frac{0.04585 \times P_s \times M_s}{\overline{T_s}}$$

Where:		
А	=	Cross-sectional area of duct at sample point (sq. ft.).
Bws	=	Water vapor in gas stream (proportion by volume).
Cp	=	Pitot tube calibration coefficient.
Ġd	=	Flue gas specific gravity relative to air, dimensionless.
mg	=	Mass flow rate of wet flue gas (LB/HR).
	=	Molecular weight of wet flue gas (LB/LB-mole).
Ps	=	Absolute gas pressure of duct (Inches Hg).
ΔP	=	Velocity pressure measured by pitot tube (Inches WC).
Q	=	Actual flue gas volumetric flow rate (ACFM).
Qs	=	Volumetric gas flow at standard conditions (SCFM).
Q _{sd}	=	Dry standard volumetric gas flow rate (DSCFM).
Τ _S	=	Flue gas temperature (°R).
Vs	=	Flue gas linear velocity (feet per second).
ho	=	Actual flue gas density (LB/CF).

Test Protocol

EPA Method 3 Calculations

Dry Molecular Weight of Flue Gas

$$M_{d} = (0.44 \times \% CO_{2}) + (0.32 \times \% O_{2}) + (0.28 \times (\% N_{2} + \% CO))$$

Wet Molecular Weight of Flue Gas

$$M_s = M_d \times (1 - B_{ws}) + (18 \times B_{ws})$$

Percent Excess Air

$$\% EA = 100 \times \left(\frac{\% O_2 - (0.05 \times \% CO)}{(0.264 \times \% N_2) - \% O_2 + (0.5 \times \% CO)}\right)$$

Fuel F-factor (for comparison)

$$F_o = \frac{20.9 - \%O_2}{\%CO_2}$$

Where:

B _{ws}	=	Water vapor in gas stream (proportion by volume).
%CO	=	Carbon monoxide in gas stream (percent).
%CO ₂	=	Carbon dioxide in gas stream (percent).
%EA	=	Excess air for combustion (percent).
Fo	=	Fuel F-factor for results comparison.
Md	=	Molecular weight of dry flue gas (LB/LB-mole).
Ms	=	Molecular weight of wet flue gas (LB/LB-mole).
%N ₂	=	Nitrogen in gas stream (percent).
%O ₂	=	Oxygen in gas stream (percent).

Grede, LLC - Iron Mountain

EPA Method 4 Calculations

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right)$$

Volume of Water Vapor Sampled

$$V_w = 0.047070 \times V_{lc}$$

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_w}{V_w + V_{std}}$$

Moisture Content of Sampled Gas

$$MC = B_{ws} \times 100$$

Where:

7.		
B _{ws}	=	Water vapor in gas stream (proportion by volume).
ΔH	=	Orifice meter differential pressure (Inches WC).
MC	=	Moisture Content, % v/v
Pb	=	Barometric pressure (Inches Hg).
T _m	=	Sampling train meter temperature (°R).
VIc	=	Total volume of liquid collected in sampling train (mls).
Vm	=	Volume of gas sample measured by gas meter (CF).
V _{std}	=	Gas volume corrected to standard conditions (DSCF).
Vw	=	Volume of water vapor in gas sample (SCF).
Υ	=	Dry gas meter calibration coefficient.

Test Protocol

EPA Method 5 Calculations

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right)$$

Isokinetic Variation

$$I = 0.09450 \times \left(\frac{\overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})}\right)$$

Particulate Concentration

$$C_s = 15.432 \times \left(\frac{m_n}{V_{std}}\right)$$

Particulate Mass Rate

$$m_p = 0.008571 \times C_s \times Q_{sd}$$

,	Where:		
	An	=	Cross-sectional area of nozzle opening (square feet).
	Bws	=	Water vapor in gas stream (proportion by volume).
	Cs	=	Particulate concentration of gas stream (GR/DSCF).
	ΔH	=	Orifice meter differential pressure (Inches WC).
	I	=	Isokinetic variation of sampling rate (percent).
	m _n	=	Total particulate collected in sampling train (grams).
	mp	=	Particulate mass flow rate (LB/HR).
	Pb	=	Barometric pressure (Inches Hg).
	Ps	=	Absolute gas pressure of duct (Inches Hg).
	Q _{sd}	=	Dry standard volumetric gas flow rate (DSCFM).
	Tm	=	Sampling train meter temperature (°R).
	Τs	=	Flue gas temperature (°R).
	Vm	=	Volume of gas sample measured by gas meter (CF).
	V _{std}	=	Gas volume corrected to standard conditions (DSCF).
	Vs	=	Flue gas linear velocity (feet per second).
	Y	=	Dry gas meter calibration coefficient.
	θ	=	Total sampling time of run (minutes).

Test Protocol

Volatile Organic Compound Calculations

Weight/Volume Concentration

$$C_{VOC} = \frac{m_{VOC}}{V_{std}}$$

Volume/Volume Concentration

$$C_{PPM} = \frac{C_{voc} \times 24.04}{MW_{voc}}$$

VOC Emission Rate

$$E_{VOC} = (6.242 \times 10^{-8}) \times 60 \times C_{VOC} \times DSCFM$$

Where:	Where:				
Cvo		Volatile organic compound (VOC) concentration,			
		mg/dscm			
CPF	РМ =	Volatile organic compound (VOC) concentration,			
		PPM v/v			
DS	CFM =	Volumetric airflow, Dry Standard Cubic Feet per Minute			
Eve	=	Volatile organic compound (VOC) emission rate, LB/HR			
Mv	oc =	Mass of volatile organic compound collected, µg			
MV	V _{VOC} =	Molecular weight of volatile organic compound			
V _{sto}	. =	Standard volume of air sample, liters			
(6.	242x10 ⁻⁸) =	Conversion from mg/dscm to LB/DSCF			
60	=	Conversion from minutes to hours			

Test Protocol

Combustion Source Emissions Concentration Correction Factors

Concentration Correction for Oxygen Basis

$$C_{P(x\% O_2)} = C_P \times \frac{20.9 - \% O_{2-Basis}}{20.9 - \% O_2}$$

Concentration Correction for Carbon Dioxide Basis

$$C_{P(x\% CO_2)} = C_P \times \frac{\% CO_{2-Basis}}{\% CO_2}$$

Where	Where:			
	CP	=	Pollutant concentration in units of the emission	
			standard.	
	C _{P(x% O2)}	=	Pollutant concentration corrected to the target percent	
			oxygen basis in units of the emission standard.	
	C _{P(x% CO2)}	=	Pollutant concentration corrected to the target percent	
			carbon dioxide basis in units of the emission standard.	
	%CO ₂	=	Carbon dioxide in gas stream (percent).	
	%CO _{2_Basis}	=	Target correction basis for carbon dioxide (percent).	
	%O ₂	=	Oxygen in gas stream (percent).	
	%O _{2-Basis}	=	Target correction basis for oxygen (percent).	
	20.9	=	Average concentration of oxygen in the atmosphere.	

Pace Analytical

FSD 20-04074

Instrumental Analyzer Calculations EPA Methods 3A, 6C, 7E and 10

Analyzer Calibration Error

$$A_E = \frac{C_{AR} - C_{Cyl}}{S_{FS}} \times 100$$

System Calibration Bias

$$B_{Sys} = \frac{C_{SR} - C_{AR}}{S_{FS}} \times 100$$

System Drift

$$D_{Sys} = \frac{C_{SR_F} - C_{SR_I}}{S_{FS}} \times 100$$

Gas Concentration Corrected for System Bias

$$C_{PPM} = \left(\overline{C} - C_{0_{SR}}\right) \frac{C_{Cyl}}{\left(\frac{C_{SR_{I}} + C_{SR_{F}}}{2}\right) - C_{0_{SR}}}$$

Conversion to Weight/Volume Units

$$C_{mg/dscm} = C_{PPM} \times \frac{M_{Gas}}{24.04}$$

Emission Rate Calculation

$$E_{R} = 6.243 \times 10^{-8} \times C_{mg/dscm} \times DSCFM \times 60$$

W	here:		
	A _E	=	Analyzer calibration error, percent of span.
	B _{Sys}	=	System calibration bias, percent of span.
		=	System calibration drift, percent of span.
	D _{Sys} C	=	Average gas concentration response from analyzer, PPM (or %).
	C _{0SR}	=	Average of initial and final system calibration bias
			check responses for the zero gas, PPM (or %).
	C _{AR}	=	Analyzer direct calibration response, PPM (or %).
	C _{Cyl}	=	Actual concentration of calibration gas, PPM (or %).
	C _{SR}	=	System calibration response, PPM (or %).
	C _{SRF}	=	Final system calibration response, PPM (or %).
	C _{SRI}	=	Initial system calibration response, PPM (or %).
	C _{PPM}	=	Concentration adjusted for system bias, PPM (or %).
	C _{mg/dscm}	=	Constituent concentration converted to mg/dscm.
	M _{Gas}	=	Molecular weight of target constituent, lb/lb-mole.
	E _R	=	Emission rate of constituent, LB/HR.
	S _{FS}	=	System measurement span, full scale.
	DSCFM	=	Dry standard cubic feet per minute.
	6.243x10 ⁻⁸	=	Conversion factor, mg/cm to LB/CF.
	60	=	Conversion factor, minutes to hours.

Pace Analytical

FSD 20-04074

Test Protocol

Gas Concentration Calculations

Weight/Volume Concentration

$$C_{mg/dscm} = \frac{m}{V_{std}}$$

Volume/Volume Concentration

$$C_{PPM} = \frac{C_{mg/cm} \times 24.055}{MW}$$

Emission Rate

$$E_{Gas} = (6.242 \ x \ 10^{-8}) \ x \ 60 \ x \ C_{mg/dscm} \ x \ DSCFM$$

Wher	Where:			
	Cmg/cm	=	Compound Concentration, mg/cubic meter.	
	Cppm	=	Compound Concentration, PPM v/v.	
	DSCFM	=	Volumetric Airflow, dry standard cubic feet per minute.	
	E _{Gas}	=	Compound Emission Rate, LB/HR.	
	m	=	Mass of Compound Collected, µg.	
	MW	=	Molecular Weight of Compound.	
	Vstd	=	Standard Volume of Air Sample, liters.	
	(6.242 x 10 ⁻⁸)	=	Conversion From mg/dscm To LB/CF.	
	60	=	Conversion From Minutes to Hours.	

Grede, LLC - Iron Mountain Page F-44 of 60

Volatile Organic Compound Calculations EPA Method 25A

Convert Analyzer Response to Carbon Basis

$$C_{ppm-C1} = C_{propane} \times 3$$

Methane Corrected Concentration (as carbon)

$$C_{ppm-(C1-CH4)} = C_{ppm-C1} - C_{ppm-CH4}$$

Weight/Volume Concentration (as carbon)

$$C_{voc-c_1} = \frac{C_{ppm-c_1} x 12.01}{24.04} = C_{ppm-c_1} x 0.5 \text{ or } C_{ppm-(c_1-c_{H4})} x 0.5$$

Emission Rate (as carbon)

$$E_{VOC-C1} = (6.242 \ x \ 10^{-8}) \ x \ 60 \ x \ C_{VOC-C1} \ x \ SCFM$$

Where:		
Cvoc	C1 =	VOC Concentration as Carbon, mg/scm.
Cppm	-C1 =	VOC Concentration as Carbon, PPM v/v.
Cppm	-(C1-CH4) =	Methane Corrected Concentration as Carbon, PPM v/v.
Cppm	-СН4 =	Methane Concentration, PPM v/v.
Cprop	ane =	Average THC Analyzer Concentration, PPM as
SCF	M =	propane. Volumetric Airflow, Standard Cubic Feet Per Minute.
Evoc	C1 =	VOC Emission Rate as Carbon, LB/HR.
12.0		Molecular Weight of Carbon.
	,	Conversion From mg/scm To LB/SCF.
60	=	Conversion from Minutes to Hours.

Attachment 4 Method Summaries

Report Date 2/5/2021

Page 39 of 53

EPA Method 1 specifies test location acceptability criteria and defines the minimum number of traverse points for representative sampling. Linear measurements from upstream and downstream flow disturbances and the duct equivalent diameter are compared and the distances related to number of diameters. A flow disturbance can be defined as anything that changes or upsets the direction of flow within the duct including bends, dampers, fans, shape or size transitions, and open flames. Method 1 stipulates that test ports should be located at least eight diameters downstream and two diameters upstream of any flow disturbance. The minimum acceptable criteria are two diameters downstream and 0.5 diameters upstream of flow. Once the distances have been determined, the values are used to select the minimum number of traverse points for representative sampling. Shorter distances require a greater number of traverse points. The test site configuration and measurement details are documented on EPA Method 1 Field Data Sheet.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

EPA Method 2 defines procedures used to measure linear velocity and volumetric flow rate of a confined gas stream. Using traverse points determined by EPA Method 1, multiple differential pressure measurements (pitot impact opening versus static pressure) are made using a pitot tube and differential pressure gauge. The individual measurements are averaged and combined with the gas density to calculate the average gas velocity. The velocity and duct cross-sectional area are used to calculate the volumetric flow rate. The volumetric flow rate is expressed as actual cubic feet per minute (ACFM), standard cubic feet per minute (SCFM), and dry standard cubic feet per minute (DSCFM). The technician maintains comprehensive test records on EPA Method 2 Field Data Sheet. Details of the equipment used to measure gas velocity include:

Pitot Tube:
Differential Pressure Gauge:
Temperature Device:
Barometer Type:
Gas Density Determination:
Gas Moisture Determination:

S-Type Oil or Electronic Digital Manometer Type K Thermocouple Electronic Digital Barometer EPA Method 3 EPA Method 4

Method Defined Quality Control:

- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

Modified EPA Method 3/3A defines procedures to quantify carbon dioxide (CO₂) and oxygen (O₂) concentrations from stationary combustion sources. An integrated gas sample is collected simultaneously with other emissions testing. Sample gases are extracted from an emission stream at a constant rate over the course of a test period equal to other test constituents. A TedlarTM, aluminized MylarTM, or other inert material bag contains the collected gas sample prior to sample analyses. Instrumental gas analyzers compliant to EPA Method 3A quantify the CO₂ and O₂ concentrations. Three point instrument calibrations (zero, mid, and high span) are performed to certify the instruments for gas analyses. The technician maintains comprehensive test records on EPA Method 3 and Gas Analysis Field Data Sheets. Equipment used for measuring gas composition includes:

Filter Material:	Glass-fiber Filter or equivalent
Moisture removal:	Condenser and/or sorbent
Bag Material:	Tedlar [™] or Aluminized Mylar [™] or equivalent
Gas Analyzer:	Non-dispersive Infrared Detector (CO ₂)
	Paramagnetic Detector (O ₂)
Calibration Gases:	EPA Protocol 1

Method Defined Quality Control:

- Sampling bag leak check.

Pace FSD conducts the method as written with the following routine sampling deviation:

In the field, the gas sample is analyzed within two hours of collection using a portable O_2 detector. At a later time, potentially outside of the eight hour hold period, the gas sample is re-analyzed using an EPA Method 3A (Orsat) gas analyzer to quantify CO_2 and O_2 concentrations.

The preliminary analysis result from the portable O_2 detector is used to validate the Orsat results. The results are acceptable when the O_2 result from the field and the O_2 result from the lab differ by $\leq 0.3\%$.

Project situational deviations are documented at the time of the test.

EPA Method 4 - Isokinetic defines procedures to measure the moisture content of emission gas streams from stationary sources. The moisture content of the gas stream is determined in conjunction with an isokinetic sampling train. Collected water condensate is measured from the back half of the isokinetic train. Method 4 equations convert the condensed liquid volume to a gas volume. The water vapor volume compared with the dry standard gas volume collected through the isokinetic train determines the moisture content of the emissions gas stream and is reported in percent by volume. Test records are included on the associated isokinetic method data sheet. Equipment used for measuring moisture content includes:

Probe Material:	Borosilicate glass or Stainless Steel
Filter Media:	Glass or Quartz fiber
Impinger Train Material:	Borosilicate Glass
Desiccant:	Drierite
Condensate Measure:	Graduated Cylinder or Electronic Scale
Desiccant Measure:	Electronic Scale

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 5 defines procedures to measure particulate emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating

procedures from EPA Methods 2, 3, and 4, a sample gas stream is isokinetically drawn from the emission stream. The particulate dry fraction collects in the sampling probe and on a quartz or glass-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is empty. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. The impinger contents can be discarded or saved for additional analyses. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Filter Holder Material: Filter Media:	Stainless Steel and Borosilicate Glass Borosilicate Glass with glass or Teflon support Quartz or Glass-fiber, >99.95% efficient at
	0.3µm
Impinger Train Material:	Borosilicate Glass
Impinger Reagents:	Deionized Water
Recovery Reagents:	Acetone
	Deionized water
Control Train:	Gas meter, orifice, differential pressure gauges, pump, valves, temperature monitors and controllers
Analytical Techniques:	Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be non-contaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 202 defines procedures to determine organic and inorganic condensable particulate matter (CPM) emissions from stationary sources. The CPM is collected in a condensate knock-out impinger and Teflon filter after filterable PM has been collected by either Method 5 or Method 201A. The gas stream is sample isokinetically following EPA Method 5 or Method 201A procedures. The gas stream is initially cooled with a spiral condenser using recirculated cool water to maintain a sample gas temperature of 85°F or Condensate from the spiral condenser collects in glass, stemless, dropout less. impingers. The intent of the condenser and dropout impinger is to minimize gas/water contact to reduce collection of unintended artifacts. The dropout impinger is followed by a second impinger to provide overflow capacity. A Teflon[™] filter, also maintained at 85°F or less is used to collect any remaining organic CPM. The filter is followed by an iced, water prepared impinger and desiccant packed drying column to quantitatively collect remaining moisture. Immediately after sampling, the Method 202 CPM condensate is purged with nitrogen (N₂) to liberate dissolved sulfur dioxide (SO₂) gases. The contents of the dropout and backup impingers prior to the CPM filter are measured, weighed, and transferred to an appropriate sample bottle. CPM is quantitatively recovered with water, acetone, and hexane rinses. The CPM filter and water are extracted with hexane and combined with solvent rinses to determine the organic CPM. Following extraction, the water is dried and the residue measured as the inorganic CPM. The combination of both fractions represents the total condensable particulate matter (CPM). The train operator maintains comprehensive test records on appropriate Field Data Sheets.

Filter Holder Material:

Glass, Stainless Steel (316 or equivalent), or Fluoropolymer-coated Stainless Steel

Grede, LLC - Iron Mountain

Test Protocol

Filter Media: Impinger Train Material: Impinger Reagents: Recovery Reagents:	Teflon, >99.95% efficient at 0.3 um Borosilicate Glass Deionized Water
Recovery Reagents:	Acetone Hexane
	Deionized Water
Control Train:	EPA Method 5
Analytical Technique:	Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 6C defines procedures to measure sulfur dioxide (SO₂) from stationary sources. A stainless steel sampling probe and a heat-traced TeflonTM sampling line draw a sample of the gas stream from the duct to a thermo-electric gas conditioner to remove moisture. The sample gas stream is delivered to a fluorescence gas analyzer to quantify SO₂ emissions. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 SO₂ standards specific to the target calibration range. A computerized data acquisition system logs SO₂ concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records on the electronic Project Results Instrumental Workbook. Equipment used for SO₂ testing includes:

Probe Material:	Stainless Steel
Moisture Removal:	Thermo-electric
Transfer Line:	Teflon™
Analytical Technique:	Fluorescence Detector
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\ge 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

EPA Method 9 defines procedures to evaluate the opacity of the plume emitted from a source stack. An independently certified visible emissions observer visually estimates the opacity of the non-moisture plume from the source. The observer positions themselves with the sun (or other light source) at their back and perpendicular to the plume when directly facing the emission point. The observer must also ensure a clear and contrasting background behind the plume. The certified observer then estimates (based on certification trials) the percentage of the background blocked by the source

Pace Analytical

FSD 20-04074

plume (plume opacity) in increments of 5%. Observed opacity readings are recorded at 15-second intervals throughout the run. Tabulated results include run average and successive six-minute averages. The spreadsheet software also searches the data set for any group of 24 consecutive readings that yield the highest possible six-minute average. The train operator maintains comprehensive test records on the Visible Emission Observation Form. Details of the opacity evaluation are outlined below:

Evaluation Period:	One hour
Observation Frequency:	15 Seconds
No. of Observations:	240
No. of Six-minutes Averages:	10
Observer Certifications:	Semi-annual

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

In-Stack Method: Method 10 defines procedures to measure carbon monoxide (CO) emissions from stationary sources. A stainless steel sampling probe and a heat-traced Teflon[™] sampling line draw a sample of the gas stream from the duct to a thermoelectric gas conditioner to remove moisture. The sample gas stream is delivered to a gas filter correlation non-dispersive infrared analyzer to quantify CO concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 CO standards specific to the target calibration range. A computerized data acquisition system logs CO concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used to conduct Method 10 stack method testing includes:

Probe Material:	Stainless Steel
Moisture Removal:	Thermo-electric
Transfer Line:	Teflon™
Analytical Technique:	Non-dispersive Infrared
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.

Pace Analytical

FSD 20-04074

- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\ge 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

EPA Method 25A defines procedures used to measure total hydrocarbons from stationary sources. A stainless steel sampling probe and heat-traced TeflonTM sampling line draw a sample of the gas stream from the duct directly to the analytical system. A total hydrocarbon monitor utilizing a flame ionization detector (FID) quantifies total hydrocarbon concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 propane (C₃H₈) standards specific to the target calibration range. A computerized data acquisition system logs THC concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The analyzer results are multiplied by 3 to report results as carbon (C₁). The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used for THC testing includes:

Probe Material:	Stainless Steel
Transfer Line:	Teflon™, (heated)
Analytical Technique:	Flame Ionization Detector (FID)
Calibration Gas:	EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of ≥ 2x the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations.

Pace Analytical

FSD 20-04074

Project situational deviations are documented at the time of the test.

Multimetal: EPA Method 29 defines procedures to measure metal emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating procedures from EPA Methods 2, 3, 4, and 5, a sample gas stream is isokinetically drawn from the emission stream. The particulate fraction of metals emissions collects in the sampling probe and on a quartz-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of reagent-filled impingers to collect the vapor fraction of metals emissions. The first two impingers are prepared with a 5% nitric acid (HNO₃)/10% hydrogen peroxide (H₂O₂) solution and are followed by a dry impinger. Impingers 4 and 5 are prepared with a 4% potassium permanganate (KMnO₄)/10% sulfuric acid (H₂SO₄) absorbing solution followed by another dry impinger. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. A dry impinger may precede the reagent impingers for additional condensate capacity in high moisture sources. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. Sample recovery and train clean-up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 29 Field Data Sheet. Details of metals testing are outlined below:

Nozzle/Probe Material: Filter Holder Material: Filter Media:	Quartz and Borosilicate Glass Borosilicate Glass and Teflon™ Filter Support Quartz Fiber, >99.95% efficient at 0.3 µm
Impinger Train Material:	Borosilicate Glass
Impinger Reagents:	5% HNO ₃ and 10% H ₂ O ₂
	4% KMnO4 and 10% H2SO4
Recovery Reagents:	Acetone (front-half only)
	0.1 N HNO₃ (front-half only)
	4% KMnO ₄ and 10% H ₂ SO ₄
	8N HCI
	Deionized Water
Control Train:	EPA Method 5
Analytical Technique:	Inductively Coupled Plasma-Mass Spectrometry Cold Vapor Atomic Absorption Spectroscopy

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).

- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Multipoint analytical systems calibration.
- Analytical calibration is verified hourly.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

Reference Standards. Pace implements a comprehensive program to verify and validate reference standards to further enhance and support method standards. Primary reference standards are directly comparable to a reference base. The National Institute of Standards and Technology (NIST) maintains primary reference materials or very closely traceable secondary standards. These materials are then used to certify secondary or transfer standards for use in quality management programs. Secondary reference standards are calibrated with primary standards using a high precision comparator. Materials that have a documented path to the primary standard are often referred to as traceable to NIST or NIST traceable. Where commercially and feasibly available, Pace uses primary reference standards to perform calibrations and verifications. In other cases, Pace maintains traceable secondary reference standards. Primary and secondary reference standards are calibrated by external vendors that have a formal, registered quality system. Calibrations are performed with equipment and materials that are traceable to NIST.

Quality Controls (not defined in test methods):

Sampling/Recovery Reagents are Reagent Grade or better.

- Reference Temperature Simulator is calibrated annually.
- Reference Pressure Transducer is calibrated annually.
- Reference DryCal airflow meter is calibrated annually.
- Mercury Barometer is a primary reference standard.
- Liquid Manometers are primary reference standards.
- Angle Blocks, Gauge Blocks, and Measuring Rods are verified every five years.
- Angle Gauges are verified each day of use.
- Calipers are verified annually.
- Stainless steel reference weights are verified every five years.
- Analytical balances are calibrated annually and verified at each use.
- Field balances are calibrated annually and verified at each use.

Attachment 5 Quality Statement

Report Date 2/5/2021

Page 52 of 53

Quality Assurance/Quality Control

Quality Management System. To produce data that is complete, representative, and of known precision and accuracy, Pace Analytical Field Services Division has designed and implemented a rigorous and innovative quality management system. The system was initially based on the USEPA Quality Assurance Handbook for Air Pollution Measurement Systems and continually developed as procedural complexities and standards progressed. The Field Services Division Quality Management System (Pace FSD QMS) is now accredited by the American Association of Laboratory Accreditation (A2LA) to comply with three national accreditation standards:

- ASTM D7036 Standard Practice for Competence of Air Emission Testing Bodies (AETB).
- ISO 17025 General Requirements for the Competence of Testing and Calibration Laboratories
- The NELAC Institute General Requirements for Field Sampling and Measurement Organizations (FSMO)

The Pace FSD QMS includes:

- Quality Programs
 - Ethics policy and training.
 - Corrective Action and Preventative Action (CAPA).
 - Continuous Process Improvement.
 - Documented Demonstrations of Capability.
 - Internal and third party proficiency testing.
 - Qualified Individual program (QI)
 - Internal and external audits.
 - Annual management reviews.
 - Documentation and Traceability
 - High quality traceable standards and reagents.
 - Reagent tracking and management system.
 - Use of matrix spikes, duplicate analysis, internal standards, and blanks.
 - Validated workbooks for data collection and results reporting.
 - Electronic quality, training, and safety documents available in-field.
 - Sample security and preservation procedures.
 - Chain of custody maintained from sample collection through laboratory analysis.
- Equipment Calibration
 - Full time staff dedicated to equipment maintenance and calibration.

All equipment and instruments are calibrated by trained personnel on a frequency that meets or exceeds method requirements. Documentation of the Pace Analytical Quality Assurance Program will be available on-site.

Pace Analytical

FSD 20-04074