# Source Test Report for 2022 Compliance Emissions Testing

Boiler No. 10 (EUBOILER#10) and Boiler No. 11 (EUBOILER#11)

Graphic Packaging International, LLC Kalamazoo, Michigan

**Prepared For:** 

Graphic Packaging International, LLC 1500 North Pitcher Street Kalamazoo, MI 49007

**Prepared By:** 

Montrose Air Quality Services, LLC 10060 Brecksville Road Brecksville, OH 44141

For Submission To:

Michigan Department of Environment, Great Lakes, and Energy 525 West Allegan Street Lansing, MI 48909

Michigan Department of Environment, Great Lakes, and Energy 7953 Adobe Road Kalamazoo, MI 49009-5026

IR QUALITY SERVICES

Document Number: MW011AS-021512-RT-1102 Test Dates: October 17-18, 2022 Submittal Date: November 4, 2022



AIR QUALITY DIVISION





# **Review and Certification**

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

| Signature: | Shawn Jawanski | Date:  | 11 / 04 / 2022          |  |
|------------|----------------|--------|-------------------------|--|
| Name:      | Shawn Jaworski | Title: | Senior Field Technician |  |

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

| Signature: | robert j lisy jr    | Date:  | 11 / 04 / 2022        |  |
|------------|---------------------|--------|-----------------------|--|
| Name:      | Robert J. Lisy, Jr. | Title: | Reporting Hub Manager |  |

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

# AIR QUALITY SERVICES

# **Table of Contents**

**Section** 

# Page

| 10  | Intro | oduction                                              | 5  |
|-----|-------|-------------------------------------------------------|----|
| 1.0 | 1.1   | Summary of Test Program                               |    |
|     | 1.2   | Key Personnel                                         |    |
|     |       |                                                       |    |
| 2.0 |       | t and Sampling Location Descriptions                  |    |
|     | 2.1   | Process Description, Operation, and Control Equipment |    |
|     | 2.2   | Flue Gas Sampling Locations                           |    |
|     | 2.3   | Operating Conditions and Process Data                 | 9  |
| 3.0 | Sam   | pling and Analytical Procedures                       | 10 |
|     | 3.1   | Test Methods                                          | 10 |
|     |       | 3.1.1 EPA Method 1                                    | 10 |
|     |       | 3.1.2 EPA Method 2                                    | 10 |
|     |       | 3.1.3 EPA Method 3A                                   | 10 |
|     |       | 3.1.4 EPA Method 4                                    | 11 |
|     |       | 3.1.5 EPA Method 5                                    | 11 |
|     |       | 3.1.6 EPA Method 19                                   | 12 |
|     |       | 3.1.7 EPA Method 202                                  | 13 |
|     | 3.2   | Process Test Methods                                  | 13 |
| 4.0 | Test  | Discussion and Results                                | 14 |
|     | 4.1   | Field Test Deviations and Exceptions                  |    |
|     | 4.2   | Presentation of Results                               |    |
| 5 0 |       | nal QA/QC Activities                                  |    |
| 5.0 | 5.1   | QA/QC Audits                                          |    |
|     | 5.2   | QA/QC Discussion                                      |    |
|     | 5.3   |                                                       |    |
|     |       | Quality Statement                                     | 1/ |
| Lis | st of | f Appendices                                          |    |
|     | Field | d Data and Calculations                               | 10 |

| A | Field | Data and Calculations    |  |
|---|-------|--------------------------|--|
|   | A.1   | Sampling Locations       |  |
|   |       |                          |  |
|   | A.3   | EUBOILER#11 Data Sheets  |  |
|   | A.4   | Example Calculations     |  |
| В | Facil | ity Process Data         |  |
|   | B.1   | EUBOILER#10 Process Data |  |
|   | B.2   | EUBOILER#11 Process Data |  |
| С | Labo  | oratory Analysis Data    |  |
|   |       |                          |  |

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report



| D | Qua | lity Assurance/Quality Control           | 113 |
|---|-----|------------------------------------------|-----|
|   | D.1 | Units and Abbreviations                  | 114 |
|   | D.2 | Manual Test Method QA/QC Data            | 123 |
|   | D.3 | Instrumental Test Method QA/QC Data      | 152 |
|   | D.4 | Accreditation Information/Certifications | 165 |
| Е | Reg | ulatory Information                      | 170 |
|   | E.1 | Regulatory Correspondence                | 171 |
|   | E.2 | Test Plan                                | 174 |
|   |     |                                          |     |

# **List of Tables**

| Lis | t of Figures                                                               |    |
|-----|----------------------------------------------------------------------------|----|
| 4-2 | TPM (PM <sub>2.5</sub> /PM <sub>10</sub> ) Emissions Results - EUBOILER#11 | 16 |
| 4-1 | TPM (PM <sub>2.5</sub> /PM <sub>10</sub> ) Emissions Results - EUBOILER#10 | 15 |
| 2-1 | Sampling Locations                                                         | 9  |
| 1-4 | Test Personnel and Observers                                               | 8  |
| 1-3 | Summary of Average Compliance Results – EUBOILER#11                        | 6  |
| 1-2 | Summary of Average Compliance Results – EUBOILER#10                        | 6  |
| 1-1 | Summary of Test Program                                                    | 5  |

| 3-1 | EPA Method 3A Sampling Train11     |  |
|-----|------------------------------------|--|
| 3-2 | EPA Method 5/202 Sampling Train 12 |  |

5



# **1.0 Introduction**

### 1.1 Summary of Test Program

Graphic Packaging International, LLC (Graphic Packaging) (Facility ID: B1678) contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance test program on Boilers No. 10 (EUBOILER#10) and 11 (EUBOILER#11) at the Graphic Packaging facility located in Kalamazoo, Michigan. Testing was performed on October 17-18, 2022, for the purpose of satisfying the emission testing requirements pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Permit-to-Install (PTI) No. 133-19A.

The specific objectives were to:

- Verify the emissions of total particulate matter (TPM) under 2.5- $\mu$ m (PM<sub>2.5</sub>) and PM under 10- $\mu$ m (PM<sub>10</sub>) from the exhaust stacks (SVBLR1 and SVBLR2) serving EUBOILER#10 and EUBOILER#11
- Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1. All Total PM (TPM) emissions are to be considered as  $PM_{2.5}$  and  $PM_{10}$  for compliance determination.

| Test<br>Date(s) | Unit ID/<br>Source Name | Activity/Parameters              | Test Methods | No. of<br>Runs | Duration<br>(Minutes) |
|-----------------|-------------------------|----------------------------------|--------------|----------------|-----------------------|
| 10/17/2022      | EUBOILER#10             | Velocity/Volumetric<br>Flow Rate | EPA 1 & 2    | 3              | 120                   |
| 10/17/2022      | EUBOILER#10             | O <sub>2</sub> , CO <sub>2</sub> | EPA 3A       | 3              | 120                   |
| 10/17/2022      | EUBOILER#10             | Moisture                         | EPA 4        | 3              | 120                   |
| 10/17/2022      | EUBOILER#10             | FPM, CPM                         | EPA 5/202    | 3              | 120                   |
| 10/18/2022      | EUBOILER#11             | Velocity/Volumetric<br>Flow Rate | EPA 1 & 2    | 3              | 120                   |
| 10/18/2022      | EUBOILER#11             | O <sub>2</sub> , CO <sub>2</sub> | ЕРА ЗА       | 3              | 120                   |
| 10/18/2022      | EUBOILER#11             | Moisture                         | EPA 4        | 3              | 120                   |
| 10/18/2022      | EUBOILER#11             | FPM, CPM                         | EPA 5/202    | 3              | 120                   |

#### Table 1-1 Summary of Test Program

To simplify this report, a list of Units and Abbreviations is included in Appendix D.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

# AIR QUALITY SERVICES

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Tables 1-2 and 1-3. Detailed results for individual test runs can be found in Section 4.0. All supporting data can be found in the appendices.

The testing was conducted by the Montrose personnel listed in Table 1-4. The tests were conducted according to the test plan dated April 4, 2022, and revised April 11, 2022, that was submitted to EGLE.

#### Table 1-2

#### Summary of Average Compliance Results – EUBOILER#10

October 17, 2022

| Parameter/Units                                                        | Average Results | Emission Limits |  |
|------------------------------------------------------------------------|-----------------|-----------------|--|
| Total Particulate Matter (TPM) (PM <sub>2.5</sub> / PM <sub>10</sub> ) |                 |                 |  |
| lb/MMBtu                                                               | 0.0021          | 0.004           |  |

#### Table 1-3

#### Summary of Average Compliance Results – EUBOILER#11

#### October 18, 2022

| Parameter/Units                                                        | Average Results | Emission Limits |
|------------------------------------------------------------------------|-----------------|-----------------|
| Total Particulate Matter (TPM) (PM <sub>2.5</sub> / PM <sub>10</sub> ) |                 |                 |
| lb/MMBtu                                                               | 0.0018          | 0.004           |



# **1.2 Key Personnel**

A list of project participants is included below:

#### **Facility Information**

| Source Location: | Graphic Packaging International, LLC |
|------------------|--------------------------------------|
|                  | 1500 North Pitcher Street            |
|                  | Kalamazoo, MI 49007                  |
| Project Contact: | Steven Smock                         |
| Role:            | Environmental Manager                |
| Company:         | Graphic Packaging                    |
| Telephone:       | 269-383-5453                         |
| Email:           | steven.smock@graphicpkg.com          |
|                  |                                      |

#### **Agency Information**

| Regulatory Agency: | EGLE                 |
|--------------------|----------------------|
| Agency Contact:    | Lindsey Wells        |
| Telephone:         | 517-282-2345         |
| Email:             | WellsL8@michigan.gov |

#### **Testing Company Information**

| Montrose Air Quality Services, LLC |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Robert J. Lisy, Jr.                | Shawn Jaworski                                               |
| Reporting Hub Manager              | Senior Field Technician                                      |
| 440-262-3760                       | 440-262-3760                                                 |
| rlisy@montrose-env.com             | sjaworski@montrose-env.com                                   |
|                                    | Robert J. Lisy, Jr.<br>Reporting Hub Manager<br>440-262-3760 |

#### Laboratory Information

| Laboratory:  | Enthalpy Analytical, LLC |
|--------------|--------------------------|
| City, State: | Durham, NC               |
| Method:      | EPA Methods 5 and 202    |

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

7 of 195



Test personnel and observers are summarized in Table 1-4.

# Table 1-4

#### **Test Personnel and Observers**

| Name           | Affiliation       | Role/Responsibility       |
|----------------|-------------------|---------------------------|
| Shawn Jaworski | Montrose          | Field Project Manager, QI |
| Jason Fawks    | Montrose          | Field Technician          |
| Steven Smock   | Graphic Packaging | Test Coordinator          |
| Lindsey Wells  | EGLE              | Observer                  |

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

1



# 2.0 Plant and Sampling Location Descriptions

# 2.1 Process Description, Operation, and Control Equipment

Graphic Packaging International operates two 311 MMBtu/hr natural gas-fired boilers (EUBOILER#10 and EUBOILER#11) (FGBOILERS10-11) to generate steam and hot water for use in facility operations. EUBOILER#10 and EUBOILER#11 are equipped with low NO<sub>x</sub> burners and flue gas recirculation. They have maximum heat input rates of 311 MMBtu/hr and were in operation for this test event.

# 2.2 Flue Gas Sampling Locations

Information regarding the sampling locations is presented in Table 2-1.

#### Table 2-1 Sampling Locations

| Sampling<br>Location                      | Stack Inside<br>Diameter<br>(in.) | Distance from Nearest Disturbance<br>Downstream EPA Upstream EPA<br>"B" (in./dia.) "A" (in./dia.) |             | Number of Traverse<br>Points           |  |
|-------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|-------------|----------------------------------------|--|
| EUBOILER#10<br>Exhaust Stack<br>(SVBLR10) | 62.3                              | 140.0 / 2.2                                                                                       | 310.0 / 5.0 | Isokinetic: 24 (12/port)<br>Gaseous: 1 |  |
| EUBOILER#11<br>Exhaust Stack<br>(SVBLR11) | 62.3                              | 140.0 / 2.2                                                                                       | 310.0 / 5.0 | Isokinetic: 24 (12/port)<br>Gaseous: 1 |  |

Sample locations were verified in the field to conform to EPA Method 1. Acceptable cyclonic flow conditions were confirmed prior to testing using EPA Method 1, Section 11.4. See Appendix A.1 for more information.

# 2.3 Operating Conditions and Process Data

Emission tests were performed while the boilers operated at greater than 90% of its rated capacity.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B. Data collected includes the following parameters:

- Gas flow rate, kscfh
- Steam Load, lb/hr

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

# **3.0 Sampling and Analytical Procedures**

AIR QUALITY SERVICES

#### 3.1 Test Methods

The test methods for this test program have been presented in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

#### 3.1.1 EPA Method 1, Sample and Velocity Traverses for Stationary Sources

EPA Method 1 is used to assure that representative measurements of volumetric flow rate are obtained by dividing the cross-section of the stack or duct into equal areas, and then locating a traverse point within each of the equal areas. Acceptable sample locations must be located at least two stack or duct equivalent diameters downstream from a flow disturbance and one-half equivalent diameter upstream from a flow disturbance.

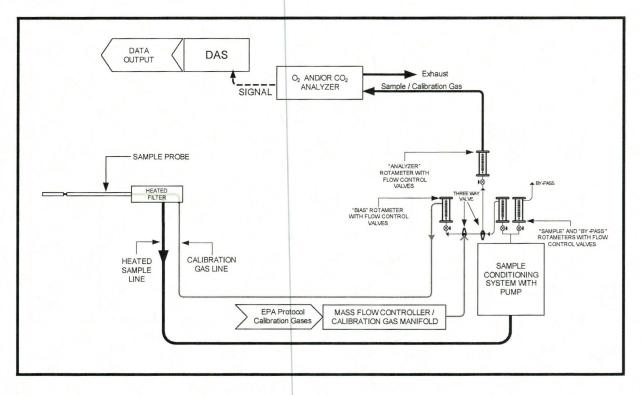
The sample port and traverse point locations are detailed in Appendix A.

#### 3.1.2 EPA Method 2, Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

EPA Method 2 is used to measure the gas velocity using an S-type pitot tube connected to a pressure measurement device, and to measure the gas temperature using a calibrated thermocouple connected to a thermocouple indicator. Typically, Type S (Stau $\beta$ cheibe) pitot tubes conforming to the geometric specifications in the test method are used, along with an inclined manometer. The measurements are made at traverse points specified by EPA Method 1.

The typical sampling system is detailed in Figure 3-2.

#### 3.1.3 EPA Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)


EPA Method 3A is an instrumental test method used to measure the concentration of  $O_2$  and  $CO_2$  in stack gas. The effluent gas is continuously or intermittently sampled and conveyed to analyzers that measure the concentration of  $O_2$  and  $CO_2$ . The performance requirements of the method must be met to validate data.

The typical sampling system is detailed in Figure 3-1.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

# AIR QUALITY SERVICES

#### Figure 3-1 EPA Method 3A Sampling Train

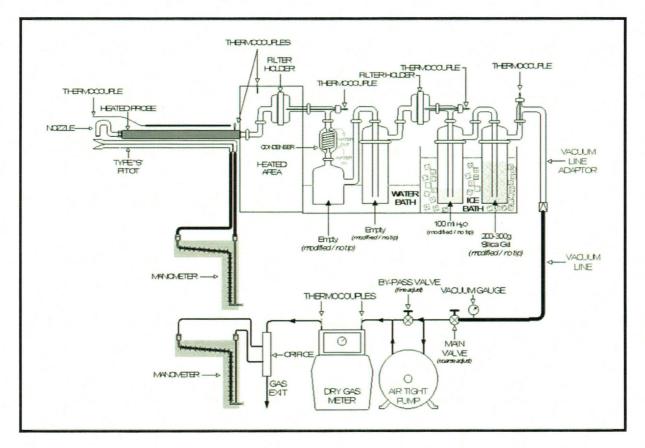


#### 3.1.4 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.

The typical sampling system is detailed in Figure 3-2.

#### 3.1.5 EPA Method 5, Determination of Particulate Matter from Stationary Sources


EPA Method 5 is a manual, isokinetic method used to measure FPM emissions. The samples are analyzed gravimetrically. This method is performed in conjunction with EPA Methods 1 through 4. The stack gas is sampled through a nozzle, probe, filter, and impinger train. FPM results are reported in emission concentration and emission rate units.

The typical sampling system is detailed in Figure 3-2.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report



#### Figure 3-2 EPA Method 5/202 Sampling Train



#### 3.1.6 EPA Method 19, Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

EPA Method 19 is used to calculate mass emission rates in units of lb/MMBtu. EPA Method 19, Table 19-2 contains a list of assigned fuel factors for different types of fuels, which can be used for these calculations.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

MW049AS-021512-RT-1102

T



#### **3.1.7 EPA Method 202, Dry Impinger Method for Determining** Condensable Particulate Emissions from Stationary Sources

The CPM is collected in dry impingers after filterable PM has been collected on a filter maintained as specified in either Method 5 of Appendix A-3 to 40 CFR 60, Method 17 of Appendix A-6 to 40 CFR 60, or Method 201A of Appendix M to 40 CFR 51. The organic and aqueous fractions of the impingers and an out-of-stack CPM filter are then taken to dryness and weighed. The total of the impinger fractions and the CPM filter represents the CPM. Compared to the version of Method 202 that was promulgated on December 17, 1991, this method eliminates the use of water as the collection media in impingers and includes the addition of a condenser followed by a water dropout impinger immediately after the final instack or heated filter. This method also includes the addition of one modified Greenburg Smith impinger (backup impinger) and a CPM filter following the water dropout impinger.

CPM is collected in the water dropout impinger, the modified Greenburg Smith impinger, and the CPM filter of the sampling train as described in this method. The impinger contents are purged with nitrogen immediately after sample collection to remove dissolved SO<sub>2</sub> gases from the impinger. The CPM filter is extracted with water and hexane. The impinger solution is then extracted with hexane. The organic and aqueous fractions are dried and the residues are weighed. The total of the aqueous and organic fractions represents the CPM.

The potential artifacts from  $SO_2$  are reduced using a condenser and water dropout impinger to separate CPM from reactive gases. No water is added to the impingers prior to the start of sampling. To improve the collection efficiency of CPM, an additional filter (the "CPM filter") is placed between the second and third impingers

The typical sampling system is detailed in Figure 3-2.

#### 3.2 Process Test Methods

The test plan did not require that process samples be collected during this test program; therefore, no process sample data are presented in this test report.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report



# 4.0 Test Discussion and Results

# 4.1 Field Test Deviations and Exceptions

The post-test sampling train leak check performed after Run 3 at the EUBOILER#11 Exhaust Stack yielded a leakage rate which was greater than the allowable leakage rate of 0.020 cfm as specified within EPA Method 5, Section 8.4.4. Therefore, Run 3 was voided, and an additional run (Run 4) was performed. Results from Run 3 are not included in this test report.

Prior to Run 1 sampling at the EUBOILER#10 Exhaust Stack, an initial system bias test was not performed following the recalibration of the EPA Method 3A CO<sub>2</sub> analyzer. As a result, the zero and mid-level direct calibration gas responses were utilized as the initial system bias in order to determine the bias corrected CO<sub>2</sub> concentration for Run 1. It is the opinion of Montrose that this substitution had little to no effect on the overall results of this test.

# 4.2 Presentation of Results

The average results are compared to the permit limits in Tables 1-2 and 1-3. The results of individual compliance test runs performed are presented in Tables 4-1 and 4-2. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.



#### Table 4-1

TPM (PM<sub>2.5</sub>/PM<sub>10</sub>) Emissions Results -EUBOILER#10

| Parameter/Units                     | Run 1                                | Run 2                                  | Run 3             | Average  |
|-------------------------------------|--------------------------------------|----------------------------------------|-------------------|----------|
| Date                                | 10/18/2022                           | 10/18/2022                             | 10/18/2022        |          |
| Time                                | 8:43-10:49                           | 11:28-13:32                            | 13:59-16:04       |          |
| Process Data                        |                                      | ************************************** |                   |          |
| Gas flow rate, kscfh *              |                                      |                                        |                   |          |
| Steam load, klb/hr *                |                                      |                                        |                   |          |
| Fc-based heat input rate, MMBtu/hr  | 269.2                                | 264.0                                  | 265.5             | 266.2    |
| Sampling & Flue Gas Parameters      |                                      |                                        |                   | 2.00 600 |
| O2, % volume dry                    | 3.62                                 | 3.74                                   | 3.72              | 3.69     |
| CO <sub>2</sub> , % volume dry      | 10.43                                | 10.12                                  | 10.26             | 10.27    |
| flue gas temperature, °F            | 252.7                                | 256.9                                  | 256.1             | 255.2    |
| moisture content, % volume          | 16.42                                | 16.31                                  | 16.31             | 16.35    |
| volumetric flow rate, dscfm         | 44,753                               | 45,206                                 | 44,858            | 44,939   |
| Filterable Particulate Matter (FPM) |                                      |                                        |                   |          |
| gr/dscf                             | 0.00015                              | 0.00016                                | 0.00020           | 0.00017  |
| lb/hr                               | 0.056                                | 0.063                                  | 0.078             | 0.066    |
| lb/MMBtu                            | 0.00021                              | 0.00024                                | 0.00029           | 0.00025  |
| Condensable Particulate Matter (C   | PM)                                  |                                        | sales substitutes |          |
| gr/dscf                             | 0.0011                               | 0.0011                                 | 0.0017            | 0.0013   |
| lb/hr                               | 0.42                                 | 0.42                                   | 0.65              | 0.50     |
| lb/MMBtu                            | 0.0016                               | 0.0016                                 | 0.0025            | 0.0019   |
| Total Particulate Matter (TPM) (PM  | 1 <sub>2.5</sub> /PM <sub>10</sub> ) |                                        |                   |          |
| lb/hr                               | 0.47                                 | 0.49                                   | 0.73              | 0.56     |
| lb/MMBtu                            | 0.0018                               | 0.0018                                 | 0.0028            | 0.0021   |

\* Process data was provided by Graphic Packaging personnel.

# MONTROSE AIR QUALITY SERVICES

#### Table 4-2

#### TPM (PM<sub>2.5</sub>/PM<sub>10</sub>) Emissions Results -EUBOILER#11

| Parameter/Units                     | Run 1      | Run 2       | Run 4                                                                                                          | Average |
|-------------------------------------|------------|-------------|----------------------------------------------------------------------------------------------------------------|---------|
| Date                                | 10/17/2022 | 10/17/2022  | 10/17/2022                                                                                                     |         |
| Time                                | 9:28-11:37 | 12:29-14:37 | 18:15-20:20                                                                                                    |         |
| Process Data                        |            | •           |                                                                                                                |         |
| Gas flow rate, kscfh *              |            |             |                                                                                                                |         |
| Steam load, klb/hr *                |            |             |                                                                                                                |         |
| Fc-based heat input rate, MMBtu/hr  | 240.4      | 240.6       | 248.1                                                                                                          | 243.0   |
| Sampling & Flue Gas Parameters      |            |             |                                                                                                                |         |
| O2, % volume dry                    | 4.30       | 4.35        | 4.43                                                                                                           | 4.36    |
| CO <sub>2</sub> , % volume dry      | 9.73       | 9.70        | 9.77                                                                                                           | 9.73    |
| flue gas temperature, °F            | 253.4      | 255.1       | 257.8                                                                                                          | 255.4   |
| moisture content, % volume          | 15.17      | 15.81       | 15.94                                                                                                          | 15.64   |
| volumetric flow rate, dscfm         | 42,829     | 43,002      | 44,012                                                                                                         | 43,281  |
| Filterable Particulate Matter (FPM) |            |             |                                                                                                                |         |
| gr/dscf                             | 0.00018    | 0.00051     | 0.00027                                                                                                        | 0.00032 |
| lb/hr                               | 0.067      | 0.190       | 0.100                                                                                                          | 0.119   |
| lb/MMBtu                            | 0.00028    | 0.00079     | 0.00040                                                                                                        | 0.00049 |
| Condensable Particulate Matter (CF  | PM)        |             |                                                                                                                |         |
| gr/dscf                             | 0.00073    | 0.00099     | 0.00080                                                                                                        | 0.00084 |
| lb/hr                               | 0.27       | 0.37        | 0.30                                                                                                           | 0.31    |
| lb/MMBtu                            | 0.0011     | 0.0015      | 0.0012                                                                                                         | 0.0012  |
| Total Particulate Matter (TPM) (PM  | 2.5/PM10)  |             |                                                                                                                |         |
| lb/hr                               | 0.33       | 0.56        | 0.40                                                                                                           | 0.43    |
| lb/MMBtu                            | 0.0014     | 0.0023      | 0.0016                                                                                                         | 0.0018  |
|                                     |            |             | And a second |         |

\* Process data was provided by Graphic Packaging personnel.

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report



# 5.0 Internal QA/QC Activities

# 5.1 QA/QC Audits

The meter boxes and sampling trains used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes, minimum sample durations, and percent isokinetics met the applicable QA/QC criteria.

EPA Method 3A calibration audits were all within the measurement system performance specifications for the calibration drift checks, system calibration bias checks, and calibration error checks.

EPA Method 5 analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met, except if noted in Section 5.2. An EPA Method 5 reagent blank was analyzed. The maximum allowable amount that can be subtracted is 0.001% of the weight of the acetone used. The blank did not exceed the maximum residue allowed.

EPA Method 202 analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met. An EPA Method 202 Field Train Recovery Blank (FTRB) was performed for each source category. The maximum allowable amount that can be subtracted is 0.002 g (2.0 mg). For this project, the FTRB had a mass of 5.37 mg, and 2.00 mg was subtracted.

# 5.2 QA/QC Discussion

All QA/QC criteria were met during this test program.

# 5.3 Quality Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is included in the report appendices. The content of this report is modeled after the EPA Emission Measurement Center Guideline Document (GD-043).

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report



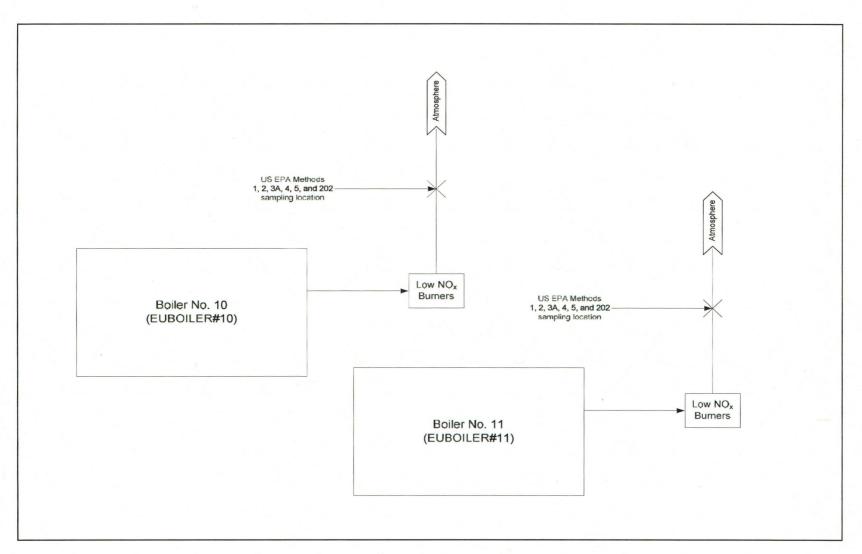
# Appendix A Field Data and Calculations

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

18 of 195

MW049AS-021512-RT-1102

7, J




# Appendix A.1 Sampling Locations

Graphic Packaging International, LLC 2022 Compliance Emissions Test Report

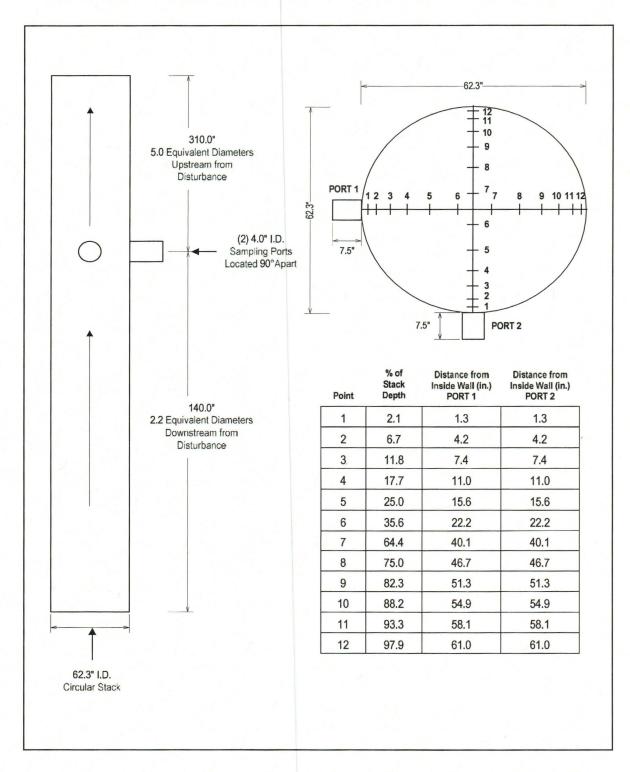
19 of 195

Graphic Packaging International, LLC 2022 Compliance Source Test Report



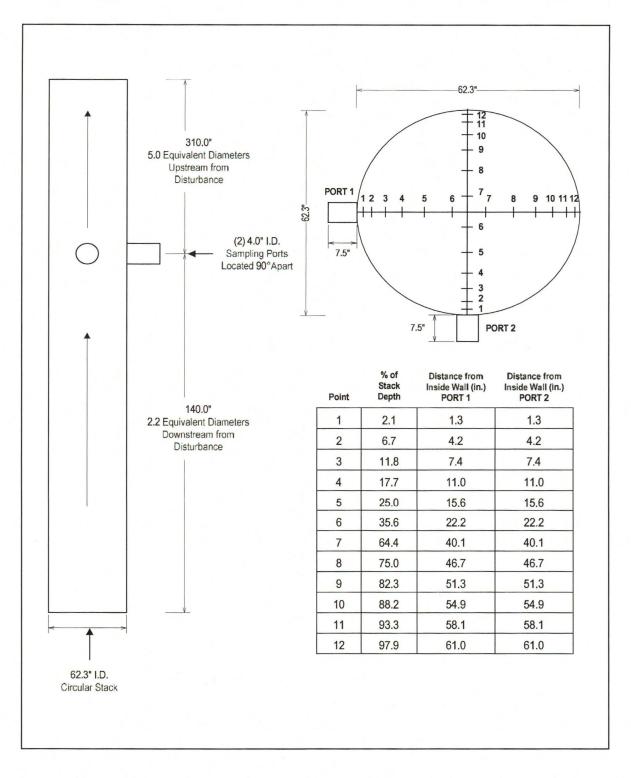
#### EUBOILER#10 AND EUBOILER#11 SAMPLING LOCATION SCHEMATIC




MW049AS-021512-RT-1102

58

,A


Graphic Packaging International, LLC 2022 Compliance Source Test Report

14



#### EUBOILER#10 EXHAUST ISOKINETIC TRAVERSE POINT LOCATION DRAWING





#### EUBOILER#11 EXHAUST ISOKINETIC TRAVERSE POINT LOCATION DRAWING

