RECEIVED

MAR 2 2 2016

AIR QUALITY DIVISION

Sulfuric Acid Mist Test Method Evaluation on the Trimer Control System

B1877

at Guardian Industries Corp. 14600 Romine Rd Carleton, MI 48117

Test Dates: February 17 & 18, 2016

Project 16-214

Prepared by: Empire Stack Testing, LLC. (AETB) 1090 Cain Road Angola, New York 14006

MICHAEL T. KARTER RM

Michael T. Karter, QSTI (V) General Manager March 18, 2016

C:\Empire Stack Testing\PROJECT\2016\16-214 Guardian Carleton\report\rev4.doc

TABLE OF CONTENTS

 FACILITY INFORMATION & STATEMENT OF CERTIFICATION	
 3.1 Introduction 3.2 Test Program Objective 3.3 Test Personnel 3.4 Test Plan 	5 5 5
 3.1 Introduction 3.2 Test Program Objective 3.3 Test Personnel 3.4 Test Plan 	5 5 5
3.4 Test Plan	
	5
3.5 Test Schedule	6
3.6 Process Description	6
3.7 Plant data	6
4. PRESENTATION OF RESULTS / EXECUTIVE SUMMARY	7
 4.1 Discussion of Results	7 7 8
5. SAMPLING AND ANALYTICAL PROCEDURES	9
 5.1 Reference Method Test Location 5.2 Sampling Point Location 5.4 Volumetric Flow 	
5.2.1 VOIUMELTIC FROW	9 ۱۵
5.3.1 Cyclonic Flow Check	
 5.4 Oxygen & Carbon Dioxide Concentration (RM 3). 5.5 Moisture Determination (RM 4). 5.6 Sulfaria Acid (CTM 012). 	
5.6.1 Background	
5.6.4 Sample Purge 5.6.4 Sample Recovery 5.6.5 Analysis	
5.7 Sulfuric Acid (CTM-013B) 5.7.1 Background 5.7.2 Sampling	
5.7.3 Sample Purge 5.7.4 Sample Recovery 5.7.5 Analysis	
6. OUALITY ASSURANCE AND QUALITY CONTROL (04/00)	
 6.1 Chain of Custody 6.2 Equipment and Sampling Preparation 6.3 Calibrations 	

6.3.	1 Pitot Calibration	
6.3.2	2 Thermocouple Display Calibration	
6,3.	3 Thermocouple Calibration	
6.3.4	4 Barometer Calibration	
6.4	Leak Checks	
6.4.	1 Sample Trains (CTM013)	
6.4.2	2 Sample Trains (CTM013B)	
6,4.3	3 Pitot Leak Check	
6.5	Sample Recovery	
6.6	Data Reduction	
6.7	Sample Recovery	
6.8	Data Reduction	
6.9	Safety	

LIST OF TABLES

Table 1-1:	Results Summary	1
Table 1-2:	Production Data Summary	2
Table 1-3:	Summary of Analytical QA/QC Results	3
Table 3-1:	Summary of Test Plan	6

LIST OF FIGURES

Test Port Location (Inlet)	15
Test Port Location (Outlet)	16
Test Port Location (Outlet Ground Site)	17
Sampling Point Locations (Inlet)	18
Sampling Point Locations (Outlet)	19
Sampling Point Locations (Outlet Ground Site)	20
CTM 013 Sampling Train	21
CTM 013B Sampling Train	22
	Test Port Location (Inlet) Test Port Location (Outlet) Test Port Location (Outlet Ground Site) Sampling Point Locations (Inlet) Sampling Point Locations (Outlet) Sampling Point Locations (Outlet Ground Site) CTM 013 Sampling Train CTM 013B Sampling Train

LIST OF APPENDICES

- CTM DATA & CALCULATIONS (CTM 13B-Inlet) Α.
- Β.
- CTM DATA & CALCULATIONS (CTM 13B- Outlet) CTM DATA & CALCULATIONS (CTM 13-Outlet Ground Site) C.
- PLANT/PRODUCTION DATA D.
- LABORATORY DATA (CTM 13B & CTM 13) Ε.
- LABORATORY DATA (Audit Samples) F.
- CERTIFICATION SHEETS G.
- HAND CALCULATIONS Η.

.

Guardian Industries Corp. on the Trimer Control System

1. TEST RESULTS SUMMARY (TRS)

RECEIVED

MAR 2 2 2016

Table 1-:	1: Results	; Summar ∳ IR	QUALITY DIV.
-----------	------------	----------------------	--------------

			Stack Parameters					
			O ₂	O ₂ CO ₂ Moisture Temperature How Rate				
Site	Date	Run	(%)	(%)	(%)	(F)	(ACFM)	(DSCFM)
<u>p</u>	2/17/2016	1 (2)	8.0	6.0	7.70	1026	140950	45323
토 글	2/18/2016	2 (5)	9.0	7.0	9.9	1022	137753	43891
ř f	2/18/2016	3 (8)	10.0	7.0	11.6	1013	139374	43983
		Average	9.0	6.7	9.73	1020	139359	44399
<u></u>	2/17/2016	1(3)	13.0	5.5	11.6	635	147978	61942
- 13 det	2/18/2016	2 (6)	12.5	5.5	8.9	631	153826	67400
N 0	2/18/2016	3 (9)	12.0	6,5	8.7	629	148099	65365
<u> </u>		Average	12.5	5.8	9.73	632	149968	64902
						·····		· · · · · · · · · · · · · · · · · · ·

	· · · · · · · · · · · · · · · · · · ·		Emissions					
			H2SO4				S02	
Site	Date	Run	(lbs/ton glass)	(lbs/hr)	(ppmvd)	(lbs/ton glass)	(lbs/hr)	(ppmvd)
ι Ω	2/17/2016	1 (2)	0.135	2.39	3.45	3.227	57.28	126.77
let 13	2/18/2016	2 (5)	0.421	7.47	11.15	3.851	68.36	156.23
	2/18/2016	3 (8)	0.216	3.83	5.70	4.457	79.12	180.46
0		Average	0.257	4.56	6.77	3.845	68.25	154.49
â	2/17/2016	1 (3)	0.118	2.08	2.20	0.325	5.73	9.28
uet a	2/18/2016	2 (6)	0.058	1.03	1.00	0.204	3.60	5.36
E O	2/18/2016	3 (9)	0.054	0.96	0,96	0.250	4.40	6.75
<u> </u>		Average	0.0770	1.36	1.39	0.2597	4.58	7.13
Contr	ol Efficiency (%) lbs/hr	7(0.3%			93.3%	
M	2/17/2016	1 (1)	0.070	1.23	1.30	0.402	7.09	11.48
le o	2/18/2016	2 (4)	0.040	0.71	0.69	0.236	4.16	6.19
E O	2/18/2016	3 (7)	0.044	0.78	0.78	0.307	5.41	8.29
		Average	0.051	0.91	0.92	0.315	5.55	8.65
	Permit Limit		n/a	1,6	n/a	1.2	n/a	n/a

4 4 9 V

Table 1-2: Production Data Summary

7			1.1.1
	1	÷.,	Mr. Sec. 2

Production Data Summary						
Production Rate Pressure Drop						
Date	Run	Tons/Day	Tons/hr	in. WC		
2/17/2016	1	426	17.75	13.2		
2/18/2016	2	423	17.625	13.2		
2/18/2016	3	423	17.625	13.2		

Guardian Industries Corp. on the Trimer Control System

Table 1-3:	Summary	of	Analytical	QA/QC	Results
------------	---------	----	------------	-------	---------

Test Method	Parameter	QA/QC Criteria	Ground Site QA/QC Status	Outlet Site QA/QC Status	Inlet Site QA/QC Status	Within QC Criteria?
RM 2	Pitot Leak Check	Δ 0.0" H_2O / 15 seconds		0.0 @ 5.0" (max)	0.0 @ 4.4" (max)	Yes
	Sample Train Leak Check (post test)	<0.02 cfm	0.002 cfm @ 7.0" H ₂ O (max)			Yes
CTM013	Probe Temperature	> 350 °F	375°F (avg.)			Yes
	Thimble Temperature	> 500 °F	526°F (avg.)			Yes
	Sample Train Leak Check (post test)	<0.02 cfm		0.017 cfm @ 17.0`` H ₂ O (max)	0.013 cfm @ 13.0" H ₂ O (max)	Yes
CTM12D	Probe Temperature	> 400 °F		473°F (avg.)	467°F (avg.)	Yes
CIMI3B	Thimble Temperature	> 500 °F		501°F (avg.)	502°F (avg.)	Yes
	Isokinetics	90 – 110 %		91 – 105 %	93 – 100 %	Yes

2. FACILITY INFORMATION & STATEMENT OF CERTIFICATION

Facility Information

Name of Source Operator: Guardian Industries Corp.

Name of Source Owner: Guardian Industries Corp.

ARECENVED MAR DUMIN DI Address of Owner: 14600 Romine Road, Carleton, MI 4811 7

Source Identification: Glass Manufacturing

Location of Source: 14600 Romine Road, Carleton, MI 4811 7

Owners Representative: Michael Smolenski

STATEMENT OF CERTIFICATION

I certify that "to the best of my knowledge" the state and federal regulations, operating permits, or plan approvals applicable to this source and/or control device to be tested have been reviewed and that all testing requirements therein have been incorporated into the test plan.

EHS

3/12 Date Source owner/operator

10 jec C

3-18-16 Date On-site supervisor for the test team

3. INTRODUCTION

3.1 Introduction

Guardian Industries Corp. (Guardian) has contracted Empire Stack Testing, LLC. (Empire) to perform Sulfuric Acid (H_2SO_4) testing services on their glass furnace in Carleton, Michigan. Testing used CTM-13B at both the inlet and outlet of the Trimer control system, with simultaneous testing via CTM-13 at the outlet. The impinger solutions were also analyzed for SO₂.

Section 5 of this report contains the sampling and analytical procedures used to perform the test program. Section 6 details the quality assurance/quality control (QA/QC) procedures for the test program.

3.2 **Test Program Objective**

The objective of this test program was to quantify the H_2SO_4 emissions of the parameters listed in Table 3-1 from the inlet and outlet of the Trimer control system. All testing followed applicable methodologies of the Environmental Protection Agency (EPA), and as defined in Table 3-1.

3.3 Test Personnel

Coordinating the test program were:

Michael Smolenski Guardian Industries Corp. (734)-654-4283

Michael T. Karter, QSTI Empire Stack Testing, LLC. (716)-481-6749

Mike Challis, CET, B.Sc., C. Chem Maxxam Analytics International (905)- 817-5790, ext. 5790

3.4 Test Plan

Testing for all parameters was completed in triplicate following Reference Methods (RMs). The test program incorporates reference methods outlined in the United States Environmental Protection Agency (USEPA) Code of Federal Regulations Title 40, Part 60 (40CFR60), Appendix A. See Table 3-1 below.

PARAMETER	METHOD	ANALYSIS	SAMPLE DURATION (MINUTES)	TEST LOCATION(S)			
Flow Rate	RM 1 & 2	S-Type Pitot Tube / Manometer	various	Inlet & Outlet			
Dry Molecular Weight	RM 3	O ₂ and CO ₂ Fyrites	various	Inlet & Outlet			
Moisture	RM 4	Gravimetric	72	Inlet & Outlet			
H2SO4 & SO2	CTM 013	Ion Chromatography	72 ⁽²⁾	Outlet			
H2SO4 & SO2	CTM 013B	Ion Chromatography	72	Inlet ⁽¹⁾ & Outlet ⁽³⁾			

Table 3-1: Summary of Test Plan

NOTES:

(1)	The inlet site has a single test port, therefore a non-isokinetic sample was collected at a single traverse point.
	Emission rates were calculated using the flow rate measured at the outlet site.

- (2) NOTE: The sample time and rate have been changed from 30 minutes at 10 lpm to allow direct comparison to the CTM 013B samples.
- (3) Due to limited access through ports at the outlet stack, CTM 013 for the outlet was sampled through a port in the horizontal ductwork directly upstream of the base of the stack.

CTM: Conditional Test Method

H₂SO₄: Sulfuric Acid

RM: United States Environmental Protection Agency Reference Method

3.5 Test Schedule

Day 1 (February 16, 2016): Mobilize to Guardian Day 2 (February 17, 2016): Complete setup & complete 1 test run Day 3 (February 17 & 18, 2016): Complete 2 test runs

Day 4 (February 19, 2016): Demobilize from site

3.6 **Process Description**

Flat glass manufacturing Line #2 consisting of a raw material melting Furnace, glass forming and finishing, and glass cutting. Line #2 produces flat glass using the float method. Materials are weighed and mixed with water in the batch-house before entering the natural gas fired Furnace. Glass then enters the tin bath to be formed and drawn. Next, it enters a lehr to reduce its temperature. The emission unit is controlled by a new (Trimer ECS) Control Device consisting of a Dry Scrubber, Particulate Filter, and Selective Catalytic Reduction (SCR).

3.7 Plant data

The plant's SCADA system continuously records the operating data to be included in the test report. The plant provided plant operation and summarized pertinent operating data to represent plant operation. These data and summaries were provided electronically (MS Excel).

4. PRESENTATION OF RESULTS / EXECUTIVE SUMMARY

This Executive Summary discusses, in detail, the test results and any anomalies, their resolution, and any effect on the results quality or usability.

4.1 Discussion of Results

Testing was completed on February 17-18, 2016 for H_2SO_4 and SO_2 . During this test program, the facility operated at a production rate of 426 tpd (17.75 tph) for run 1 and 423 tpd (17.625 tph) for runs 2 and 3.

The test results illustrate the furnace's SO_2 and H_2SO_4 emissions were less than (compliant with) the established permit limits. All field and lab data are included in the appendices of this report.

4.1.1 Isokinetics

Each CTM 13B sample run for H_2SO_4 met the isokinetic limit of 100 % \pm 10%. These and other QAQC criteria are summarized in Table 1-3.

4.1.2 H₂SO₄ Test Result (CTM 13B)

The average emission rate of sulfuric acid was 1.36 lbs/hr and 0.0770 lbs/ton of glass. The unit demonstrated compliance with the emission limit of 1.6 lbs/hr. The sulfuric acid control equipment yielded a control efficiency (CE) of 70.3%. See Table 1-1.

4.1.3 SO₂ Test Results (CTM 13B)

The sulfur dioxide emission rate was quantified as 4.58 lbs/hr and/or 0.2597 lbs/ton of glass. The unit demonstrated compliance with the emission limit of 1.2 lbs/ton. The sulfur dioxide control equipment yielded a control efficiency (CE) of 93.3%. See Table 1-1.

4.1.4 H₂SO₄ Test Result (CTM 13)

The average emission rate of sulfuric acid was 0.91 lbs/hr and 0.051 lbs/ton of glass. The unit demonstrated compliance with the emission limit of 1.6 lbs/hr. See Table 1-1.

4.1.5 SO₂ Test Results (CTM 13)

The sulfur dioxide emission rate was quantified as 5.55 lbs/hr and/or 0.315 lbs/ton of glass. The unit demonstrated compliance with the emission limit of 1.2 lbs/ton. See Table 1-1.

7

4.2 Anomalies

A 15-minute purge was not performed at the CTM 13 outlet ground site after the first run on 2/17/2016.

No other anomalies were recorded during testing nor report production.

5. SAMPLING AND ANALYTICAL PROCEDURES

This section provides a brief overview of the specific test methods that were used to determine the Sulfuric Acid emissions from each the glass furnace. All test method procedures were performed in accordance with the USEPA Reference Methods given in 40CFR60, Appendix A. The details of each method are given in the following sections.

5.1 Reference Method Test Location

The emission point exhausts the gases from the furnace that produces float glass. Emissions are discharged to atmosphere after passing through the Trimer control system. The inlet test location is horizontal duct with an internal diameter (ID) of 6'-3". The vertical exhaust stack has an ID of 6'-6.5".

The inlet duct is fixed with a single 6-inch diameter port. The test ports are located approximately 5 equivalent diameters downstream of a disturbance and 1 equivalent diameters upstream of another disturbance. See Figure 5-1.

The exhaust stack is fixed with two 10-inch diameter ports. The test ports are located approximately 13 equivalent diameters downstream of a disturbance and 2.3 equivalent diameters upstream of another disturbance. See Figure 5-2.

The ground site of the exhaust stack is fixed with two 6-inch diameter ports. The test ports are located approximately 8 equivalent diameters downstream of a disturbance and 1 equivalent diameter upstream of another disturbance. See Figure 5-3.

5.2 Sampling Point Location

5.2.1 Volumetric Flow

Representative measurement of pollutant emissions and total volumetric flow rate from a stationary source requires a measurement site where the effluent stream is flowing in a known direction and cyclonic flow is not present. See section 3.3.1, below.

According to Reference Method 1, the cross section of the stack is divided into equal areas and a traverse point is then located within each of these areas. The number of duct diameters upstream and downstream from the test location to a flow disturbance determines the number of traverse points in a cross section.

As these stacks have diameters >24 inches the outermost traverse points were at least 1 inch from the stack walls.

Sampling was performed at 12 traverse points per traverse for a total of 24 sampling points, as set forth by RM 1. See Figures 5-4, 5-5, and 5-6.

5.3 Stack Gas Velocity and Volumetric Flow Rate

According to Reference Method 2, the gas velocity in a stack was determined from the average velocity head with a type S Pitot tube, gas density, stack temperature, and stack pressure.

The average velocity head was determined by using an inclined manometer and a type S Pitot tube with a known coefficient of 0.84 that is determined geometrically by standards set forth in Reference Method 2. Stack temperature was taken at each traverse point using a type K thermocouple. Static pressure was determined by using a straight tap and an inclined manometer.

5.3.1 Cyclonic Flow Check

The initial velocity traverse and cyclonic flow check were performed prior to beginning the first test run. These data were used to determine the appropriateness of the sample site and determine sampling rates and dwell times. These data were included in the test report. Source modification, alternative sampling procedures or selection of a more suitable location is required when cyclonic flow patterns exist with an average rotation angle (α) greater than 20°. Four possible alternatives available for conducting isokinetic particulate emission testing or flow determinations when cyclonic or nonparallel flow patterns exist are:

- Find another more suitable location.
- Modify the source to permit standard sampling procedures to be used. This can be done by installing flow-straightening vanes or longer stack extensions tangential to the stack axis upstream of the sampling location.
- Apply the modified sampling procedures of alignment approach or time-weighted alignment method to obtain accurate results. (See 40CFR60, Appendix A, RM 1, Section 11.5)
- Use standard or alternative methodology that gives results biased high (in the agency's favor).

5.4 Oxygen & Carbon Dioxide Concentration (RM 3)

The Oxygen and Carbon Dioxide concentrations used in the calculation of the stack gases molecular weight were measured according to RM-3 with grab samples and Fyrite gas analyzers.

5.5 Moisture Determination (RM 4)

The determination of effluent moisture was performed as part of the wet-chemistry sampling, as detailed below in CTM013 and CTM013B.

5.6 Sulfuric Acid (CTM-013)

5.6.1 Background

This method was developed as an alternative to EPA Method 8 for determining sulfuric acid emissions from Kraft recovery furnaces. When testing recovery furnaces, EPA Method 8 is subject to significant interference from sulfates, which are present in the particulate matter, and sulfur dioxide. The alternative method uses a quartz in-line filter to remove particulate matter from the gas stream prior to capturing sulfuric acid. The use of a controlled condensation technique eliminates the potential for interference from sulfur dioxide.

A gas sample is extracted from the sampling point in the recovery furnace stack. The sulfuric acid vapor or mist (including sulfur trioxide) and the sulfur dioxide are separated, and both fractions are measured separately by either the barium-thorin titration method or Ion Chromatography (IC).

5.6.2 Sampling

The sampling train consists of a glass nozzle and heated glass probe, which were maintained at the temperature of >177°C (350°F). The probe was then connected to the filter holder housed in an oven box that was also maintained at the temperature of >500 °F. The filter holder was constructed of quartz with a quartz thimble filter.

Sampling was performed for a minimum of 72 minutes at a constant rate $(\pm 10\%)$ of ~5.0 lpm (~2 cfm). *NOTE: The sample time and rate have been changed from 30 minutes at 10 lpm to allow direct comparison to the CTM 013B samples.*

A condenser connects the thimble to the train. The condenser was filled with water and its temperature was maintained between 75 and 85°C (167 to 185°F). The condenser was followed by two Greenburg-Smith impingers and then a modified Greenburg-Smith impinger. The first two impingers contained 100 ml of 3% hydrogen peroxide (H_2O_2). The third impinger contained 100 ml of distilled deionized water (RODI). The fourth impinger contained approximately 500 g of silica gel desiccant.

A vacuum line connects the outlet of the last impinger to the control module. The control module consists of a vacuum gauge, rotary pump, by-pass and main valve, dry gas meter, orifice, and an inclined manometer. The sample train is illustrated in Figure 5-7.

11

Coinciding with the sampling were velocity, moisture, and dry molecular weight determinations.

5.6.3 Sample Purge

At the completion of the test run, the probe was separated from the thimble, and a 15minute purge with clean air was performed as required by the method at the same rate at the test run.

5.6.4 Sample Recovery

Recovery was performed onsite in Empire's mobile laboratory at the completion of each test run.

Container 1

Rinse separately the probe, quartz thimble holder and the H_2SO_4 condenser with deionized water using multiple rinse. After completing the rinses, the lid on the sample container was tightened and the height of the fluid level marked. The filter was discarded.

Container 2:

The liquid from the first two impingers was quantitatively transferred into a clean sample bottle (glass or plastic).

Container 3

The water from the third impinger was weighed in the field, and then discarded.

Blank H₂O₂

Take ~ 100 ml of H₂O₂ and place it in a recovery bottle. The liquid level on the bottle was marked.

5.6.5 Analysis

The samples were shipped to Maxxam Analytics International of Mississauga, Ontario, Canada for analysis for either IC or titration. The impinger solutions will also be analyzed for SO₂.

5.7 Sulfuric Acid (CTM-013B)

5.7.1 Background

Sulfuric acid emissions from combustion sources have traditionally been measured using EPA Method 8. EPA Method 8 adopts the principle of selective solvent absorption (SSA)

and captures sulfur trioxide/sulfuric acid (SO₃/H₂SO₄) in 80% isopropyl alcohol (IPA) and SO2 in 3% hydrogen peroxide. However, this method was originally promulgated for determining SO₃/H₂SO₄ emissions from stationary sources in the absence of other particulate matter. The drawback of this method is the absence of a filter to effectively remove particulates before the capture of SO₃/H₂SO₄ in IPA. For instance, particulate matter in flue gases from combination boilers, recovery furnaces, and thermal oxidizers would be captured in the IPA along with SO₃/H₂SO₄, contribute SO₄ 2- ions, and cause positive biases in the sulfate measurements. NCASI Method 8A was developed as an alternative to EPA Method 8 and uses a heated quartz filter for capturing particulates, thereby eliminating the potential for interference from particulate sulfate. The guartz filter is maintained at temperatures > 500°F, thereby allowing the gaseous SO3/H2SO4 to pass through and be selectively condensed in a temperature controlled condenser. The condenser cools the flue gases below the dew point of SO₃/H2SO₄ but above the dew point of water, thereby eliminating the potential for interference from SO₂. This method was tested extensively on Kraft recovery furnaces and was approved by the EPA for use on recovery furnaces in December 1996 (NCASI 1997).

The measurement method described here was developed and validated as an alternative for determining sulfuric acid emissions from combination boilers and recovery furnaces equipped with dry particulate control devices. The method combines the heated quartz probe/filter portion of NCASI Method 8A along with the impinger train used in EPA Method 8. This allows for the efficient separation of particulates while obviating the need for controlled condensation (CC) which is cumbersome and difficult to implement in the field. Sulfuric acid is not retained on the filter as the filter temperatures are well above the dew point of sulfuric acid. The isokinetic version of the method, summarized in the following sections, can be used to sample combustion sources in pulp mills equipped with wet control devices. Possible interfering agents of this method are fluorides, free ammonia, and dimethyl aniline.

A gas sample is extracted isokinetically from the sampling point on the stack. The particulates are captured on the quartz filter. $SO_3/H2SO_4$ and SO_2 pass through the filter and are captured by the isopropyl alcohol (IPA) and 3% hydrogen peroxide, respectively. The two sulfate fractions are quantified separately using either suppressed Ion Chromatography (IC) or the barium-thorin titration method.

5.7.2 Sampling

The sampling train consisted of a glass nozzle and heated glass probe, which were maintained at the temperature of >400°F. The probe was then connected to the filter holder housed in an oven box that was also maintained at the temperature of >500 °F. The filter holder was constructed of quartz with a quartz thimble filter. This allows sulfur trioxide (SO₃) and sulfuric acid vapor to pass through the filter without being captured.

An isokinetic sample was collected at a rate of approximately 0.7 cubic feet per minute (cfm) for 72 minutes. Five Greenburg-Smith impingers similar to those used in EPA Method 8 are used. The first two impingers hold 100 ml each of 100% Isopropyl Alcohol (IPA). The third and fourth impingers hold 100 ml each of 3% hydrogen peroxide (H₂O₂). The fifth impinger holds silica-gel. The first and third impingers must have standard tips. The second and fourth impingers must be modified by replacing the insert with an approximately 13-mm ($\frac{1}{2}$ -in.) ID glass tube, having an unconstricted tip located 13 mm ($\frac{1}{2}$ in.) from the bottom of the impinger. The unheated filter/filter holder (Borosilicate glass with glass frit filter support and a silicone rubber gasket) is placed between the second and third impingers (between IPA and peroxide).

A vacuum line connected the outlet of the last impinger to the control module. The control module consisted of a vacuum gauge, rotary pump, by-pass and main valve, dry gas meter, orifice, and an inclined manometer. The sample train is illustrated in Figure 5-8.

Coinciding with the sampling were velocity, moisture, and dry molecular weight determinations.

5.7.3 Sample Purge

At the completion of the test run, the probe was separated from the thimble, and a 15minute purge with clean air was performed as required by the method at a rate of approximately 0.75 cfm.

5.7.4 Sample Recovery

Recovery was performed onsite in Empire's mobile laboratory at the completion of each test run.

Container 1

The contents of the first and second impingers were measured for water gain and transferred to a leak-free glass storage bottle. The IPA rinse (~100 mL divided amongst three rinses) of the impingers, connecting glassware, and front-half of the filter holder was added to the container such that the final volume was ~350 ml. The unheated filter was added into this container.

Container 2

The contents of the third and fourth impingers were measured for water gain and transferred to a leak-free glass storage bottle. The RODI rinse (~100 mL divided amongst three rinses) of the impingers and connecting glassware was added to the container. *NOTE: This step deviates from CTM013B for the purpose of analyzing these impingers' contents for SO*₂.

Guardian	Industries	Corp.
on the Trir	ner Control	System

Blank-IPA

100 ml of the IPA absorbing solution was placed in a leak-free glass storage bottle.

5.7.5 Analysis

The samples were shipped to Maxxam Analytics International of Mississauga, Ontario, Canada for analysis for either IC or titration. The impinger solutions will also be analyzed for SO₂.

Figure 5-1: Test Port Location (Inlet)

Figure 5-4: Sampling Point Locations (Inlet)

Note: Only a single port is present

Traverse Point Number	<u>Distance from Port Edge (inches)</u>
Centroid:	27.4 - 45.6"
Internal Dimensions:	73 X 73″
Port Length:	7″

		2 (course)
	××	
	×	\
	×	\backslash
	~	
		\backslash
		\backslash
/		
12 10 9	6	4 2
$\begin{array}{ccc} \times \times \times \times \times \times \\ 11 & 9 & 7 \end{array}$	×	$\begin{array}{c} \times \times \times \times \times \\ 5 & 3 & 1 \end{array}$
		/
\backslash		/
\sim		
\backslash	×	
	×	
	××	
	××××	
	Distance from	Distance from
	Inner Wall	Port Edge
Traverse Point Num	<u>ber (%)</u>	<u></u>
(inches)		
N		
1	2.1	11.6
1 2	2.1 6.7	11.6 15.3
1 2 3	2.1 6.7 11.8	11.6 15.3 19.3
1 2 3 4	2.1 6.7 11.8 17.7	11.6 15.3 19.3 23.9
1 2 3 4 5	2.1 6.7 11.8 17.7 25.0	11.6 15.3 19.3 23.9 29.6
1 2 3 4 5 6	2.1 6.7 11.8 17.7 25.0 35.6	11.6 15.3 19.3 23.9 29.6 37.9
1 2 3 4 5 6 7	2.1 6.7 11.8 17.7 25.0 35.6 64.4	11.6 15.3 19.3 23.9 29.6 37.9 60.6
1 2 3 4 5 6 7 8	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9
1 2 3 4 5 6 7 8 9	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0 82.3	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9 74.6
1 2 3 4 5 6 7 8 9 10	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0 82.3 88.2	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9 74.6 79.2
1 2 3 4 5 6 7 8 9 10 11	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0 82.3 88.2 93.3	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9 74.6 79.2 83.2
1 2 3 4 5 6 7 8 9 10 11 12	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0 82.3 88.2 93.3 97.9	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9 74.6 79.2 83.2 86.9
1 2 3 4 5 6 7 8 9 10 11 12 Diameter:	2.1 6.7 11.8 17.7 25.0 35.6 64.4 75.0 82.3 88.2 93.3 97.9 78.5″	11.6 15.3 19.3 23.9 29.6 37.9 60.6 68.9 74.6 79.2 83.2 86.9

Traverse Point Number	<u>Distance from Port Edge (inches)</u>
Centroid:	26.8 - 51.7"
Internal Dimensions:	78.5″
Port Length:	6″
	,

Guardian Industries Corp. on the Trimer Control System

Figure 5-7: CTM 013 Sampling Train

6. QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Quality control procedures for all aspects of field sampling, sample preservation and holding time, reagent quality, analytical methods, analyst training and safety, instrument cleaning, calibration, and safety were followed. These procedures were consistent with EPA Guidelines documented in:

EPA 600/9-76-005, Quality assurance Handbook for Air Pollution Measurement Systems, Volume I EPA 454/R-98-004, Quality assurance Handbook for Air Pollution Measurement Systems, Volume II EPA 600/R-94-038c, Quality assurance Handbook for Air Pollution Measurement Systems, Volume III III

6.1 Chain of Custody

Documentation of the Chain-of-Custody of samples and data obtained during the test program is essential for insuring the validity of the test program results. Chain-of-Custody procedures were followed during sampling, sample and data transport, sample preparation and analysis, storage of data, as well as with archived samples and reported results. Empire follows the protocol listed in SW 846, Section 1.3 during field sampling and in-house laboratory analysis.

6.2 Equipment and Sampling Preparation

Sampling equipment was cleaned, checked, and calibrated prior to use in the field. Each parameter's sampling method requires specific cleaning methods of the glassware, train components, and recovery containers. These materials were then sealed prior to shipment to the field.

6.3 Calibrations

6.3.1 Pitot Calibration

Pitot tubes were calibrated according to Reference Method 2, Section 10.1. Pitot tubes were given a baseline coefficient of 0.84 when they meet certain geometrically measured angles and dimensions as set forth in the method.

6.3.2 Thermocouple Display Calibration

Following Method 2, Section 10.3, an NIST Traceable Electronic Thermocouple Calibrator/Simulator (ALTEK) for post-test calibrations is used. If the display being calibrated and the ALTEK were within +/-1°F and/or +/-2% of the reference temperature, the calibration is acceptable, else the display is re-calibrated.

6.3.3 Thermocouple Calibration

According to EMTIC GD-28, a single point (at ambient temperature) check of the thermocouple was made prior to and following each test program. If the thermocouple being calibrated and the certified thermometer were within +/- 2.0 °F of each other, the calibration is acceptable. The thermocouple must also respond appropriately to a change in temperature. Thermocouples that fail either of these criteria were repaired or discarded.

6.3.4 Barometer Calibration

Empire's barometer is compared prior to and following testing with the barometer from the National Weather Service (NWS) located at the Buffalo International Airport. If the barometer disagrees from the Airport's absolute station pressure reading by more than +/- 2.3 millimeters (mm) (0.1 inch) of Hg, the barometer is adjusted. Elevation corrections were performed if the barometer and NWS elevations differ by more than 10 feet (elevation) of each other.

If necessary, readings taken in the field were corrected based on the degree of error between the Empire barometer and the NWS.

Alternatively, during testing, the barometric station pressure can be obtained online from the nearest NOAA or FAA weather station.

6.4 Leak Checks

6.4.1 Sample Trains (CTM013)

A leak-check prior to the sample run is optional; however, a leak-check after the sampling run is mandatory. The leak-check procedure is as follows:

Temporarily attach a suitable (e.g., 0- to 40-cc/min) rotameter (or Gilibrator) to the outlet of the DGM, and place a vacuum gauge at or near the probe inlet. Plug the probe inlet, pull a vacuum of at least 250 mm (10 in.) Hg, and note the flow rate as indicated by the rotameter. A leakage rate not in excess of 2 percent of the average sampling rate is acceptable.

6.4.2 Sample Trains (CTM013B)

Both pre- and post-run leak checks were conducted. A pre-test leak check was performed to verify integrity of the vacuum system. A leak check is mandatory at the conclusion of each isokinetic sampling run. The leak check was conducted in accordance with the procedures outlined in Reference Method 5, Section 8.5.9, except that it was conducted at a vacuum equal to or greater than the maximum value reached during the sampling run. If the leakage rate is found to be no greater than

0.02 cfm, the results were acceptable and no correction was applied to the total volume of dry gas metered.

6.4.3 Pitot Leak Check

The pitot tubes used during the test program were leak checked prior to the test series and following each traverse set, as prescribed in RM 2, Section 8.1. The leak check was performed by pressurizing the positive side of the pitot to at least 3 inches of water. No loss of pressure for 15 seconds indicates a successful leak check. This procedure was repeated with a vacuum applied to the negative side of the Pitot tube as well.

6.5 Sample Recovery

All sample volumes and reagent volumes were measured and recorded on Empire's recovery data sheets and included in the report. All recovery procedures were intended to meet the requirements of the methods.

6.6 Data Reduction

The QA/QC procedures for data reduction include using computer programs to generate tables of results. Results for at least one test run were double-checked and re-calculated by hand. These pages were included in the report.

The data were logged directly to a laptop hard drive, where calculations were performed using MS-Excel spreadsheets. These data were archived nightly to flash media or compact disks (CDs). Copies of these data were available in the field electronically or in print form, upon request.

6.7 Sample Recovery

All sample volumes and reagent volumes were measured and recorded on Empire's recovery data sheets and included in the report. All recovery procedures were intended to meet the requirements of the methods.

6.8 Data Reduction

The QA/QC procedures for data reduction include using computer programs to generate tables of results. Results for at least one test run were double-checked and re-calculated by hand. These pages are included in the report.

The wet-chemistry data were logged directly to a separate laptop hard drive, where calculations were performed using MS-Excel spreadsheets. These data were archived nightly to flash media. Copies of these data were available in the field electronically or in print form, upon request. Paper datasheets will only be used in an emergency.

6.9 Safety

These methods involve hazardous materials, operations, and equipment. Empire established appropriate safety and health practices and determined the applicability of regulatory limitations before performing this test program.

The test site shall meet the criteria of RM 1. Test ports (loosened and cleaned), safe access, and suitable power to be provided by the client. The above items need to be ready upon arrival of the test crew.

Delay or Lost Time (delays) of the field crew due to causes beyond the control of Empire Stack Testing, LLC. (Empire) may include (but were not limited to weather, cyclonic flow conditions, process upsets or failure, or the facility's inability to maintain the desired test conditions). Inclement weather includes (but is not limited to) lightning, strong rains, blizzards, high winds (\geq 30 mph), high humidity, and/or working temperatures below 20 °F or above 90 °F. Empire's field leader retains the right of final refusal to stop testing for any unsafe condition.

A. CTM DATA & CALCULATIONS (CTM 13B-Inlet)

GENERAL TEST INFORMATION

GENERAL TEST	NFORMATION				/****\
Client:	Guardian	Stack Dia. or D _e ., (in.):	73.0	Area of Duct (ft ²):	37.0065
Project No.:	16-214	No. of Ports:	2	Port Location from	
Site:	Trimer Outlet	Points/Port:	12	Upstream Disturbance (D _b):	5.00
Address:	14600 Romine Rd		ļ	Port Location from	
City/State:	Carleton, Mł	Runs/Test:	3	Dnstream Disturbance (D _a):	1.00
Test of:	H2SO4	Specif. Compds.:	n/a	Particulate Matter	
Test Method:	CTM-013B		H2SO4	Gas 1	
			SO2	Gas 2	
			n/a	Gas 3	
Source Type:	Glass Furnace	t _{std} (°F) :	68	Rectangular Ducts	
Control Equip.:	Trimer	T _{std} (°R) :	528	Length (in.):	73.0
Test Location:	Inlet			Width (in.):	73.0

SUMMARY OF STACK PARAMETERS

Test Date	2/17/2016	2/18/2016	2/18/2016	
Run No.	2	5	8	Avg.
t _s - Stack Temperature, °F	1026	1022	1013	1020
P _s - Stack Absolute Pressure, in. Hg.	29.34	29.69	29.79	29.61
V _s - Stack Velocity, ft/sec.	63.48	62.04	62.77	62.76
$\mathbf{Q}_{\mathbf{a}}$ - Volumetric Flow Rate/Actual Conditions, ACFM	140950	137753	139374	139359
Q _s - Volumetric Flow Rate/Dry Standard Conditions, DSCFM	45323	43891	43983	44399
CO ₂ , %	6.0	(7.0)	7.0	6.7
O ₂ , %	8.0	9.0	10.0	9.0
со, %	0.0	0.0	0.0	0.0
N ₂ ,%	86.0	(84.0)	83.0	84.3
M _d - Dry Molecular Weight, Ib/łb-mole	29.28	(29.48)	29.52	29.43
M _s - Wet Molecular Weight, Ib/Ib-mole	28.41	28.34	28.18	28.31
V _{m(std)} - Sample Volume - Dry Standard Conditions, DSCF	62.686	64.442	65.342	64.157
Stack Moisture Content, %	7.7	9.9	11.6	9.73
Isokinetic, %	93.2	98.9	100.1	97.4

EMISSIONS SUMMARY FOR: H2SO4				
C _w - Conc., w/v, Back Half, mg/M ³	14.08	45.48	23,24	27.60
C _v - Conc., v/v, Back Half, ppmvd	3.45	11.15	5.70	6.77
C _{vO2} - Conc., v/v, Back Half Corrected to 7% O ₂ , ppmvd	3.72	13.02	7.27	8.00
P _{mrb} - Pollutant Mass Rate, Back Half, Ibs/hr.	2.39	7.47	3.83	4.56

EMISSIONS SUMMARY FOR: SO2

C _w - Conc., w/v, Back Half, mg/M ³	337.65	416.12	480.65	411.47
C _v - Conc., v/v, Back Half, ppmvd	126.77	156.23	180.46	154.49
C_{vO2} - Conc., v/v, Back Half Corrected to 7% O ₂ , ppmvd	136.60	182.49	230.13	183.07
P _{mrb} - Pollutant Mass Rate, Back Half, Ibs/hr.	57.28	68.36	79.12	68.25

Empire Stack Testing, LLC. SPECIFIC RUN INFORMATION Project: 16-214

Run: 2

Test Date: 2/17/2016

Location: Inlet Test Of: H2SO4 Runs/Test: 3

'sokinetic Sampling - Data Summary

1			Fi	iter I.D. No.:	n/a	Meter	Box I.D. No.:	V2		%CO2	6.0	1
l P	bar, (in, Hg.):	29.45	Thin	ble I.D. No.:	n/a	1	Meter Y:	1.0004		%O ₂ :	8.0	1
Pst	atic (in H ₂ O)	-15	Q	itot I D. No ·	202		AH @	1 005		%00.	0.0	
1.51	200 (00 1020)	0.0740		NOCILO. NO.	272		Zin	1.000		9/ M.	0.0	
	Un :	0.3740	1-000	pie i.u. ivo.:	512		Time/Point:			70192 -	0.0	
	Cp :	0.84	Noz	zle I.D. No.:	GF-3	Tol	tal Time (@):	72			<u> </u>	-
Leak	Meter Pre:		0.013	cfm @	15.0	in. Hg.	Pitot(-):	ok	@	3.3	in. H ₂ O	1
Checks	Meter Post	t:	0.013	cfm @	13.0	in. Hg.	Pitot(+):	ok	@	4.3	in. H ₂ O	
Trvs	 Time	Λp	 Лн	Meter			Temperature	s (°E)			Vac	ᅴ
Pt No	(2442)		(n H O)	Vm(cf)	Stack	Bilator In	Motor Out	Eiltor	Droho	Evit	(in Hall	
F (, NO,	49:20:00	(11. 1120)						riter	PIQUE		<u>(п. ну.)</u>	
1	18:30:00	0.45	3.04	942.900	1003	68	67	501	455	39	4.0	
2	18:35:00	0.45	3.00	945.5	1087	71	67	505	400	36	5.0	
4	18-39-00	0.45	3 39	949.0	911	73	67	500	470	36	9.0	
5	18.42.00	0.44	3.16	952.7	983	76	68	504	470	37	10.0	
ő	18:45:00	0 44	3.13	955 4	999	79	68	503	471	40	10.0	
7	18:48:00	0.44	3.12	958.2	1010	81	69	503	469	43	10.0	
8	18:51:00	0.44	3.11	962.0	1018	83	69	503	469	48	10.0	
9	18:54:00	0.44	3.08	964.0	1035	85	70	502	469	57	10.0	
10	18:57:00	0.44	3,11	966.0	1025	86	71	501	451	58	10.0	
11	19:00:00	0.44	3.16	968,9	1006	88	72	504	451	58	10.0	
12	19:03:00	0.44	3.10	971.8	1038	90	73	501	465	58	9.0	
	19:06:00			974.625								
1	19:48:00	0.44	3.01	974.625	1055	73	72	505	459	31	11.0	
2	19:51:00	0.44	3.00	977.6	1066	76	72	503	476	40	9.0	
3	19:54:00	0.44	2.97	980.2	1085	79	72	501	477	45	10.0	
4	19:57:00	0.44	2.97	983.0	1088	82	72	501	473	51	11.0	
5	20:00:00	0.40	2.93	985.4	971	84	73	500	476	55	11.0	
6	20:03:00	0.40	2.90	988.1	992	87	73	499	466	58	10.0	
7	20:06:00	0.44	3.21	990.8	988	8 9	74	501	464	58	10.0	
8	20:09:00	0.44	3.14	993.7	1022	91	75	500	468	60	10.0	
9	20:12:00	0.44	3.14	996.3	1023	92	75	501	473	61	10.0	
l 10	20:15:00	0.44	3.13	999.1	1033	94	76	499	471	62	10.D	
11	20:18:00	0.44	3.13	1001.8	1034	94	77	500	474	62	10.0	
12	20:21:00	0.44	3.16	1004.4	1021	95	78	502	476	63	11.0	
	20:24:00			1007.162								
		Avg.	Avg.	Sum	Avg.	Ávg.	Avg.	Avg.	Avg.	Avg.	Avg.	
ł		0.44	3.09	64.262	1026.2	82.7	71.5	501.6	467.4	49.6	9.4	4
]		Avg. Sqrt.	_		_		Avg. Tm				Max.	
<u> </u>		0.662	F	'urge 2035-205	0		77.1				11.0	1

ŵ

- 000029

SPECIFIC RUN INFORMATION (contd.)

Project: 16-214 Run: 2

Analytical Information

Moisture Determination - Data Summary

		Imp. 1	imp. 2	Imp. 3	Imp. 4	Silica G	el
Final	(ml)	631.2	664.1	709.6	778.1	(g)	966.2
Initial	(ml)	669,9	681.7	631.6	734.5	(g)	920.2
Gain	(mł)	-38.7	-17.6	78.0	43.6	(g)	46.0
					· · · · · ·	ts	1026
۰						SVP_	29.9200

Blank Corrections

Particulate **Gaseous Pollutants** Back Half Front Half Reagent H2O2 Acetone Water IPA Total Reagent Blank Volume Blank Volume 147.0 (ml) (ml) 211.0 Blank Gross Wt. (g) Analyte H2SO4 (mg) 0.00 0.00 Conc. Tare Wt. Blank SO2 0.00 0.25 per (g) (mg) Blank Wt. Gain 0.00 0.00 Analyte Mass n/a (mg) (g) Blank Conc. (g/mi) Analyte H2SO4 (mg/ml) 0.00E+00 0.00E+00 0.00E+00 SO2 (mg/ml) 0.00E+00 1.18E-03 1.18E-03 Blank Conc. n/a (mg/mł) 0.00E+00 0,00E+00 0.00E+00

Blank Concentration = Blank Mass / Blank Volume

Parti	c	ula	ate	Weight	- Data	Summary	
-							

Front Half		·					Back Half				
		Filter	Thimble	Acetone	Water	Total	Analyte		IPA	H2O2	n/a
	I.D.	n/a	n/a	0	0	Gain	Volume	(ml)	266.0	475.0	0.0
Beaker Vol.		n/a	n/a	0.0	0.0	7		mg	Molec.		mg
Gross Wt.	(g)						1	Collect.	Weight	Blank	Correct,
Tare Wt.	(g)						Analyte	(C)	Mw	Corr.	(Ccorr)
Blank Corr.	(g)						H2SO4	25.00	98.08	0.00	25.00
Gain	(g)						SO2	600.00	64.07	0.56	599.44
					······] n/a	0.00	0.00	0.00	0.00

Blank Correction = Analyte Volume x Total Blank Conc.

Gaseous Pollutants - Data Summary

SPECIFIC RUN INFORMATION (contd.)	Project: 16-214 Run: 2	Test Of: Location:	-l2SO4 nlet	
Reference Method No. 2 Calculations				
Average Stack Velocity	د			
, I I I I I I I I I I I I I I I I I I I	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s =	63.48	ft/sec.
Average Stack Volumetric Flow Rate				
($Q_a = 60 V_s A_s$	Q _a =	140950.4	ACFM
Average Stack Volumetric Flow Rate				
	$Q_{s} = 60 V_{s} A_{s} (1-B_{ws}) ((T_{std} P_{s}) / (P_{std} T_{s}))$	Q _s =	45323.0	DSCFM
Reference Method No. 3 Calculations				
Molecular Weight, Dry				
· · · · ·	$M_d = 0.44 \ \% CO_2 + 0.32 \ \% O_2 + 0.28 \ (\% CO + N_2)$	M _d =	29.28	lb/lb-mole
Molecular Weight, Wet				
-	$M_{s} = M_{d} (1-B_{ws}) + 18 B_{ws}$	Ms=	28.41	lb/lb-mole
Reference Method No. 4 Calculations				
Sample Volume, Standard Conditions				
I I I I I I I I I I I I I I I I I I I	$V_{m(std)} = V_m Y ((T_{std} P_m) / (T_m P_{std}))$	V _{m(std)} =	62.686	DSCF
Water Vapor Volume Collected				4
N	$V_{wc(std)} = .04706 \ (V_f - V_i)$	V _{wc(std)} ≖	3.073	ft"
Water Vapor Volume Collected				ų
N N	$J_{wsg(std)} = .04715 (W_f - W_i)$	V _{wsg(std)} =	2.169	fi '
Moisture Volume Fraction of Stack Gas				
ŧ	$B_{ws} = (V_{wc(std)} + V_{wsg(std)})/(V_{wc(std)} + V_{wsg(std)} + V_{m})$	(std)) B _{ws} =	0.077	
Vapor Pressure of Stack H - O	······································	·····		
1 april 1 addie of classify 2 o	/P=S\/P_000367 /P_\ (1+/ts_32/1571))	\/D=	29.902	
	ar -our -ourdon (r st fri fragen for fi)	0 F	20.002	
Bws VP				
· · · · · · · · · · · · · · · · · · ·	B _{ws} VP=VP / P _s	B _{ws} VP=	1.019	
Min B _{ws} or B _{ws} VP				
i	$f B_{ws} > B_{ws} VP$, then $B_{ws} VP$	/IN B _{ws} or B _{ws} VP=	0.077	

Calculations for:	H2SO4	Reference Method: CTM-013B			
Stack Concentration, w	//v - Back Half				
		$C_w = (C_{cor} 35.31) / V_{m(std)}$	C _w =	14.08	mg / M ³
Stack Concentration, v	/v - Back Half				
		$C_v = C_w$ (24.055 / M _W)	Cv≃	3.45	ppmv
Stack Concentration, v	/v - Back Half Correc	ted to 7% O ₂			
		$C_{vO2} = C_v ((20.9-7) / (20.9-\%O_2))$	C _{v02} =	3,72	рртv @7%O ₂
Mass Emissions Rate	- Back Half				
		$P_{mih} = (C_{cor} DSCFM 60)/(Vm_{istel} 454000)$	P _{mb} ≃	2.39	lbs/hr.

Gas No. 2 Calculations for: SO2 Reference Method: CTM-013B Stack Concentration, w/v - Back Half $C_w = (C_{cor} 35.31) / V_{m(std)}$ C_w= 337.65 mg/M³ Stack Concentration, v/v - Back Half $C_v = C_w$ (24.055 / M_W) 126.77 C_v= ppmv Stack Concentration, v/v - Back Half Corrected to 7% O 2 $C_{vO2} = C_v$ ((20.9-7) / (20.9-%O₂)) 136,60 ppmv C_{vO2}= @7%O2 Mass Emissions Rate - Back Half $P_{mrb} = (C_{cor} DSCFM 60)/(Vm_{(std)} 454000)$ P_{mrb}= 57.28 lbs/hr.

Empire Stack Testing, LLC. SPECIFIC RUN INFORMATION Project: 16-214

Run: 5 Test Date: 2/18/2016

Location: Inlet Test Of: H2SO4 Runs/Test: 3

Isokinetic Sampling - Data Summary

[Fi	lter I.D. No.:	n/a	Meter	Box I.D. No.: N	12		%CO2	7.0	[
P	har (in Ha)	29.80	Thim	hie I.D. No 1	n/a		Meter Y-1	.0004		%O ₂ :	9.0	
	ation (interingup).					1		005		W CO	120	
PSG	atte (in. H ₂ O):	-1.5	P	((01 I.D. NO.:	3P2		ΔH @: 1	.995		%CU.	.0.0	
	Dn :	0.3740	T-Cou	ple I.D. No.:	3T2		Time/Point: 0	03:00		%N2 :	84.0	
	Cp:	0.84	Noz	zle I.D. No.:	GF-3	Tot	tal Time (🙂): 7	2]
Look	Motor Pro-		0.003	cfm @	15.0	in Ha	Ritot():	ok	 @\	33	in H ₂ O	
Lean .	Interest Pres		0.000	ciini @	10.0	нь ну. • • • •	Pitod-j.			4.0		{
Checks	Meter Post	[;	0.002	ctm @	13.0	in. Hg.	Pitot(+):	80	@	4,3	III. Fi ₂ O	4
Trvs.	Time	Δp	<u>Δ</u> Η	Meter			Temperature	s (°F)			Vac.	1
Pt. No.	(24Hr.)	(in. H ₂ O)	(in, H ₂ O)	Vm(cf)	Stack	Meter In	Meter Out	Filter	Probe	Exit	(in. Hg.)	
1	9:05:00	0,40	2.76	8.033	1026	66	65	502	467	27	7.0	
2	9:08:00	0.43	2.91	10.5	1057	67	65	502	476	30	10.0	
3	9:11:00	0.43	2.89	13.1	1071	70	65	502	477	32	12.0	
4	9:14:00	0.43	2,88	15.8	1080	74	66	500	478	35	12.0	
5	9:17:00	0.43	2.87	18.5	1090	76	66	501	475	39	13.0	
6	9:20:00	0.43	3.15	21.0	957	79	67	501	476	46	13.0	
7	9:23:00	0.43	3.12	23.9	978	82	68	502	475	60	12.0	
8	9:26:00	0.43	3.09	26.6	994	84	68	500	475	60	11.0	
9	9:29:00	0.43	3.08	29.8	1004	86	69	501	477	61	10.0	
10	9:32:00	0.43	3.05	32.2	1019	87	70	501	475	58	10.0	
11	9:35:00	0.43	3.05	35.0	1025	89	71	502	471	58	10.0	
12	9:38:00	0.43	3.01	37.6	1043	90	71	504	474	60	10.0	
	9:41:00			40,525								
1	10:30:00	0,44	3.00	40.525	1065	74	72	501	477	42	13.0	
2	10:33:00	0.44	2.97	43.5	1081	75	71	503	466	40	12.0	
3	10:36:00	0.44	2,95	46.0	1091	78	71	506	469	44	12.0	
4	10:39:00	0.44	3.49	48.7	858	81	72	505	477	48	12.0	
5	10:42:00	0.44	3.19	51.3	987	84	72	502	479	49	12.0	
6	10:45:00	0.44	3.18	54.0	994	86	72	507	478	51	12.0	
7	10:48:00	0.40	2.87	56.9	1008	89	73	502	482	53	12.0	
8	10:51:00	0.40	2.87	59.5	1012	90	74	505	481	53	12.0	
9	10:54:00	0.40	2.86	62,2	1021	92	74	501	479	53	12.0	
10	10:57:00	0.40	2.85	65.0	1029	93	75	503	481	53	12.0	
11	11:00:00	0,40	2.91	67,6	999	94	76	501	481	54	12.0	
12	11:03:00	0.40	2.86	70.3	1029	95	77	501	482	55	12.0	
	11:06:00			73.269								
1		Avg.	Avg.	Sum	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Γ
1		0.42	(2.99)	(65.236)	/1021.6	82.5	70.4	502.3	476.2	48.4	11.5	
		Avg. Sqrt.	·		harmonie		Avg. Tm				Max.	
i		(0.651)	Purge	1125-1140 @ 0	.75 ctm		(76.5				13.0	[

SPECIFIC RUN INFORMATION (contd.)

Project: 16-214 Run: 5

Test Of: H2SO4 Location: inlet

Analytical Information

Moisture	Determination	- Data Summary

		Imp. 1	Imp. 2	lmp. 3	Imp. 4	Silica G	el
Final	(m!)	700.6	693.9	772.1	755.1	(g)	930.8
Initial	(mł)	699.1	697.1	702.4	716.1	(g)	888.2
Gain	(mi)	1.5	-3.2	69.7	39.0	(g)	بن 42.6
						ts	1022
						SVP	29.9200

Blank Corrections									
Particulate				Gaseous P	ollutants				
Front Half				Back Half					
Reagent		Acetone	Water		Reagent		IPA	H2O2	Total
Blank Volume	(ml)			Bla	ink Volume	(ml)	147.0	211.0	Blank
Gross Wt.	(g)			Analyte	H2SO4	(mg)	0.00	0.00	Conc.
Tare Wt.	(g)			Blank	SO2	(mg)	0.00	0.25	per
Blank Wt. Gain	(g)	· ·		Mass	n/a	(mg)	0.00	0.00	Analyte
Blank Conc.	(g/mi)			Analyte	H2SO4	(mg/ml)	0.00E+00	0.00E+00	0.00E+00
				Blank	SO2	(mg/mi)	0.00E+00	1.18E-03	1.18E-03
				Conc.	n/a	(mg/mi)	0.00E+00	0.00E+0 <u>0</u>	0.00E+00

Conc. n/a (mg/mi) 0.00E+00 0 Blank Concentration = Blank Mass / Blank Volume

Particulate Weight - Data Summary

Front Half							Back Half					
		Filter	Thimble	Acetone	Water	Total	Analyte		IPA	H2O2	n/a	
	I.D.	n/a	n/a	0	0	Gain	Volume	(ml)	340.0	477.0	0.0	
Beaker Vol.		n/a	n/a	0.0	0.0	7		mg	Molec.		mg	
Gross Wt.	(g)						1	Collect.	Weight	Blank	Correct.	
Tare Wt.	(g)						Analyte	(C)	M	Corr.	(Ccorr)	_
Blank Corr.	(g)						H2SO4	83.00	98.08	0.00	83.00 🖌	
Gain	(g)						SO2	760.00	64.07	0.56	759.44	
							n/a	0.00	0.00	0.00	0.00	

Blank Correction = Analyte Volume x Total Blank Conc.

Gaseous Pollutants - Data Summary

Empire Stack Tes	ting, LLC.	
SPECIFIC RUN INFORMATION (con	ntd.) Project: 16-214 Run: 5	Test Of: H2SO4 Location: Inlet
Reference Method No. 2 Calculations		
Average Stack Velocity		and the second se
-	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s = ^{} / _{62.04} ft/sec.
Average Stack Volumetric Flow Rate		-
-	$Q_a = 60 V_s A_s$	Q _a = *(137753.0)ACFM
Average Stack Volumetric Flow Rate		-
÷	$Q_s = 60 V_s A_s (1-B_{ws}) ((T_{std} P_s) / (P_{std} T_s))$	Q _s = 1/43890.8 DSCFM
		<u></u>
Reference Method No. 3 Calculations		
Molecular Weight, Dry		
	$M_{d} = 0.44 \ \% CO_2 + 0.32 \ \% O_2 + 0.28 \ (\% CO + N_2)$	M _d = √(29.48) lb/lb-mole
Molecular Weight, Wet	M 2 2	/
U	$M_{s} = M_{d} (1-B_{ws}) + 18 B_{ws}$	M _s = (28.34) ¥ lb/lb-mole
		,
Reference Method No. 4 Calculations		
Sample Volume, Standard Conditions	and the construction and the second of the construction of the second second second second second second second	
	$V_{m(std)} = V_m Y ((T_{std} P_m) / (T_m P_{std}))$	V _{m(std)} = V 64.442 DSCF
Water Vapor Volume Collected		· · · · · · · · · · · · · · · · · · ·
	$V_{wc(std)} = .04706 (V_f - V_i)$	$V_{we(std)} = \sqrt{5.035}$ ft ³
Water Vapor Volume Collected		/
	$V_{wentstell} = .04715 (W_f - W_i)$	$V_{wsafstd} = v^2 2.009 n^3$
Malatura Valuma Ernotion of Stock Con		
Wolsture Volume Fraction or Stack Gas	D = 0 (1) (0) (1) (1) (1)	D - 0.000
	$B_{ws} = \{V_{wc}(std) + V_{wsg}(std)\}/(V_{wc}(std) + V_{wsg}(std) + V_{m}(std))$	B ^{W2} = 0.099 A
Vapor Pressure of Stack H ₂ O		
	10-CND 000267 /D) /4+/4~ 20/4E74))	VD= 20.002

Vapor Pressure of Stack H ₂ O			
	VP=SVP000367 (Ps) (1+(ts-32/1571))	VP= 29.902	
Bws VP			
	B _{ws} VP=VP / P _s	B _{ws} VP= 1.007	
Min B _{ws} or B _{ws} VP			
	If $B_{ws} > B_{ws}VP$, then $B_{ws}VP$	MIN B_{ws} or $B_{ws}VP = (0.099 V)$	

Gas No. 1				
Calculations for:	H2SO4	Reference Method: CTM-013B		
Stack Concentration, w	/v - Back Half		1	
		$C_{w} = (C_{cor} 35.31) / V_{m(std)}$	C _w = √ 45.48	mg / M ³
Stack Concentration, v	'v - Back Half		i	
		$C_v = C_w$ (24.055 / M _W)	C_v= № ² 11.15	ppmv
Stack Concentration, v/	v - Back Half Correct	ted to 7% O ₂		
		$C_{vO2} = C_v$ ((20.9-7) / (20.9-%O ₂))	C _{vO2} = 13.02	ppmv @7%O ₂
Mass Emissions Rate -	Back Half			- •
[P _{imrb} = (C _{cor} DSCFM 60)/(Vm _(sld) 454000)	P _{mrb} = 7.47	lbs/hr.

Gas No. 2

Calculations for:	SO2	Reference Method: CTM-013B		
Stack Concentration, w	//v - Back Half	•	and the second	
		$C_w = (C_{cor} 35.31) / V_{m(std)}$	C _w = √416.12	mg / M ³
Stack Concentration, v	/v - Back Half		į	
		$C_v = C_w$ (24.055 / M _w)	C _v = √ 156.23	ppmv
Stack Concentration, v	/v - Back Half Correc	ted to 7% O ₂		
		$C_{vO2} = C_v$ ((20.9-7) / (20.9-%O ₂))	C _{vO2} = 182.49	рртv @7%O ₂
Mass Emissions Rate	- Back Half		(
		$P_{mrb} = (C_{cor} DSCFM 60)/(Vm_{(std)} 454000)$	P _{mrb} = √ 68.36	lbs/hr.

.- 000034

.

ł

Empire Stack Testing, LLC. SPECIFIC RUN INFORMATION Project: 16-214

Run: 8 Test Date: 2/18/2016

Location: Inlet Test Of: H2SO4 Runs/Test: 3

'sokinetic Sampling - Data Summary

1]]	Fi	iter I.D. No.:	n/a	Meter	Box I.D. No.:	N2		%CO2 ;	7.0	
p p	bar. (in. Hq.):	29,90	Thim	ble I.D. No.:	n/a		Meter Y:	1.0004) %O ₂ :	10.0	
Pet	atic (in H ₂ O)	-15	P	itot I D. No :	302		ላዝ መን	1 995		%co.	0.0	
	allo (III 17207.	0.0740	TCau	mound. No.	373		Zin Q.	0.000		0/ NL	0.0	
	Dn :	0.3740	1-000	pie I.D. No.:	312		1 ime/Point:	0:05:00		70112	03,0	
	Cp :	0.84	Noz	zle I.D. No.:	GF-3		al Time (®):	72				
Leak	Meter Pre:		0.004	cím @	15.0	in. Hg.	Pitot(-):	ok	@	4.4	in. H ₂ O	
Checks	Meter Post	t:	0.002	cfm @	17.0	in. Hg.	Pitot(+):	ok	@	4.1	in. H ₂ O	
Trvs.	Time	ΛP		Meter			Temperature	es (°F)			Vac.	
Pt. No.	(24Hr.)	(in. H ₂ O)	{in, H ₂ O}	Vm(cf)	Stack	Meter In	Meter Out	Filter	Probe	Exit	(in. Ha.)	
1	13:00:00	0.42	2.94	87.276	1028	75	74	503	470	45	10.0	
2	13:03:00	0.43	3.01	89.5	1032	77	74	500	479	44	13.0	
3	13:06:00	0.43	2.99	92.2	1046	80	75	500	478	45	14.0	
4	13:09:00	0.43	2,98	94.7	1055	82	75	500	475	45	15.0	
5	13:12:00	0.43	2,96	97.6	1068	84	75	505	469	47	15.0	
6	13:15:00	0.43	2.93	100.6	1084	86	75	503	480	53	15.0	
7	13:18:00	0.43	3,49	103.1	840	87	76	500	476	59	15.0	
8	13:21:00	0.44	3.25	106.0	970	89	76	500	468	60	15.0	
9	13:24:00	0.44	3.22	108.8	990	91	77	503	477	62	15.0	
10	13:27:00	0.44	3.20	111.8	998	92	77	5 01	478	63	15.0	
11	13:30:00	0.43	3.12	114.4	1007	93	78	502	468	63	15.0	
12	13:33:00	0.44	3.19	117.3	1006	94	78	506	479	61	15.0	
	13:36:00			120.301								
1	14:16:00	0.44	3.16	120.301	1002	79	77	504	477	44	15.0	
2	14:19:00	0.44	3.38	122.8	902	79	76	503	480	43	16.0	
3	14:22:00	0.44	3.12	125.8	1021	81	77	508	480	47	16.0	
4	14:25.00	0.44	3.08	128.8	1045	84	77	506	476	55	16.0	
5	14:28:00	0.44	3.07	131.3	1050	86	77	501	478	58	16.0	
6	14:31.00	0.44	3.04	134.4	1068	88	77	502	475	59	17.0	
7	14:34:00	0.44	3.04	137.3	1072	89	78	500	472	59	17.0	
8	14:37:00	0.44	3,02	139.8	1086	90	78	500	473	58	17.0	
9	14:40:00	0.44	3.29	142.5	960	91	79	505	475	56	17.0	
10	14:43:00	0.44	3,24	145.4	982	92	79	504	475	55	17.0	
11	14:46:00	0.44	3.24	148.0	982	92	79	502	475	54	17.0	
12	14:49:00	0.44	3.19	150.9	1009	93	80	501	473	53	17.0	
	14:52:00			153.807								
1		Avg.	Avg.	Sum	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	
1		0.44	3.13	66.531	1012.6	86.4	76.8	502.5	475.3	53.7	15.4	
1		Avg. Sqrt.					Avg. Tm				Max.	
L		0.660	Purge	<u>1511-1526 @ (</u>).75 c <u>ím</u>		81.6				17.0	

SPECIFIC RUN INFORMATION (contd.)

Project: 16-214 Run: 8

Analytical Information

Moisture Determination - Data Summary

		Imp. 1	Imp. 2	Imp. 3	Imp. 4	Silica Ge	el 🛛
Final	(ml)	691.7	682.4	698.6	778.5	(g)	964.5
Initial	(ml)	668.5	679.6	628.1	741.0	(g)	916.4
Gain	(mi)	23.2	2.8	70.5	37.5	(g)	48.1
						ts	1013
						SVP	29,9200

Blank Corrections									
Particulate				Gaseous P	ollutants				
Front Half				Back Half					
Reagent		Acetone	Water		Reagent		IPA	H2O2	Total
Blank Volume	(ml)			Bla	ank Volume	(ml)	147.0	211.0	Blank
Gross Wt.	(g)			Analyte	H2SO4	(mg)	0.00	0.00	Conc.
Tare Wt.	(g)			Blank	SO2	(mg)	0.00	0.25	per
Blank Wt. Gain	(g)			Mass	n/a	(mg)	0.00	0.00	Analyte
Blank Conc.	(g/ml)			Analyte	H2SO4	(mg/ml)	0.00E+00	0.00E+00	0.00E+00
				Blank	SO2	(mg/mi)	0.00E+00	1.18E-03	1.18E-03
				Conc.	n/a	(ma/mi)	0.00E+00	0.005+00	0.00E+00

Blank Concentration = Blank Mass / Blank Volume

Particulate Weight - Data Summary

Particulate Weig Front Half	jht - Data	Summary					Gaseous Po Back Half	ollutants - D	ata Summary	,	
		Filter	Thimble	Beaker 1	Beaker 2	Total	Analyte		IPA	H2O2	n/a
	I.D.	п/а	n/a	Acetone	Water	Gain	Volume	(ml)	342.0	465.0	0.0
Beaker Vol.		n/a	n/a	0.0	0.0			mg	Molec.		mg
Gross Wt.	(g)						7	Collect.	Weight	Blank	Correct.
Tare Wt.	(g)						Analyte	(C)	Mw	Corr.	(Ccorr)
Blank Corr.	(g)						H2SO4	43,00	98,08	0.00	43.00
Gain	(g)						SO2	890.00	64.07	0.55	889,45
			· · · · · · · · · · · · · · · · · · ·				n/a	0.00	0.00	0.00	0.00

Blank Correction = Analyte Volume x Total Blank Conc.

SPECIFIC RUN INFORMATION (contd	.) Project: 16-214 Run: 8	Test Of: Location:	H2SO4 Inlet	
Reference Method No. 2 Calculations				
Average Stack Velocity				
	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s =	62.77	fl/sec.
Average Stack Volumetric Flow Rate		2		
.	$Q_a = 60 V_c A_c$	Q_=	139373.9	ACFM
Average Stack Volumetric Flow Rate	ч оо			
	$Q_{a} = 60 V_{a} A_{a} (1-B_{a}) ((T_{a}+y_{a}-P_{a})/(P_{a}+y_{a}-T_{a}))$	Q.=	43983.3	DSCEM
Reference Method No. 3 Calculations				
Molecular Weight Dry				
	$M_{1} = 0.44$ %CO ₂ + 0.32 %O ₂ + 0.28 (%CO + N ₂)	ħ4 .=	29.52	lb/lb-mole
Molecular Weight Wet	ma 0.44 /0002 / 0.02 /002 / 0.20 (/100 / 102)	1110-	20.04	10/10-11/016
voiccular weight, wei	$M = M / 1 D \rightarrow 49 D$	NA -	28.18	lh/lh maia
		INS-	20,10	IDAD-IIIOIG
Peferance Method No. A Calculations				
Sample Volume, Standard Conditions		·····		
	V = v = V - V / (T = P) / (T = P)	V=	65 342	DRCE
Natar Vanor Volume Collected	om(sta) om o ((osta om//(om osta//	* m(std)	00.044	0001
valer vapor volume ookected	M = 0.4706 M = M	V	6 306	е ³
Notor Monor Molume Collected	$v_{WC(std)} = .04700 (v_f - v_i)$	Vwc(std)	0.500	n
valer vapor volume Collected		· · · ·	0.000	_ 3
	$v_{wsg(std)} = .04775 (vv_f - vv_i)$	V _{wsg(std)} ≕	2.268	n
Noisture Volume Fraction of Stack Gas				
	$B_{ws} = (V_{wc(std)} + V_{wsg(std)})/(V_{wc(std)} + V_{wsg(std)} + V_m)$	(std)) B _{ws} =	0.116	
/apor Pressure of Stack H ₂ O				
· · · · · · · · · · · · · · · · · · ·	VP=SVP_000367 /P) /1+/(c-32/1571))	VP=	20 002	
	1 - 50 - 500001 (i 5) (i (i 3-52) (i 1))	41 -	23.302	
Bws VP				
	B _{ws} VP=VP / P _s	B _{ws} VP=	1.004	
Min B _{ws} or B _{ws} VP				
	If Burs > Burs VP, then Burs VP	MIN Burs or BursVP=	0.116	
	<u>13 13 13 13 13 13 13 13 13 13 13 13 13 1</u>	173 113		
Gas No. 1				
Calculations for: H2SO4	Reference Method: CTM-013B			
		· · · · · ·		
stack Concentration, w/v - Back Half		-	_	3
	$G_w = (G_{cor} 36.31) / V_{m(std)}$	C _w =	23.24	mg / M*
Stack Concentration, v/v - Back Half				
	$C_v = C_w$ (24.055 / M _W)	C _v =	5.70	ppmv
Stack Concentration _v/v - Back Half Corrected to 79	% O 1	•		-
		<u> </u>	7 ^7	
	$U_{VO2} = U_V ((20.3-7) / (20.3-70))$	U _{v02} =	1.21	ppmv താഴറ
Mass Emissions Rate - Rock Holf				w/ 7002
	$\mathbf{R}_{i} = (\mathbf{C}_{i} \mathbf{DSCEM}_{i} 60)/(0.00)$	D -	2 0 2	lbo (br
	mmb - (Ocor DOCTW 00)/(011(std) 404000)	r _{mb} ≓	3.03	ius/nf
Sac No. 2				
Calculations for PO2	Peference Methods OTM 043P			
Stack Concentration, w/v - Back Half	· · · · · · · · · · · · · · · · · · ·			
	$C_w = (C_{cor} 35.31) / V_{m(std)}$	C _w ≓	480.65	mg / M ³

.- 000037

•

Sample Recovery Data

	011	2 March	and C'AV	1/1 2/11/						-	of
	Client:	yource	ur Um	10101	1					Page	
Pro	ject No.:	16-2	4		ļ	Notes:					
	Site:	Carle	bin, M	I							
	Date:	2	11		1			······································			
Reco	nverv hv	TH-			ť						
Kun:		0	130-1	LNLE				······································			
		Imp. 1	Imp.2	Imp.3	Imp.4	Imp.5	Imp. 6	Imp. 7	Imp.8		Silica gel
····	Contents	IPA	IPA	H222	1202	L		ļ		<u> </u>	SG
Final	(g)	631.2	664.	109.6	178.1						966.2
Initial	(g)	669.9	681.7	631.6	734.5						920.2
Gain	(g)			I							
Rinse	()			a na anna an an Anna ann an Anna ann an Anna an	and a second			a an	a ann an a		
	146.1.1.1.46	. A AF	Sanion H	thite films	incide a	lassnare	- prior f	2		1e01	TIME
	weight int	ormation VV	001104 1				<u> </u>	yers_	ISG COIOF:	1370	EUVA
:			Fror	nt 1/2			,	• Bac	ik 1/2		
		Filter	Thimble	Beaker1	Beaker2	Totai	Filter	Beaker1	Beaker2	Beaker3	Total 1
	I.D.				[Gain		<u> </u>		[Gain
Gross	(g)	<u> </u>		[l	
Tare	(g)]]
Blank	(g)					L				<u> </u>	<u> </u>
Gain	(g)			[[r			
	197			L			5		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Sample Co	ntainers	ID:	C1	C2	3	4	5	5A	5B	5C	
	V	olume (ml):	266	475							L
Run:	5	033	- ANLE	<u> </u>							-
		lmp. 1	Imp.2	Imp.3	Imp.4	Imp.5	Imp. 6	Imp. 7	lmp.8		Silica gel
		TPA	IPA	Ha.Do	11202						SG
	Contents	1 - 1 - 1 - 1							and a second		An- 1-1
Final	Contents (g)	700.6	693.9	172.1	755.1					i	1930. O
Final Initial	Contents (g) (g)	700.6	693.9	172.1	155.1						930.0
Final Initial Gain	Contents (g) (g)	700.6	693.9 697.1	172.1 702.4	755.j 116.j	······································				: 	930.0 837-8 868:2
Final Initial Gain	Contents (g) (g) (g)	700.6 699.1	693.9 697.1	172.1 702.4	755.j 116.1						930. 0 827-8 F88:2-
Final Initial Gain Rinse	Contents (g) (g) (g) (g)	700.6	693.9 697.1	172.1 702.4	155.1 116.1						930.0 837-8 F88:2
Final Initial Gain Rinse Particulate	Contents (g) (g) (g) (g) () Weight Infe	700.6 (699.]	693.9 697.1 oserved v	172.1 702.4 white fil	755.1 716.1 m inside	e glassw	lare prie	pr fo	SG Color:	95 <i>9</i> 6	930. 8 837-8 F88:2 PinK
Final Initial Gain Rinse Particulate	Contents (g) (g) (g) (g) (y) Weight Infe	700.6 (99.]	693.9 697.1 Deserved 1	172.1 702.4 White fil	755.1 716.1 m inside	e glassiv	are prie	pr to ers. Bac	SG Color: k 1/2	95 <i>%</i>	930. B 837-B F88:2 PinK
Final Initial Gain Rinse Particulate	Contents (g) (g) (g) (g) (y) Using the second secon	700.6 699.1 prmation 0	693.9 697.1 Oserved 1 Fror Thimble	172.1 702.4 White fil ht 1/2 Beaker1	755.1 716.1 m ingide Beaker2	z glassw Total	are prie impingi Filter	or fo ers. Bac Beaker1	SG Color: k 1/2 Beaker2	95 % Beaker3	730.0 837-8 FBB:2 PinK Totai
Final Initial Gain Rinse Particulate	Contents (g) (g) (g) (g) () Weight Infe	Filter	693.9 697.1 Served I Fror Thimble	172. 702.4 white fil nt 1/2 Beaker1	755.1 716.1 M inside Beaker2	z glassw Total Gain	impingi Filter	Dr to EXS • Bac Beaker1	SG Color: k 1/2 Beaker2	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross	Contents (g) (g) (g) () Weight Infe	Filter	693.9 697.1 Served I Fror Thimble	172. 702.4 white fil nt 1/2 Beaker1	755.1 716.1 M inside Beaker2	z glassw Total Gain	are prie impingi Filter	Dr fo Beaker1	SG Color: k 1/2 Beaker2	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare	Contents (g) (g) (g) () Weight Infe	700.6 699.1 ormation 0	693.9 697.1 Served t Fror Thimble	472. 702.4 White fil at 1/2 Beaker1	755.1 716.1 M inside Beaker2	total Gain	are prie impingi Filter	Dr fo Beaker1	SG Color: k 1/2 Beaker2	95 96 Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank	Contents (g) (g) (g) () Weight Infe I.D. (g) (g) (g)	Filter	693.9 697.1 Served t Fror Thimble	472. 702.4 White fil at 1/2 Beaker1	755.1 716.1 M inside Beaker2	Total Gain	imping Filter	Dr to Beaker1	SG Color: k 1/2 Beaker2	95% Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain	Contents (g) (g) (g) () Weight Infe I.D. (g) (g) (g) (g)	Filter	693.9 697.1 Served t Fror Thimble	172. 702.4 White fil at 1/2 Beaker1	755.1 716.1 M inside Beaker2	total Gain	impingi Filter	Dr fo Beaker1	SG Color: k 1/2 Beaker2	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain	Contents (g) (g) (g) () Weight Infe I.D. (g) (g) (g) (g)	Filter	693.9 697.1 Served v Fror Thimble	172. 702.4 White fil the 1/2 Beaker1	755.1 716.1 M inside Beaker2	total Gain	imping imping Filter	Dr fo Beaker1	SG Color: k 1/2 Beaker2	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co	Contents (g) (g) (g) (g) (l.D. (g)	Filter	693.9 697.1 Served to From Thimble	C 2	755.1 716.1 M inside Beaker2	Total Gain	impingi Filter	Dr fo Beaker1 5A	SG Color: k 1/2 Beaker2 58	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co	Contents (g) (g) (g) (g) (l.D. (g)	Filter	C1 C43.9 G97.1 Fror Thimble	C 2	755.1 716.1 M inside Beaker2	Total Gain	iare prie impingi Filter	Dr fo Beaker1 5A	SG Color: k 1/2 Beaker2 58	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co	Contents (g) (g) (g) (g) (l) Weight Infe I.D. (g)	Filter	693.9 697.1 Served v Fror Thimble C 1 340	472. 702.4 White fil to 1/2 Beaker1 C 2 477	755.1 716.1 M inside Beaker2	Total Gain	iare prie impingi Filter	Dr fo Beaker1 5A	SG Color: k 1/2 Beaker2 58	95 % Beaker3	730.0 837-8 F68:2 Total Gain
Final Initial Gain Rinse Particulate Gaross Tare Blank Gain Sample Co	Contents (g) (g) (g) (g) (l) Weight Infe I.D. (g)	Filter	693.9 697.1 Served I Fror Thimble C1 340	172. 702.4 White fil to 1/2 Beaker1 C 2 477	755.1 716.1 M inside Beaker2	Total Gain	jare prie impingi Filter	Dr fo Beaker1 5A	SG Color: k 1/2 Beaker2 58	95 % Beaker3	730.0 837-8 F68:2 PinK Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co	Contents (g) (g) (g) (g) (l) Weight Info I.D. (g)	Filter ID: olume (ml): D/3.B- Imp. 1	693.9 697.1 5697.1 Fror Thimble C1 340 TNLE7 Imp.2	172. 702.4 White fil to 1/2 Beaker1 Beaker1 C 2 477	755.1 716.1 M iNSide Beaker2	Total Gain 4	imp. 6	br to Beaker1 5A Imp. 7	SG Color: k 1/2 Beaker2 58 58	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co	Contents (g) (g) (g) () Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter ID: olume (ml): D/3.B- Imp. 1 IPA	693.9 697.1 5 5 Fror Thimble C1 340 1 NLE7 Imp.2 IPA	172.1 702.4 White fil tt 1/2 Beaker1 C 2 477 Imp.3 H2 0-2	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4	Total Gain 4	Jare prie	br to Beaker1 5A Imp. 7	SG Color: k 1/2 Beaker2 5B 6B	95 % Beaker3	730. 0 837-8 F68: 2 Total Gain Silica gel Silica gel
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run:	Contents (g) (g) (g) (g) (g) (l.D. (g)	Filter ID: olume (ml): D/3.B- Imp. 1 IPA 691.7	693.9 697.1 5 5 697.1 Fror Thimble C1 340 C1 340 <i>INLET</i> Imp.2 <i>IPA</i> 682.4	C 2 Imp.3 Marken 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5	Total Gain 4	Jare priz	br to ers Bac Beaker1 5A Imp. 7	SG Color: k 1/2 Beaker2 58 Imp.8	95 % Beaker3	730. 0 937-8 F68: 2 FinK Total Gain Silica gel Silica gel SG 767.5
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial	Contents (g)	Filter ID: olume (ml): 0/3.B Imp. 1 IPA 691.7 648.5	693.9 697.1 5 5 Fror Thimble C1 340 C1 340 INLE7 Imp.2 IPA 682.4 679.6	C 2 472.1 702.4 White fil Beaker1 C 2 477 Imp.3 H2 0-3 678.6 628.1	755.1 716.1 Mingid Beaker2 3 3 Imp.4 H2.02 778.5 741.0	Total Gain 4 Imp.5	Jare priz	br to ers Bac Beaker1 5A Imp. 7	SG Color: k 1/2 Beaker2 58 Imp.8	95 % Beaker3	730. 0 937-8 F68:2 FinK Total Gain Silica gel SG 964.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain	Contents (g)	Filter ID: olume (ml): 0/3.B Imp. 1 IPA 691.7 648.5	693.9 697.1 5 5 Fror Thimble C1 340 C1 340 TNLE7 Imp.2 IPA 682.4 679.6	C 2 472.1 702.4 White fil Beaker1 C 2 477 Imp.3 H2 0 2 678.6 628.1	155.1 755.1 116.1 Mingide Beaker2 Beaker2 3 3 Imp.4 H2.02 778.5 741.0	Total Gain 4 Imp.5	Jare priz	5A	SG Color: k 1/2 Beaker2 58 Imp.8	95 % Beaker3	730. 8 937-8 F68:2 Total Gain Silica gel SG 964.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Bample Co Run: Final Initial Gain Pinse	Contents (g) (g) (g) (g) Weight Infe I.D. (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter Filter ID: olume (ml): 0/3.B- Imp. 1 1PA 6/9/.7 6/8.5	693.9 697.1 Deserved to From Thimble C1 340 INLE7 Imp.2 IPA 682.4 679.6	C 2 4772.1 702.4 White fil Beaker1 C 2 477 Imp.3 Hz O 2 678.6 628.1	155.1 755.1 716.1 Beaker2 Beaker2 3 Imp.4 H_2.02 778.5 741.0	Total Gain 4 Imp.5	Jare priz	Dr fo Beaker1 5A	SG Color: k 1/2 Beaker2 58 Imp.8	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel SG 764.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse	Contents (g) (g) (g) (g) Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter ID: olume (ml): 0/3.B- Imp. 1 IPA 691.7 648.5	693.9 697.1 Deserved v Fror Thimble C1 340 INLE7 Imp.2 IPA 682.4 679.6	C 2 472.1 702.4 White fil Beaker1 C 2 477 Imp.3 H2 0-3 678.6 628.1	755.1 716.1 M iNGid Beaker2 3 3 Imp.4 H2.02 778.5 741.0	Total Gain 4 Imp.5	Jare priz	5A	SG Color: k 1/2 Beaker2 58 Imp.8	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel Se 964.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Bample Co Run: Final Initial Gain Rinse Particulate	Contents (g)	Filter Filter ID: olume (ml): 0/3.B- Imp. 1 IPA 691.7 648.5 Drmation	693.9 697.1 Deserved v Fror Thimble C1 340 INLE7 Imp.2 IPA 682.4 679.6	C 2 472.1 702.4 White fil Beaker1 C 2 477 Imp.3 H2 0-2 678.6 628.1	155.1 755.1 716.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0	Total Gain 4 Imp.5	Jare priz	5A	SG Color: k 1/2 Beaker2 58 Imp.8 Imp.8 SG Color:	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel Se 964.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate	Contents (g)	ID: olume (m): 0/3 B- 1PA 691.7 648.5	693.9 697.1 Deserved v From Thimble C 1 340 INLE7 Imp.2 IPA 682.4 679.6	C 2 (477) (mp.3) (1/2) (mp.3) (1/2) (1	155.1 755.1 716.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0	z glassw Total Gain 4 Imp.5	jare priz	5A	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2	95 %	730. 8 937-8 F68:2 Total Gain Silica gel SG 964.5 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate	Contents (g)	Filter ID: olume (ml): 0/3 B- Imp. 1 IPA 691.7 648.5 ormation Filter	693.9 697.1 5 5 Fron Thimble C1 340 C1 340 C1 340 C1 340 C1 340 Fron Thimble	C 2 472.1 702.4 White fil Beaker1 C 2 471 Imp.3 H2 02 678.6 628.1 Imp.3 H2 02 678.6 628.1 Imp.3 H2 02 678.6 678.6 678.1 Imp.3	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5	Jare priz	Dr fo Beaker1 5A Imp. 7 Bacl Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel SG 964.5 976.4 976.4
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate	Contents (g) (g) (g) (g) (g) Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	ID: orimation 0 Filter ID: olume (ml): OI 3 B Imp. 1 IPA 691.7 648.5 Drmation Filter	693.9 697.1 5 5 Fron Thimble C1 340 C1 340 C1 340 C1 340 C1 340 Fron Thimble	172.1 702.4 White fil Beaker1 Eaker1 C 2 477 Imp.3 H2 07 678.6 678.1 C2 477	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	jare priz	Dr fo Beaker1 5A Imp. 7 Bac Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 F68:2 Total Gain Silica gel SG 964.5 976.4 976.4 Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate	Contents (g)	Filter ID: olume (ml): ID: olume (ml): ID: ID: ID: ID: ID: ID: ID: ID	693.9 697.1 5 5 Fron Thimble C1 340 C1 340 C1 340 C1 340 C1 340 C1 340 Fron Thimble Fron Thimble	$\begin{array}{c} 172.1 \\ 702.4 \\ 702.4 \\ \hline \\ 702.4 \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	Jare priz	Dr fo Beaker1 5A Imp. 7 Bacl Bacl Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 F6812 Total Gain Silica gel SG 964.5 976.4 976.4 Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate Cross	Contents (g) (g) (g) (g) () Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter D/3.B Imp. 1 IPA 691.7 69	693.9 697.1 5 5 Fron Thimble C1 340 C1 340 C1 340 C1 340 C1 340 Fron Thimble Fron Thimble	172.1 702.4 White fil to 1/2 Beaker1 C 2 477 Imp.3 H2 0-3 678.6 628.1	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	imp. 6	Dr fo Beaker1 5A Imp. 7 Beaker1 Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 Imp.8 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 FOB: 2 Total Gain Silica gel SG 7637-5 976-4 976-4 Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate Gross Tare	Contents (g) (g) (g) (g) (g) Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter D/3.B Imp. 1 IPA 691.7 691.7 691.7 691.7 698.5 Drmation Filter	693.9 697.1 5 5 Fron Thimble C1 340 C1 340 C1 340 C1 340 C1 C1 340 Fron Thimble Fron Thimble	172.1 702.4 White fil to 1/2 Beaker1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	imp. 6	Dr fo Beaker1 5A 5A Imp. 7 Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 Imp.8 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 937-8 FOB: 2 Fink Total Gain Silica gel SG 7637-5 976-7 976-7 10 10 10 10 10 10 10 10 10 10
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate Gross Tare Blank	Contents (g) (g) (g) (g) (g) Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter ID: olume (ml): 0/3.B- Imp. 1 1PA 691.7 668.5 Drmation Filter	693.9 697.1 Deserved v From Thimble C 1 340 INLE7 Imp.2 IPA 682.4 679.6 From Thimble	$\begin{array}{c} 172.1 \\ 702.4 \\ 702.4 \\ \hline \\ 702.4 \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	imp. 6	Dr fo Beaker1 5A 5A Imp. 7 Beaker1 Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 Imp.8 SG Color: k 1/2 Beaker2 SG Color:	95 % Beaker3	730. 0 837-8 FOB: 2 PinK Total Gain Silica gel SG 764.5 976.4 976.4 Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate Gross Tare Blank Gaink Gain	Contents (g) (g) (g) (g) (g) Weight Info (g) (g) (g) (g) (g) (g) (g) (g) (g)	Filter ID: olume (ml): 0/3.B- Imp. 1 1PA 691.7 668.5 ormation Filter	693.9 697.1 Deserved v From Thimble C1 340 INLE7 Imp.2 IPA 682.4 679.6 From Thimble	172.1 702.4 White Ail Beaker1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2	Total Gain 4 Imp.5 Total Gain	imp. 6	Dr fo Beaker1 5A 5A Imp. 7 Beaker1 Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2 Beaker2 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 FOB: 2 PinK Total Gain Silica gel SG 764.5 976.4 976.4 Total Gain
Final Initial Gain Rinse Particulate Gross Tare Blank Gain Sample Co Run: Final Initial Gain Rinse Particulate Gross Tare Blank Gaink Gain Sample Co	Contents (g)	100.6 700.6 699.1 ormation 0 Filter ID: olume (ml): 01.3 B Imp. 1 1PA 691.7 648.5 ormation Filter	693.9 697.1 Deserved v From Thimble C 1 340 Imp.2 IPA 682.4 679.6 From Thimble	172.1 702.4 702.4 702.4 702.4 112 Beaker1 C_2 471 100, 3 112, 0.2 0.98.6	755.1 716.1 116.1 Beaker2 Beaker2 3 Imp.4 H2.02 778.5 741.0 Beaker2 Beaker2	Total Gain 4 Imp.5 Total Gain	imp. 6	Dr fo Beaker1 5A Imp. 7 Beaker1 Beaker1	SG Color: k 1/2 Beaker2 58 Imp.8 SG Color: k 1/2 Beaker2 SG Color: k 1/2 Beaker2	95 % Beaker3	730. 0 837-8 FOB: 2 Fink Total Gain Silica gel SG 764.5 976.4 976.4 Total Gain