

- JAH 0.6 2014 AIR QUALITY DIV.

í

ĺ

RECEIVED

Line 6 Emissions Test Report

Prepared for:

General Motors

Saginaw, Michigan

GM SMCO 1629 N. Washington St. Saginaw, Michigan

> Project No. 13-4408.00 January 7, 2014

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48071 (248) 548-8070

Executive Summary

BT Environmental Consulting, Inc. (BTEC) was retained by General Motors LLC (GM) to conduct a compliance evaluation of particulate matter (PM), volatile organic compounds (VOC), oxides of nitrogen (NOx), carbon monoxide (CO), hydrogen chloride (HCl), chlorine (Cl₂), and hydrogen fluoride (HF) emission rates from various exhaust stacks associated with the with Mold Line 6 at the GM Saginaw Metal Casting Operations (SMCO) located in Saginaw, Michigan. Sampling was conducted on November 7th-13th 2013.

Testing consisted of triplicate test runs of approximately 60 minutes for each pollutant except for single test runs during furnace fluxing and drossing operations. Sampling was performed utilizing United States Environmental Protection Agency (USEPA) test methods. The results of the emissions test program are highlighted by Table E-I.

ł

ĺ

i

Overall Results Summary					
Source	Pollutant	Average Test Result	Emission Limit		
	PM	3.40 lbs/hr	2.1 lbs/hr		
EU-6ML-DC-67		$0.017 \text{ lb}/1000 \text{ exhaust gas}^4$	0.01 lb/1000 exhaust gas ⁴		
	VOC ³	6.3 lbs/hr	10.5 lbs/hr		
EU-6CR-DC-69	PM	1.06 lbs/hr	17.8 lbs/hr		
BU-UCK-DC-09		0.006 lb/1000 exhaust gas ⁴	0.02 lb/1000 exhaust gas ⁴		
EU-6ML-EF-03	PM	2.63 lbs/hr	11.3 lbs/hr		
EO-OME-EF-03	1 141	0.014 lb/1000 exhaust gas ⁴	0.05 lb/1000 exhaust gas ⁴		
EU-6ML-EF-04	PM	16.11 lbs/hr	11.3 lbs/hr		
EO-UNIL-EF-04		0.077 lb/1000 exhaust gas ⁴	0.05 lb/1000 exhaust gas ⁴		
EU-6CR-ISO-04	VOC ³	4.9 lbs/hr	125.5 lbs/hr		
	PM	0.17 lbs/hr	2.1 lbs/hr		
	L IVI	0.002 lb/1000 exhaust gas ⁴	0.02 lb/1000 exhaust gas ⁴		
	HCL	0.00 lbs/hr ²	NA		
EU-6ML-GV-02	HF	0.01 lbs/hr	NA		
Furnace (Hold)	CL_2	0.00 lbs/hr ²	NA		
	VOC ^{1,3}	0.15 lbs/hr	0.23 lbs/hr		
	NOx	0.5 lbs/hr	4.2 lbs/hr		
	CO	0.8 lbs/hr	3.5 lbs/hr		
	PM	6.12 lbs/hr	4.1 lbs/hr		
	1 IVI	0.058 lb/1000 exhaust gas ⁴	0.04 lb/1000 exhaust gas ⁴		
EU-6ML-GV-02	HCL	0.27 lbs/hr	2.2 lbs/hr		
Furnace (Flux) Run 4	HF	1.54 lbs/hr	1.9 lbs/hr		
	CL_2	0.00 lbs/hr ²	0.5 lbs/hr		
	VOC ^{1,3}	0.27 lbs/hr	0.23 lbs/hr		
	NOx	0.6 lbs/hr	4.2 lbs/hr		
r I	CO	0.8 lbs/hr	3.5 lbs/hr		
	PM	2.35 lbs/hr	5.2 lbs/hr		
	PIM	0.023 lb/1000 exhaust gas ⁴	0.05 lb/1000 exhaust gas ⁴		
EU-6ML-GV-02	HCL	0.02 lbs/hr	NA		
Furnace (Dross)	HF	0.04 lbs/hr	NA		
Run 5	CL ₂ VOC ^{1,3}	0.00 lbs/hr ²	NA		
		0.32 lbs/hr	0.23 lbs/hr		
	NOx	0.5 lbs/hr	4.2 lbs/hr		
	CO	0.5 lbs/hr	3.5 lbs/hr		

Table E-I

~

Calculated using methane subtraction.
 Laboratory results are below detection limit.
 VOC calculated as propane

4- lb/1000 lb of exhaust gas, dry

ţ

TABLE OF CONTENTS

1. IN	TRODUCTION
1.A	IDENTIFICATION, LOCATION, AND DATES OF TEST
1.в	PURPOSE OF TESTING
1.C	SOURCE DESCRIPTION1
1.D	TEST PROGRAM CONTACT
1.E	TEST PERSONNEL
2. St	JMMARY OF RESULTS
2.A	OPERATING DATA
2.в	APPLICABLE PERMIT
2.C	RESULTS
2.D	EMISSION REGULATION COMPARISON
3. SC	OURCE DESCRIPTION4
3.A	PROCESS DESCRIPTION
3.в	PROCESS FLOW DIAGRAM
3.C	RAW AND FINISHED MATERIALS
3.d	PROCESS CAPACITY
3.E	PROCESS INSTRUMENTATION
4. SA	MPLING AND ANALYTICAL PROCEDURES
4.A	SAMPLING TRAIN AND FIELD PROCEDURES
	AUST GAS VELOCITY, MOLECULAR WEIGHT, AND MOISTURE CONTENT6
	ERABLE PARTICULATE MATTER METHOD 176
	DENSABLE PARTICULATE MATTER - 5/202 AND 201A/202
	ROGEN HALIDE AND HALOGEN
	ATILE ORGANIC COMPOUNDS
	AND CARBON MONOXIDE
4.в	RECOVERY AND ANALYTICAL PROCEDURES
4.C	SAMPLING PORTS
4.D	TRAVERSE POINTS10
5. TH	EST RESULTS AND DISCUSSION10
5.A	RESULTS TABULATION10
5.в	DISCUSSION OF RESULTS11
5.C	SAMPLING PROCEDURE VARIATIONS
5.D	PROCESS OR CONTROL DEVICE UPSETS
5.E	CONTROL DEVICE MAINTENANCE
5.F	AUDIT SAMPLE ANALYSES
5.G	CALIBRATION SHEETS
5.H	SAMPLE CALCULATIONS
5.1	FIELD DATA SHEETS
5.I	LABORATORY DATA

1

(

iii

TABLE OF CONTENTS (continued)

TABLES

ť

l

Table 1	Overall Results Summary
Table 2	Test Personnel
Table 3	MI-ROP-B1991-2009a Emission Limitations
Table 4	EU-6ML-DC-67 Particulate Matter Emission Rates
Table 5	EU-6ML-DC-67 VOC Emission Rates
Table 6	EU-6CR-DC-69 Particulate Matter Emission Rates
Table 7	EU-6ML-EF-03 Particulate Matter Emission Rates
Table 8	EU-6ML-EF-04 Particulate Matter Emission Rates
Table 9	EU-6CR-ISO-04 VOC Emission Rates
Table 10	EU-6ML-GV-02 (Furnace) Particulate Matter Emission Rates (Hold)
Table 11	EU-6ML-GV-02 (Furnace) Particulate Matter Emission Rates (Flux and Dross)
Table 12	EU-6ML-GV-02 (Furnace) HCl, HF, and CL ₂ Emission Rates (Hold)
Table 13	EU-6ML-GV-02 (Furnace) HCl, HF, and CL ₂ Emission Rates (Flux and Dross)
Table 14	EU-6ML-GV-02 (Furnace) NOx, CO, and VOC Emission Rates (Hold)
Table 15	EU-6ML-GV-02 (Furnace) NOx, CO, and VOC Emission Rates (Flux and Dross)

FIGURES

Figure 1	EU-6ML-DC-67 Exhaust Stack Traverse Point Diagram
Figure 2	EU-6CR-DC-69 Exhaust Stack Traverse Point Diagram
Figure 3	EU-6CR-ISO-04 Exhaust Stack Traverse Point Diagram
Figure 4	EU-6ML-GV-02 Exhaust Stack Traverse Point Diagram
Figure 5	EU-6ML-EF-03 Exhaust Stack Traverse Point Diagram
Figure 6	EU-6ML-EF-04 Exhaust Stack Traverse Point Diagram
Figure 7	USEPA Method 4 Sampling Train Drawing
Figure 8	USEPA Method 17 Sampling Train Drawing
Figure 9	USEPA Method 5/202 Sampling Train Drawing
Figure 10	USEPA Method 7E/10 Sampling Train Drawing
Figure 11	USEPA Method 25A Sampling Train Drawing
Figure 12	USEPA Method 26A Sampling Train Drawing
Figure 13	USEPA Method 201A/202 Sampling Train Drawing

APPENDICES

ADDENNIX A TIOUSS Operating Data	Appendix A	Process	Operating Data	Ļ
----------------------------------	------------	---------	----------------	---

- Equipment Calibration Documents Example Calculations Appendix B
- Appendix C
- Appendix D Appendix E Field Data Sheets and Raw CEM Data
- Laboratory Analytical Results

1. Introduction

BT Environmental Consulting, Inc. (BTEC) was retained by General Motors LLC (GM) to conduct a compliance evaluation of particulate matter (PM), volatile organic compounds (VOC), oxides of nitrogen (NOx), carbon monoxide (CO), hydrogen chloride (HCl), chlorine (Cl₂), and hydrogen fluoride (HF) emission rates from various exhaust stacks associated with the with Mold Line 6 at the GM Saginaw Metal Casting Operations (SMCO) located in Saginaw, Michigan. Sampling was conducted on November 7th-13th 2013.

The Air Quality Division (AQD) of Michigan's Department of Environmental Quality has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (February 2008). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

The source tested is located at the GM Saginaw Metal Casting Operations located in Saginaw, Michigan. Testing on all sources was conducted November 7th-13th, 2013.

1.b Purpose of Testing

The purpose of the testing is to demonstrate compliance with Michigan Renewable Operating Permit MI-ROP-B1991-2009a.

1.c Source Description

Sources identified under this project specifically include, EU-6MLGV-01 is the aluminum reverberatory furnace #1 (West) and EU-6MLGV-02 is the aluminum reverberatory furnace #2 (East). EU-6MLGV-01 and EU-6MLGV-02 are identical sources. Currently only one furnace operates at a time. EU-6MLGV-02 demonstrates compliance for both EU-6MLGV-01 and EU-6MLGV-02. EU-6MLDC-67 is associated with aluminum degate on Mold Line 6 (Cells #1 - #5, Unit #9 secondary scalping screen located in the basement). EU-6MLEF-03 services #6ML mold conveyor (Basement cooling conveyor, degate cells #1-#3) and #6 Drag flask Pick-off. While EU-6MLEF-04 #6ML exhausts mold conveyor (Basement cooling conveyor, 1st floor conveyor). Sources associated with the core room include EU-6CRDC-69, the cold box machines sand delivery exhaust and EU-6CRISO-04 which covers cold box core making, 1 through 16 cold box machines (4 Osborn 10A-CB, 12 Sutter 1630 CB, Biscuit Core Maker). In addition, EU-SCREF-72 exhausts the core box cleaning tanks, which is currently not operational and therefore was not tested.

1.d Test Program Contact

The contact for information regarding the test program as well as the test report is:

Jennifer Tegen GECS - Facility Air Compliance & Permit GM Warren Technical Center 30200 Mound Road - Bldg 1-11, Warren, MI 48090-9010 Phone: 810-706-1319 jennifer.tegen@gm.com

Renee M Mietz, CHMM Sr. Environmental Project Engineer Saginaw Metal Casting Operations 1629 North Washington Avenue Saginaw, Michigan 48605 Phone: 313-608-1169 renee.mietz@gm.com

1.e Test Personnel

٦

Names and affiliations for personnel who were present during the testing program are summarized by Table 2.

Test Personnel				
Name	Affiliation			
Jennifer Tegen	GM-WTC			
Renee Mietz	GM-SMCO			
Matthew Young	BTEC			
Jeff Peitzsch	BTEC			
Ken Lievense	BTEC			
Randal Tysar	BTEC			
Paul Molenda	BTEC			
Andrew Lusk	BTEC			
Nathan Hude	MDEQ-AQD			
Kathy Brewer	MDEQ-AQD			

Table 2

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions test program.

2.a Operating Data

Process and control equipment operating data relevant to the emissions test program is provided in Appendix A.

2.b Applicable Permit

The emission units tested for mold line 6 are included in Renewable Operating Permit (ROP) No. MI-ROP-B1991-2009a.

2.c Results

The results of the emissions test program are summarized by Table 1. Detailed results for each source are summarized in tables 4-15.

2.d Emission Regulation Comparison

í

(

1

MI-ROP-B1991-2009a Emission Limitations					
Emission Unit	Pollutant	Permit Limit			
	DN (0.01 lb / 1,000 lb of exhaust gas, dry			
EU-6ML-DC-67	PM ₁₀	2.1 lb / hr			
	VOC	10.5 lb / hr			
EU-6CR-DC-69	DN f	0.02 lb / 1,000 lb of exhaust gas			
EU-0CK-DC-09	PM ₁₀	17.8 lb / hr			
EU-6CR-ISO-04	VOC	125.5 lb / hr			
	DM (holding)	0.02 lb / 1,000 lb of exhaust gas, dry			
	PM ₁₀ (holding)	2.1 lb / hr			
	PM ₁₀ (charging)	0.02 lb / 1,000 lb of exhaust gas, dry			
		2.6 lb / hr			
	PM ₁₀ (fluxing)	0.04 lb / 1,000 lb of exhaust gas, dry			
		4.1 lb / hr			
	PM ₁₀ (drossing)	0.05 lb / 1,000 lb of exhaust gas, dry			
		5.2 lb / hr			
EU-6ML-GV-02	VOC ¹	0.23 lb / hr			
	CO ¹	3.5 lb / hr			
	NOx ¹	4.2 lb / hr			
	HCl (charging) ²	2.4 lb / hr			
	$HCl (fluxing)^2$	2.2 lb / hr			
	Cl_2 (charging) ²	0.6 lb / hr			
	Cl_2 (fluxing) ²	0.5 lb / hr			
•	HF (fluxing) ³	1.9 lb / hr			
EU-6ML-EF-03	PM ₁₀	0.05 lb / 1,000 lb of exhaust gas, dry			
	1 1V10	11.3 lb / hr			
EU-6ML-EF-04	PM ₁₀	0.05 lb / 1,000 lb of exhaust gas, dry			
	T TATIO	11.3 lb / hr			

Table 3

The Emission regulations are summarized by the following table.

1: VOC, CO, and NOx emission limits are the same for all 4 operating conditions.

2: No HCl or Cl_2 emission limits during holding and drossing operating conditions.

3: No HF emission limits during holding, charging, or drossing operating conditions.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a Process Description

The Mold Line 6 process generates aluminum engine heads. The mold line activity includes the delivery of molten aluminum, generation of a greensand mold, pouring,

cooling, shakeout, or removal of the casting, and the finishing operations. To generate the casting package, a two part resin is used to coat sand and molded sand grains are packed together into a form (a core) and cured with an amine catalyst, DMIPA. DMIPA is scrubbed out of the air with H₂SO₄. At the same time, sand, clay and water are 'mulled' together (greensand as there are no chemical binders) and then packed into a large base and a cover mold that will form the outside of the casting, it is called a 'greensand' mold. The core is set into the "greensand" molds, the cover, made of greensand, and is placed on top. The cover has a pouring cup, which acts as a funnel for the aluminum. Aluminum is melted to 1370-1450° F and poured into the mold to create the casting. The casting is cooled and the loose sand is shaken from the part. The (heads) parts are then processed through a heat treat oven, quenched with water to set up the microstructure of the key places on the casting and excess sand is cleaned from the ports using a water blast. Then the parts have an initial machining phase prior to inspection and shipping.

3.b Process Flow Diagram

Due to the simplicity of the Mold Line 6 operations, a process flow diagram is not necessary.

3.c Raw and Finished Materials

The raw materials used in the Mold Line 6 processes include molten aluminum, sand, and resin. See section 3.a.

3.d Process Capacity

Mold Line 6 has a current target production rate of 180 molds/hr.

3.e Process Instrumentation

Process instrumentation relevant to the emissions test program includes monitoring the Water flow for the wet and acid scrubbers, pH for the acid scrubber. And temperature natural gas usage, and high and low fire rate for the furnace.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used during the testing.

4.a Sampling Train and Field Procedures

Sampling and analytical methodologies for the emissions test program can be separated into six categories as follows:

(1) Measurement of exhaust gas velocity, molecular weight, and moisture content;

5

(2) Measurement of exhaust gas filterable PM concentration;

- (3) Measurement of exhaust gas filterable/condensible PM concentration;
- (4) Measurement of exhaust gas HCL, HF, and Cl₂ concentration;
- (5) Measurement of exhaust gas VOC concentration; and

ť

(6) Measurement of exhaust gas NOx and CO concentration.

Sampling and analytical methodologies by category are summarized below.

Exhaust Gas Velocity, Molecular Weight, and Moisture Content

Stack gas velocity traverses were conducted in accordance with the procedures outlined in Method 1 and Method 2. S-type pitot tubes with thermocouple assemblies, calibrated in accordance with Method 2, Section 4.1.1, were used to measure exhaust gas velocity pressures (using a manometer) and temperatures during testing. The S-type pitot tube dimensions outlined in Sections 2-6 through 2-8 were within specified limits, therefore, a baseline pitot tube coefficient of 0.84 (dimensionless) was assigned. A diagram of the sample points is provided in Figures 1-6.

Cyclonic flow checks were performed at each sampling location. The existence of cyclonic flow is determined by measuring the flow angle at each sample point. The flow angle is the angle between the direction of flow and the axis of the stack. If the average of the absolute values of the flow angles is greater than 20 degrees, cyclonic flow exists. The null angle was determined to be less than 20 degrees at each sampling point.

The Molecular Weight of the gas stream was evaluated according to procedures outlined in Title 40, Part 60, Appendix A, Method 3A. The O_2/CO_2 content of the gas stream was measured using a Fyrite combustion analyzer.

Exhaust gas was extracted as part of the sampling train. Exhaust gas moisture content was then determined gravimetrically.

Filterable Particulate Matter – Method 17

40 CFR 60, Appendix A, Method 17, "*Determination of Particulate Emissions from Stationary Sources*" was used to measure PM concentrations and calculate PM emission rates (see Figure 8 for a schematic of the sampling train). Triplicate 60-minute test runs were conducted on each source.

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system (USEPA Method 17) consisted of (1) a stainless-steel nozzle, (2) an in stack stainless-steel filter housing with a pre weighed 47-mm diameter filter, (3) a steel probe, (4) a set of four Greenburg-Smith (GS) impingers with the first modified and second standard GS impingers each containing 100 ml of deionized water, and with a third dry modified GS impinger and a fourth modified GS impinger containing approximately 300 g of silica gel desiccant, (5) a length of sample line, and (6) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice. A schematic drawing of the Method 17 particulate sample train is provided as Figure 8.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, and the nozzle and the front half of the filter holder assembly were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition, blank samples of the acetone and filter were collected. BTEC personnel carried all samples to BTEC's laboratory (for filter and acetone gravimetric analysis) in Royal Oak, Michigan.

Condensable Particulate Matter – 5/202 and 201a/202

40 CFR 60, Appendix A, Method 5, "Determination of Particulate Emissions from Stationary Sources" and 40 CFR 60, Appendix A, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates (see Figure 9 for a schematic of the sampling train).

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a Steel nozzle, (2) a glass probe, (3) a heated filter holder, (4) a vertical condenser, (5) an empty pot bellied impinger, (6) an empty modified Greenburg-Smith (GS) impinger, (7) unheated filter holder with a teflon filter, (8) a second modified GS impinger with 100 ml of deionized water, and a third modified GS impinger containing approximately 300 g of silica gel desiccant, (9) a length of sample line, and (10) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, and the nozzle and the front half of the filter holder assembly were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container. The impinger train was then purged with nitrogen for one hour at a flow rate of 14 liters per minute. The CPM filter was recovered and placed in a petri dish. The back half of the filter housing, the condenser, the pot bellied impinger, the moisture drop out impinger, and the front half of the CPM filter housing and all connecting glassware were triple rinsed with deionized water which was collected in a pre-cleaned sample container. The same glassware was then rinsed with acetone which was collected in a pre-cleaned sample container labeled as the organic fraction. The glassware was then double rinsed with hexane which was added to the same organic fraction sample bottle.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition, blank samples of the acetone, DI water, hexane, and filter were collected. BTEC personnel carried all samples to BTEC's laboratory (for filter and acetone gravimetric analysis) in Royal Oak, Michigan. Samples were transported to the Maxxam laboratory in Mississauga, Ontario for Method 202 analysis by Maxxam Analytics personnel. (

40 CFR 60, Appendix A, Method 201A, "Determination of PM_{10} and $PM_{2.5}$ Emissions from Stationary Sources (Constant Sampling Rate Procedure)" and 40 CFR 60, Appendix A, Method 202, "Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources" was used to measure PM concentrations and calculate PM emission rates for Run 4 (Flux) on the Furnace (see Figure 13 for a schematic of the sampling train).

BTEC's Nutech[®] Model 2010 modular isokinetic stack sampling system consisted of (1) a stainless-steel nozzle, (2) a stainless-steel PM₁₀ head, (3) an in stack stainless-steel filter housing, (4) a borosilicate glass probe liner, (5) a vertical condenser, (6) an empty pot bellied impinger, (7) an empty modified Greenburg-Smith (GS) impinger, (8) unheated borosilicate filter holder with a teflon filter and Teflon filter support, (9) a second modified GS impinger with 100 ml of deionized water, and a third modified GS impinger containing approximately 300 g of silica gel desiccant, (10) a length of sample line, and (11) a Nutech[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

A sampling train leak test was conducted before and after each test run. After completion of the final leak test for each test run, the filter was recovered, the nozzle, probe, PM_{10} head, and front half of the filter housing were brushed and triple rinsed with acetone. The acetone rinses were collected in a pre-cleaned sample container. The Method 202 portion of the sampling train was recovered the same as previously described.

Hydrogen Halide and Halogen

40 CFR 60, Appendix A Method 26A, "Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources (isokinetic method)" were used to evaluate HCl, HF, and Cl₂ concentrations. The Method 26A sampling train consisted of: (1) a heated borosilicate or quartz probe liner; (2) a heated borosilicate or quartz glass filter holder containing a 90-mm diameter filter with Teflon filter support; (3) a set of two GS impingers each containing 100 ml of 0.1 Normal Sulfuric Acid (0.1 N H₂SO₄), (4) a set of two GS impingers each containing 100 ml of 0.1 Normal Sodium Hydroxide NaOH, (5) modified GS impinger containing a known weight of silica gel desiccant; (7) a length of sample line, and (8) a Nutech control case equipped with a pump, dry gas meter, and calibrated orifice. Figure 12 provides an illustration of the Method 26A sample train.

After completion of the final leak test for each test run, the impinger train was carefully disassembled. The nozzle, probe, and front half of the filter housing were brushed and rinsed with acetone which was discarded. The filter was also discarded. The liquid volume of each impinger was measured gravimetrically and any mass increase was noted on field sheets. The impinger catch solution from the first 2 impingers was then transferred to pre-cleaned sample containers labled as $0.1N H_2SO_4$. The impingers were then triple rinsed with deionized water (DI H₂O), and the rinses added to the H₂SO₄ sample containers. The back-half of the filter holder was rinsed and added to the H₂SO₄ sample container. The impinger catch solution from impingers 3 and 4 were then transferred to a pre-cleaned sample container and labled as 0.1N NaOH. Impinger 3 and 4 were then triple rinsed with DI H₂O and the rinse was added to the 0.1N NaOH sample container.

BTEC labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition, blank samples of the DI water, H₂SO₄, and NaOH were collected. Samples were couriered by Maxxam Analytical's (Maxxam) personnel to Maxxam's laboratory in Mississauga, Ontario for analysis.

Volatile Organic Compounds

Volatile Organic compound (VOC) concentrations were measured according to 40 CFR 60, Appendix A, Method 25A. A sample of the gas stream was drawn through a stainless steel probe with an in-line glass fiber filter to remove any particulate, and a heated Teflon[®] sample line to prevent the condensation of any moisture from the sample before it enters the analyzer. Data was recorded at 4-second intervals on a PC equipped with data acquisition software. BTEC used a VIG Model 20 or a J.U.M 109 Methane/Nonmethane hydrocarbon analyzer to determine the VOC concentration.

The J.U.M. Model 109A utilizes two flame ionization detectors (FID) to determine the average concentration (ppm) for THC (as Hexane) and the average concentration for methane. Upon entry, the gas stream is split by the analyzer. One FID ionizes all of the hydrocarbons in the gas stream sample into carbon, which is then detected as a concentration of total hydrocarbons. The carbon concentration is then determined by the detector in parts per million (ppm). This concentration is transmitted to the data acquisition system (DAS) at 4-second intervals in the form of an analog signal, specifically voltage, to produce data that can be averaged over the duration of the testing program. This data is then used to determine the average ppm for total hydrocarbons (THC) using the equivalent units of propane (calibration gas). The analyzer was calibrated for a range of 0-100 ppm. See figure 11 for a diagram of the sampling train.

In accordance with Method 25A, a 4-point (zero, low, mid, and high) calibration check was performed on the THC analyzer. Calibration drift checks were performed at the completion of each day of testing.

For analyzer calibrations, calibration gases were mixed to desired concentrations using an Environics Series 4040 Computerized Gas Dilution System. The Series 4040 consists of a single chassis with four mass flow controllers. The mass flow controllers are factory-calibrated using a primary flow standard traceable to the United States National Institute of Standards and Technology (NIST). Each flow controller utilizes an 11-point calibration table with linear interpolation, to increase accuracy and reduce flow controller nonlinearity. A field quality assurance check of the system was performed pursuant to Method 205 by setting the diluted concentration to a value identical to a Protocol 1 calibration gas and then verifying that the analyzer response is the same with the diluted gas as with the Protocol 1 gas.

General Motors Company Emissions Test Report

NOx and Carbon Monoxide

40 CFR 60, Appendix A, Method 7E, "Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)" and 40 CFR 60, Appendix A, Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)" were used to measure NOx and CO concentrations and calculate emission rates (see Figure 10 for a schematic of the sampling train).

The gas stream was drawn through a stainless-steel probe with a heated in-line filter to remove any particulate, a heated Teflon[®] sample line, through a refrigerated sample conditioner with a peristaltic pump to remove the moisture from the sample before it entered the analyzers. Data was recorded on a PC equipped with Labview[®] II data acquisition software. Recorded NOx and CO concentrations were averaged and reported for the duration of each test (as drift corrected per Method 7E). The analyzers were calibrated for a range of 0 to 50 ppm for NOx and CO.

In accordance with Method 7E, a 3-point (zero, mid, and high) calibration check was performed on each analyzer. Calibration drift checks were performed at the completion of each run.

4.b Recovery and Analytical Procedures

Descriptions of the recovery procedures are provided in section 4.a for each sampling method.

4.c Sampling Ports

A diagram of the stacks showing sampling ports are included as Figures 1-6.

4.d Traverse Points

A diagram of the stacks showing sampling ports are included as Figures 1-6.

5. Test Results and Discussion

Sections 5.a through 5.k provide a summary of the test results.

5.a Results Tabulation

The overall results of the emissions test program are summarized by Table 1. Emission limits are summarized by Table 3. Detailed results for the emissions test program are summarized by Tables 4-15.

5.b Discussion of Results

The average results of the particulate matter emissions of EU-6ML-DC-67, EU-6ML-EF-04, and EU-6ML-GV-02 (Flux) are inconclusive. As summarized by the following table, the test results are inconsistent with the previous source evaluation conducted in 2013 under similar production and testing conditions.

EU-6ML-DC-67	PM	0.52 lbs/hr	2.1 lbs/hr	
(8/6/2013)	r WI	0.003 lb/1000 exhaust gas ⁴	0.01 lb/1000 exhaust gas ⁴	
EU-6ML-EF-04	D) (4.80 lbs/hr	11.3 lbs/hr	
(8/7/2013)	PM	0.023 lb/1000 exhaust gas ⁴	0.05 lb/1000 exhaust gas ⁴	
EU-6ML-GV-02 Furnace (Flux)		3.28 lbs/hr	4.1 lbs/hr	
(10/4/2013)	PM	0.030 lb/1000 exhaust gas ⁴	0.04 lb/1000 exhaust gas ⁴	

In addition, VOC test results for EU-6ML-GV-02 (Flux) and EU-6ML-GV-02 (Dross) were in excess of their corresponding VOC emission limitation of 0.23 pounds per hour. However, the VOC emission limitation of 0.23 pounds per hour from a stack that has an exhaust gas flowrate on the order of 23,000 scfm corresponds to a VOC concentration limitation of less than approximately 1.5 ppmv. Because the majority of total hydrocarbons in the exhaust stream are methane, the accuracy of Method 25A is inadequate to demonstrate compliance with a VOC concentration limitation of 1.5 ppmv. In addition, it is unlikely that any U.S. EPA reference test method would be adequate to measure a VOC concentration at that level.

5.c Sampling Procedure Variations

There were no sampling variations used during the emission compliance test program.

5.d Process or Control Device Upsets

No process or control device upsets occurred during the emissions test program.

5.e Control Device Maintenance

There was no control equipment maintenance performed during the emissions test program.

5.f Audit Sample Analyses

Audit samples were not analyzed as part of this emissions test program.

5.g Calibration Sheets

Calibration documents are provided as Appendix B.

É

5.h Sample Calculations

Sample calculations are provided as Appendix C.

5.i Field Data Sheets

Field data sheets and CEM data are provided in Appendix D.

5.j Laboratory Data

Laboratory analysis is provided in Appendix E.

.

Tables

ť

-	Overall Results Summary			
<u> </u>		ampling Dates: November 7 th		
Source	Pollutant	Average Test Result	Emission Limit	
	PM	3.40 lbs/hr	2.1 lbs/hr	
EU-6ML-DC-67		0.017 lb/1000 exhaust gas ⁴	0.01 lb/1000 exhaust gas ⁴	
	VOC ³	6.3 lbs/hr	10.5 lbs/hr	
EU-6CR-DC-69	PM	1.06 lbs/hr	17.8 lbs/hr	
		0.006 lb/1000 exhaust gas ⁴	0.02 lb/1000 exhaust gas ⁴	
EU-6ML-EF-03	PM	2.63 lbs/hr	11.3 lbs/hr	
		$0.014 \text{ lb}/1000 \text{ exhaust gas}^4$	$0.05 \text{ lb}/1000 \text{ exhaust gas}^4$	
EU-6ML-EF-04	PM	16.11 lbs/hr	11.3 lbs/hr	
		0.077 lb/1000 exhaust gas ⁴	$0.05 \text{ lb}/1000 \text{ exhaust gas}^4$	
EU-6CR-ISO-04	VOC ³	4.9 lbs/hr	125.5 lbs/hr	
	PM	0.17 lbs/hr	2.1 lbs/hr	
	L INI	0.002 lb/1000 exhaust gas ⁴	0.02 lb/1000 exhaust gas ⁴	
	HCL	0.00 lbs/hr ²	NA	
EU-6ML-GV-02	HF	0.01 lbs/hr	NA	
Furnace (Hold)	CL ₂	0.00 lbs/hr ²	NA	
	$\frac{\text{CL}_2}{\text{VOC}^{1,3}}$	0.15 lbs/hr	0.23 lbs/hr	
	NOx	0.5 lbs/hr	4.2 lbs/hr	
	СО	0.8 lbs/hr	3.5 lbs/hr	
	PM	6.12 lbs/hr	4.1 lbs/hr	
		0.058 lb/1000 exhaust gas ⁴	0.04 lb/1000 exhaust gas ⁴	
DU AM ON 00	HCL	0.27 lbs/hr	2.2 lbs/hr ·	
EU-6ML-GV-02 Furnace (Flux)	HF	1.54 lbs/hr	1.9 lbs/hr	
	CL ₂	0.00 lbs/hr ²	0.5 lbs/hr	
Run 4	CL ₂ VOC ^{1,3}	0.27 lbs/hr	0.23 lbs/hr	
	NOx	0.6 lbs/hr	4.2 lbs/hr	
	CO	0.8 lbs/hr	3.5 lbs/hr	
······································		2.35 lbs/hr	5.2 lbs/hr	
	PM	0.023 lb/1000 exhaust gas ⁴	0.05 lb/1000 exhaust gas ⁴	
	HCL	0.02 lbs/hr	NA	
EU-6ML-GV-02	HF	0.04 lbs/hr	NA	
Furnace (Dross)		0.00 lbs/hr ²	NA	
Run 5	CL ₂ VOC ^{1,3}	0.32 lbs/hr	0.23 lbs/hr	
	NOx	0.5 lbs/hr	4.2 lbs/hr	
	CO	0.5 lbs/hr	3.5 lbs/hr	

Table 1 **Overall Results Summary**

CO0.5 lbs/1-Calculated using methane subtraction.2-Laboratory results are below detection limit.3-VOC calculated as propane4-lb/1000 lb of exhaust gas, dry

ſ

Test Personnel				
Name	Affiliation			
Jennifer Tegen	GM-WTC			
Renee Mietz	GM-SMCO			
Matthew Young	BTEC			
Jeff Peitzsch	BTEC			
Ken Lievense	BTEC			
Randal Tysar	BTEC			
Paul Molenda	BTEC			
Andrew Lusk	BTEC			
Nathan Hude	MDEQ-AQD			
Kathy Brewer	MDEQ-AQD			

Table 2 Test Personnel

Emission Unit	Pollutant	Permit Limit	
		0.01 lb / 1,000 lb of exhaust gas, dry	
EU-6ML-DC-67	PM ₁₀	2.1 lb / hr	
	VOC	10.5 lb / hr	
EU-6CR-DC-69	DM	0.02 lb / 1,000 lb of exhaust gas	
EU-OCK-DC-09	PM ₁₀	17.8 lb / hr	
EU-6CR-ISO-04	VOC	125.5 lb / hr	
	DM (holding)	0.02 lb / 1,000 lb of exhaust gas, dry	
	PM_{10} (holding)	2.1 lb / hr	
	PM ₁₀ (charging)	0.02 lb / 1,000 lb of exhaust gas, dry	
	T W10 (Charging)	2.6 lb / hr	
	PM ₁₀ (fluxing)	0.04 lb / 1,000 lb of exhaust gas, dry	
	T MIO (THANNE)	4.1 lb / hr	
	PM ₁₀ (drossing)	0.05 lb / 1,000 lb of exhaust gas, dry	
		5.2 lb / hr	
EU-6ML-GV-02	VOC ¹	0.23 lb / hr	
	CO ¹	3.5 lb / hr	
	NOx ¹	4.2 lb / hr	
	$HCl (charging)^2$	2.4 lb / hr	
	HCl (fluxing) ²	2.2 lb / hr	
	Cl_2 (charging) ²	0.6 lb / hr	
	Cl ₂ (fluxing) ²	0.5 lb / hr	
	HF (fluxing) ³	1.9 lb / hr	
EU-6ML-EF-03	PM10	0.05 lb / 1,000 lb of exhaust gas, dry	
EU-01011-EF-03	L IAT 10	11.3 lb / hr	
EU-6ML-EF-04	PM ₁₀	0.05 lb / 1,000 lb of exhaust gas, dry	
EO-OMIL-EI04	T IVI [0	11.3 lb / hr	

Table 3 **MI-ROP-B1991-2009a** Emission Limitations

l

1: VOC, CO, and NOx emission limits are the same for all 4 operating conditions.

No HCl or Cl₂ emission limits during holding and drossing operating conditions.
 No HF emission limits during holding, charging, or drossing operating conditions.

Company Source Designation Test Date	GM SMCO DC-67 11/12/2013	11/12/2013	11/12/2013	
	N 1			
Meter/Nozzle Information	P-1	P-2	P-3	Average
Meter Temperature Tm (F)	62.9	67.7	67.8	66.1
Meter Pressure - Pm (in, Hg)	30.0	29.9	30.0	30.0
Measured Sample Volume (Vm)	35.1	33.8	38.0	35.6
Sample Volume (Vm-Std ft3)	35.7	34.1	38.3	36.0
Sample Volume (Vm-Std m3)	1.01	0.96	1.08	1.02
Condensate Volume (Vw-std)	0.269	0.222	0.655	0.382
Gas Density (Ps(std) lbs/ft3) (wet)	0.0743	0.0743	0.0741	0.0742
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	2.68	2.55	2.89	2.70
Total weight of sampled gas (m g lbs) (dry)	2.66	2.54	2.86	2.69
Nozzle Size - An (sq. ft.)	0.000185	0.000177	0.000185	0.000182
Isokinetic Variation - I	97.0	97.5	99.4	98.0
Stack Data				·
Average Stack Temperature - Ts (F)	58.4	58.1	57.3	57.9
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.8	28.8	28.7	28.7
Stack Gas Specific Gravity (Gs)	0.993	0.993	0.989	0,992
Percent Moisture (Bws)	0.75	0.65	1.68	1.03
Water Vapor Volume (fraction)	0.0075	0.0065	0.0168	0.0103
Pressure - Ps ("Hg)	28.8	28.8	28.8	28.8
Average Stack Velocity -Vs (ft/sec)	56.9	56.3	60.0	57.8
Area of Stack (ft2)	13.1	13.1	13.1	13.1
Exhaust Gas Flowrate		<u>-</u>		-
Flowrate ft ³ (Actual)	44,721	44,219	47,141	45,360
Flowrate ft ³ (Standard Wet)	43,853	43,385	46,330	44,523
Flowrate ft ³ (Standard Dry)	43,525	43,105	45,551	44,060
Flowrate m ³ (standard dry)	1,233	1,221	1,290	1,248
Total Particulate Weights (mg)				
Nozzle/Probe/Filter	21.9	16.8	24.3	21.0
Fotal Particulate Concentration				
lb/1000 lb (wet)	0.018	0.015	0.019	0.017
1b/1000 lb (dry)	0.018	0.015	0.019	0.017
ng/dscm (dry)	21.6	17.4	22.4	20.5
gr/dscf	0.0095	0.0076	0.0098	0.0090
Fotal Particulate Emission Rate				
lb/ hr	3.54	2.82	3.84	3.40

Table 4 EU-6ML-DC-67 Particulate Matter Emission Rates

ł

Table 5 EU-6ML-DC-67 VOC Emission Rates General Motors SMCO Saginaw, Michigan BTEC Project No. 13-4408 Sampling Dates: November 12, 2013

Parameter	Run 1	Run 2	Run 3	Average
Test Run Date	11/12/2013	11/12/2013	11/12/2013	
Test Run Time	9:15-10:15	11:00-12:00	13:58-14:58	
Outlet Flowrate (scfin)	43,853	43,385	46,330	44,523
Outlet VOC Concentration (ppmv as propane)	21.4	19.0	21.2	20.5
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	21.2	19.2	21,6	20.7
VOC Emission Rate as Propane (lb/hr)	6.4	5.6	6.7	6,3
VOC Emission Rate as Propane(lb/hr) (corrected as per USEPA 7E)	6.4	5.7	6.8	6.3

VOC Co	rrection		
Co	0.70	1.45	1,20
Cma	30.6	30.6	30,6
Cm	30.51	29.34	29.63

 $\label{eq:scfm} = standard cubic feet per minute \\ dsefm = dry standard cubic feet per minute \\ ppmv = parts per million on a volume-to-volume basis \\ lb/ar = pounds per hour \\ MW = molecular weight (C_3H_1 = 44,10) \\ 24.14 = molar volume of air at standard conditions (70°F, 29.92° Hg) \\ 35.31 = fl^3 per m^3 \\ 453600 = mg per lb$

Equations

ł .

lb/hr = ppmy * MW/24.14 * 1/35.31 * 1/453,600 * sc/m * 60 for VOC

Rev. 2.0 5/8/2012 BC

Table 6
EU-6CR-DC-69 Particulate Matter Emission Rates

Meter/Nozzle Information Meter Temperature Tm (F) Meter Pressure - Pm (in, Hg)	P-1 64.4	P-2	P-3-1			
,				P-3-2	P-3	Average
Vieter Pressure - Pm (in Hg)	20.0	69.9	67.4	70.5	69.0	67.8
	30.0	30.0	30.0	30.0	30.0	30.0
Measured Sample Volume (Vm)	45.0	46.2	20.6	20.9	41.5	44.3
Sample Volume (Vm-Std ft3)	46.2	46.9	21.0	21.0	42.0	45.0
Sample Volume (Vm-Std m3)	1,31	1.33	0.60	0.59	01.2	1.28
Condensate Volume (Vw-std)	0.080	0,363			0.231	0,225
Gas Density (Ps(std) lbs/ft3) (wet)	0.0745	0.0743	0.0744	0.0744	0.0744	0.0744
Jas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745	0.0745	0.0745
Fotal weight of sampled gas (m g lbs) (wet)	3.45	3.52	1.57	1.57	3.14	3.37
Fotal weight of sampled gas (m g lbs) (dry)	3.44	3.50	1.57	1.56	3.13	3.36
Nozzle Size - An (sq. ft.)	0.000254	0.000254	0.000254	0.000254		0.000254
sokinetic Variation - I	99.7	101.3	98.8	99.6	99.2	100.1
Stack Data			·····			
Average Stack Temperature - Ts (F)	48.8	49.2	50.0	50.0	50.0	49,3
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.8	28.8	28.8	28.8	28.8	28.8
Stack Gas Specific Gravity (Gs)	0.995	0,993	0.994	0.994	0.994	0.994
Percent Moisture (Bws)	0.17	0.77	0.55	0.55	0.55	0.50
Water Vapor Volume (fraction)	0.0017	0.0077	0.0055	0.0055	0.0055	0.0050
Pressure - Ps ("Hg)	29,0	29.0	29.0	29.0	29.0	29.0
Verage Stack Velocity -Vs (ft/sec)	50.3	50,7	46.7	46.3	46.5	49.2
Area of Stack (ft2)	13.1	13.1	13,1	13.1	13.1	13.1
Exhaust Gas Flowrate						
lowrate ft ³ (Actual)	39,502	39,795	36,688	36,351	36,520	38,606
Nowrate ft ³ (Standard Wet)	39,770	40,032	36,850	36.511	36,680	38,828
Howrate ft ³ (Standard Dry)	39,701	39,725	36,648	36,311	36,480	38,635
lowrate m ³ (standard dry)	1,124	1,125	1,038	1,028	1,033	1,094
Cotal Particulate Weights (mg)						
Nozzle/Probe/Filter	5.2	10.4			12.4	9.3
Cotal Particulate Concentration						
b/1000 lb (wet)	0.003	0.007			0.009	0.006
b/1000 lb (dry)	0.003	0.007			0.009	0.006
ng/dscm (dry)	4.0	7.8			10.4	7.4
tr/dscf	0.0017	0.0034			0.0046	0.0032
Year Year b/ hr	0.59	1.17		a 1	1.43	1.06

Note: Run 3 was paused during the port change and the meter box was changed from MB4 to MB3.

{

Í

ſ

Table 7
EU-6ML-EF-03 Particulate Matter Emission Rates

í.

Company	SMCO			
Source Designation	EF3		-	
Test Date	11/13/2013	11/Ì 3/2013	11/13/2013	
Meter/Nozzle Information	P-1	P-2	P-3	Average
Meter Temperature Tm (F)	71.0	78.9	81.9	77.2
Meter Pressure - Pm (in, Hg)	30.0	30.0	30.0	30.0
Measured Sample Volume (Vm)	53.4	54.2	50.3	52.7
Sample Volume (Vm-Std ft3)	53.4	53.4	49.2	52.0
Sample Volume (Vm-Std m3)	1.51	1.51	1.39	1.47
Condensate Volume (Vw-std)	0.858	0.500	0.505	0.621
Gas Density (Ps(std) lbs/ft3) (wet)	0.0741	0.0743	0.0742	0.0742
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	4.02	4.00	3.69	3.90
Total weight of sampled gas (m g lbs) (wet)	3.98	3.98	3.67	3.88
Nozzle Size - An (sq. ft.)	0.000398	0.000409	0.000398	0.000402
Isokinetic Variation - I	99.2	98.4	99.3	99.0
Stack Data				
				•
Average Stack Temperature - Ts (F)	76.2	78.8	81.6	78.8
Molecular Weight Stack Gas- dry (Md)	28.8	28.8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.7	28.7	28.7	28.7
Stack Gas Specific Gravity (Gs)	0.990	0.992	0.992	0.991
Percent Moisture (Bws)	1.58	0.93	1.01	1,17
Water Vapor Volume (fraction)	0.0158	0.0093	0.0101	0.0117
Pressure - Ps ("Hg)	29.7	29.7	29.7	29.7
Average Stack Velocity -Vs (ft/sec)	39.1	38.2	36.2	37.9
Area of Stack (ft2)	19.0	19.0	19.0	19.0
Exhaust Gas Flowrate			· · · · · · · · · · · · · · · · · · ·	
Flowrate ft ³ (Actual)	44,648	43,604	41,321	43,191
Flowrate ft ³ (Standard Wet)	43,591	42,367	39,939	41,966
Flowrate ft ³ (Standard Dry)	42,901	41,974	39,534	41,470
Flowrate m ³ (standard dry)	1,215	1,189	1,119	1,174
Fotal Particulate Weights (mg)				
Nozzle/Probe/Filter	26.4	25.5	22.6	24.8
Fotal Particulate Concentration			······································	
lb/1000 lb (wet)	0.014	0.014	0.013	0.014
lb/1000 lb (dry)	0.015	0.014	0.014	0.014
ng/dscm (dry)	17.5	16.9	16.2	16.8
gr/dscf	0.0076	0.0074	0.0071	0.0074
Fotal Particulate Emission Rate			·····	
lb/ hr	2.82	2.66	2.41	2.63

Company Source Designation Test Date	SMCO EF-4 11/11/2013	11/11/2013	11/12/2013	
	· · · · · · · · · · · · · · · · · · ·			
Meter/Nozzle Information	P-1	P-2	P-3	Average
Meter Temperature Tm (F)	64,5	73.8	67.3	68.5
Meter Pressure - Pm (in. Hg)	29.5	29.5	30.0	29.7
Measured Sample Volume (Vm)	47.9	48.7	47.5	48.0
Sample Volume (Vm-Std ft3)	48.0	47.9	48.0	47.9
Sample Volume (Vm-Std m3)	1.36	1.35	1.36	1.36
Condensate Volume (Vw-std)	0.330	0.391	0.387	0.369
Gas Density (Ps(std) lbs/ft3) (wet)	0.0743	0.0743	0.0743	0.0743
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	3.59	3.58	3.60	3.59
Total weight of sampled gas (m g lbs) (dry)	3.57	3.57	3.58	3.57
Nozzle Size - An (sq. ft.)	0.000327	0.000344	0.000327	0.000333
Isokinetic Variation - I	98.9	94.6	99.1	97.5
Stack Data				
Average Stack Temperature - Ts (F)	71.7	71.8	68.0	70.5
Molecular Weight Stack Gas- dry (Md)	28.8	28,8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.8	28.7	28.7	28.8
Stack Gas Specific Gravity (Gs)	0.993	0.993	0.993	0.993
Percent Moisture (Bws)	0.68	0.81	0.80	0.76
Water Vapor Volume (fraction)	0.0068	0.0081	0.0080	0.0076
Pressure - Ps ("Hg)	29.4	29.4	29.8	29.5
Average Stack Velocity -Vs (ft/sec)	42.5	42.3	41.6	42.1
Area of Stack (ft2)	19.0	19.0	19.0	19.0
Exhaust Gas Flowrate				· · · · · · · · · · · · · · · · · · ·
Flowrate ft ³ (Actual)	48,482	48,290	47,421	48,064
Flowrate ft ³ (Standard Wet)	47,255	47,057	47,240	47,184
Flowrate ft ³ (Standard Dry)	46,932	46,675	46,862	46,823
Flowrate m ³ (standard dry)	1,329	1,322	1,327	1,326
Total Particulate Weights (mg)	· · · · · · · · · · · · · · · · · · ·			
Nozzle/Probe/Filter	140.5	129.4	102.6	124.2
Total Particulate Concentration				
lb/1000 lb (wet)	0.086	0.080	0.063	0.076
lb/1000 lb (dry)	0.087	0.080	0.063	0.077
ng/dscm (dry)	103.5	95.5	75.5	91.5
gr/dscf	0.0452	0.0417	0.0330	0.0400
Fotal Particulate Emission Rate	10.07	1676	12.20	17.11
lb/ hr	18.26	16.76	13.30	16.11

Table 8 EU-6ML-EF-04 Particulate Matter Emission Rates

Rev. 11.0 1-25-13 BC Table 9 EU-6CR-ISO-04 VOC Emission Rates General Motors SMCO Saginaw, Michigan BTEC Project No. 13-4408 Sampling Dates: November 13, 2013

Run 1	Run 2	Run 3	Average
11/13/2013	11/13/2013	11/13/2013	
10:10-11:10	11:20-12:20	12:29-13:29	
7,108	6,460	6,891	6,820
91,2	108.7	124.9	108.2
89.6	105.5	121.3	105.5
4.4	4.8	5.9	5.0
4.4	4,7	5.7	4.9
	11/13/2013 10:10-11:10 7,108 91,2 89.6 4.4	11/13/2013 11/13/2013 10:10-11:10 11:20-12:20 7,108 6,460 91.2 108.7 89.6 105.5 4.4 4.8	11/13/2013 11/13/2013 11/13/2013 10:10-11:10 11:20-12:20 12:29-13:29 7,108 6,460 6,891 91.2 108.7 124.9 89.6 105.5 121.3 4.4 4.8 5.9

VOC Co	rrection		
Co	1,35	2,90	3,28
Cma	92.5	92,5	92.5
Cm	94.02	95.62	96.01

 $\label{eq:softm} = \mbox{standard}\ \mbox{cubic feet per minute} \\ \mbox{dscfm} = \mbox{dry standard}\ \mbox{cubic feet per minute} \\ \mbox{pnmv} = \mbox{parts per million on a volume-to-volume basis} \\ \mbox{Ibmv} = \mbox{pounds per hour} \\ \mbox{MW} = \mbox{molecular weight (C_3H_t = 44.10)} \\ \mbox{24.14} = \mbox{mole mole of air at standard conditions (70°F, 29.92° Hg)} \\ \mbox{25.31} = \mbox{ff}\ \mbox{prmv}^2 \mbox{prmv}^3 \\ \mbox{453600} = \mbox{mg per ib} \\ \end{tabular}$

Equations

lb/hr = ppmv * MW/24.14 * 1/35.31 * 1/453,600 * scfm * 60 for VOC

Rev. 2.0 5/8/2012 BC

Company	SMCO			
Source Designation Test Date		V-02 (Furnace) (Hold) 11/8/2013	
rest pate	11///2013	11///2013	11/0/2013	
Meter/Nazzie Information		P-2	P3	Averag
Meter Temperature Tm (F)	63,3	67.4	63.6	64.8
Meter Pressure - Pm (in. Hg)	29.5	29.5	29.6	29.5
Measured Sample Volume (Vm)	44.9	54.3	52.7	50.6
Sample Volume (Vm-Std ft3)	45.1	54.2	53.2	50.8
Sample Volume (Vm-Std m3)	1.28	1.54	1.51	1.44
Condensate Volume (Vw-std)	0.754	1.381	1.051	1.062
Gas Density (Ps(std) lbs/ft3) (wet)	0.0741 0.0745	0.0738	0.0740	0.074(
Gas Density (Ps(std) lbs/ft3) (dry) Fotal weight of sampled gas (m g lbs) (wet)	3.40	4.11	0.0745 4.01	3.84
Total weight of sampled gas (m g lbs) (wei)	3.36	4.04	3.96	3.79
Nozzie Size - An (sq. ft.)	0.000727	0.000727	0.000727	0.00072
Isokinetic Variation - 1	96.9	101.9	98.3	99.0
Sinck Data				
Average Stack Temperature - Ts (F)	194.1	268.0	270.4	244.2
Molecular Weight Stack Gas- dry (Md)	28.8	208.0	28.8	244.2
Molecular Weight Stack Gas-wet (Ms)	28.8	28.6	28.6	28.6
Stack Gas Specific Gravity (Gs)	0.990	0.986	0.988	0.988
Percent Moisture (Bws)	1.64	2.48	1.94	2.02
Water Vapor Volume (fraction)	0.0164	0.0248	0.0194	0,020
Pressure - Ps ("Hg)	29.3	29.3	29.4	29.4
Average Stack Velocity -Vs (ft/sec)	21.5	27.5	27.8	25,6
Area of Stack (fi2)	19.6	19.6	19.6	19.6
Exhaust Gas Flowrate				
Nowrate ft ³ (Actual)	25,258	32,392	32,751	30,134
Plowrate ft ³ (Standard Wet)	19,985	23,029	23,287	22,100
Nowrate ft ³ (Standard Dry)	19,656	22,456	22,836	21,650
Plowrate m ³ (standard dry)	557	636	647	613
Fotal Particulate Weights (mg)				
Fotal Nozzle/Probe/Filter	0.3	0.1	0.0	
Drganic Condensible Particulate				0.1
- D	1.0	3,1	1,8	0.1 2.0
norganic Condensible Particulate	1.0 1.8	3.1 3.2	1.8 2.1	
		3.2 1.4		2.0 2.4 1.4
norganic Condensible Particulate	1.8	3.2	2.1	2.0 2.4
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate	1.8 1.4	3.2 1.4	2.1 1.4	2.0 2.4 1.4
norganic Condensible Particulate Condensible Blank Correction Fotal Condensible Particulate Fotal Filterable and Condensible Particulate Merable Particulate Concentration	1.8 1.4 1.4 1.7	3.2 1.4 4.9 5.0	2.1 1.4 2.5 2.5	2.0 2.4 1.4 2.9 3.1
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate Potal Filterable and Condensible Particulate Particulate Concentration	1.8 1.4 1.4 1.7	3.2 1.4 4.9 5.0	2.1 1.4 2.5 2.5	2.0 2.4 1.4 2.9 3.1
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate Potal Filterable and Condensible Particulate Concentration Particulate Concentration (b/1000 lb (wet) b/1000 lb (dry)	1.8 1.4 1.4 1.7 0.000 0.000	3.2 1.4 4.9 5.0 0.000 0.000	2.1 1.4 2.5 2.5 0.000 0.000	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate Particulate and Condensible Particulate Particulate Concentration (1000 lb (wet) b/1000 lb (dry) ng/dscm (dry)	1.8 1.4 1.4 1.7 0.000 0.000 0.2	3.2 1.4 4.9 5.0 0.000 0.000 0.1	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.00	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.1
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Afferable Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) ag/dsen (dry) r/dsef	1.8 1.4 1.4 1.7 0.000 0.000	3.2 1.4 4.9 5.0 0.000 0.000	2.1 1.4 2.5 2.5 0.000 0.000	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.1
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Afferable Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) ag/dsen (dry) r/dsef Elferable Particulate Emission Rate	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.0001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.0 0.000	2.0 2.4 1.4 2.9 3.1
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate Total Filterable and Condensible Particulate (Mterable Particulate Concentration (Mterable Particulate Concentration) (Mterable Particulate Concentration) (Mterable Particulate Concentration) (Mterable Particulate Emission Rate	1.8 1.4 1.4 1.7 0.000 0.000 0.2	3.2 1.4 4.9 5.0 0.000 0.000 0.1	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.00	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.1
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Atterable Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) ng/dscm (dry) r/dscf <u>Hterable Particulate Emission Rate</u> b/ hr condensible Particulate Concentration	1.8 1.4 1.4 1.7 0.000 0.2 0.000 0.2 0.0001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.1 0.001	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.0000 0.1 0.0000
norganic Condensible Particulate Condensible Blank Correction Total Condensible Particulate Total Filterable and Condensible Particulate (Interable Particulate Concentration (Interable Particulate Concentration) (Interable Particulate Concentration) (Interable Particulate Emission Rate (Interable Particulate Emission Rate) (Interable Particulate Concentration) (Interable Particulate Concentration) (Interable Particulate Concentration)	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.0001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.0 0.0000	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.1 0.000 0.01
norganic Condensible Particulate Condensible Blank Correction Fotal Condensible Particulate Fotal Filterable and Condensible Particulate	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.0001 0.001 0.001 0.001 1.1	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.01 0.001 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.1 0.0000
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'filterable Particulate Concentration b/1000 lb (dry) ng/dscm (dry) r/dscf <u>Elterable Particulate Emission Bate</u> b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (dry) ng/dscm (dry)	1.8 1.4 1.4 1.7 0.000 0.000 0.0001 0.001 0.001 0.001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.001 0.003 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.01 0.002 0.002 0.002
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Afferable Particulate Concentration 'Di (dry) b/1000 lb (wet) b/1000 lb (dry) r/dscf <u>Efferable Particulate Emission Rate</u> b/ hr Condensible Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) r/dscf Gordensible Particulate Emission Rate	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.000 0.001 0.001 0.001 1.1 0.0005	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.001 0.003 0.003 0.003 3.2	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 1.7	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.1 0.000 0.01 0.002 0.002 2.0 0.0009
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Affectable Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) n/dsef Bleinble Particulate Emission Rate b/ hr Sondensible Particulate Concentration b/1000 lb (dry) ng/dsem (dry) ng/dsem (dry) r/dsef	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.0001 0.001 0.001 0.001 1.1	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.001 0.003 0.003 0.003 3.2	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 0.001 1.7 0.0007 0.14	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.1 0.000 0.01
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Therable Particulate Concentration (b/1000 lb (wet) b/1000 lb (dry) ng/dscf <u>Elfernble Particulate Emission Bate</u> b/ hr Condensible Particulate Concentration (dry) b/1000 lb (wet) b/1000 lb (dry) g/dscm (dry) r/dscf	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.000 0.001 0.001 0.001 1.1 0.0005	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.01 0.003 0.003 3.2 0.0014	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 0.001 1.7 0.0007	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.1 0.000 0.01
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Inferable Particulate Concentration 'b/1000 lb (wet) b/1000 lb (dry) ng/dscn (dry) r/dscf Blerable Particulate Emission Rate b/ hr 'ondensible Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) ng/dscm (dry) r/dscf Sondensible Particulate Emission Rate b/ hr 'ofal Particulate Concentration b/ hr	1.8 1.4 1.4 1.7 0.000 0.000 0.2 0.000 0.001 0.001 0.001 1.1 0.0005	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.01 0.003 0.003 3.2 0.0014 0.27 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 0.001 1.7 0.0007 0.14	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.1 0.000 0.000 0.000 2.0 0.0002 2.0 0.0000 0.000 0.000 0.000
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Ilterable Particulate Concentration 'b/1000 lb (wet) b/1000 lb (dry) ng/dscf 'Ilterable Particulate Emission Bate b/ hr 'ondensible Particulate Concentration 'b/1000 lb (dry) ng/dscm (dry) r/dscf 'ondensible Particulate Emission Rate 'b/ hr 'ofal Particulate Concentration 'b/ hr	1.8 1.4 1.4 1.7 0.000 0.000 0.000 0.2 0.0001 0.001 0.001 1.1 0.0005 0.08 0.001 0.001 0.001 0.001 0.001 0.001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.01 0.003 0.003 0.0014 0.27 0.003 0.003 0.003 0.003 0.003 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 0.001 1.7 0.0007 0.14	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.000 0.002 0.002 2.0 0.0002 0.000 0.0002 0.0002 0.0002 0.0002 0.0002
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Ilterable Particulate Concentration 'b/1000 lb (wet) b/1000 lb (dry) ng/dscm (dry) r/dscf 'ondensible Particulate Emission Bate b/ hr 'ondensible Particulate Concentration b/1000 lb (dry) ng/dscm (dry) r/dscf 'ondensible Particulate Emission Rate 'b/ hr 'ordal Particulate Concentration b/ hr 'ordal Particulate Concentration b/ hr 'b/ hr	1.8 1.4 1.4 1.7 0.000 0.000 0.000 0.2 0.0001 0.001 0.001 1.1 0.0005 0.08 0.001 0.001 1.3	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.1 0.0000 0.003 0.003 3.2 0.0014 0.27 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 0.001 1.7 0.0007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.7	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.000 0.002 2.0 0.0002 2.0 0.0002 0.0002 2.2 0.0002 2.2 0.0002 2.2 0.0002 2.2 0.0002 2.1
norganic Condensible Particulate Condensible Blank Correction 'otal Condensible Particulate 'otal Filterable and Condensible Particulate 'Hterable Particulate Concentration b/1000 lb (wet) b/1000 lb (dry) r/dsef Hterable Particulate Emission Bate b/ hr 'ondensible Particulate Concentration b/1000 lb (dry) ng/dscm (dry) r/dsef Condensible Particulate Emission Rate b/ hr b/ 1000 lb (wet) b/ 1000 lb (dry)	1.8 1.4 1.4 1.7 0.000 0.000 0.000 0.2 0.0001 0.001 0.001 1.1 0.0005 0.08 0.001 0.001 0.001 0.001 0.001 0.001	3.2 1.4 4.9 5.0 0.000 0.000 0.1 0.0000 0.01 0.003 0.003 0.0014 0.27 0.003 0.003 0.003 0.003 0.003 0.003	2.1 1.4 2.5 2.5 0.000 0.000 0.000 0.000 0.001 1.7 0.0007 0.001 0.14 0.001 0.001 0.001 0.001 0.001	2.0 2.4 1.4 2.9 3.1 0.000 0.000 0.000 0.000 0.002 0.002 2.0 0.0002 0.000 0.0002 0.0002 0.0002 0.0002 0.0002

٠

.

Table 10
EU-6ML-GV-02 (Furnace) Particulate Matter Emission Rates (Hold)

{

 Table 11

 EU-6ML-GV-02 (Furnace) Particulate Matter Emission Rates (Flux and Dross)

ς.

i

ĺ

Source Designation Test Date		/-02 (Flux and Dross) 11/8/2013
Meter/Nozzle Information	<u></u>	
Meter Temperature Tm (F)	71.1	75.0
Meter Pressure - Pm (in. Hg)	29.5	29.7
Measured Sample Volume (Vm)	26.9	54,9
Sample Volume (Vm-Std ft3)	26.6	54.3
Sample Volume (Vm-Std m3)	0.75	1.54
Condensate Volume (Vw-std)	0.231	0.882
Gas Density (Ps(std) lbs/ft3) (wet)	0.0743	0.0741
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	2.00	4.09
Total weight of sampled gas (m g lbs) (dry) Nozzle Size - An (sq. ft.)	1.99	4.05
Isokinetic Variation - I	0.000380 80.2	0.000727 101.7
Stack Data	<u></u>	
Average Stack Temperature - Ts (F)	239.7	240.7
Molecular Weight Stack Gas- dry (Md)	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.7	28.7
Stack Gas Specific Gravity (Gs)	0.993	0.990
Percent Moisture (Bws)	0.86	1.60
Water Vapor Volume (fraction)	0.0086	0.0160
Pressure - Ps ("Hg)	29.4	29.5
Average Stack Velocity -Vs (fl/sec)	27.3	26.2
Area of Stack (ft2)	19.6	19.6
Exhaust Gas Flowrate	·····	·····
Flowrate ft ³ (Actual)	32,155	30,860
Flowrate ft ³ (Standard Wet)	23,866	22,911
Flowrate ft ³ (Standard Dry)	23,660	22,545
Flowrate m ³ (standard dry)	670	638
Total Particulate Weights (mg)		
Total Nozzle/Probe/Filter	43.7	40.8
Organic Condensible Particulate	2.3	1.8
Inorganic Condensible Particulate	7.3	1.4
Condensible Blank Correction	1.4	1.4
Total Condensible Particulate	8.2	1.8
Total Filterable and Condensible Particulate	51.9	42.6
Fillerable Particulate Concentration		
1b/1000 lb (wet)	0.048	0.022
lb/1000 lb (dry)	0.049	0.022
ng/dscm (dry)	57.9	26.5
g/dscf	0.0253	0.0116
fultrinble Particulate Emission Rate	<u> </u>	<u></u>
lb/ hr Condenated a Mariatanda da Consonabilitation	5,15	2.25
Condensible Particulate Concentration	<u></u>	0.001
16/1000 lb (dry)	0.009 0.009	0.001 0.001
ng/dscm (dry)	10.9	1,2
μ/dsof	0.0047	0.0005
Condensible Particulate Emission Rate		
lb/ hr	0.97	0.10
Total Particulate Concentration		
	0,057	0.023
lb/1000 lb (wet)		0.000
	0.058	0.023
lb/1000 lb (wet) lb/1000 lb (dry) ng/dscm (dry)	68.8	27.7
lb/1000 lb (dry)		

Table 12
EU-6ML-GV-02 (Furnace) HCl, HF, and Cl, Emission Rates (Hold)
se onthe of os (runnee) rich rich and of Emission runne (Lond)

		-02 (Furnace	i Hala	
Source Designation Test Date			11/8/2013	
******	<u></u>	<u></u>		
Méter/Nozzle Information	66060600000 . P-10000	·····P-2·····	·····P-3	Average
Meter Temperature Tm (F)	61.3	67.7	70.2	66.4
Meter Pressure - Pin (in. Hg)	29.4	29,5	29.6	29.5
Measured Sample Volume (Vm)	49.3	56.7	56.2	54.1
Sample Volume (Vm-Std ft3)	48.3	55.1	54.5	52.6
Sample Volume (Vm-Std m3)	1.37	1.56	1.54	1.49
Condensate Volume (Vw-std)	0.773	1.386	1.264	1.141
Gas Density (Ps(std) lbs/ft3) (wet)	0.0741	0.0738	0.0739	0.0739
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	0.0745	0.0745
Total weight of sampled gas (m g lbs) (wet)	3.64	4.17	4.12	3.98
Total weight of sampled gas (m g lbs) (dry)	3.60	4.11	4.06	3.92
Nozzle Size - An (sq. ft.)	0.000715	0.000715	0.000715	0.00071
Isokinetic Variation - I	97.8	99.5	97.7	98.3
Sfack Dafa				
Average Stack Temperature - Ts (F)	187.9	269.1	268.6	241.9
Molecular Weight Stack Gas- dry (Md)	28,8	28,8	28.8	28.8
Molecular Weight Stack Gas-wet (Ms)	28.7	28,6	28.6	28.6
Stack Gas Specific Gravity (Gs)	0.990	0,987	0.987	0.988
Percent Móisture (Bws)	1.57	2.45	2.27	2.10
Water Vapor Volume (fraction)	0.0157	0.0245	0.0227	0.0210
Pressure - Ps ("Hg)	29.3	29.3	29.4	29.4
Average Stack Velocity -Vs (fl/sec)	22.9	29,1	29.2	27.1
Area of Stack (ft2)	19.6	19.6	19.6	19.6
Exhaust Gas Flowrate				
Flowrate ft ³ (Actual)	26,980	34,289	34,341	31,870
Flowrate ft ³ (Standard Wet)	21,551	24,341	24,479	23,457
Flowrate ft ³ (Standard Dry)	21,212	23,744	23,924	22,960
Flowrate m ³ (standard dry)	601	672	677	650
Tóral HCt Weight (ug)				
Sample Catch	0	0	0	0
Blank correction	0	0	0	0
fotal	0	0	0	0
Total HCI Concentration				
Ib/1000 lb (wet)	0.000	0.000	0.000	0.000
lb/1000 lb (dry)	0.000	0.000	0.000	0.000
ng/dscm (dry)	0.0	0.0	0,0	0.0
Total HCI Emission Rate				
lb/ hr	0.00	0.00	0.00	0.00
fotal HF Weight (ug)	*********************		<u></u>	<u></u>
ample Catch	0	290	250	180
Blank correction Total	0	0 290	0 250	0 180
Total HF Concentration				·····
b/1000 lb (wet)	0.000	0.000	0.000	0.000
b/1000 lb (dry)	0.000	0.000	0.000	0.000
ng/dscm (dry)	0.0	0.000	0.2	0.1
fotal HF.Emission Rate		<u></u>		<u> </u>
b/ hr	0.00	0.02	0.01	0.01
fotal CL ₂ Weight (ug)				
ample Catch	0	0	0	0
Blank correction	0	0	0	0
Total	0	0	0	0
ofal Cl, Concentration				
b/1000 lb (wet)	0.000	0.000	0.000	0.000
b/1000 lb (dry)	0.000	0.000	0.000	0.000
ng/dscin (dry)	0.0	0.0	0,0	0,0
fotalClj Emission Rate			•••••••••••••••••••	<u></u>

Company		• • • • • • • • • • • • • • • • • • • •	
Company			
	SMCO		
Bull 1 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4 - 4 - 4			
Source Designation		-02 (Finx and Dro	
Test Date	11/8/2013	11/8/2013	
<u> </u>		<u></u>	
	Flux	Dross	
Meter/Nozzle Information	·····P-4····	·····P·S·······	· · · · · :
Matas Transcontors (Transf	76.0	00.1	
Meter Temperature Tm (F)	76.0	88.1	
Meter Pressure - Pm (in. Hg)	29.6	29.7	
Measured Sample Volume (Vm)	59.4	60,4	
Sample Volume (Vm-Std ft3)	57.0	56.8	
Sample Volume (Vm-Std m3)	1.61	1.61	
Condensate Volume (Vw-std)	1.122	0.783	
Gas Density (Ps(std) lbs/ft3) (wet)	0.0740	0.0741	
Gas Density (Ps(std) lbs/ft3) (dry)	0.0745	0.0745	
Total weight of sampled gas (m g lbs) (wet)	4.30	4.27	
Total weight of sampled gas (m g lbs) (dry)	4.25	4.23	
Nozzle Size - An (sq. ft.)	0.000715	0.000715	
sokinetic Variation - I	100.1	99.6	
		22.0	
Stack Data			
		· /	
Annual Or I man and man	604 /	041.0	
Average Stack Temperature - Ts (F)	282.6	241.0	
violecular Weight Stack Gas- dry (Md)	28.8	28.8	
Molecular Weight Stack Gas-wet (Ms)	28.6	28,7	
Stack Gas Specific Gravity (Gs)	0.988	0.991	
Percent Moisture (Bws)	1.93	1,36	
Water Vapor Volume (fraction)	0.0193	0.0136	
ressure - Ps ("Hg)	29.4		
		29.5	
Average Stack Velocity -Vs (ft/sec)	30.3	28.4	
Area of Stack (ft2)	19.6	19.6	
They of Stack (112)	19.0	19.0	
			_
Exhaust Gas Flowrate			
		<u></u>	
Towrate ft ³ (Actual)	35,655	33,412	
Towrate ft ³ (Standard Wet)	•		
Howrate II (Standard wet)	24,936	24,795	
Howrate ft ³ (Standard Dry)		-	
Flowrate ft ³ (Standard Dry)	24,455	24,457	
Flowrate ft ³ (Standard Dry) Flowrate m ³ (standard dry)		-	
Flowrate ft ³ (Standard Dry) Flowrate m ³ (standard dry)	24,455	24,457	
Flowrate ft ³ (Standard Dry) Flowrate m ³ (standard dry)	24,455	24,457	
Flowrate ft ³ (Standard Dry)	24,455	24,457	<u></u>
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (ug)	24,455 692	24,457 693	<u>.</u>
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch	24,455 692 4800	24,457	<u>.</u>
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCL Weight (hg) Sample Catch	24,455 692	24,457 693	<u></u>
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (ng) Sample Catch Blank correction	24,455 692 4800 0	24,457 693 410 0	<u></u>
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Blank correction	24,455 692 4800	24,457 693 410	<u></u>
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Blank correction	24,455 692 4800 0	24,457 693 410 0	<u></u>
Towrate ft ³ (Standard Dry) Towrate ru ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Fotal	24,455 692 	24,457 693 410 0 410	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fotal HCt Weight (ug) Sample Catch Blank correction Fotal Fotal HCt Concentration	24,455 692 	24,457 693 410 0 410	
Towrate ft ³ (Standard Dry) Towrate ru ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Fotal	24,455 692 	24,457 693 410 0 410	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Blank correction Total Total HCf Concentration	24,455 692 4800 0 4800 2,0002	24,457 693 410 0 410 0.000	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCI Weight (hg) Sample Catch Blank correction Total Fotal HCI Concentration	24,455 692 4800 0 4800 	24,457 693 410 0 410 0,000 0,000 0,000	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fotal HCI Weight (hg) Sample Catch Blank correction Total Total HCI Concentration (b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry)	24,455 692 4800 0 4800 2,0002	24,457 693 410 0 410 0.000 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Blank correction Fotal Fotal HCf Concentration Fotal HCf Concentration Fotal HCf Concentration Fotal HCf Concentration	24,455 692 4800 0 4800 	24,457 693 410 0 410 0.000 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Foral HCt Weight (ug) Sample Catch Blank correction Total Total HCf Concentration (10/1000 lb (wet) lb/1000 lb (dry) ng/dsem (dry) Total HCf Emission Rate	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0	24,457 693 410 0 410 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Sample Catch Slank correction Total HCf Concentration: b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry) orial HCf Emission Rate b/ hr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 2.27	24,457 693 410 0 410 0.000 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Sample Catch Slank correction Total HCf Concentration: b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry) orial HCf Emission Rate b/ hr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0	24,457 693 410 0 410 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Sample Catch Slank correction Total HCf Concentration: b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry) orial HCf Emission Rate b/ hr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 2.27	24,457 693 410 0 410 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCI Weight (hg) Sample Catch Slank correction Total Total HCI Concentration Total HCI Concentration Ib/1000 lb (dry) Ib/1000 lb (dry) Ib/1000 lb (dry) Ordal HCI Emission Rate Ib/ hr Total HE Weight (ug):	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27	24,457 693 410 0 410 0,000 0,000 0,3 0,02	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Blank correction Total Total HCf Concentration Total HCf Concentration Ib/1000 lb (uvt) Ib/1000 lb (dry) ng/dscm (dry) Total HCf Emission Rate Ib' hr Total HCf Weight (ug) sample Catch	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 2.27	24,457 693 410 0 410 0.000 0.000 0.3	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Blank correction Total Total HCf Concentration Total HCf Concentration Ib/1000 lb (uvt) Ib/1000 lb (dry) ng/dscm (dry) Total HCf Emission Rate Ib' hr Total HCf Weight (ug) sample Catch	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (ng) Sample Catch Slank correction Total HCt Concentration Total HCt Concentration Fotal HCt Concentration Total HCt Emission Rate Ib/1000 lb (dry) ng/dsem (dry) Total HCt Emission Rate Ib/ hr Total HC Weight (ng) Sample Catch Slank correction	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 27000 0	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690 0	
Iowrate m³ (Standard Dry) Iowrate m³ (standard dry) Fofal HCt Weight (ng) Sample Catch Slank correction Total HCf Concentration Total HCf Emission Rate b/1000 lb (dry) ng/dsem (dry) Total HCf Emission Rate b' hr Total HCf Emission Rate b' hr Total HCf Emission Rate b' hr Total HCf Emission Rate Banple Catch Blank correction	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27 27000	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (ng) Sample Catch Slank correction Total HCt Concentration Total HCt Concentration Fotal HCt Concentration Total HCt Emission Rate Ib/1000 lb (dry) ng/dsem (dry) Total HCt Emission Rate Ib/ hr Total HC Weight (ng) Sample Catch Slank correction	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 27000 0	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690 0	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCL Weight (ug) Sample Catch Slank correction Total Total HCl Concentration Total HCl Concentration Ib/1000 Ib (wet) Ib/1000 Ib (dry) ng/dsem (dry) Total HCl Emission.Rate Ib/In Total HCl Emission.Rate Ib/In Ib	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 27000 0	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690 0 690	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (hg) Sample Catch Slank correction Total Total HCt Concentration Total HCt Concentration Information Rate Information Rate In	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690 0 690	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (hg) Sample Catch Slank correction Total Total HCf Concentration Total HCf Concentration Total HCf Emission Rate to 'nr Total HCf Emission Rate to 'nr Total HE Weight (hg) ample Catch Slank correction Total Stat HF Concentration Stat HF Concentration	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 3.0 27000 0	24,457 693 410 0 410 0.000 0.000 0.3 0.02 690 0 690 0 690	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (hg) Sample Catch Slank correction Total Total HCf Concentration Total HCf Concentration Total HCf Emission Rate to 'nr Total HCf Emission Rate to 'nr Total HE Weight (hg) ample Catch Slank correction Total Stat HF Concentration Stat HF Concentration	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27 27000 0 27000 0 27000	24,457 693 410 0 410 0,000 0,000 0,000 0,000 0,02 690 0 690 0 690	
lowrate ft ³ (Standard Dry) lowrate m ³ (standard dry) Fotal HCt Weight (ug) sample Catch slank correction Total Total HCl Concentration b/1000 lb (wet) b/1000 lb (dry) ig/dsem (dry) otal HCt Emission Rate b/ hr otal HE: Weight (ug): ample Catch slank correction otal tal HF Concentration b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (dry)	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 0,014 0,014	24,457 693 410 0 410 0.000 0.000 0.3 690 0 690 0 690 0 690 0 690	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Mank correction Total HCf Concentration Total HCf Concentration b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry) ofal HCf Emission Rate b' hr ofal HF: Weight (ug) ample Catch Mank correction total for the Concentration b/1000 lb (dry) notal HCf Concentration total HF Concentration b/1000 lb (dry) ng/dsem (dry)	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 0.014 0.014	24,457 693 410 0 410 0.000 0.000 0.3 690 690 690 0.000 0.000 0.000 0.000 0.000 0.04	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration: b/1000 lb (wet) b/1000 lb (dry) ng/dsem (dry) orial HCf Emission Rate b/ hr orial HF.Weight (ug) sample Catch Slank correction Total HF.Concentration total b/ 1000 lb (dry) ig/dsem (dry) g/dsem (dry)	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 0.014 0.014	24,457 693 410 0 410 0.000 0.000 0.3 690 690 690 0.000 0.000 0.000 0.000 0.000 0.04	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight(ug) Sample Catch Slank correction Total Total HCf Concentration Solution (Standard HC) Solution (Standard HC) Solu	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27 27000 0 27000 0 27000 0 27000	24,457 693 410 0 410 0.000 0.000 0.3 690 690 0 690 0.000 0.000 0.000 0.000 0.04	
lowrate ft ³ (Standard Dry) lowrate m ³ (standard dry) Fotal HCt Weight (ng) ample Catch blank correction Total Total HCf Concentration b/1000 lb (wet) b/1000 lb (dry) g/dscm (dry) of al HCf Emission Rate b/ hr Total HF Concentration total HF Concentration b/ 1000 lb (wet) b/ 1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (dry) g/dscm (dry) of al HF Emission Rate b/ hr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0 410 0.000 0.000 0.3 690 690 690 0.000 0.000 0.000 0.000 0.000 0.04	
lowrate ft ³ (Standard Dry) lowrate m ³ (standard dry) Fotal HCt Weight (ng) ample Catch blank correction Total Total HCf Concentration b/1000 lb (wet) b/1000 lb (dry) g/dscm (dry) of al HCf Emission Rate b/ hr Total HF Concentration total HF Concentration b/ 1000 lb (wet) b/ 1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (wet) b/1000 lb (dry) g/dscm (dry) of al HF Emission Rate b/ hr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.27 27000 0 27000 0 27000 0 27000	24,457 693 410 0 410 0.000 0.000 0.3 690 690 0 690 0.000 0.000 0.000 0.000 0.04	
Iowrate ft ³ (Standard Dry) Iowrate rn ³ (standard dry) Fofal HCt Weight (ng) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Total HCf Emission Rate Softal HCf Explore Softal HCf Concentration Total HCf Emission Rate Softal HCf Emission Rate Softal HCf Emission Rate Softal HF Weight (ng) Total HF Concentration Total HF Concentration Softal HF Emission Rate Softal HF Emission Rate	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0 410 0.000 0.000 0.3 690 690 0 690 0.000 0.000 0.000 0.000 0.04	
Iowrate ft ³ (Standard Dry) Iowrate m ³ (standard dry) Fofal HCt Weight (hg) Sample Catch Mank correction Total Ioral HCf Concentration Ioral MCf Concentration Ioral HCf Emission Rate Ioral HE Weight (hg) Total HE Weight (hg) Total HE Concentration Total HE Concentration Ioral I HE Concentration	24,455 692 4800 0 4800 0.002 0.002 3.0 0.27 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 1.54	24,457 693 410 0 410 0,000 0,000 0,000 0,000 0,02 690 690 690 0 690 0 0,000000	
Iowrate ft ³ (Standard Dry) Iowrate m ³ (standard dry) Fofal HCt Weight (hg) Sample Catch Mank correction Total Ioral HCf Concentration Ioral MCf Concentration Ioral HCf Emission Rate Ioral HE Weight (hg) Total HE Weight (hg) Total HE Concentration Total HE Concentration Ioral I HE Concentration	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0 410 0.000 0.000 0.3 690 690 0 690 0.000 0.000 0.000 0.000 0.04	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration: Ib/1000 lb (wet) Ib/1000 lb (dry) ng/dsem (dry) Orial HCf Emission Rate Ib/ hr Orial HF. Weight (ug) sample Catch Slank correction Total HF Concentration Total HF Conce	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.000 0.02 690 0 690 0 690 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.02	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Total HCf Emission Rate Is/1000 Ib (dry) ng/dscm (dry) Total HF. Weight (ug) Sample Catch Slank correction Total HF. Concentration Total HF. Concentr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.002 27000 0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0 410 0.000 0.000 0.3 690 690 690 0.0000 0.0000 0.0000 0.000000	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration: Ib/1000 lb (wet) Ib/1000 lb (dry) ng/dsem (dry) Orial HCf Emission Rate Ib/ hr Orial HF. Weight (ug) sample Catch Slank correction Total HF Concentration Total HF Conce	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.000 0.02 690 0 690 0 690 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.02	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Total HCf Emission Rate Is/1000 Ib (dry) ng/dscm (dry) Total HF. Weight (ug) Sample Catch Slank correction Total HF. Concentration Total HF. Concentr	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.002 27000 0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0 410 0.000 0.000 0.3 690 690 690 0.0000 0.0000 0.0000 0.000000	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCI Weight (hg) Sample Catch Slank correction Total Total HCI Concentration Total HCI Concentration Total HCI Emission Rate for hr Total HE Weight (hg) Total HE Weight (hg) Sample Catch Slank correction Total HF Concentration Solution S	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.002 27000 0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0,000 0,000 0,000 0,000 0,000 0,000 0,02 690 690 690 0 0,000 0,	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCI Weight (hg) Sample Catch Slank correction Total Total HCI Concentration Total HCI Concentration Total HCI Emission Rate b' hr Total HE Weight (ug) Sample Catch Slank correction Total HF Concentration b' 1000 lb (wet) b' 1000 lb (dry) gr/dsem (dry) Total HF Emission Rate b' hr Total Cl ₂ , Weight (hg) ample Catch shak correction Total Cl ₂ , Weight (hg) Total Cl ₂ , Weight (hg) Total Cl ₂ , Concentration	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 27000 0 0 0	24,457 693 410 0,000 0,000 0,000 0,000 0,000 0,002 690 690 690 690 0,000 0,000 0,000 0,000 0,000 0,000 0,04 0,04	
Towrate ft ³ (Standard Dry) Towrate m ³ (standard dry) Fofal HCI Weight (hg) Sample Catch Slank correction Total Total HCI Concentration Total HCI Concentration Total HCI Emission Rate b' hr Total HE Weight (ug) Sample Catch Slank correction Total HF Concentration b' 1000 lb (wet) b' 1000 lb (dry) gr/dsem (dry) Total HF Emission Rate b' hr Total Cl ₂ , Weight (hg) ample Catch shak correction Total Cl ₂ , Weight (hg) Total Cl ₂ , Weight (hg) Total Cl ₂ , Concentration	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 0.002 27000 0 27000 0 27000 0 27000 0 27000 0 0.014 0.014 0.014 16.7 	24,457 693 410 0,000 0,000 0,000 0,000 0,000 0,000 0,02 690 690 690 0 0,000 0,	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Ib/1000 lb (wet) Ib/1000 lb (dry) ng/dsem (dry) Orial HCf Emission Rate Ib/ hr Orial HF Weight (ug) sample Catch Slank correction Total HF Concentration Total HF Emission Rate Ib/ hr Orial Cl ₂ ; Weight (ug) Stal Cl ₂ ; Concentration Orial	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.000 0.02 690 0 690 0 690 0.000 0.000 0.000 0.04 0.04 0.04 0.04	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Total HCf Emission Rate Is/1000 Ib (wet) Is/1000 Ib (dry) rotal HF. Weight (ug) Sample Catch Slank correction Total HF. Concentration Total HF. Emission Rate Is/1000 Ib (dry) Ig/dsem (dry) Total HF. Emission Rate Is/1000 Ib (dry) Ig/dsem (dry) Total HF. Emission Rate Is/1000 Ib (dry) Ig/dsem (dry) Total HF. Emission Rate Is/1000 Ib (wet) Is/1000 Ib	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.3 690 0 0.000 0.000 0.4 0.000 0.04 0 0 0.04	
Howrate ft ³ (Standard Dry) Howrate m ³ (standard dry) Fofal HCt Weight (ug) Sample Catch Blank correction Total HCf Concentration Total HCf Concentration Solal HCf Emission Rate Solal HC Emission Rate Stat HC Emission Rate Stat HF Weight (ug) ample Catch Mank correction Stat HF Concentration Solal HF Weight (ug) anaple Catch Blank correction Stat HF Concentration Solal HF Weight (ug) ample Catch Blank correction Stat HF Emission Rate Solal Cl ₂ , Weight (ug) ample Catch Bank correction Stat HF Emission Rate Solal Cl ₂ , Weight (ug) Stat HF Emission Rate Solal Cl ₂ , Weight (ug)	24,455 692 4800 0 4800 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.000 0.02 690 0 690 0 690 0.000 0.000 0.000 0.04 0.04 0.04 0.04	
Towrate ft ³ (Standard Dry) Towrate rn ³ (standard dry) Foral HCt Weight (ug) Sample Catch Slank correction Total HCf Concentration Total HCf Concentration Ib/1000 lb (wet) Ib/1000 lb (dry) ng/dsem (dry) Orial HCf Emission Rate Ib/ hr Orial HF Weight (ug) sample Catch Slank correction Total HF Concentration Total HF Emission Rate Ib/ hr Orial Cl ₂ ; Weight (ug) Stal Cl ₂ ; Concentration Orial	24,455 692 4800 0 4800 0.002 0.002 0.002 3.0 27000 0 27000 0 27000 0 27000 0 27000 0 27000 0 0 0	24,457 693 410 0 410 0.000 0.000 0.3 690 0 0.000 0.000 0.4 0.000 0.04 0 0 0.04	

Table 13 EU-6ML-GV-02 (Furnace) HCl, HF, and Cl₂ Emission Rates (Flux and Dross)

Table 14 EU-6ML-GV-02 (Foreace) Nox, CO, and VOC Emission Rates (Hold) GM SMCO Foreace BTEC Project No. 13-408.00

	~~	
Sampling Dates:	11	/7-8/13

Parameter	Rua 1	Rea 2	Rua 3	Average
	Hold	Hold	Hold	
Test Run Date	11/7/2013	11/7/2013	11/8/2013	1
Test Run Time	13:36-14:45	15:25-16:37	7:53-9:01	
Outlet Flowrate (dscfm)	19,656	22,456	22,836	21,650
Outlet Flowrate (scfm)	19,985	23,029	23,287	22,100
Oxygen Concentration (%, drift corrected as per USEPA 7E)	20.4	19.6	19.5	19.8
Carbon Dioxide Concentration (%, drift corrected as per USEPA 7E)	0.3	0.8	0.8	0.7
Outlet NOx Concentration (ppmv, corrected as per USEPA 7E)	1.9	4.0	4.2	3,4
NOx Emission Rate (lb/br) (corrected as per USEPA 7E)	0.3	0.6	0.7	0.5
Outlet CO Concentration (ppmy, corrected as per USEPA 7E)	4.7	93	10.2	8.0
CO Emission Rate (lb/hr) (corrected as per USEPA 7E)	0.4	0.9	1.0	0.8
Outlet VOC Concentration (ppmv as propane)	6.5	10.6	12.4	9.8
Outlet Methane Concentration (ppmv as methane)	12.1	21,4	24,6	19.3
Outlet VOC Concentration (ppmy, corrected as per USEPA 7E)	6.4	10.8	12.3	9.8
Outlet Methane Concentration (ppm v, corrected as per USEPA 7E)	12.2	22.1	24.6	19.6
Outlet VOC Concentration (ppmv propane, -Methane)	1.1	1.0	13	1.1
Outlet VOC Concentration (ppmy propane, -Methane, corrected as per USEPA 7E)	0.9	0.8	1.2	1.0
VOC Emission Rate as Propane (lb/ar) (-Methane)	0.15	0.15	0.21	0.17
VOC Emission Rate as Propane(lb/br) (-Methane) (corrected as per USEPA 7E)	0.12	6,13	0.19	0,15

55.51 = 11 per m 453600 = mg per Ib Response factor obtained from introducing propano into methane analyzer:

Equations 1b/ar = ppax * MW/24.14 * 1/35.31 * 1/453,600 * sofar * 60 for VOC 15/ar = ppax * MW/24.14 * 1/35.31 * 1/453,600 * defar * 60

VOC Co			
Co	0.24	0.24	0.13
Crua	29,9	29.9	29.8
Cm	29.69	28.83	29,92
Methaue	Correction		
Co	0.24	0.09	0,19
		0.09 29.9	0,19

ĺ

2.22

Rev. 2.0 5/8/2012 BC

Ļ

.

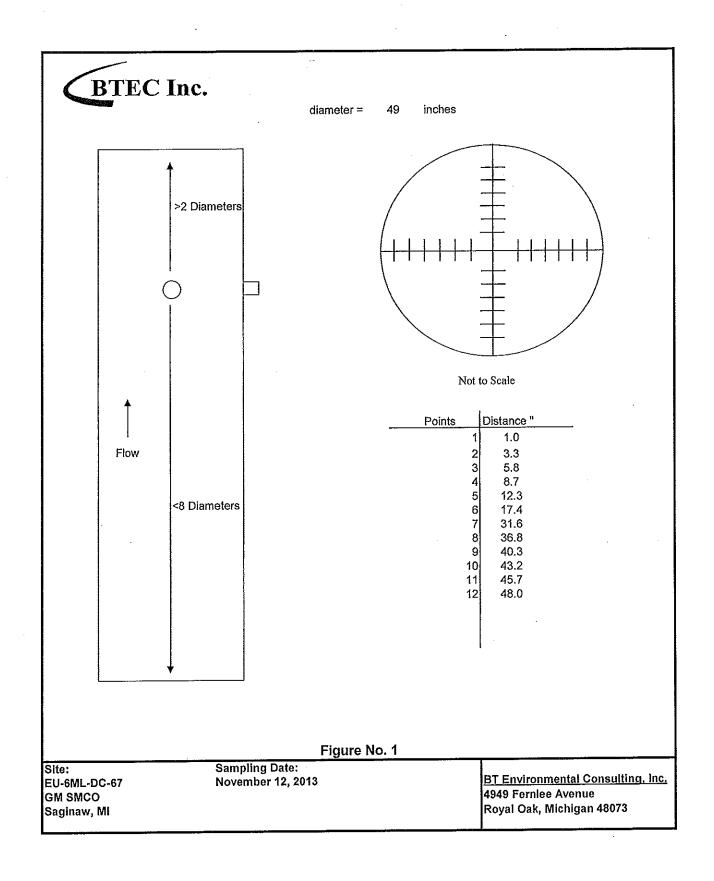
Table 15
EU-6ML-GV-02 (Furnace) Nox, CO, and VOC Emission Rates (Flux and Dross)
GM SMCO
Furnace
BTEC Project No. 13-4408.00
Sampling Dates: 11/7-8/13

Parameter	Run 4	Run 5
	Flux	Dross
Test Run Date	11/8/2013	11/8/2013
Test Run Time	10:13-11:57	13:26-14:34
Outlet Flowrate (dscfm)	23,660	22,545
Outlet Flowrate (scfm)	23,866	22,911
Outlet NOx Concentration (ppmv, corrected as per USEPA 7E)	3.7	3.0
NOx Emission Rate (lb/hr)	0,6	0.5
Outlet CO Concentration (ppmv, corrected as per USEPA 7E)	7.4	4.9
CO Emission Rate (lb/hr)	0,8	0.5
Outlet VOC Concentration (ppmv as propane)	12.9	9.4
Outlet Methane Concentration (ppmv as methane)	24.6	16.1
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	12.9	9.6
Outlet Methane Concentration (ppmv, corrected as per USEPA 7E)	24.9	16.7
Outlet VOC Concentration (ppmy propane, -Methane)	1.8	2.2
Outlet VOC Concentration (ppmv propane, -Methane, corrected as per USEPA 7E)	1.7	2.0
VOC Emission Rate as Propane(lb/hr) (-Methane) (corrected as per USEPA 7E)	0.27	0.32

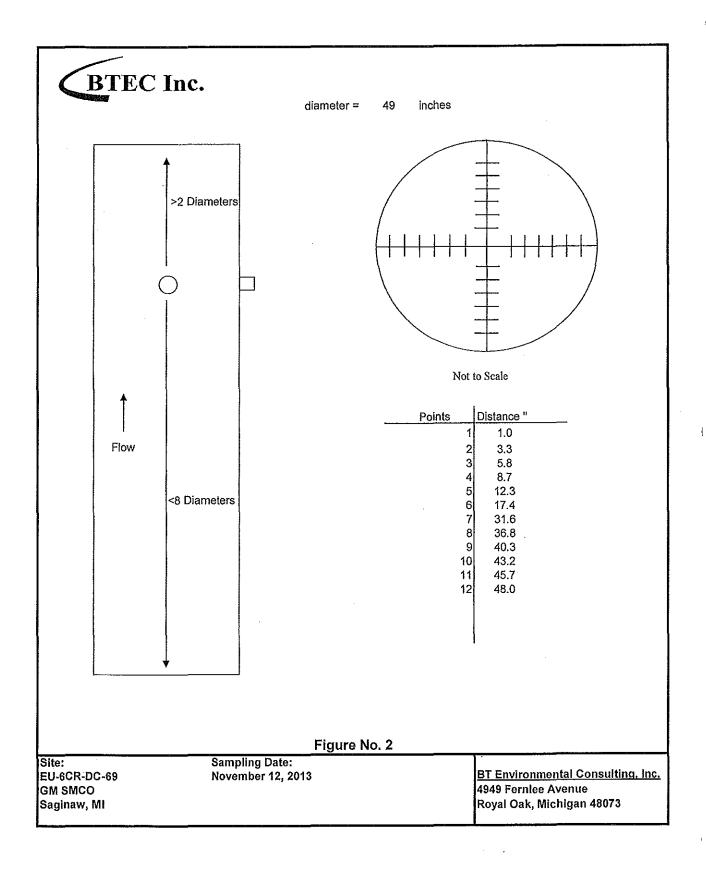
	rrection	
Co	0.17	0.18
Cma	29.8	29.8
Cm	29.57	29.09
Co	0.11	
Co Cma]	-0.09 29.9

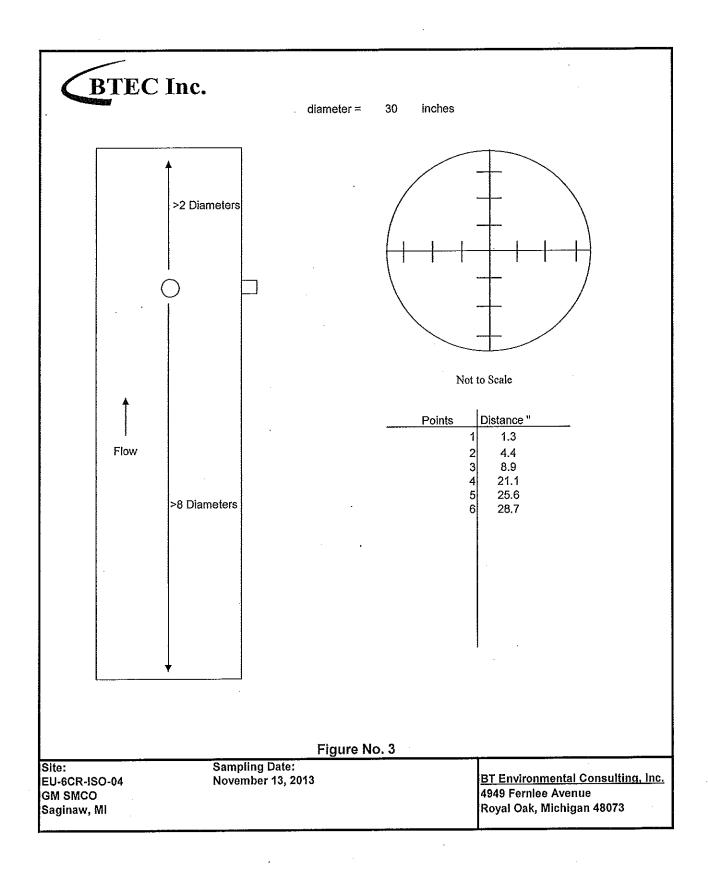
sofm = standard cubic feet per minute dscfm = dry standard cubic feet per minute ppmv = parts per million on a volume-to-volume basis lb/hr = pounds per hour $\begin{array}{l} \text{form} = \text{pourse per node} \\ \text{MW} = \text{molecular weight (CO = 28.01, NOx = 46.01, SO_2 = 64.05, C_2H_2 = 44.10)} \\ \text{24.14 = molar volume of air at standard conditions (70°F, 29.92° Hg)} \end{array}$ $35.31 = ft^3 \text{ per } m^3$ 453600 = mg per lb Response factor obtained from introducing propane into methane analyzer:

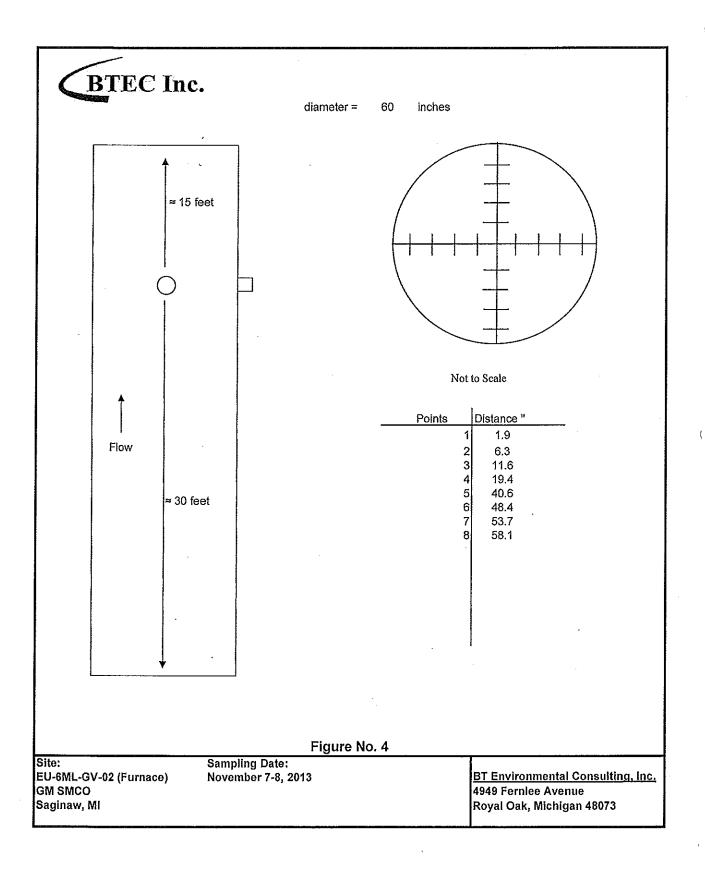
2.22

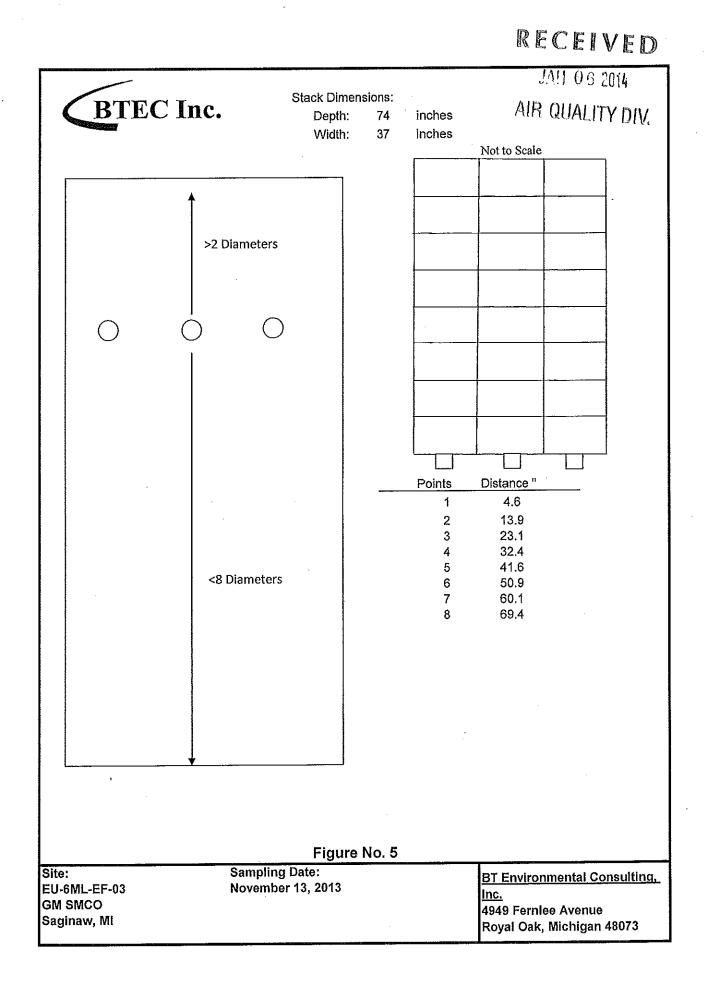

Co- Average of initial and final zero gases Cma=Actual concentration of the calibration gas Ib/hr = ppmv * MW/24.14 * 1/35.31 * 1/453,600 * dc/m * 60 $Conc_{@15502} = Conc * (20.9 - 15)/(20.9 - %O_2)$

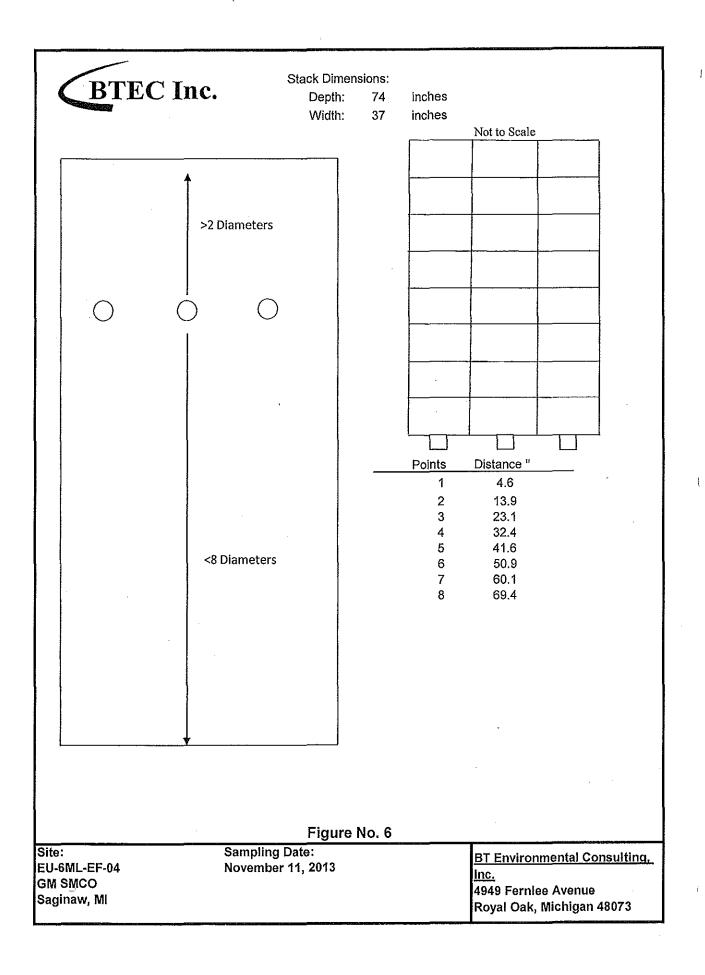
Rev. 2.0 5/8/2012 BC

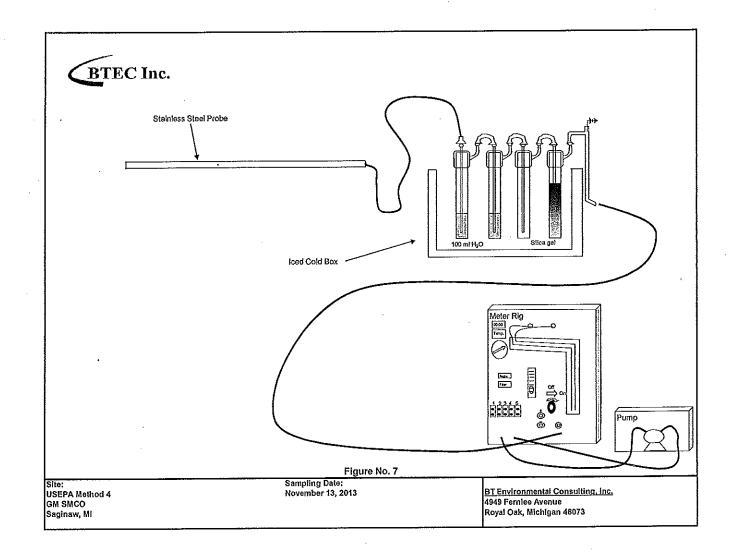

Figures

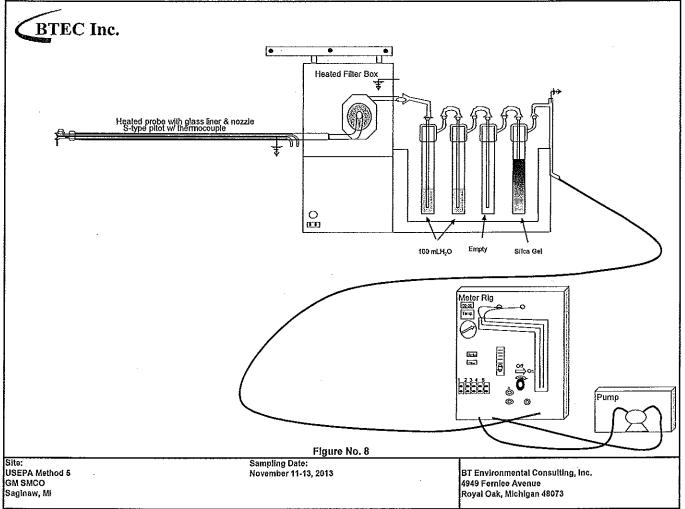

l

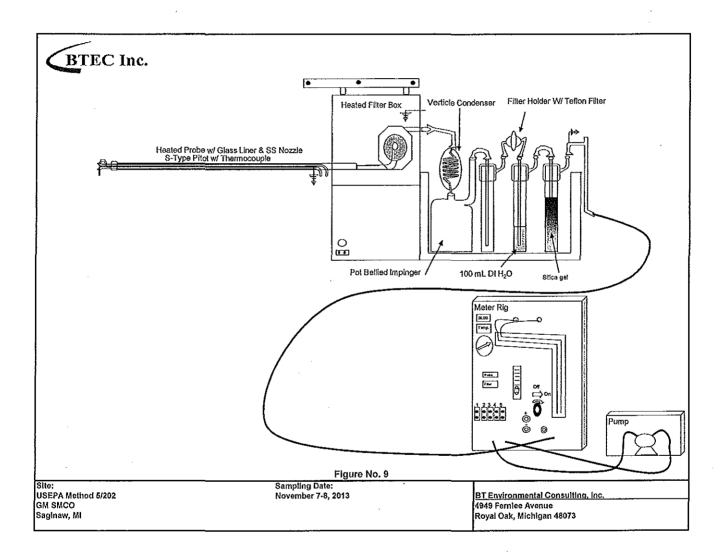

í




Į.

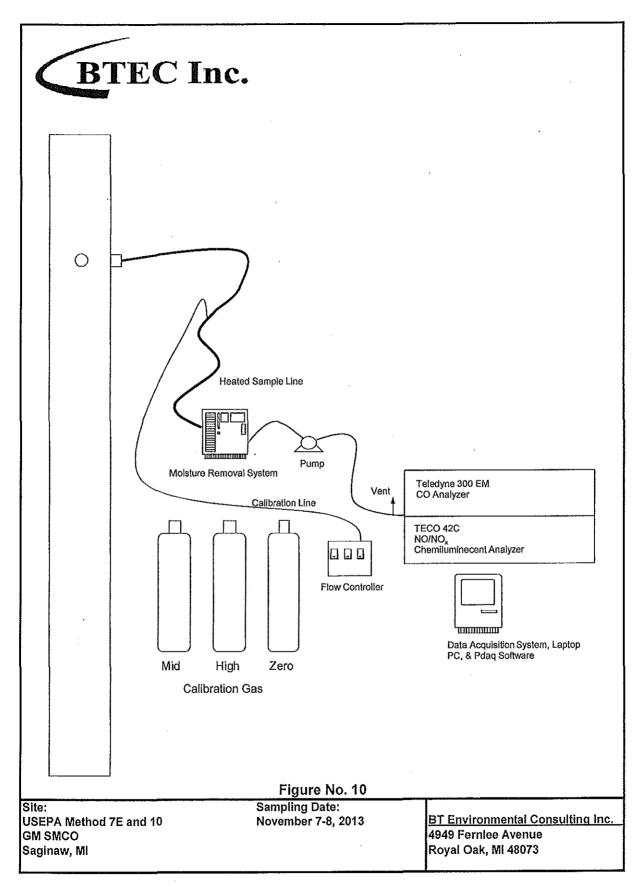


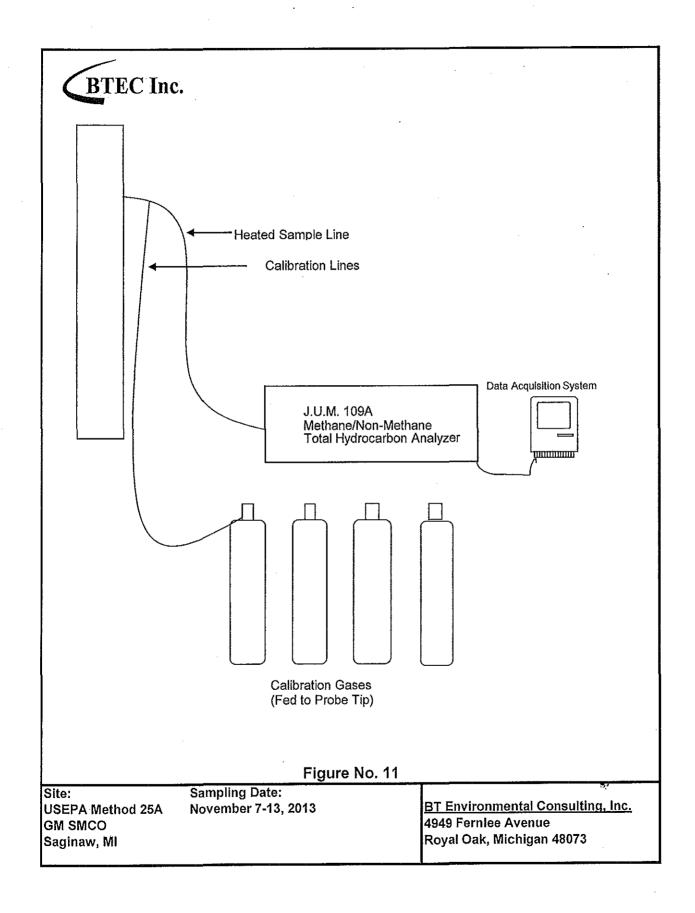


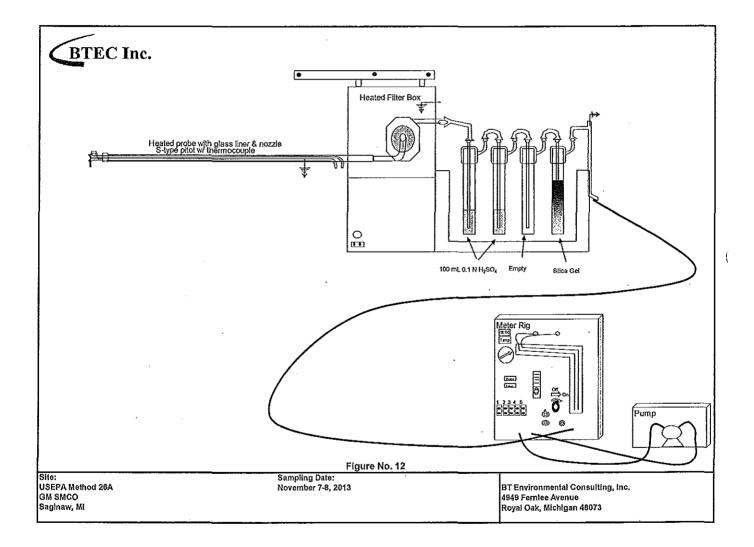


Ţ,

.


1

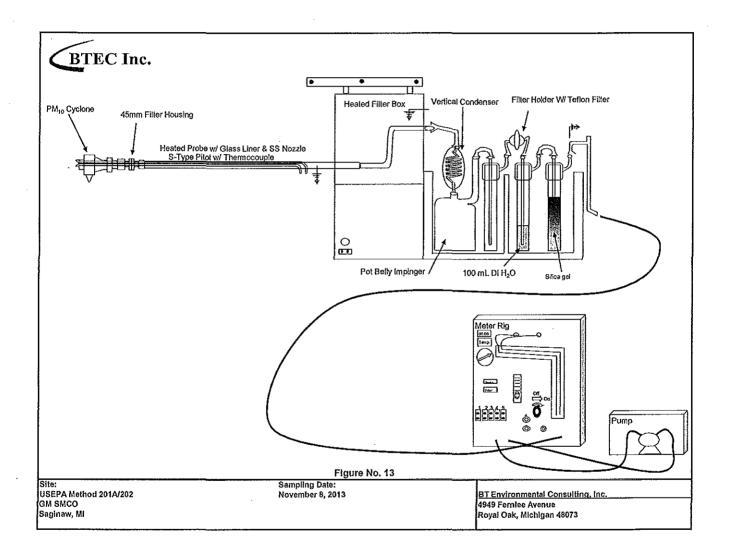



ŧ

ł

ł

. . .


.

. . . .

ł

• •

1

ł

ţ

I

Appendix A Process Operating Data