Air Emission Test Report for Seven Multiple Hearth Incinerators

Great Lakes Water Authority Water Resource Recovery Facility 9300 West Jefferson Avenue Detroit, Michigan

Renewable Operating Permit MI-ROP-B2103-2014d State Registration No. B2103

> Prepared for Great Lakes Water Authority Detroit, Michigan

Bureau Veritas Project No. 11018-000100.00 September 14, 2018

RECEIVED

SEP 17 2018

AIR QUALITY DIVISION

Move Forward with Confidence

Bureau Veritas North America, Inc. 22345 Roethel Drive Novi, Michigan 48375 248.344.1770 www.us.bureauveritas.com/hse

Executive Summary

Great Lakes Water Authority (GLWA) retained Bureau Veritas North America, Inc. to test air emissions from the exhaust of seven multiple hearth incinerators (MHIs) at the GLWA Water Resource Recovery Facility in Detroit, Michigan. The seven sources are designated as EUINC07, EUINC09, EUINC10, EUINC11, EUINC12, EUINC13, and EUINC14.

The test program objectives are listed below.

For incinerators EUINC07, EUINC09, and EUINC10:

- Measure concentrations of nitrogen oxides (NO_x).
- Analyze the sludge for solid content.
- Evaluate compliance with emission limits within 40 CFR Part 60, Subpart MMMM, "Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units."

For incinerators EUINC11, EUINC12, EUINC13, and EUINC14:

- Measure concentrations and mass emission rates of particulate matter (PM), sulfur dioxide (SO₂), NO_x, carbon monoxide (CO), dioxins/furans (PCDD/PCDF), hydrogen chloride (HCl), and select metals (cadmium, lead, and mercury).
- Measure visible emissions (VE) from the ash handling system.
- Analyze the sludge for solid content.
- Evaluate compliance with emission limits within Subpart MMMM.

The testing followed United States Environmental Protection Agency (USEPA) Reference Methods 1, 2, 3A, 4, 5, 6C, 7E, 10, 22, 23, 26A, 29, and 205 guidelines.

The following test runs were conducted for each MHI:

EUINC07, 09, and 10	Three 60-minute test runs for NO _X .
EUINC11, 12, 13, and 14	Three 80-minute test runs for each analyte except VE. Three 60-minute test runs for visible emissions.

Concentrations of oxygen in the exhaust gas were measured and averaged over the test run in order to correct the results to 7% oxygen as required by Subpart MMMM.

Detailed results are presented in Tables 1 through 19 after the Tables Tab of this report. The following tables summarize the results of the testing conducted on July 10 through 18, 2018.

Incinerator	Unit	NCU9, and EUIF Average Result	40 CFR Part 60, Subpart MMMM Emission Limit†	
EUINC07	ppmv, dry @ 7% O2	204	220	
EUINC09	ppmv, dry @ 7% O ₂	158	220	
EUINC10	ppmv, dry @ 7% O2	184	220	

NO_X Results for EUINC07, EUINC09, and EUINC10

 † Emission limit shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60.
 @ 7% O₂: corrected to 7% oxygen ppmv: part per million by volume

pinv, part per minion by volume

1	Parameter	Unit	Average Result	40 CFR Part 60,
		Unit	Average Result	Subpart MMMM Emission Limit†
Particul	ate matter (PM)	mg/dscm @ 7% O ₂	20	80
Sulfur c	lioxide (SO ₂)	ppmv, dry @ 7% O ₂	0.1	26
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O ₂	145	220
Carbon	monoxide (CO)	ppmv, dry @ 7% O2	2,268	3,800
		ng/dscm @ 7% O ₂ (total mass basis)	0.57	5.0
Dioxins (PCDD		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.025	0.32
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O ₂	0.28	1.2
	Cadmium	mg/dscm @ 7% O2	0.014	0.095
Metals Lead		mg/dscm @ 7% O2	0.084	0.30
Mercury		mg/dscm @ 7% O2	0.052	0.28
from the system	emissions (VE) e ash handling	% of observation	0	5

† Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60.
 mg/dscm: milligram per dry standard cubic meter
 @ 7% O₂: corrected to 7% oxygen
 ppmv: part per million by volume

ng/dscm: nanogram per dry standard cubic meter

RECEIVED

SEP 17 2018

AIR QUALITY DIVISION

Parameter		Parameter Unit Average Re		40 CFR Part 60, Subpart MMMM Emission Limits†
Particul	ate matter (PM)	mg/dscm @ 7% O ₂	15	80
Sulfur d	lioxide (SO ₂)	ppmv, dry @ 7% O2	1.5	26
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O ₂	181	220
Carbon	monoxide (CO)	ppmv, dry @ 7% O2	1,320	3,800
Dioxins/furans		ng/dscm @ 7% O ₂ (total mass basis)	6.9	5.0
(PCDD		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.25	0.32
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O ₂	<0.20	1.2
	Cadmium	mg/dscm @ 7% O ₂	0.030	0.095
Metals Lead Mercury		mg/dscm @ 7% O2	0.043	0.30
		mg/dscm @ 7% O2	0.085	0.28
	emissions (VE) e ash handling	% of observation	0	5

t Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60. mg/dscm: milligram per dry standard cubic meter @ 7% O₂: corrected to 7% oxygen ppmv: part per million by volume ng/dscm: nanogram per dry standard cubic meter

1

(

1 interest

		EUIN		
Parameter		Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†
Particul	ate matter (PM)	mg/dscm @ 7% O2	21	80
Sulfur d	lioxide (SO ₂)	ppmv, dry @ 7% O ₂	0.1	26
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O ₂	205	220
Carbon	monoxide (CO)	ppmv, dry @ 7% O ₂	416	3,800
Dioxins/furans (PCDD/PCDF)		ng/dscm @ 7% O ₂ (total mass basis)	0.74	5.0
		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.028	0.32
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O2	<0.18	1.2
	Cadmium	mg/dscm @ 7% O ₂	0.015	0.095
Metals Lead Mercury		mg/dscm @ 7% O ₂	0.051	0.30
		mg/dscm @ 7% O2	0.050	0.28
	emissions (VE) e ash handling	% of observation	0	5

5 ystern
† Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60. mg/dscm: milligram per dry standard cubic meter
(@ 7% O₂: corrected to 7% oxygen ppmv: part per million by volume ng/dscm: nanogram per dry standard cubic meter

-

- com

l

Parameter		Unit	Average Result	40 CFR Part 60, Subpart MMMM
				Emission Limits†
Particul	ate matter (PM)	mg/dscm @ 7% O ₂	13	80
Sulfur d	lioxide (SO ₂)	ppmv, dry @ 7% O2	0.1	26
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O ₂	151	220
Carbon	monoxide (CO)	ppmv, dry @ 7% O2	1,258	3,800
Dioxins	16	ng/dscm @ 7% O ₂ (total mass basis)	0.98	5.0
(PCDD		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.037	0.32
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O ₂	<0.17	1.2
	Cadmium	mg/dscm @ 7% O ₂	0.0082	0.095
Metals	Lead	mg/dscm @ 7% O2	0.030	0.30
Mercury		mg/dscm @ 7% O2	0.034	0.28
from the system	emissions (VE) e ash handling	% of observation	0	5

5ystem
 † Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60. mg/dscm: milligram per dry standard cubic meter
 (a) 7% O₂: corrected to 7% oxygen
 ppmv: part per million by volume
 ng/dscm: nanogram per dry standard cubic meter

1

1

1.0 Introduction

1.1 Summary of Test Program

Great Lakes Water Authority (GLWA) retained Bureau Veritas North America, Inc. to test air emissions from the exhaust of seven multiple hearth incinerators (MHIs) at the GLWA Water Resource Recovery Facility in Detroit, Michigan. The seven sources are designated as EUINC07, EUINC09, EUINC10, EUINC11, EUINC12, EUINC13, and EUINC14.

For incinerators EUINC07, EUINC09, and EUINC10:

- Measure concentrations of nitrogen oxides (NOx).
- Analyze the sludge for solid content.
- Evaluate compliance with emission limits within 40 CFR Part 60, Subpart MMMM, "Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units."

For incinerators EUINC11, EUINC12, EUINC13, and EUINC14:

- Measure concentrations and mass emission rates of particulate matter (PM), sulfur dioxide (SO₂), NO_x, carbon monoxide (CO), dioxins/furans (PCDD/PCDF), hydrogen chloride (HCl), and select metals (cadmium, lead, and mercury).
- Measure visible emissions (VE) from the ash handling system.
- Analyze the sludge for solid content.
- Evaluate compliance with emission limits within Subpart MMMM.

The testing followed United States Environmental Protection Agency (USEPA) Reference Methods 1, 2, 3A, 4, 5, 6C, 7E, 10, 22, 23, 26A, 29, and 205 guidelines.

The following test runs were conducted for each MHI:

EUINC07, 09, and 10	Three 60-minute test runs for NO _X
EUINC11, 12, 13, and 14	Three 80-minute test runs for each analyte except VE. Three 60-minute test runs for visible emissions.

The air emission testing was conducted July 10 through 18, 2018, as described in the Intent-to-Test plan, which was submitted to MDEQ on June 8, 2018. The testing is summarized in Table 1-1.

Source	Parameter	Test Date
Multiple hearth	Oxygen (O ₂)	
incinerators EUINC07, EUINC09, and	Nitrogen oxides (NO _x)	July 10 and 11, 2018
EUINC10	Sludge solid content	
	Oxygen (O ₂)	
	Particulate matter (PM)	
	Sulfur dioxide (SO ₂)	
37.1.1.1.1	Nitrogen oxides (NO _x)	
Multiple hearth	Carbon monoxide (CO)	
incinerators EUINC11, EUINC12, EUINC13,	Dioxins and furans (PCDD/PCDF)	July 11 through 18, 2018
and EUINC14	Hydrogen chloride (HCl)	
	Cadmium (Cd)	
	Lead (Pb)	
	Mercury (Hg)	
	Sludge solid content	

 Table 1-1

 Sources Tested, Parameters, and Test Dates

1.2 Key Personnel

Key personnel involved in this test program are listed in Table 1-2. Mr. David Kawasaki, Air Quality Consultant with Bureau Veritas, directed the compliance testing program. Mr. Lamarr Beden with GLWA provided process coordination and arranged for facility operating parameters to be recorded.

The testing was witnessed by Messrs. Mark Dziadosz and Scott Miller, both with MDEQ.

Table 1-2 Key Personnel

GLWA	BVNA			
Melvin Dacres	David Kawasaki, QSTI			
Chemist	Air Quality Consultant II			
Great Lakes Water Authority	Bureau Veritas North America, Inc.			
9300 West Jefferson Avenue	22345 Roethel Drive			
Detroit, Michigan 48209	Novi, Michigan 48375			
Telephone: 313.297.0363	Telephone: 248.344.3081			
Melvin.Dacres@glwater.org	Facsimile: 248.344.2656			
	david.kawasaki@us.bureauveritas.com			
Ν	IDEQ			
Mark Dziadosz	Scott Miller			
Environmental Quality Analyst	Environmental Quality Analyst			
Michigan Department of Environmental Quality	Michigan Department of Environmental Quality			
27700 Donald Court	301 East Louis Glick Highway			
Warren, Michigan 48092	Jackson, Michigan 49201			
Telephone: 586.753.3745	Telephone: 517.780.7481			
Facsimile: 586.753.3740	Facsimile: 517.780.7855			
dziadoszm@michigan.gov	millers@michigan.gov			

free

2.0 Source and Sampling Locations

2.1 **Process Description**

The GLWA Water Resource Recovery Facility treats storm water and sanitary wastewater from communities throughout the metropolitan Detroit area. GLWA operates eight multiple hearth sewage sludge incinerators.

Sludge is dewatered with belt filter presses and conveyed to the multiple hearth incinerators through belt conveyors. The sludge conveyors are equipped with gravimetric weigh scales for continuous monitoring of the quantity of sludge being incinerated.

The incinerators combust dewatered primary and secondary clarifier sewage sludge using natural gas burners to reduce the sludge volume and produce cool, inert, completely burned ash. Three air systems introduce air into each incinerator. Natural gas burners are used to (1) control or maintain the temperature in the middle hearths, (2) dry sludge, (3) achieve the incinerator operating temperature, and (4) burn exhaust gases before exiting the hearth.

Residual ash is stored in silos or a lagoon before transport to landfill.

GLWA personnel recorded operating parameters during the emission testing. The recorded operating parameters are included in Appendix F.

2.2 Control Equipment

The natural gas burners combust exhaust gases at the exit of a hearth. Emissions from the multiple hearth sewage sludge incinerators are controlled by an Air Pollution Control (APC) system, which consists of a quench, an impingement tray wet scrubber, a Venturi scrubber, and a mist eliminator.

2.3 Operating Parameters and Sludge Data

Operating parameters for the multiple hearth sewage sludge incinerators are controlled by programmable logic controller monitoring systems. Process and control equipment data recorded during testing are included in Appendix F.

GLWA personnel collected composite samples of sewage sludge for solid content analysis. GLWA collected composite samples at the beginning and end of each test run.

Tables 2-1 through 2-4 summarize the process data and sludge sampling data. Appendix E includes laboratory analytical results of the sewage sludge samples. Appendix F includes process data.

Table 2-1Summary of Process DataEUINC07, EUINC09, EUINC10

Parameter	Unit	EUINC07	EUINC09	EUINC10
Sludge feedrate	ton/hour, wet basis	11.36	9.69	8.76
Sludge solid content	-	25.8%†	26.0%	25.1%
Sludge feedrate	ton/hour, dry basis	2.93	2.52	2.20
Heating value Btu/lb		1,730	1,760	1,800
Scrubber pressure differential inch of water		25.20	21.71	20.62
Scrubber water flowrate	gal/min	1,491	1,508	1,535
Scrubber water outlet pH	-	6.70	7.32	6.53
Afterburner exit temperature	-	1,216ºF	1,037°F	1,192°F

ton/hour: ton per hour

Btu/lb: British thermal unit per pound

gal/min: gallon per minute

* Sample containers for EUINC07 Test Runs 1 and 2 were damaged; results shown are from Test Run 3 and not the average of three test runs.

Table 2-2 Summary of Process Data EUINC11

Parameter	Unit	CEMs	Dioxins and Furans	Hydrogen Chloride	PM/Metals
Sludge feedrate	ton/hour, wet basis	10.36	10.49	9.97	10.19
Sludge solid content	-	28.4%	28.2%	27.9%	27.9%
Sludge feedrate	ton/hour, dry basis	2.94	2.96	2.79	2.85
Heating value	Btu/lb	1,737	1,730	1,767	1,753
Scrubber pressure differential	inch of water	25.98	24.00	23.92	27.45
Scrubber water flowrate	gal/min	1,330	1,379	1,413	1,307
Scrubber water outlet pH	-	6.59	6.64	6.67	6.52
Afterburner exit temperature	•	1,168ºF	1,173°F	1,161°F	1,165°F

CEMs: sulfur dioxide, nitrogen oxides, carbon monoxide

PM/Metals: particulate matter and metals (lead, cadmium, mercury)

ton/hour: ton per hour

Btu/lb: British thermal unit per pound gal/min: gallon per minute

Table 2-3 Summary of Process Data EUINC12

Parameter	Unit	CEMs	Dioxins and Furans	Hydrogen Chloride	PM/Metals
Sludge feedrate	ton/hour, wet basis	10.93	10.97	11.53	10.93
Sludge solid content	%	33.2%	33.1%	35.0%	33.2%
Sludge feedrate	ton/hour, dry basis	3.63	3.63	4.04	3.63
Heating value	Btu/lb	1,533	1,553	1,657	1,533
Scrubber pressure differential	inch of water	24.47	24.47	28.75	24.47
Scrubber water flowrate	gal/min	1,299	1,299	1,263	1,299
Scrubber water outlet pH	-	6.68	6.68	6.37	6.68
Afterburner exit temperature		1,228ºF	1,228°F	1,204°F	1,228ºF

CEMs: sulfur dioxide, nitrogen oxides, carbon monoxide

PM/Metals: particulate matter and metals (lead, cadmium, mercury) ton/hour: ton per hour Btu/lb: British thermal unit per pound

"MANNA

gal/min: gallon per minute

Table 2-4Summary of Process DataEUINC13 and EUINC14

Parameter	Unit	EUIN	C13	EUIN	(C14
		CEMs Dioxin/Furans HCl	PM/Metals	CEMs Dioxin/Furans HCl	PM/Metals
Sludge feedrate	ton/hour, wet basis	10.91	10.97	9.39	8.87
Sludge solid content	-	34,5%	33.3%	30.1%	31.3%
Sludge feedrate	ton/hour, dry basis	3.75	3.65	2.82	2.78
Heating value	Btu/lb	1,780	1,877	2,127	2,003
Scrubber pressure differential	inch of water	23.19	23.06	28.68	25.34
Scrubber water flowrate	gal/min	1,275	1,277	1,301	1,295
Scrubber water outlet pH	-	6.06	6.19	6.20	6.27
Afterburner exit temperature	-	1,255°F	1,190°F	1,178ºF	1,169°F

CEMs: sulfur dioxide, nitrogen oxides, carbon monoxide

HCl: hydrogen chloride

PM/Metals: particulate matter and metals (lead, cadmium, mercury)

ton/hour: ton per hour

Btu/lb: British thermal unit per pound

gal/min: gallon per minute

2.4 Flue Gas Sampling Locations

The seven multiple hearth incinerators tested at GLWA have identical exhaust stacks that are 54 inches in diameter and have two 6-inch-diameter sampling ports. Twelve traverse points per sampling port were used during sampling. The ports are located:

- 108 inches (2.0 duct diameters) from the nearest downstream disturbance.
- 120 inches (2.2 duct diameters) from the nearest upstream disturbance.

The sampling ports are accessible via scaffolding.

Figure 2-1 is a photograph of the MHI exhaust sampling location. Figure 1 in the Appendix depicts the MHI sampling and traverse point locations.

Figure 2-1. Incinerator Sampling Location

- mark

3.0 Summary and Discussion of Results

3.1 Objective and Test Matrix

The objective of the testing was to evaluate compliance with certain limits within 40 CFR Part 60, Subpart MMMM, "Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units."

Tables 3-1 through 3-3 summarize the sampling and analytical matrix.

Sampling Location	Test Date (2018)	Test Run	Start Time	Stop Time	CU7, EUIN Pollutant	Sampling Method	No. of Test Runs and Duration	Analytical Method	Analytical Laboratory	
		1	13:45	14:45	O ₂ , CO ₂ ,		1, 3A, 7E,	Three 60- minute runs	Instrument	Not applicable
EUINC07	July 10		minute runs	paramagnetic and chemiluminescence	applicatio					
	3 17:10 18:10				analysis					
		1	07:40	08:40	O ₂ , CO ₂ , NO _x	1, 3A, 7E, and 205	Three 60- minute runs	Instrument paramagnetic and chemiluminescence analysis	Not applicable	
EUINC09	July 10	2	09:02	10:02						
		3	10:20	12:12						
EUINC10 July 11		1	07:00	08:00	O ₂ , CO ₂ , NO _x	1, 3A, 7E, and 205	Three 60-	Instrument s paramagnetic and chemiluminescence analysis	Not	
	July 11	2	08:55	09:55			minute runs		applicable	
		3	10:05	11:05						

Table 3-1
Test Matrix
EUINC07, EUINC09, and EUINC10

RECEIVED

SEP 17 2018

AIR QUALITY DIVISION

Table 3-2 Test Matrix EUINC11 and EUINC12

Sampling Location	Test Date (2018)	Test Run	Start Time	Stop Time	Pollutant	Sampling Method	No. of Test Runs and Duration	Analytical Method	Analytical Laboratory
	July 11		14:30	17:40	O ₂ , CO ₂ , HCl	1, 2, 3A, 4, 26A, and 205	Three 80- minute runs	Field measurement; instrument paramagnetic,	Maxxam Analytics
		2	08:50	10:20	O ₂ , CO ₂ , Dioxins, HCl	1, 2, 3A, 4, 23, 26A, and 205		ultraviolet, chemiluminescence, and infrared	
		3	11:20	13:10	O_2 , CO_2 , SO_2 , NO _x , CO, Dioxins, HCl	1, 2, 3A, 4, 6C, 7E, 10, 23, 26A, and 205		analysis; gravimetric; gas chromatography; mass spectrometry;	
EUINC11	July 12	4	13:50	15:35	O_2 , CO_2 , SO_2 , NO _x , CO, Dioxins, PM, Metals	1, 2, 3A, 4, 5, 6C, 7E, 10, 23, 29, and 205		ion chromatography; cold vapor atomic absorption spectroscopy;	
		5	16:00	17:30	O ₂ , CO ₂ , SO ₂ , NO _x , CO, PM, Metals	1, 2, 3A, 4, 5, 6C, 7E, 10, 29, and 205	inductively coup plasma-mass spectrometry	plasma-mass	
		6	17:45	19:15	O ₂ , CO ₂ , PM, Metals	1, 2, 3A, 4, 5, 29, and 205			
		1	11:05	12:41	O ₂ , CO ₂ , Dioxins	1, 2, 3A, 4, 23, and 205	Three 80- minute runs	Field measurement; instrument	Maxxam Analytics
		2	13:20	15:07	O ₂ , CO ₂ , SO ₂ , NO _x , CO, PM, Metals	1, 2, 3A, 4, 5, 6C, 7E, 10, 29, and 205		paramagnetic, ultraviolet, chemiluminescence, and infrared	
EUINC12	July 16	3	15:45	17:20	O_2 , CO_2 , SO_2 , NO _x , CO , Dioxins, PM, Metals	1, 2, 3A, 4, 5, 6C, 7E, 10, 23, 29, and 205		analysis; gravimetric; gas chromatography; mass spectrometry;	
		4	17:40	19:15	O_2 , CO_2 , SO_2 , N O_x , CO , Dioxins, PM, Metals	1, 2, 3A, 4, 5, 6C, 7E, 10, 23, 29, and 205		ion chromatography; cold vapor atomic absorption spectroscopy;	
		5	07:00	08:25	O_2 , CO_2 , HCl	1, 2, 3A, 4, 26A, and		inductively coupled plasma-mass	
	July 17	6	08:35	10:00		20A, and 205		spectrometry	
		7	10:20	11:45					

Table 3-3 Test Matrix EUINC13 and EUINC14

Sampling Location	Test Date (2018)	Test Run	Start Time	Stop Time	Pollutant	Sampling Method	No. of Test Runs and Duration	Analytical Method	Analytical Laboratory
		1	13:00	14:35	O_2 , CO_2 , SO_2 , NO _x , CO , Dioxins, HCl	1, 2, 3A, 4, 6C, 7E, 10, 23, 26A,	Three 80- minute runs	Field measurement; instrument paramagnetic,	Maxxam Analytics
	July 17	2	14:50	16:25		and 205		ultraviolet, chemiluminescence, and infrared	
		3	16:40	18:15				analysis; gravimetric; gas	
EUINC13		4	07:00	08:25	O ₂ , CO ₂ , PM, Metals	1, 2, 3A, 4, 5, 29, and 205		chromatography; mass spectrometry; ion chromatography;	
	July 18	5	08:37	10:04		cold vapor atomic absorption	cold vapor atomic		
		6	10:20	11:44				inductively coupled plasma-mass spectrometry	
		1	08:15	09:50	O_2 , CO_2 , SO_2 , NO _x , CO , Dioxins, HCl	1, 2, 3A, 4, 6C, 7E, 10, 23, 26A,	Three 80- minute runs	Field measurement; instrument paramagnetic,	Maxxam Analytics
		2	10:15	11:45	Diomis, rior	and 205	and 205 ultraviolet, chemiluminescence,		
	July 13	3	12:05	13:40				and infrared analysis; gravimetric; gas chromatography; mass spectrometry; ion chromatography;	
EUINC14		4	14:00	15:30	O ₂ , CO ₂ , PM, Metals	1, 2, 3A, 4, 5, 29, and 205			
		5	15:40	17:10				cold vapor atomic absorption spectroscopy;	
	July 16	6	08:15	09:40				inductively coupled plasma-mass spectrometry	

3.2 Field Test Changes and Issues

Communication between GLWA, Bureau Veritas, and MDEQ allowed the testing to be completed without field test changes. The following sections describe issues that occurred during sampling.

3.2.1 EUINC07 Sewage Sludge Samples

The sewage sludge composite sample containers for Test Runs 1 and 2 on EUINC07 were damaged during transit. Gas generation in the containers ruptured the sample containers. The sewage sludge composite sample result for Test Run 3 on EUINC07 was used as the average for all three test runs (see Table 2-1).

3.2.2 EUINC09, NO_X Test Run 3

On July 10, 2018, gaseous sampling was paused prior to the last 10 minutes of Test Run 3 on EUINC09. During the test run, the filter box overheated and melted the Teflon sample line, plugging the line. The line was replaced and leak-checked prior to completing the test run.

3.2.3 EUINC11, HCl Test Run 1

On July 11, 2018, Test Run 1 for HCl on EUINC11 was paused from 15:25 to 17:04 because the sludge feed conveyors malfunctioned and stopped feed to the incinerators. The test run was completed once the conveyers were fixed.

3.2.4 EUINC12, Gaseous Test Run 1

On July 16, 2018, the CO measurement momentarily spiked, exceeding the calibrated range of the analyzer during Test Run 1 for gaseous sampling on EUINC12. The spike was due to a malfunction in the incinerator O₂ feed line. The test run was voided and an additional test run was conducted for SO₂, NO_x, and CO.

3.2.5 EUINC12, PM and Metals Test Run 1

On July 16, 2018, the PM and metals impinger train back flushed during the post-test leak check for Test Run 1 on EUINC12. Reagents were mixed and the reagents moistened the filter. The test run was voided and an additional test run was conducted for PM and metals.

3.2.6 EUINC12, Dioxins Test Run 2

On July 16, 2018, the dioxin-furan impinger train was damaged during the port change for Test Run 2 on EUINC12. The test run was voided and an additional test run was conducted for dioxins and furans.

3.3 Summary of Results

The results of the testing, compared to the applicable emission limits, are summarized in Tables 3-4 through 3-8.

Detailed results are presented in Tables 1 through 19 after the Table Tab of this report.

Graphs of the measured O₂, CO₂, CO, NO_x, and SO₂ concentrations are presented after the Graphs Tab of this report.

Sample calculations are presented in Appendix B.

Table 3-4 Summary of NO_x Results for EUINC07, EUINC09, and EUINC10

Incinerator	Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†
EUINC07	ppmv, dry @ 7% O ₂	204	220
EUINC09	ppmv, dry @ 7% O ₂	158	220
EUINC10	ppmv, dry @ 7% O ₂	184	220

† Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60.

(2) 7% O2: corrected to 7% oxygen

ppmv: part per million by volume

Table 3-5 Summary of Results for EUINC11

EUIIICII								
Parameter		Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†				
Particul	ate matter (PM)	mg/dscm @ 7% O2	20	80				
Sulfur d	lioxide (SO ₂)	ppmv, dry @ 7% O ₂	0.1	26				
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O2	145	220				
Carbon monoxide (CO)		ppmv, dry @ 7% O2	2,268	3,800				
		ng/dscm @ 7% O ₂ (total mass basis)	0.57	5.0				
Dioxins (PCDD/		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.025	0.32				
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O2	0.28	1.2				
	Cadmium	mg/dscm @ 7% O2	0.014	0.095				
Metals	Lead	mg/dscm @ 7% O2	0.084	0.30				
	Mercury	mg/dscm @ 7% O2	0.052	0.28				
	emissions (VE) e ash handling	% of observation	0	5				

15

† Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60. mg/dscm: milligram per dry standard cubic meter @ 7% O₂: corrected to 7% oxygen ppmv: part per million by volume ng/dscm: nanogram per dry standard cubic meter

Table 3-6 Summary of Results for EUINC12

	EUINCIZ								
Parameter		Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†					
Particul	ate matter (PM)	mg/dscm @ 7% O ₂	15	80					
Sulfur c	lioxide (SO ₂)	ppmv, dry @ 7% O ₂	1.5	26					
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O2	181	220					
Carbon monoxide (CO)		ppmv, dry @ 7% O2	1,320	3,800					
D:!	16	ng/dscm @ 7% O ₂ (total mass basis)	6.9	5.0					
Dioxins (PCDD		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.25	0.32					
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O2	<0.20	1.2					
	Cadmium	mg/dscm @ 7% O2	0.030	0.095					
Metals	Lead	mg/dscm @ 7% O2	0.043	0.30					
	Mercury	mg/dscm @ 7% O2	0.085	0.28					
Visible emissions (VE) from the ash handling system		% of observation	0	5					

System
 Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60.
 mg/dscm: milligram per dry standard cubic meter
 (a) 7% O₂: corrected to 7% oxygen
 ppmv: part per million by volume
 ng/dscm: nanogram per dry standard cubic meter

Table 3-7 Summary of Results for EUINC13

]	Parameter	Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†
Particul	ate matter (PM)	mg/dscm @ 7% O2	21	80
Sulfur d	lioxide (SO ₂)	ppmv, dry @ 7% O2	0.1	26
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O2	205	220
Carbon	monoxide (CO)	ppmv, dry @ 7% O2	416	3,800
D:!-	16	ng/dscm @ 7% O ₂ (total mass basis)	0.74	5.0
Dioxins (PCDD/		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.028	0.32
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O ₂	<0.18	1.2
	Cadmium	mg/dscm @ 7% O2	0.015	0.095
Metals	Lead	mg/dscm @ 7% O ₂	0.051	0.30
	Mercury	mg/dscm @ 7% O2	0.050	0.28
	emissions (VE) e ash handling	% of observation	0	5

5 ysterin
† Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60. mg/dscm: milligram per dry standard cubic meter
(a) 7% O₂: corrected to 7% oxygen
ppmv: part per million by volume
ng/dscm: nanogram per dry standard cubic meter

1

Table 3-8 Summary of Results for EUINC14

EUINCI								
Parameter		Unit	Average Result	40 CFR Part 60, Subpart MMMM Emission Limits†				
Particul	ate matter (PM)	mg/dscm @ 7% O2	13	80				
Sulfur c	lioxide (SO ₂)	ppmv, dry @ 7% O ₂	0.1	26				
Nitroge	n oxides (NO _X)	ppmv, dry @ 7% O ₂	151	220				
Carbon monoxide (CO)		ppmv, dry @ 7% O ₂	1,258	3,800				
Dioxins	16	ng/dscm @ 7% O ₂ (total mass basis)	0.98	5.0				
(PCDD)		ng/dscm @ 7% O ₂ (toxic equivalency basis)	0.037	0.32				
Hydrog	en chloride (HCl)	ppmv, dry @ 7% O ₂	<0.17	1.2				
	Cadmium	mg/dscm @ 7% O2	0.0082	0.095				
Metals	Lead	mg/dscm @ 7% O ₂	0.030	0.30				
	Mercury	mg/dscm @ 7% O2	0.034	0.28				
Visible emissions (VE) from the ash handling system		0	5					

5 ysterin
 † Emission limits shown in 40 CFR Appendix Table 3 to Subpart MMMM of Part 60.
 mg/dscm: milligram per dry standard cubic meter
 @ 7% O₂: corrected to 7% oxygen
 ppmv: part per million by volume
 ng/dscm: nanogram per dry standard cubic meter

(

4.0 Sampling and Analytical Procedures

4.1 Test Methods

Bureau Veritas measured emissions in accordance with the procedures specified in the United States Environmental Protection Agency (USEPA) Standards of Performance for New Stationary Sources. Bureau Veritas used methods presented in Table 4-1.

		Location		Reference
Parameter	EUINC 07, 09, 10	EUINC 11, 12, 13, 14	Method	Title
Sampling ports and traverse points	•	•	1	Sample and Velocity Traverses for Stationary Sources
Velocity and flowrate		•	2	Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Molecular weight	•	•	3A	Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
Moisture content		•	4	Determination of Moisture Content in Stack Gases
Particulate matter (PM)		•	5	Determination of Particulate Matter Emissions From Stationary Sources
Sulfur dioxide (SO ₂)		٠	6C	Determination of Sulfur Dioxide Emissions From Stationary Sources (Instrumental Analyzer Procedure)
Oxides of nitrogen (NOx)	•	٠	7E	Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)
Carbon monoxide (CO)		•	10	Determination of Carbon Monoxide Emissions From Stationary Sources (Instrumental Analyzer Procedure)
Visible emissions (VE)		•	22	Visual Determination of Fugitive Emissions From Material Sources and Smoke Emissions From Flares
Dioxins/furans (PCDD/PCDF)		•	23	Determination of Polychlorinated Dibenzo- <i>p</i> -Dioxins and Polychlorinated Dibenzofurans From Stationary Sources
Hydrogen chloride (HCl)		•	26A	Determination of Hydrogen Halide and Halogen Emissions From Stationary Sources Isokinetic Method
Metals		•	29	Determination of Metals Emissions From Stationary Sources
Solid content in sludge	•	•	SM2540B	Solids, Total (Gravimetric, Dried at 103- 105 Degrees C.) 20 th Ed.
Gas dilution	•	•	205	Verification of Gas Dilution Systems for Field Instrument Calibrations

Table 4-1Sampling Methods

4.1.1 Volumetric Flowrate (USEPA Methods 1 and 2)

USEPA Method 1, "Sample and Velocity Traverses for Stationary Sources," from the Code of Federal Regulations, Title 40, Part 60 (40 CFR 60), Appendix A, was used to evaluate the sampling location and the number of traverse points for the measurement of velocity profiles. Figure 1 (see Figures Tab) depicts the sampling location and traverse points.

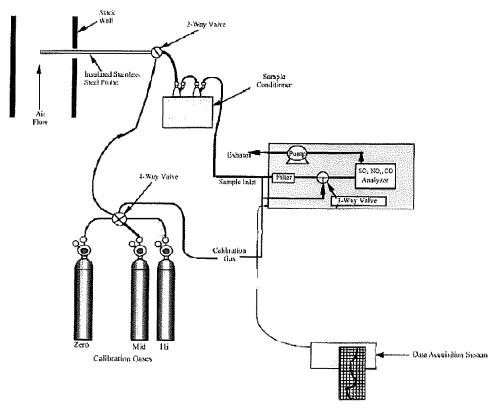
USEPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)," was used to measure flue gas velocity and calculate volumetric flowrate. An S-type Pitot tube and thermocouple assembly connected to a digital manometer and thermometer was used. Because the dimensions of Bureau Veritas' Pitot tubes meet the requirements outlined in Method 2, Section 10.0, a baseline Pitot tube coefficient of 0.84 (dimensionless) was assigned.

The digital manometer and thermometer are calibrated using calibration standards, which are traceable to National Institute of Standards (NIST). The Pitot tube inspection and calibration sheets are included in Appendix A.

Cyclonic Flow Check. Bureau Veritas evaluated whether cyclonic flow was present at the incinerator sampling locations.

Cyclonic flow is defined as a flow condition with an average null angle greater than 20°. The direction of flow can be determined by aligning the Pitot tube to obtain zero (null) velocity head readings—the direction would be parallel to the Pitot tube face openings or perpendicular to the null position. By measuring the angle of the Pitot tube face openings in relation to the stack wall when a null angle is obtained, the direction of flow is measured. If the absolute average of the flow direction angles is greater than 20°, the flue gas flow is considered to be cyclonic at that sampling location and an alternative location should be used.

The average of the measured traverse point flue gas velocity null angle was less than 20° at each incinerator exhaust sampling location. The measurements indicate the absence of cyclonic flow at each incinerator.


Field data sheets are included in Appendix C. Computer-generated field data sheets are included in Appendix D.

4.1.2 Oxygen, Carbon Dioxide, Sulfur Dioxide, Nitrogen Oxides, and Carbon Monoxide (USEPA Methods 3A, 6C, 7E, and 10)

USEPA Method 3A, "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrument Analyzer Procedure)," was used to measure the oxygen concentration of the flue gas to correct the results to 7% oxygen. USEPA Method 3A was also used to measure the oxygen and carbon dioxide concentrations of the flue gas to calculate molecular weight of the gas. Sulfur dioxide concentrations were measured using USEPA Method 6C, "Determination of Sulfur Dioxide Emissions From Stationary Sources

(Instrumental Analyzer Procedure). Nitrogen oxides concentrations were measured using USEPA Method 7E, "Determination of Nitrogen Oxides Emissions from Stationary Sources." Carbon monoxide concentrations were measured using USEPA Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources." Figure 4-1 depicts the USEPA Methods 3A, 6C, 7E, and 10 sampling train.

Figure 4-1. USEPA Methods 3A, 6C, 7E, and 10 Sampling Train

The sampling trains for USEPA Methods 3A, 6C, 7E, and 10 are similar and the flue gas was extracted from the stack through:

- A stainless-steel probe.
- Heated $(248 \pm 25^{\circ}F)$ Teflon sample line to prevent condensation.
- A chilled Teflon impinger train with peristaltic pump to remove moisture from the sampled gas stream prior to entering the analyzers via separate sampling lines.
- Oxygen, carbon dioxide, sulfur dioxide, nitrogen oxides, and carbon monoxide gas analyzers.

The flue gas was extracted and continuously introduced into the paramagnetic (O₂ and CO₂), ultraviolet (SO₂), chemiluminescence (NO_x), and infrared (CO) gas analyzers to measure

pollutant concentrations. Data were recorded at 1-second intervals on a computer equipped with data acquisition software. Recorded concentrations were reported in 1-minute averages over the duration of each test run.

Prior to testing, a 3-point stratification test was conducted at 17, 50, and 83% of the stack diameter for at least twice the response time to determine the minimum number of traverse points to be sampled.

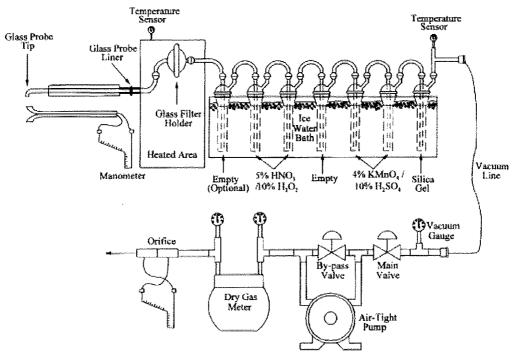
Calibration Error Check. A calibration error check was performed by introducing zero-, mid-, and high-level calibration gases directly into the analyzer. The calibration error check was performed to verify the analyzer response is within $\pm 2\%$ of the certified calibration gas introduced.

System Bias Test. Prior to each test run, a system bias test was performed where known concentrations of calibration gases are introduced at the probe tip to measure if an analyzer's response was within $\pm 5\%$ of the introduced calibration gas concentrations. At the conclusion of each test run, an additional system-bias check was performed to evaluate the analyzer drift from pre- and post-test system-bias checks. The system-bias check evaluates the analyzer drift against the $\pm 3\%$ quality assurance/quality control (QA/QC) requirement.

The analyzer drift data was used to correct the measured flue gas concentrations. Recorded concentrations were averaged over the duration of each 60-or 80-minute test run.

NO/NO2 Conversion Check. An NO/NO₂ conversion check was performed prior to testing by introducing an approximate 50 ppm NO₂ calibration gas into the NO_x analyzer. If the analyzer's NO_x concentration response is greater than 90% of the introduced NO₂ calibration gas concentration, the analyzer's NO/NO₂ conversion will meet the converter efficiency requirement of Section 13.5 of USEPA Method 7E. The response was greater than 90%

Calibration data along with the USEPA Protocol 1 certification sheets for the calibration gases used are included in Appendix A.


4.1.3 Moisture Content (USEPA Method 4)

Prior to testing, the moisture content was estimated using measurements from previous testing, psychrometric charts and/or water saturation vapor pressure tables. These data were used in conjunction with preliminary velocity head pressure and temperature data to calculate flue gas velocity, ideal nozzle size, and to establish the isokinetic sampling rate for the USEPA Methods 5, 23, 26A, and 29 sampling. For each sampling run, moisture content of the flue gases was measured using the reference method outlined in Section 2 of USEPA Method 4, "Determination of Moisture Content in Stack Gases" in conjunction with the performance of USEPA Methods 5, 23, 26A, and 29.

4.1.4 Particulate Matter and Metals (USEPA Method 5 and 29)

USEPA Method 5, "Determination of Particulate Matter Emissions from Stationary Sources," and Method 29, "Determination of Metals Emissions from Stationary Sources," were used to measure particulate matter and metals (cadmium, lead, and mercury) emissions. Figure 4-2 depicts the USEPA Methods 5 and 29 sampling train.

Figure 4-2. USEPA Methods 5 and 29 Sampling Train

Bureau Veritas' modular isokinetic stack sampling system consists of:

- A borosilicate glass button-hook nozzle.
- A heated (248±25°F) borosilicate glass-lined probe.
- A desiccated and pre-weighed 110- or 83-millimeter-diameter quartz fiber filter (manufactured to at least 99.95% efficiency (<0.05 % penetration) for 0.3-micron dioctyl phthalate smoke particles) in a heated (248±25°F) filter box.
- A set of six pre-cleaned GS impingers in an ice bath with the configuration shown in Table 4-2.
- A sampling line.

• An Environmental Supply® control case equipped with a pump, dry-gas meter, and calibrated orifice.

Configuration								
Impinger Order (Upstream to Downstream)	Impinger Type	Impinger Contents	Amount					
1	Modified	5% HNO3,10% H2O2	100 ml					
2	Greenburg-Smith	5% HNO3,10% H2O2	100 ml					
3	Modified	Empty	0 ml					
4	Modified	Acidified KMnO ₄	100 ml					
5	Modified	Acidified KMnO4	100 ml					
6	Modified	Silica gel desiccant	~200-300 g					

Table 4-2USEPA Methods 5 and 29 Impinger Configuration

Before testing, a preliminary velocity traverse was performed and an ideal nozzle size was calculated. The calculated nozzle size allowed isokinetic sampling at an average rate of approximately 0.75 cfm. Bureau Veritas selected a pre-cleaned borosilicate glass nozzle with an inner diameter that approximates the calculated ideal value. The nozzle inside diameter was measured with calipers across three cross-sectional chords. The nozzle was rinsed and connected to the borosilicate glass-lined sample probe.

The impact and static pressure openings of the Pitot tube were leak-checked at or above a pressure of 3 inches of water for more than 15 seconds. The sampling train was leak-checked by capping the nozzle tip and applying a vacuum of approximately 10 inches of mercury to the sampling train. The dry-gas meter was monitored to measure whether the sample train leak rate was less than 0.02 cfm. If the pre-test leak failed, the sampling train was adjusted until the leak rate was <0.02 cfm. Next, the sampling probe was inserted into the stack through the sampling port to begin sampling.

Ice and water were placed around the impingers and the probe and filter temperatures were allowed to stabilize at $248\pm25^{\circ}F$ before each test run. After the desired operating conditions were coordinated with the facility, testing was initiated.

Stack parameters (e.g., flue velocity, temperature) were monitored to establish the isokinetic sampling rate to within ± 10 % for the duration of the test.

At the conclusion of a test run and the post-test leak check, the sampling train was disassembled and the impingers and filter were transported to the recovery area. The filter was recovered using Teflon-lined tweezers and placed in a Petri dish. The Petri dish was immediately labeled and sealed with Teflon tape. The nozzle, probe, and the front half of the filter holder assembly

were brushed and, at a minimum, triple-rinsed with acetone to recover particulate matter. The acetone rinses were collected in pre-cleaned sample containers.

Next, the probe nozzle, fittings, probe liner, and front-half of the filter holder were washed and brushed (using a nylon bristle brush) three times with 100 ml of 0.1-N nitric acid (HNO₃). This rinsate was collected in a glass sample container. Following the HNO₃ rinse, the probe nozzle, fittings, probe liner, and front-half of the filter holder were rinsed with high performance liquid chromatography (HPLC) water followed by acetone. The HPLC water and acetone rinses were discarded.

The weight of Impingers 1 and 2 were measured and the contents transferred to a glass sample container. Impingers 1 and 2, the filter support, the back half of the filter housing, and connecting glassware were thoroughly rinsed with 100 ml of 0.1-N HNO₃, and the rinsates were added to the sample container in which the contents of the first two impingers were stored.

The weight of Impinger 3 was measured and the contents transferred to a glass sample container. This impinger was rinsed with 100 ml of 0.1-N HNO₃, and the rinsate was added to the glass sample container.

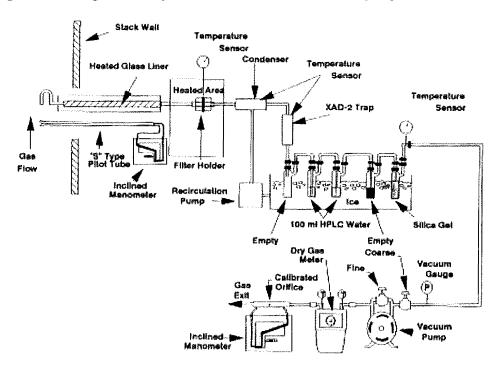
The weight of Impingers 4 and 5 were measured and the contents transferred to a glass sample container. The impingers and connecting glassware were triple-rinsed with 100 ml of acidified KMnO₄ solution and the rinsate was added to the Impinger 4 and 5 sample containers. Subsequently, these impingers were rinsed with 100 ml of HPLC water, and the rinsate was added to the sample container. Because deposits may still be visible on the impinger surfaces after the water rinse, 25 ml of 8-N hydrochloric acid were used to wash these impingers and connecting glassware. This 8-N hydrochloric acid rinsate was collected in a separate sample container containing 200 ml of water.

The silica gel impinger was weighed as part of the measurement of the flue gas moisture content. All sample containers containing the acetone, 0.1-HNO₃, HPLC water, 5% HNO₃/10% H₂O₂, acidified KMnO₄, 8-N hydrochloric acid, and filter blanks were transported by courier to Maxxam Analytics, a Bureau Veritas laboratory, located in Mississauga, Ontario, Canada for analysis.

4.1.5 Visible Emissions (USEPA Method 22)

Bureau Veritas determined visible emissions in accordance with USEPA Method 22, "Visual Determination of Fugitive Emissions from Material Sources and Smoke Emissions from Flares." Visible emissions (VE) from the ash handling system were observed during three 60-minute test runs for each required incinerator.

Fugitive emissions from the stacks were observed from a position with a clear view of the potential emissions source. The observation location was at least 15 feet, but not more than 0.25


miles, from the emission source, at a point where the sunlight was not shining directly into the observer's eyes.

During the observation period, the observer continuously watched the emission source for 20 minute increments, followed by 5 minute breaks. Upon observing an emission, the amount of time the emission was observed was recorded. This procedure continued for the entire observation period. The observer recorded the accumulated time that emissions were observed on a field data sheet, which are included in Appendix C.

The observer recorded the emission location, facility type, observer's name and affiliation, and the date on a field data sheet. The time, estimated distance to the emission location, approximate wind direction, estimated wind speed, description of the sky condition (presence and color of clouds), and plume background were also recorded. The observer sketched the emission source being observed and indicated the potential and actual emission points, as well as, noted the observer's location relative to the source and the sun.

4.1.6 Dioxins and Furans (USEPA Method 23)

USEPA Method 23, "Determination of Polychlorinated Dibenzo-*p*-dioxins and Polychlorinated Dibenzofurans from Municipal Waste Combustors" was used to measure dioxin and furan concentrations. Triplicate 80-minute test runs were performed at each required incinerator sampling location. Figure 4-3 depicts the USEPA Method 23 sampling train.

SEP 17 2018

Figure 4-3. USEPA Method 23 Sampling Train

AIR QUALITY DIVISION

Bureau Veritas' modular isokinetic stack sampling system consists of:

- A stainless steel button-hook nozzle.
- A heated (248±25°F) stainless steel-lined probe.
- A pre-cleaned glass fiber filter (manufactured to at least 99.95% efficiency (<0.05 % penetration) for 0.3-micron dioctyl phthalate smoke particles) in a heated (248±25°F) filter box.
- A glass recirculating ice water condenser system.
- An XAD-2 sorbent trap.
- A set of five impingers: one Greenburg-Smith (GS) impingers, three modified GS impingers, and one water "knock-out" impinger with the configuration shown in Table 4-3.
- A sampling line.
- An Environmental Supply® control case equipped with a pump, dry-gas meter, and calibrated orifice.

Impinger Order (Upstream to Downstream)	Impinger Type	Impinger Contents	Amount
1	"Knock-out"	Empty	0 ml
2	Greenburg-Smith	HPLC water	100 ml
3	Modified	HPLC water	100 ml
4	Modified	Empty	0 ml
5	Modified	Silica gel desiccant	~200-300 g

Table 4-3USEPA Method 23 Impinger Configuration

HPLC: high-performance liquid chromatography

Before testing, a preliminary velocity traverse was performed and an "ideal" nozzle size was calculated; a nozzle size was selected to enable isokinetic sampling at an average rate of approximately 0.75 cubic feet per minute (cfm). Bureau Veritas selected a pre-cleaned stainless steel nozzle that had an inner diameter that approximated the calculated ideal value. The nozzle was (1) measured with calipers across three cross-sectional chords to evaluate the inside diameter, (2) rinsed and brushed with acetone, methylene chloride, and toluene, and (3) connected to the stainless steel-lined sampling probe.

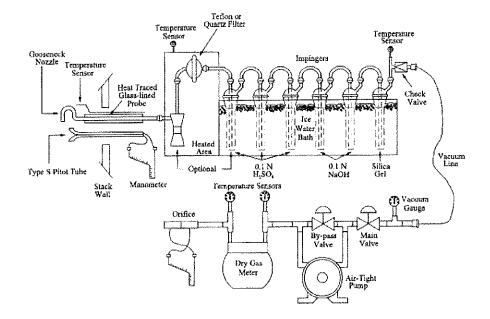
The impact and static pressure openings of the Pitot tube were leak-checked at or above a pressure of 3 inches of water for more than 15 seconds. The sampling train was leak-checked by capping the nozzle tip and applying a vacuum of approximately 10 inches of mercury to the sampling train. The dry-gas meter was monitored to measure whether the sample train leak rate was less than 0.02 cfm. If the pre-test leak failed, the sampling train was adjusted until the leak rate was <0.02 cfm. Next, the sampling probe was inserted into the stack through the sampling port to begin sampling.

Ice and water were placed around the impingers and the probe and filter temperatures were allowed to stabilize at $248\pm25^{\circ}$ F before each test run. After the desired operating conditions were coordinated with the facility, testing was initiated.

Stack parameters (e.g., flue velocity, temperature) were monitored to establish the isokinetic sampling rate to within ± 10 % for the duration of the test.

At the conclusion of a test run and the post-test leak check, the sampling train was disassembled and the condenser, XAD-2 sorbent trap, impingers, and filter were transported to the recovery area. The XAD-2 sorbent trap was removed from the sampling train, capped at both ends with aluminum foil, labeled, and stored in an iced cooler for transport to the laboratory.

The filter was recovered using Teflon-lined tweezers and placed in a Petri dish. The Petri dish was immediately labeled and sealed. The nozzle, probe, filter housing, and condenser were brushed and triple-rinsed with acetone and then methylene chloride; these solvents were collected in a pre-cleaned sample container. The nozzle, probe, filter housing, and condenser were triple-rinsed with toluene, which was collected in a separate sample container.


At the end of a test run, the liquid collected in each impinger, including the silica gel, was weighed. These weights were used to calculate the moisture content of the flue gas.

Bureau Veritas labeled each container with the test number, test location, and test date, and marked the level of liquid on the outside of the container. In addition, blank samples of the HPLC water, acetone, methylene chloride, toluene, adsorbent module, and filter were collected. Samples were transported by courier to Maxxam Analytics, a Bureau Veritas laboratory, located in Mississauga, Ontario, Canada for analysis.

4.1.7 Hydrogen Chloride (USEPA Method 26A)

USEPA Method 26A, "Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources," was used to measure hydrogen chloride emissions. Triplicate 80-minute test runs were performed at each required incinerator sampling location. Figure 4-4 depicts the USEPA Method 26A sampling train. The 0.1 N NaOH impingers were not used.

Figure 4-4. USEPA Method 26A Sampling Train

Bureau Veritas' modular isokinetic stack sampling system consists of:

- A borosilicate glass button-hook nozzle.
- A heated borosilicate glass-lined probe, heated above 248°F.
- A desiccated and untared glass fiber filter in a filter box heated above 248°F.
- A set of four pre-cleaned GS impingers with the configuration shown in Table 4-4.
- A sampling line.

- ALANNA

• An Environmental Supply® control case equipped with a pump, dry-gas meter, and calibrated orifice.

Table 4-4USEPA Method 26A Impinger Configuration

Impinger Order (Upstream to Downstream)	Impinger Type	Impinger Contents	Amount
1	Greenburg-Smith	0.1 N H ₂ SO ₄	100 ml
2	Greenburg-Smith	0.1 N H ₂ SO ₄	100 ml
3	Modified	Empty	0 ml
4	Modified	Silica gel desiccant	~200-300 g

Before testing, a preliminary velocity traverse was performed and an "ideal" nozzle size was calculated that would enable isokinetic sampling at an average rate of 0.75 cfm. Bureau Veritas selected a pre-cleaned borosilicate glass nozzle that has an inner diameter that approximated the calculated ideal value. The nozzle was (1) measured with calipers across three cross-sectional chords to evaluate the inside diameter, (2) rinsed and brushed with Type 3 deionized, and (3) connected to the borosilicate glass-lined sampling probe.

The impact and static pressure openings of the Pitot tube were leak-checked at or above a pressure of 3 inches of water for more than 15 seconds. The sampling train was leak-checked by capping the nozzle tip and applying a vacuum of approximately 10 inches of mercury to the sampling train. The dry-gas meter was monitored to measure whether the sample train leak rate was less than 0.02 cfm. If the pre-test leak failed, the sampling train was adjusted until the leak rate was <0.02 cfm. Next, the sampling probe was inserted into the stack through the sampling port to begin sampling.

Ice and water were placed around the impingers, and the probe, and filter temperatures were allowed to stabilize to a temperature above 248°F before each test run. After the desired operating conditions were coordinated with the facility, testing was initiated.

Stack parameters (e.g., flue velocity, temperature) were monitored to establish the isokinetic sampling rate to within ± 10 % for the duration of the test.

At the conclusion of a test run and the post-test leak check, the sampling train was disassembled and the impingers and filter housing were transported to the recovery area. The filter was removed from the filter housing and discarded. The nozzle and probe liner, and the front half of the filter housing were rinsed with deionized water to remove particulate matter. The deionized water rinses were discarded.

At the end of a test run, the liquid collected in each impinger, including the silica gel impinger, was measured using an electronic scale; these weights were used to calculate the moisture content of the flue gas.

The contents of Impingers 1 and 2, back-half of the filter housing, and connecting glassware were placed in a glass sample container. The glassware was rinsed three times with deionized water and the rinsate was placed in the sample container.

All sample containers, including blanks, were transported by courier to Maxxam Analytics, a Bureau Veritas laboratory, located in Mississauga, Ontario, Canada, for analysis.

4.1.8 Solid Content of Sludge (Standard Method SM2540B)

One composite sample of sewage sludge was taken for each required incinerator and measured for percent solids in accordance with Standard Method SM2540B. Samples were transported by courier to Maxxam Analytics, a Bureau Veritas laboratory, located in Mississauga, Ontario, Canada for analysis.

4.1.9 Gas Dilution (USEPA Method 205)

A gas dilution system was used to introduce known values of calibration gases into the analyzers. The gas dilution system consists of calibrated orifices or mass flow controls and dilutes a highlevel calibration gas to within $\pm 2\%$ of predicted values. The gas divider is capable of diluting gases at set increments and was evaluated for accuracy in the field in accordance with USEPA Method 205, "Verification of Gas Dilution Systems for Field Instrument Calibrations."

Before testing, the gas divider dilutions were measured to evaluate that they were within $\pm 2\%$ of predicted values. Three sets of two dilutions of the high-level calibration gas were performed. In addition, a certified mid-level calibration gas was introduced into an analyzer; this calibration gas concentration was within $\pm 10\%$ of a gas divider dilution concentration.

4.2 Process Data

Process data were recorded by GLWA personnel. Refer to Section 2.3 for discussions of process and control device data and Appendix F for the operating parameters recorded during testing.

4.3 Sampling Identification and Custody

Mr. David Kawasaki was responsible for the handling and procurement of the data collected in the field. Mr. Kawasaki ensured the data sheets were accounted for and completed.

Recovery and analytical procedures were applicable to the sampling methods used in this test program. Sampling and recovery procedures were described in Section 4.1.

Applicable Chain of Custody procedures followed guidelines outlined within ASTM D4840-99 (Reapproved 2010), "Standard Guide for Sample Chain-of-Custody Procedures."

For each sample collected (i.e., impinger) sample identification and custody procedures were completed as follows:

- Containers were sealed to prevent contamination.
- Containers were labeled with test number, location, and test date.
- Containers were stored in a cooler.
- Samples were logged using guidelines outlined in ASTM D4840-99 (Reapproved 2010), "Standard Guide for Sample Chain-of-Custody Procedures."
- Samples were delivered to the laboratory.

Chains of custody and laboratory analytical results are included in Appendix E.

5.0 QA/QC Activities

Equipment used in this test program passed QA/QC procedures. Refer to Appendix A for equipment calibrations and inspection sheets. Field data sheets are presented in Appendix C. Computer-generated data sheets are presented within Appendix D.

5.1 Pretest QA/QC Activities

Before testing, the sampling equipment was cleaned, inspected, and calibrated according to procedures outlined in the applicable USEPA sampling method and USEPA's "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source-Specific Methods."

5.2 QA/QC Audits

The results of select sampling and equipment QA/QC audits and the acceptable tolerance are presented in the following sections. Analyzer calibration and gas certification sheets are presented in Appendix A.

5.2.1 Results of Audit Samples

Audit samples, supplied by Environmental Resource Associates (ERA), were analyzed as part of this test program. The purpose of ERA's Stationary Source Audit Sample Program is to evaluate accuracy and data reliability. The audit samples were analyzed by Maxxam Analytics. The audit sample results were within the acceptance limits. The results of the audit samples are presented in Table 5-1. ERA's Audit Evaluation Report is included in Appendix E.

<u> </u>	<u>tationary Source</u>	Stationary Source Audit Program QA/QC Audit Sample Results								
Sample Catalog Number	Analyte	Unit	Maxxam Analytics Reported Value	ERA Assigned Value	Acceptable Limit	Performance Evaluation				
1425	Metals on filter paper (cadmium)	µg/filter	69.6	68.5	54.8-82.2	Acceptable				
1425	Metals on filter paper (lead)	μg/filter	129	123	98.4-148	Acceptable				
1426	Metals in impinger solution (cadmium)	µg/mL	1.38	1.33	1.06-1.60	Acceptable				
1426	Metals in impinger solution (lead)	µg/mL	1.35	1.24	0.930-1.55	Acceptable				
1427	Mercury on filter paper	µg/filter	39.8	40.2	30.2-50.2	Acceptable				
1428	Mercury in impinger solution	ng/mL	11.4	11.5	8.62-14.4	Acceptable				
1440	Hydrogen chloride in impinger solution	mg/L	12.5	12.8	11.5-14.1	Acceptable				

Table 5-1Stationary Source Audit Program QA/QC Audit Sample Results

5.2.2 Sampling Train QA/QC Audits

The sampling trains described in Section 4.1 were audited for measurement accuracy and data reliability. Tables 5-2 through 5-4 summarize the QA/QC audits conducted for the USEPA Methods 23, 26A, and 5 and 29 sampling trains.

USEPA Method 23 Sampling Train QA/QC Audits										
Parameter	Run 1	Run 2	Run 3	Run 4	Method Requirement	Comment				
EUINC11										
Sampling train leak check Post–test	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 7 in Hg	0 ft ³ for 1 min at 6 in Hg		<0.020 ft ³ for 1 minute at \geq sample vacuum	Valid				
Sampling vacuum (in Hg)	1	5 to 7	5 to 6		recorded during test					
Isokinetic variation (%)	98	97	96		90-110%	Valid				
EUINC12										
Sampling train leak check Post–test	0 ft ³ for 1 min at 10 in Hg		0.005 ft ³ for 1 min at 10 in Hg	0 ft ³ for 1 min at 10 in Hg		Valid				
Sampling vacuum (in Hg)	5 to 8		4 to 7	4 to 8						
Isokinetic variation (%)	100		98	97	90-110%	Valid				
EUINC13		. <u></u>	·	•						
Sampling train leak check Post–test	0 ft ³ for 1 min at 10 in Hg	0.005 ft ³ for 1 min at 10 in Hg	0.008 ft ³ for 1 min at 10 in Hg			Valid				
Sampling vacuum (in Hg)	7 to 8	6 to 8	7 to 9							
Isokinetic variation (%)	98	99	96		90-110%	Valid				
EUINC14	• • • • • • • • • • • • • • • • • • •			<u> </u>						
Sampling train leak check Post–test	0.005 ft ³ for 1 min at 10 in Hg	0 ft ³ for 1 min at 10 in Hg	0.005 ft ³ for 1 min at 10 in Hg	••	$<0.020 \text{ ft}^3$ for 1 minute at \geq sample vacuum recorded during test	Valid				
Sampling vacuum (in Hg)	6 to 7	5 to 7	6 to 7							
Isokinetic variation (%)	99	100	101		90-110%	Valid				

Table 5-2

Table 5-3USEPA Method 26A Sampling Train QA/QC Audits

Parameter	Run 1	Run 2	Run 3	Method Requirement	Comment
EUINC11					<u> </u>
Sampling train leak check Post-test	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 6 in Hg	$<0.020 \text{ ft}^3$ for 1 minute at \ge sample vacuum recorded during	Valid
Sampling vacuum (in Hg)	3 to 5	5	5	test	
Isokinetic variation (%)	94	94	95	90-110%	Valid
EUINC12					
Sampling train leak check Post-test	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 10 in Hg	0 ft ³ for 1 min at 8 in Hg	<0.020 ft ³ for 1 minute at \ge sample vacuum recorded during test	Valid
Sampling vacuum (in Hg)	3 to 5	5	5		
Isokinetic variation (%)	96	95	98	90-110%	Valid
EUINC13					
Sampling train leak check Post–test	0 ft ³ for 1 min at 8 in Hg	0.005 ft ³ for 1 min at 7 in Hg	0.005 ft ³ for 1 min at 8 in Hg	$<0.020 \text{ ft}^3$ for 1 minute at \ge sample vacuum recorded during	Valid
Sampling vacuum (in Hg)	4 to 5	5	3 to 5	test	
Isokinetic variation (%)	95	94	93	90-110%	Valid
EUINC14					
Sampling train leak check Post–test	0 ft ³ for 1 min at 12 in Hg	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 5 in Hg	<0.020 ft ³ for 1 minute at \ge sample vacuum recorded during test	Valid
Sampling vacuum (in Hg)	5	5	4 to 5		
Isokinetic variation (%)	95	96	94	90-110%	Valid

USEPA Methods 5 and 29 Sampling Train QA/QC Audits										
Parameter	Run 1	Run 2	Run 3	Run 4	Method Requirement	Comment				
EUINC11						·····				
Sampling train leak check Post-test	0 ft ³ for 1 min at 5 in Hg	0.010 ft ³ for 1 min at 6 in Hg	0 ft ³ for 1 min at 5 in Hg		<0.020 ft ³ for 1 minute at \geq sample vacuum	Valid				
Sampling vacuum (in Hg)	4	4	4		recorded during test					
Isokinetic variation (%)	94	95	95		90-110%	Valid				
EUINC12				•						
Sampling train leak check Post–test		0.005 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 7 in Hg	$<0.020 \text{ ft}^3$ for 1 minute at \geq sample vacuum	Valid				
Sampling vacuum (in Hg)		3 to 5	5	5	recorded during test					
Isokinetic variation (%)		95	96	94	90-110%	Valid				
EUINC13										
Sampling train leak check Post–test	0 ft ³ for 1 min at 10 in Hg	0.005 ft ³ for 1 min at 10 in Hg	0.015 ft ³ for 1 min at 10 in Hg		$<0.020 \text{ ft}^3$ for 1 minute at \geq sample vacuum recorded during test	Valid				
Sampling vacuum (in Hg)	4 to 5	4 to 5	4 to 5							
Isokinetic variation (%)	99	98	97		90-110%	Valid				
EUINC14					·					
Sampling train leak check Post–test	0 ft ³ for 1 min at 5 in Hg	0 ft ³ for 1 min at 10 in Hg	0 ft ³ for 1 min at 5 in Hg		<0.020 ft ³ for 1 minute at \geq sample vacuum recorded during test	Valid				
Sampling vacuum (in Hg)	4 to 5	5	4 to 5							
Isokinetic variation (%)	94	99	98		90-110%	Valid				

Table 5-4

... 10

5.2.3 Instrument Analyzer QA/QC Audits

The instrument sampling trains described in Section 4.1 were audited for measurement accuracy and data reliability. The analyzers passed the applicable calibration criteria. Table 5-5 summarizes the gas cylinders used during this test program. Refer to Appendix A for additional calibration data.

Parameter	arameter Gas Vendor Cylinder Serial Number		Cylinder Value	Expiration Date
Oxygen (O ₂)	Airgas	ALM-047449	19.99%	5/22/26
Carbon dioxide (CO ₂)	Airgas	ALM-047449	19.89%	5/22/26
Carbon monoxide (CO)	Airgas	XC032359B	4,408 ppm	10/30/22
Nitrogen (N ₂)	Airgas	1535054Y	99.9995%	2/4/24
Nitrogen dioxide (NO ₂)	Airgas	CC507540	50.94 ppm	1/4/21
Nitrogen oxides (NO _x)	Airgas	AAL-5925	845.6 ppm	3/13/25
Sulfur dioxide (SO ₂)	Airgas	CC131966	88.21 ppm	10/23/22

Table 5-5 **Calibration Gas Cylinder Information**

5.2.4 **Dry-Gas Meter QA/QC Audits**

Table 5-6 summarizes the dry-gas meter calibration checks in comparison to the acceptable USEPA tolerance. Refer to Appendix A for DGM calibrations.

Dry-gas Meter Calibration QA/QC Audit								
Dry-Gas Meter	DGM Calibration Factor (Y) (dimensionless)	Acceptable Tolerance	Comment					
Х	0.971 June 22, 2018	0.97-1.03	Valid					
W12637	1.0098 May 17, 2018	0.97-1.03	Valid					

Table 5-6

5.2.5 Thermocouple QA/QC Audits

Temperature measured using thermocouples and digital pyrometers were compared to a reference temperature (i.e., ice water bath, boiling water) before and after testing to evaluate accuracy of the equipment. The thermocouples and pyrometers measured temperature within $\pm 1.5\%$ of the reference temperatures and were within USEPA acceptance criteria. Thermocouple calibration sheets are presented in Appendix A.

5.3 QA/QC Checks for Data Reduction and Validation

Bureau Veritas validated the computer spreadsheets onsite. The computer spreadsheets were used to evaluate the accuracy of field calculations. The field data sheets were reviewed to evaluate whether data had been recorded appropriately. The computer data sheets were checked against the field data sheets for accuracy. Sample calculations were performed to check computer spreadsheet computations.

5.4 QA/QC Problems

Equipment audits and QA/QC procedures demonstrate sample collection accuracy for the test runs.

6.0 Limitations

The information and opinions rendered in this report are exclusively for use by Great Lakes Water Authority. Bureau Veritas North America, Inc. will not distribute or publish this report without Great Lakes Water Authority's consent except as required by law or court order. The information and opinions are given in response to a limited assignment and should be implemented only in light of that assignment. Bureau Veritas North America, Inc. accepts responsibility for the competent performance of its duties in executing the assignment and preparing reports in accordance with the normal standards of the profession, but disclaims any responsibility for consequential damages.

This report prepared by:

Claushe

David Kawasaki, QSTI Air Quality Consultant II Health, Safety, and Environmental Services

This report approved by:

Derck R. Wong, Ph.D., P.E. **Director and Vice President** Health, Safety, and Environmental Services

Table 1EUINC07 Exhaust O2 and NOx Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Date: July 10, 2018

Parameter	Run 1	Run 2	Run 3	Average
Sample Start Time	13:45	14:55	17:10	
Test Duration (min)	60	60	60	60
O_2 Concentration (C_{Avg} , %)	10.7	9.4	10.8	10.3
Corrected O ₂ Concentration (C _{Gas} , %)	11	9.4	11	10
NO_x Concentration (C_{Avg_2} ppmvd)	128.9	200.9	148.2	159.3
Corrected NO _x Concentration (C _{Gas} , ppmvd)	126	201	144	157
NO _x Concentration (ppmvd, @ 7% O ₂)	172	242	199	204

ppmvd = part per million by volume, dry basis

1.199

Table 2EUINC09 Exhaust O2 and NOx Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Date: July 10, 2018

Parameter	Run 1	Run 2	Run 3	Average
Sample Start Time	7:40	9:02	10:20	
Test Duration (min)	60	60	60	60
O ₂ Concentration (C _{Avg} , %)	5.9	12.7	10.2	9.6
Corrected O_2 Concentration (C_{Gas} , %)	6.0	13	10	9.7
NO_x Concentration (C _{Avg} , ppmvd)	198.4	80.5	127.7	135.5
Corrected NO _x Concentration (C _{Gas} , ppmvd)	193	77	123	131
NO _x Concentration (ppmvd, @ 7% O ₂)	180	132	161	158

ppmvd = part per million by volume, dry basis

Table 3EUINC10 Exhaust O2 and NOx Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Date: July 11, 2018

Parameter	Run 1	Run 2	Run 3	Average
Sample Start Time	7:00	8:55	10:05	
Test Duration (min)	60	60	60	60
O ₂ Concentration (C _{Avg} , %)	6.8	3.5	5.0	5.1
Corrected O ₂ Concentration (C _{Gas} , %)	6.6	3.3	4.7	4.9
NO_x Concentration (C_{Avg} , ppmvd)	180.8	242.1	224.5	215.8
Corrected NO _x Concentration (C _{Gas} , ppmvd)	178	239	224	214
NO _x Concentration (ppmvd, @ 7% O ₂)	172	189	192	184

ppmvd = part per million by volume, dry basis

Table 4EUINC11 Exhaust O2, CO2, CO, NOx, and SO2 Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Dates: July 11 and 12, 2018

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Average
Sample Date	July 11	July 12	July 12	July 12	July 12	July 12	
Sample Start Time	14:30	8:50	11:20	13:50	16:00	17:45	
Test Duration (min)	60	60	60	60	60	60	60
O ₂ Concentration (C _{Avg} , %)	10.7	10.2	9.6	10.3	9.2	10.0	10.0
Corrected O_2 Concentration (C_{Gas} , %)	10	10	9.4	10	8.9	9.7	9.7
CO_2 Concentration (C_{Avg} , %)	8.3	8.9	9.4	8.8	9.4	8.9	8.9
Corrected CO ₂ Concentration (C _{Gas} , %)	8.2	8.6	9.2	8.6	9.3	8.7	8.8
CO Concentration (C _{Avg} , ppmvd)			1,394.95	1,109.96	1,896.14		1,467.02
Corrected CO Concentration (C _{Gas} , ppmvd)			2,753	1,062	1,842		1,886
CO Concentration (ppmvd, @ 7% O ₂)			3,315	1,354	2,134		2,268
NO _x Concentration (C _{Avg} , ppmvd)			121.0	120.9	117.7		119.9
Corrected NO _x Concentration (C _{Gas} , ppmvd)			122	120	117		120
NO _x Concentration (ppmvd, @ 7% O ₂)			147	153	136		145
SO_2 Concentration (C _{Avg} , ppmvd)			0.1	0.0	0.0		0.0
Corrected SO ₂ Concentration (C _{Gas} , ppmvd)			0.2	0.1	0.0		0.1
SO ₂ Concentration (ppmvd, @ 7% O ₂)			0.2	0.1	0.0		0.1

ppmvd = part per million by volume, dry basis

Table 5	5 - EUINC11 Exhau	st Dioxin and H Great Lakes Water		ssion Resu	lts
Source Designation		EUINC11			
Test Date		Jul 12, 2018	Jul 12, 2018	Jul 12, 2018	
Meter/Nozzle Information		M23 - Run 1	M23 - Run 2	M23 - Rug 3	Average
Meter Temperature, Tm	<u>ok</u>	99	103	104	102
Meter Pressure, Pm	in Hg	29,59	29.60	29.60	29.60
Measured Sample Volume, Vm	ft3	50,24	50,30	50,50	50.35
	std ft ³				
Sample Volume, V _m		47.42	47.15	47,20	47.25
Sample Volume, V _m	std m ³	1.34	1.34	1.34	1.34
Condensate Volume, V _w	std ft ³	0.67	1.40	1.14	1.07
Gas Density, ρ _s	std lb/ft ³	0.0769	0.0766	0.0766	0.0767
Total weight of sampled gas	ib	3.697	3.718	3.716	3,710
Nozzle Síze, An	ſt ²	0,0006874	0.0006874	0.0006874	0.0006874
Isokinetic Variation, I	%	98	97	96	97
ISOKINERIC VARIATION, I	70	98	97	96	97
Stack Data					
Average Stack Temperature, T _s	۹F	81	80	82	81
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.78	29.85	29,78	29.80
Molecular Weight Stack Gas-wet, M.	lb/lb-mole	29.61	29.51	29.50	29.54
Stack Gas Specific Gravity, G _s		1,02	1.02	1.02	1.02
Percent Moisture, B _{ws}	%	1.40	2.88	2.36	2.22
Water Vapor Volume (fraction)		0.014	0,029	0.024	0.022
Pressure, P.	in Hg	27.66	27.66	27,66	27.66
Average Stack Velocity, V,	ft/sec	16.53	16.71	16.87	16.71
Area of Stack	ft ²	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,778	15,950	16,103	15,944
Flowrate	ft ³ /min, standard wet	14,243	14,423	14,505	14,390
Flowrate	ft3/min, standard dry	14,043	14,007	14,163	14,071
Flowrate	m ³ /min, standard dry	398	397	401	398
Collected Mass					
Dioxins					
2,3,7,8-Tetra CDD	pg	<2.2	2.6	4.4	3.1
1,2,3,7,8-Penta CDD	рg	<2.8	<2.4	<3.2	<2.8
1,2,3,4,7,8-Hexa CDD	pg	<2.3	<2.3	<2.3	<2.3
1,2,3,6,7,8-Hexa CDD	pg	<2.0	<2.0	<1.9	<2.0
1,2,3,7,8,9-Hexa CDD	pg	<2.1	<2.1	<2.0	<2.1
1,2,3,4,6,7,8-Hepta CDD	pg	4.7	2.2	<2.3	3.1
1,2,3,4,6,7,8,9-Octa CDD	pg	21.2	10.6	7.2	13.0
Total Tetra CDD Total Party CDD	pg	<2.2	22.0	19.0	14.4
Total Penta CDD Total Hexa CDD	pg	<2.8 <9.1	<3.1	<3.2 <10	<3.0 <9.0
Total Hepta CDD	pg		<7.8		
Total Dioxins	pg	13.5	2.6 46.1	<2.3	6.1
Furans	pg	48.8	40.1	41.7	45,5
		5 Q	171	04.0	77.4
2,3,7,8-Tetra CDF 1,2,3,7,8-Penta CDF	pg P2	5.0 <2.3	131 19.7	96.2	77.4
2,3,4,7,8-Penta CDF	pg	4.0	58.0	13,1 39,9	11.7
1,2,3,4,7,8-Hexa CDF	pg				34.0
1,2,3,4,7,8-Hexa CDF	pg	6,8 <1.8	13.2 5.2	11.6 3.5	10.5
2,3,4,6,7,8-Hexa CDF	pg	<1.8 3.6	5.2 7.4	5,5 5,8	3.5
1,2,3,7,8,9-Hexa CDF	pg	3.0 <2.8	<2.6	3.8 <2.9	5.6 <2.8
1,2,3,4,6,7,8-Hepta CDF	pg	9.3	3.5	3.1	<2.8 5.3
1,2,3,4,7,8,9-Hepta CDF	pg	<2.5	<2.8	<3.0	<2.8
1,2,3,4,6,7,8,9-Octa CDF	pg	2.9	<2.3	<3.0	2.5
Total Tetra CDF	pg	5.0	617	481	368
Total Penta CDF	pg	4.0	263	209	508 159
Total Hexa CDF	pg	20.3	43.2	35.0	32.8
Total Hepta CDF	pg	9.3	43.2	<2.4	5.1
Total Furans	pg pg	9.3 41.5	929	~2.4 730	567
	ro	71.7	141	750	
Fotal Dioxin + Furan	pg	90	975	771	612

ALL NO.

1

Table 5 (c Facility	ontinued) - EUINC11 F	Cxhaust Dioxin Great Lakes Water		n Emission Re	sults
Source Designation		EUINC1	1		
Test Date		Jul 12, 2018	Jul 12, 2018	Jul 12, 2018	
Run		M23 - Run 1	M23 - Run 2	M23 - Run 3	Average
Concentration					
Dioxins					
2,3,7,8-Tetra CDD	ng/dscm @ 7% Oxygen	<2.1E-03	2.4E-03	4.2E-03	2.9E-03
1,2,3,7,8-Penta CDD	ng/dscm @ 7% Oxygen	<2.7E-03	<2.2E-03	<3.1E-03	<2.6E-03
1,2,3,4,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<2.2E-03	<2.1E-03	<2.2E-03	<2.2E-03
1,2,3,6,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<1.9E-03	<1.8光-03	<1.8E-03	<1.8E-03
1,2,3,7,8,9-Hexa CDD	ng/dscm @ 7% Oxygen	<2.0E-03	<1,9E-03	<1.9E-03	<1.9E-03
1,2,3,4,6,7,8-Hepta CDD	ng/dscm @ 7% Oxygen	4.5E-03	2.0E-03	<2.2E-03	2.9E-03
1,2,3,4,6,7,8,9-Octa CDD	ng/dscm @ 7% Oxygen	2.0E-02	9,6E-03	6.9E-03	1.2E-02
Total Tetra CDD	ng/dscm @ 7% Oxygen	<2.1E-03	2.0E-02	1.8E-02	1.3E-02
Total Penta CDD	ng/dscm @ 7% Oxygen	<2.7E-03	<2.8E-03	<3.1E-03	<2.8E-03
Total Hexa CDD	ng/dscm @ 7% Oxygen	<8.6E-03	<7.1E-03	<9.5E-03	<8,4E-03
Total Hepta CDD	ng/dscm @ 7% Oxygen	1.3E-02	2.4E-03	2.2E-03	5.8E-03
Total Dioxins	ng/dscm @ 7% Oxygen	4.6E-02	4.2E-02	4.0E-02	4.3E-02
Furans					
2,3,7,8-Tetra CDF	ng/dscm @ 7% Oxygen	4.7E-03	1.2E-01	9.2E-02	7.2E-02
1,2,3,7,8-Penta CDF	ng/dscm @ 7% Oxygen	<2.2E-03	L.8E-02	1.2E-02	1.1E-02
2,3,4,7,8-Penta CDF	ng/dscm @ 7% Oxygen	3.8E-03	5.3E-02	3.8E-02	3.1E-02
1,2,3,4,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	6.5E-03	1.2E-02	1,1E-02	9.8E-03
1,2,3,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	<1.7E-03	4.7E-03	3.3E-03	3.3E-03
2,3,4,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	3.4E-03	6.7E-03	5.5E-03	5.2E-03
1,2,3,7,8,9-Hexa CDF	ng/dscm @ 7% Oxygen	<2.7E-03	<2.4E-03	<2.8E-03	<2.6E-03
1,2,3,4,6,7,8-Hepta CDF	ng/dscm (a) 7% Oxygen	8.8E-03	3.2E-03	3.0E-03	5.0E-03
1,2,3,4,7,8,9-Hepta CDF	ng/dscm @ 7% Oxygen	<2.4E-03	<2.5E-03	<2.9E-03	<2.6E-03
1,2,3,4,6,7,8,9-Octa CDF	ng/dscm (a) 7% Oxygen	2.8E-03	<2.1E-03	<2.1E-03	2.3E-03
Total Tetra CDF	ng/dscm @ 7% Oxygen	4.7E-03	5.6E-01	4.6E-01	3.4E-01
Total Penta CDF	ng/dscm @ 7% Oxygen	3.8E-03	2.4E-01	2.0E-01	1.5E-01
Total Hexa CDF	ng/dscm @ 7% Oxygen	1.9E-02	3.9E-02	3.3E-02	3.1E-02
Total Hepta CDF	ng/dscm @ 7% Oxygen	8.8E-03	3.2E-03	<2.3E-03	4.8E-03
Total Furans	ng/dscm @ 7% Oxygen	3.9E-02	8.4E-01	7.0E-01	5.3E-01
Total Dioxin + Furan	ng/dscm @ 7% Oxygen	0.086	0.88	0.74	0.57
Total Dioxin + Furan (TEQ)	ng/dscm @ 7% Oxygen	0.0086	0.036	0.031	0.025

- AND

	- EUINC11 Exhaus			ission Results	
Facility		Great Lakes Water			
Source Designation		EUINC11		X 1.10 0010	
Test Date		Jul 11, 2018	Jul 12, 2018	Jul 12, 2018	
Meter/Nozzle Information Meter Temperature, T _m	<u> </u>	<u>M26A - Run 1 N</u> 91	120A - Kun 2 N 86	<u> 126A - Kun 5</u> 89	Average 89
Meter Pressure, P _m	in Hg	29.50	29.61	29.60	29.57
Measured Sample Volume, Vm	ft ³	49.43	49.37	48.41	49.07
Sample Volume, V _m	std ft ³	45,36	45.88	44.73	45.32
Sample Volume, V _m	std m ³	1.28	1.30	1.27	1.28
Condensate Volume, V _w	std ft ³	1.60	1.09	1.07	1.25
Gas Density, p _s	std lb/ft ³	0.0761	0.0766	0.0768	0.0765
Total weight of sampled gas	lb	3.573	3.597	3.531	3.567
Nozzle Size, A _n	ft^2	0.0006874	0.0006874	0.0006874	0.0006874
Isokinetic Variation, I	%	94	94	95	94
Stack Data					
Average Stack Temperature, T _s	Ŧ	74	80	88	81
Molecular Weight Stack Gas-dry, Md	lb/lb-mole	29.72	29.78	29.85	29.78
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.32	29.50	29.57	29.46
Stack Gas Specific Gravity, G _s		1.01	1.02	1.02	1.02
Percent Moisture, B _{ws}	%	3.40	2,32	2.33	2.68
Water Vapor Volume (fraction)		0.034	0.023	0.023	0.027
Pressure, P _s	in Hg	27.56	27.66	27.66	27.63
Average Stack Velocity, V _s	ft/sec	16.54	16.81	16.44	16.60
Area of Stack	\mathbf{ft}^2	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,782	16,039	15,687	15,836
Flowrate	ft ³ /min, standard wet	14,377	14,493	13,976	14,282
Flowrate	ft ³ /min, standard dry	13,888	14,157	13,651	13,898
Flowrate	m ³ /min, standard dry	393	401	387	394
Collected Mass					
Hydrogen chloride	mg	0.540	<0.200	0.330	0.357
Concentration					
Hydrogen chloride	mg/dscf	0.012	<0.0044	<0.0074	0.0079
Hydrogen chloride	mg/dscm @ 7% Oxygen	0.54	0.20	0.31	0.35
Hydrogen chloride	ppmvd @ 7% Oxygen	0.44	0.16	0.25	0.28

" Same

ANNA.

1 and

	NC11 Exhaust Part			ls Emission I	Results
Facility Source Designation		Great Lakes Water EUINC11			
Test Date		Jul 12, 2018	Jul 12, 2018	Jul 12, 2018	
Meter/Nozzle Information		Average			
Meter Temperature, T _m	°F	92	93	95	93
Meter Pressure, P _m	in Hg ft ³	29.60	29.60	29.60	29.60
Measured Sample Volume, Vm		48.66	48.36	48.92	48.65
Sample Volume, V _m	std ft ³	44.70	44.37	44.74	44.60
Sample Volume, V _m	std m ³	1.27	1.26	1.27	1.26
Condensate Volume, V _w	std ft ³	1.07	1.67	1.96	1.57
Gas Density, ρ _s	std lb/ft ³	0.0766	0.0764	0.0763	0.0764
Total weight of sampled gas	lb	3.505	3.516	3.511	3.510
Nozzle Size, A _n	ft ²	0.0006874	0.0006874	0.0006874	0.0006874
Isokinetic Variation, I	%	94	95	95	95
Stack Data		-			
Average Stack Temperature, T _s	°F	90	89	80	86
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.78	29.84	29.90	29.84
Molecular Weight Stack Gas-wet, M _s	lb/lb-mole	29.50	29.41	29.40	29,44
Stack Gas Specific Gravity, G _s Percent Moisture, B _{ws}	%	1.02 2.33	1.02 3.64	1.02 4.20	1.02 3.39
Water Vapor Volume (fraction)	/0	0.023	0.036	0.042	0.034
Pressure, P.	in Hg	27.66	27.66	27.66	27.66
Average Stack Velocity, Vs	ft/sec	16.53	16.58	16.44	16.52
Area of Stack	ťt ²	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,774	15,825	15,692	15,764
Flowrate	ft ³ /min, standard wet	14,008	14,071	14,197	14,092
Flowrate	ft ³ /min, standard dry	13,681	13,560	13,600	13,614
Flowrate	m ³ /min, standard dry	387	384	385	386
Collected Mass					
Particulate Matter (PM)	mg	24.2	18.2	22	21.5
Mercury (Hg)	mg	0.0530	0.0608	0.0509	0.0549
Lead (Pb)	mg	0.0811	0.0697	0.117	0.0893
Cadmium (Cd)	mg	0.0140	0.0133	0.0186	0.0153
Concentration	ma/daaf	0.54	0.41	0.49	0.48
Particulate Matter (PM) Particulate Matter (PM)	mg/dscf mg/dscm @ 7% Oxygen	0.54 24	0.41 17	20	0.48 20
Particulate Matter (PM)	ppmvd @ 7% Oxygen	20	14	16	20 16
Mercury (Hg)	mg/dscf	0.0012	0.0014	0.0011	0.0012
Mercury (Hg)	mg/dscm @ 7% Oxygen	0.053	0.056	0.046	0.052
Mercury (Hg)	ppmvd @ 7% Oxygen	0.043	0.045	0.037	0.042
Lead (Pb)	mg/dscf	0.0018	0.0016	0.0026	0.0020
Lead (Pb)	mg/dscm @ 7% Oxygen	0.082	0.064	0.11	0.084
Lead (Pb)	ppmvd @ 7% Oxygen	0.066	0,052	0.085	0.067
Cadmium (Cd)	mg/dscf	0.00031	0.00030	0.00042	0.00034
Cadmium (Cd)	mg/dscm @ 7% Oxygen	0.014	0.012	0.017	0.014
Cadmium (Cd)	ppmvd @ 7% Oxygen	0.011	0.010	0.013	0.012

Table 8EUINC12 Exhaust O2, CO2, CO, NOx, and SO2 Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Dates: July 16 and 17, 2018

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Run6	Run7	Average
Sample Date	July 16	July 16	July 16	July 16	July 17	July 17	July 17	
Sample Start Time	11:05	13:20	15:45	17:40	7:00	8:35	10:20	
Test Duration (min)	60	60	60	60	60	60	60	60
O_2 Concentration (C_{Avg} , %)	7.7	8.3	8.9	9.7	7.9	8.6	11.0	8.9
Corrected O ₂ Concentration (C _{Gas} , %)	7.7	8.3	9.0	9.7	7.9	8.5	11	8.9
CO ₂ Concentration (C _{Avg} , %)	8.9	8.3	8.0	7.2	8.8	8.2	6.2	7.9
Corrected CO ₂ Concentration (C _{Gas} , %)	8.8	8.2	7.9	7.2	8.7	8.2	6.3	7.9
CO Concentration (C _{Avg} , ppmvd)		1,211.2	1,065.4	1,214.3				1,163.7
Corrected CO Concentration (C _{Gas} , ppmvd)		1,165	1,026	1,186				1,126
CO Concentration (ppmvd, @ 7% O ₂)		1,290	1,198	1,473				1,320
NO _x Concentration (C _{Avg} ppmvd)		150.2	152.6	156.7				153.2
Corrected NO _x Concentration (C _{Gas} , ppmvd)		151	153	158				154
NO _x Concentration (ppmvd, @ 7% O ₂)		167	179	197				181
SO ₂ Concentration (C _{Avg} , ppmvd)		0.8	3.7	0.8				1.8
Corrected SO ₂ Concentration (C _{Gas} , ppmvd)		0.2	3.3	0.5				1.3
SO ₂ Concentration (ppmvd, @ 7% O ₂)		0.2	3.9	0.6				1.5

ppmvd = part per million by volume, dry basis

"Sel Source

-127

6

Table 9	- EUINC12 Exhaus	t Dioxin and H Great Lakes Water		ssion Results	
Source Designation		EUINCI2			
Test Date		Jul 16, 2018	Jul 16, 2018	Jul 16, 2018	
Meter/Nozzle Information		M23 - Run 1	M23 - Run 3	M23 - Run 4	Avena
Meter Temperature, T _{in}	<u>ok</u>	102	113	115	Average 110
Meter Pressure, P _m	in Hg	29.60	29.59	29,59	29.59
	ft ³	51,45			
Measured Sample Volume, V _m			50.85	50,80	51.02
Sample Volume, V _m	std ft ³	48.32	46.81	46,57	47.24
Sample Volume, V _m	std m ³	1.37	1.33	1.32	1.34
Condensate Volume, V _w	std ft ³	1.32	1.44	1.27	1.34
Gas Density, ps	std lb/ft ³	0.0763	0.0760	0.0759	0.0761
Total weight of sampled gas	lb	3.789	3,667	3.634	3.697
Nozzle Size, A _n	ſt ²	0.0006874	0.0006874	0.0006874	0,0006874
Isokinetic Variation, I	%	100	98	97	99
Isokinene variation, i	70	100	28	51	75
Stack Data					
Average Stack Temperature, T _s	Ŧ	85	86	82	84
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.72	29.62	29.54	29,63
Molecular Weight Stack Gas-wet, M,	lb/lb-mole	29.41	29.28	29.23	29.30
Stack Gas Specific Gravity, Gs		1,02	1.01	1.01	1.01
Percent Moisture, B _{ws}	%	2.65	2.99	2.66	2.77
Water Vapor Volume (fraction)		0.027	0.030	0.027	0.028
Pressure, P _s	in Hg	27.66	27.66	27.66	27,66
Average Stack Velocity, Vs	ft/sec	16.75	16.62	16.57	16.65
Area of Stack	ft ²	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,981	15,860	15,815	15,885
	-	-	-	-	-
Flowrate	ft ³ /min, standard wet	14,308	14,187	14,248	14,248
Flowrate	ft ³ /min, standard dry	13,929	13,763	13,869	13,854
Flowrate	m ³ /min, standard dry	394	390	393	392
Collected Mass					
Dioxins					
2,3,7,8-Tetra CDD	pg	2.4	5.2	<2.2	3.3
1,2,3,7,8-Penta CDD	pg	<2.0	<2.3	<2.1	<2.1
1,2,3,4,7,8-Hexa CDD	pg	<2.4	<2.4	<2.3	<2.4
1,2,3,6,7,8-Hexa CDD	pg	<2.1	<2.1	<1.9	<2.0
1,2,3,7,8,9-Hexa CDD	pg	<2.1	<2.1	<2.0	<2.1
1,2,3,4,6,7,8-Hepta CDD	pg	3.5	3.3	2.2	3,0
1,2,3,4,6,7,8,9-Octa CDD	pg	21.5	11.6	10.3	14.5
Total Tetra CDD	pg	15.8	35.6	14.2	21.9
Total Penta CDD	pg	<2.0	2.3	<2.1	2.1
Total Hexa CDD	рg	<10.0	<9.5	<9.1	<9.5
Total Hepta CDD	pg	3.5	6.2	2.2	4.0
Total Dioxins	Pg	52.8	65.2	37.9	52.0
Furans		7.50	1 220	c n i	954
2,3,7,8-Tetra CDF	pg	758	1,220	584	854
1,2,3,7,8-Penta CDF	pg	120	214.0	62.0	132
2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF	pg pg	404 105	819.0 246.0	337 138	520 163
1,2,3,4,7,8-Hexa CDF	pg	42.1	246.0	52.7	65.3
2,3,4,6,7,8-Hexa CDF	pg	42.1	161.0	102	109
1,2,3,7,8,9-Hexa CDF	pg	<2.7	3.3	3.1	3,0
1,2,3,4,6,7,8-Hepta CDF	pg pg	28.8	64.9	48.0	47.2
1,2,3,4,7,8,9-Hepta CDF	pg	4.2	5.7	6.4	5.4
1,2,3,4,6,7,8,9-Octa CDF	pg	5.3	7.3	3.8	5,5
Total Tetra CDF	PB	3790	5,840	3,520	4,383
Total Penta CDF	pg	2300	4,500	1,760	2,853
Fotal Hexa CDF	pg	412	936.0	528	625
Fotal Hepta CDF	pg	32.9	97.8	71.5	67.4
Fotal Furans	pg	6540	11,381	5,883	7,935
Fotal Dioxin + Furan	pg	6593	11,446	5,921	7,987
fotal Dioxin + Furan (TEQ)	pg	227	434	196	286

- Section

1000

Table 9 (c Facility Source Designation	ontinued) - EUINC12 H	Cxhaust Dioxin Great Lakes Water EUINCI	Authority	n Emission Resi	ılts
Test Date		Jul 16, 2018	Jul 16, 2018	Jul 16, 2018	
Run		M23 - Run 1	M23 - Run 3	M23 - Run 4	Average
Concentration					
Dioxins					
2,3,7,8-Tetra CDD	ng/dscm @ 7% Oxygen	L.8E-03	4.6E-03	<2.1E-03	2.8E-03
1,2,3,7,8-Penta CDD	ng/dscm @ 7% Oxygen	<1.5E-03	<2.0E-03	<2.0E-03	<1.8E-03
1,2,3,4,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<1.8E-03	<2.1E-03	<2.2E-03	<2.0E-03
1,2,3,6,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<1.6E-03	<1.9E-03	<1.8E-03	<1.8E-03
1.2.3.7.8.9-Hexa CDD	ng/dscm @ 7% Oxygen	<1.6E-03	<1.9E-03	<1.9E-03	<1.8E-03
1,2,3,4,6,7,8-Hepta CDD	ng/dscm @ 7% Oxygen	2.7E-03	2.9E-03	2.1E-03	2.6E-03
1,2,3,4,6,7,8,9-Octa CDD	ng/dscm @ 7% Oxygen	1.7E-02	1.0E-02	9.7E-03	1.2E-02
Total Tetra CDD	ng/dscm @ 7% Oxygen	1.2E-02	3.1E-02	1.3E-02	L9E-02
Total Penta CDD	ng/dscm @ 7% Oxygen	<1.5E-03	2.0E-03	<2.0E-03	1.8E-03
Total Hexa CDD	ng/dscm @ 7% Oxygen	<7.7E-03	<8.4E-03	<8.6E-03	<8.2E-03
Total Hepta CDD	ng/dscm @ 7% Oxygen	2.7E-03	5.5E-03	2.1E-03	3.4E-03
Total Dioxins	ng/dscm @ 7% Oxygen	4.1E-02	5.7E-02	3.6E-02	4.5E-02
Furans					
2,3,7,8-Tetra CDF	ng/dscm @ 7% Oxygen	5.8E-01	1.1E+00	5.5E-01	7.4E-01
1,2,3,7,8-Penta CDF	ng/dscm @ 7% Oxygen	9.2E-02	1.9E-01	5.8E-02	1.1E-01
2,3,4,7,8-Penta CDF	ng/dscm @ 7% Oxygen	3.1E-01	7.2E-01	3,2E-01	4.5E-01
1,2,3,4,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	8.1E-02	2.2E-01	1.3E-01	1.4E-01
1,2,3,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	3.2E-02	8.9E-02	5.0E-02	5.7E-02
2,3,4,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	5.0E-02	1.4E-01	9.6E-02	9.6E-02
1,2,3,7,8,9-Hexa CDF	ng/dscm @, 7% Oxygen	<2.1E-03	2.9E-03	2.9E-03	2.6E-03
1,2,3,4,6,7,8-Hepta CDF	ng/dscm @ 7% Oxygen	2.2E-02	5.7E-02	4.5E-02	4.2E-02
1,2,3,4,7,8,9-Hepta CDF	ng/dscm @ 7% Oxygen	3,2E-03	5.0E-03	6.0E-03	4.8E-03
1,2,3,4,6,7,8,9-Octa CDF	ng/dscm @ 7% Oxygen	4.1E-03	6.4E-03	3.6E-03	4.7E-03
Total Tetra CDF	ng/dscm @ 7% Oxygen	2.9E+00	5.1E+00	3.3E+00	3.8E+00
Total Penta CDF	ng/dscm @ 7% Oxygen	1.8E+00	4.0E+00	1.7E+00	2.5E+00
Total Hexa CDF	ng/dscm @ 7% Oxygen	3.2E-01	8.2E-01	5.0E-01	5.5E-01
Total Hepta CDF	ng/dscm @ 7% Oxygen	2.5E-02	8.6E-02	6.7E-02	6.0E-02
Total Furans	ng/dscm @ 7% Oxygen	5.0E+00	1.0E+01	5.5E+00	6.9E+00
Total Dioxin + Furan	ng/dscm @ 7% Oxygen	5.1	10	5.6	6,9
Total Dioxin + Furan (TEQ)	ng/dscm @ 7% Oxygen	0.17	0.38	0.18	0.25

Table 10	Table 10 - EUINC12 Exhaust Hydrogen Chloride Emission Results								
Facility		Great Lakes Water							
Source Designation		EUINC12							
Test Date		Jul 17, 2018	Jul 17, 2018	Jul 17, 2018					
Meter/Nozzle Information		M26A - Run 1 M			Average				
Meter Temperature, T _m	°F	84	89	92	88				
Meter Pressure, P _m	in Hg	29.40	29.40	29.40	29.40				
Measured Sample Volume, V _m	ft ³	48.58	49.76	50.94	49.76				
Sample Volume, V _m	std ft ³	44.98	45.67	46.48	45.71				
Sample Volume, V _m	std m ³	1,27	1.29	1.32	1.29				
Condensate Volume, V _w	std ft ³	2.45	0.81	1.71	1.66				
Gas Density, p _s	std lb/ft ³	0.0755	0.0764	0.0754	0.0758				
Total weight of sampled gas	lb	3.583	3.553	3.603	3,580				
Nozzle Size, A _n	\mathbf{ft}^2	0.0006874	0.0006874	0.0006874	0.0006874				
Isokinetic Variation, I	%	96	95	98	96				
Stack Data									
Average Stack Temperature, Ts	°F	84	84	81	83				
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.71	29.65	29.45	29.60				
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.10	29.45	29.04	29.20				
Stack Gas Specific Gravity, G _s		1.00	1.02	1.00	1.01				
Percent Moisture, B _{ws}	%	5.16	1.74	3.55	3.49				
Water Vapor Volume (fraction)		0.052	0.017	0.036	0.035				
Pressure, P _s	in Hg	27.46	27.46	27.46	27.46				
Average Stack Velocity, V _s	ft/sec	16.79	16.60	16.72	16.70				
Area of Stack	ſt ²	15.90	15.90	15.90	15.90				
Exhaust Gas Flowrate									
Flowrate	ft ³ /min, actual	16,021	15,843	15,957	15,940				
Flowrate	ft ³ /min, standard wet	14,276	14,120	14,292	14,229				
Flowrate	ft ³ /min, standard dry	13,540	13,873	13,784	13,732				
Flowrate	m ³ /min, standard dry	383	393	390	389				
Collected Mass									
Hydrogen chloride	mg	<0.200	<0.400	<0.200	<0.267				
Concentration									
Hydrogen chloride	mg/dscf	< 0.0044	<0.0088	<0.0043	< 0.0058				
Hydrogen chloride	mg/dscm @ 7% Oxygen	< 0.17	< 0.35	<0.21	<0.24				
Hydrogen chloride	ppmvd @ 7% Oxygen	< 0.14	< 0.28	< 0.17	<0.20				

. Come

Guest .

	INC12 Exhaust Par			ls Emission Re	sults
Facility Source Designation		Great Lakes Water EUINC12			
Test Date		Jul 16, 2018	Jul 16, 2018	Jul 16, 2018	
Meter/Nozzle Information		M5/29 - Run 2 M	15/29 - Run 3 M	45/29 - Run 4	Average
Meter Temperature, T _m	°F	93	94		94
Meter Pressure, P _m	in Hg	29,60	29.60	29.60	29.60
Measured Sample Volume, V_m	ft ³	50.17	48.69	48.80	49.22
Sample Volume, V _m	stđ ft ³	46.00	44.58	44.57	45.05
Sample Volume, V _m	std m ³	1.30	1.26	1.26	1.28
Condensate Volume, V _w	stđ ft ³	1.26	2.85	1.50	1.87
Gas Density, ρ _s	std lb/ft ³	0.0761	0.0751	0.0757	0.0756
Total weight of sampled gas	lb	3,599	3.561	3.470	3.543
Nozzle Size, A _n	ft ²	0.0006874	0.0006874	0.0006874	0.0006874
Isokinetic Variation, I	⁰∕₀	95	96	94	95
Stack Data					
Average Stack Temperature, T _s	٥F	81	88	81	83
Molecular Weight Stack Gas-dry, M_d	lb/lb-mole	29.64	29.62	29.54	29.60
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.33	28.93	29.16	29.14
Stack Gas Specific Gravity, G _s	B /	1.01	1.00	1.01	1.01
Percent Moisture, B _{ws}	0/0	2.66	6.01	3.25	3.97
Water Vapor Volume (fraction) Pressure, P _s	in Hg	0,027 27.66	0.060 27.66	0.033 27.66	0.040 27.66
Average Stack Velocity, V _s	ft/sec	16.75	16.87	16.40	16,67
Area of Stack	ft ²	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,981	16,094	15,647	15,907
Flowrate	ft3/min, standard wet	14,420	14,349	14,125	14,298
Flowrate	ft ³ /min, standard dry	14,036	13,488	13,665	13,730
Flowrate	m ³ /min, standard dry	397	382	387	389
Collected Mass					
Particulate Matter (PM)	mg	20.5	17.1	13.1	16.9
Mercury (Hg)	mg	0.105	0.0982	0.0750	0.0929
Lead (Pb)	mg	0.0373	0.0690	0.0356	0.0473
Cadmium (Cd)	mg	0.00665	0.0130	0.0731	0.0309
Concentration Particulate Matter (PM)	mg/dscf	0.45	0.38	0.29	0.37
Particulate Matter (PM)	mg/dscm @ 7% Oxygen	17	16	13	15
Particulate Matter (PM)	ppmvd @ 7% Oxygen	14	13	10	12
Mercury (Hg)	mg/dscf	0.0023	0.0022	0.0017	0.0021
Mercury (Hg)	mg/dscm @ 7% Oxygen	0.089	0.091	0.074	0.085
Mercury (Hg)	ppmvd @ 7% Oxygen	0.072	0.074	0.060	0.069
Lead (Pb)	mg/dscf	0.00081	0.0015	0,00080	0.0011
Lead (Pb)	mg/dscm @ 7% Oxygen	0.032	0.064	0.035	0.043
Lead (Pb)	ppmvd @ 7% Oxygen	0.026	0.052	0.028	0.035
Cadmium (Cd)	mg/dscf	0.00014	0,00029	0.0016	0.00069
Cadmium (Cd)	mg/dscm @ 7% Oxygen	0.0056	0.012	0.072	0.030
Cadmium (Cd)	ppmvd @ 7% Oxygen	0.0046	0.010	0.059	0.024

Table 12EUINC13 Exhaust O2, CO2, CO, NOx, and SO2 Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Dates: July 17 and 18, 2018

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6		Average
Sample Date	July 17	July 17	July 17	July 18	July 18	July 18	[
Sample Start Time	13:00	14:50	16:40	7:00	8:37	10:20		
Test Duration (min)	60	60	60	60	60	60		60
O ₂ Concentration (C _{Avg} , %)	11.0	11.5	10.8	10.3	11.0	11.1	1	10.9
Corrected O ₂ Concentration (C _{Gas} , %)	11	11	11	10	11	11		11
CO_2 Concentration (C_{Avg} , %)	5.7	5.6	6.2	6.3	5.6	5.5		5.8
Corrected CO ₂ Concentration (C _{Gas} , %)	5.5	5.5	6.0	6.3	5.7	5.6		5.8
CO Concentration (C _{Ave} , ppmvd)	411.5	268.8	358.4					346.2
Corrected CO Concentration (C _{Gas} , ppmvd)	364	218	308					297
CO Concentration (ppmvd, @ 7% O ₂)	510	318	421					416
NO_x Concentration (C_{Avg} , ppmvd)	142.3	141.5	144.9					142.9
Corrected NO _x Concentration (C _{Gas} , ppmvd)	146	144	147					146
NO_x Concentration (ppmvd, @ 7% O_2)	205	210	200					205
SO_2 Concentration (C_{Avg} , ppmvd)	0.2	0.4	0.3					0.3
Corrected SO ₂ Concentration (C _{Gas} , ppmvd)	0.1	0.1	0.1					0.1
SO ₂ Concentration (ppmvd, @ 7% O ₂)	0.1	0.2	0.1					0.1

ppmvd = part per million by volume, dry basis

3 - EUINC13 Exhau			ission Res	ults
			Jul 17, 2018	
	Run 1 - M23	Run 2 - M23	Run 3 - M23	Average
۴	103	117	119	112
in Hg	29.39	29.39	29,39	29.39
==	50.02	51.91	51,09	51.00
std ft ³	46.54	47.12	46,21	46.62
std m ³	1.32	1.33	1.31	1,32
std ft ³	146			1,45
				0.0754
				3.636
				0.0006874
				0.0000874 98
/0	28	,,,	20	20
				84
				29.37
lb/lb-mole	29.01	28.86	29.23	29.03
07				1.00
%				3.00
in Ha				0.030 27.46
				16.74
ft ²	15.90	15,90	15,90	15.90
o ³ /	16.062	16 000	16.040	15.000
,	· · · · · · · · · · · · · · · · · · ·		-	15,978
			-	14,225
		-		13,797
m ⁷ /mm, standard dry	391	388	393	391
				<2.1
				<2.3
				<2.4 <2.1
				<2.1
				<2.2
	6.3	13.0		9.4
pg	2.8	2.6	<2,3	2.6
pg	<2.5	<2.2	<2.6	<2.4
pg	<7.7	<10	<9.2	<9.0
pg				2.6
pg	21.6	30.1	26.3	26.0
	112	877	59.0	96.2
				86.2 9.3
				32.1
	17.4	11.2	6.9	11.8
pg	7.1	5.0	2.1	4.7
Pg	13.1	9.6	5.0	9.2
pg	<2.9	<2.9	<2.6	<2.8
pg	6.5	5.2	<2.4	4.7
pg				3.5
				<2.2
				470
				148 42.5
				42.3
pg	1,006	552	<2.8 445	668
Pg	1,028	582	471	694
	PF in Hg ft ³ std ft ³ in Hg ft ³ /min, standard wet ft ³ /min, standard dry m ³ /min, standard dry m ³ /min, standard dry pg pg pg pg pg pf ³ std ft ³ pg pg pg	Great Lakes Water EUTINC13 Jul 17, 2018 Run 1 - M23 PF 103 in Hg 29.39 ft ³ 50.02 std ft ³ 46.54 std m ³ 1.32 std ft ³ 0.0753 b 3.614 ft ² 0.0006874 % 98 "F 84 lb/fb-mole 29.35 b/lb-mole 29.01 .000 % 3.05 0.030 in Hg 27.46 ft'sec 16.73 ft ² 15.90 Pg 2.1 pg 2.3 pg 2.3 pg <td>Great Lakes Water Authority BUINC13 Run 1 - M23 Run 2 - M23 P 103 117 in Hg 29.39 29.39 f¹ 50.02 51.91 std ft³ 46.54 47.12 std ft³ 1.32 1.33 std ft³ 1.46 2.11 std ft³ 0.0749 0.0006874 b 3.614 3.688 ft² 0.0006874 0.0006874 y 98 99 PF 84 82 lb/lb-mole 29.01 28.86 1.00 1.00 1.00 y 3.05 4.28 lb/lb-mole 29.01 28.86 1.00 1.00 1.00 y 3.05 4.28 lb/lb-mole 29.01 28.86 lb/lb-mole 29.01 20.0 ref 8 6.0 ft³/min, standard vet 14.227 14.317 ft³/mi</td> <td>LUIN2.2018 Jul 17, 2018 Jul 17, 2018</td>	Great Lakes Water Authority BUINC13 Run 1 - M23 Run 2 - M23 P 103 117 in Hg 29.39 29.39 f ¹ 50.02 51.91 std ft ³ 46.54 47.12 std ft ³ 1.32 1.33 std ft ³ 1.46 2.11 std ft ³ 0.0749 0.0006874 b 3.614 3.688 ft ² 0.0006874 0.0006874 y 98 99 PF 84 82 lb/lb-mole 29.01 28.86 1.00 1.00 1.00 y 3.05 4.28 lb/lb-mole 29.01 28.86 1.00 1.00 1.00 y 3.05 4.28 lb/lb-mole 29.01 28.86 lb/lb-mole 29.01 20.0 ref 8 6.0 ft ³ /min, standard vet 14.227 14.317 ft ³ /mi	LUIN2.2018 Jul 17, 2018 Jul 17, 2018

Table 13 (c Facility	ontinued) - EUINC13	Exhaust Dioxi Great Lakes Water		an Emission I	Results
Source Designation		EUINCI:	3		
Test Date		Jul 17, 2018	Jul 17, 2018	Jul 17, 2018	
Run		Run 1 - M23	Run 2 - M23	Run 3 - M23	Average
Concentration					
Dioxins					
2,3,7,8-Tetra CDD	ng/dscm @ 7% Oxygen	<2.2E-03	<2.3E-03	<2.3E-03	<2.3E-03
1,2,3,7,8-Penta CDD	ng/dscm @ 7% Oxygen	<2.1E-03	<2.4E-03	<2.7E-03	<2.4E-03
1,2,3,4,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<2.6E-03	<2.5E-03	<2.6E-03	<2.6E-03
1,2,3,6,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<2.1E-03	<2.2E-03	<2.3E-03	<2.2E-03
1,2,3,7,8,9-Hexa CDD	ng/dscm @ 7% Oxygen	<2.2E-03	<2.2E-03	<2.3E-03	<2.2E-03
1,2,3,4,6,7,8-Hepta CDD	ng/dscm @ 7% Oxygen	<2.5E-03	<2.5E-03	<2.2E-03	<2.4E-03
1,2,3,4,6,7,8,9-Octa CDD	ng/dscm @ 7% Oxygen	6.7E-03	1.4E-02	9.3E-03	L0E-02
Total Tetra CDD	ng/dscm @ 7% Oxygen	3.0E-03	2.8E-03	2.4E-03	2.7E-03
Total Penta CDD	ng/dscm @ 7% Oxygen	<2.7E-03	<2.4E-03	<2.7E-03	<2.6E-03
Total Hexa CDD	ng/dscm @, 7% Oxygen	<8.2E-03	<1.1E-02	<9.6E-03	<9.5E-03
Total Hepta CDD	ng/dscm @ 7% Oxygen	2.5E-03	<2.5E-03	3.4E-03	2.8E-03
Total Dioxins	ng/dscm @ 7% Oxygen	2.3E-02	3.3E-02	2.7E-02	2.8E-02
Furans	0 0				
2,3,7,8-Tetra CDF	ng/dscm @ 7% Oxygen	1.2E-01	9.5E-02	6.1E-02	9.2E-02
1,2,3,7,8-Penta CDF	ng/dscm (a) 7% Oxygen	<1.4E-02	<9.9E-03	5:9E-03	9.9E-03
2,3,4,7,8-Penta CDF	ng/dscm @ 7% Oxygen	4.7E-02	3.1E-02	2.4E-02	3.4E-02
1,2,3,4,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	1.9E-02	L2E-02	7.2E-03	1.3E-02
1,2,3,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	7.6E-03	5.4E-03	2.2E-03	5.1E-03
2,3,4,6,7,8-Hexa CDF	ng/dscm (a) 7% Oxygen	1.4E-02	1.0E-02	5.2E-03	9.9E-03
1,2,3,7,8,9-Hexa CDF	ng/dscm @ 7% Oxygen	<3.1E-03	<3.1E-03	<2.7E-03	<3.0E-03
1,2,3,4,6,7,8-Hepta CDF	ng/dscm @ 7% Oxygen	6,9E-03	5.6E-03	<2.5E-03	5.0E-03
1,2,3,4,7,8,9-Hepta CDF	ng/dscm (a) 7% Oxygen	<2.9E-03	4.7E-03	<3.6E-03	3.7E-03
1,2,3,4,6,7,8,9-Octa CDF	ng/dscm @ 7% Oxygen	<2.2E-03	<2.5E-03	<2.3E-03	<2.3E-03
Total Tetra CDF	ng/dscm @ 7% Oxygen	7.8E-01	4.0E-01	3.2E-01	5.0E-01
Total Penta CDF	ng/dscm @ 7% Oxygen	2.2E-01	1.4E-01	1.1E-01	1.6E-01
Total Hexa CDF	ng/dscm @ 7% Oxygen	6.5E-02	4.6E-02	2.5E-02	4.5E-02
Total Hepta CDF	ng/dscm @ 7% Oxygen	6.9E-03	5.6E-03	<2.9E-03	5.2E-03
Total Furans	ng/dscm @ 7% Oxygen	1.1E+00	6.0E-01	4.6E-01	7.1E-01
Total Dioxin + Furan	ng/dscm @ 7% Oxygen	1.1	0.63	0.49	0.74
Total Dioxin + Furan (TEQ)	ng/dscm @ 7% Oxygen	0.036	0.028	0.021	0.028

SEP 17 2018

AIR QUALITY DIVISION

Table 14 - EUINC13 Exhaust Hydrogen Chloride Emission Results Great Lakes Water Authority								
Source Designation		EUINC13						
Test Date		Jul 17, 2018	Jul 17, 2018	Jul 17, 2018				
Meter/Nozzle Information		M26A - Run 1 M26A - Run 2 M26			Average			
Meter Temperature, T _m	°F	92	100	102	98			
Meter Pressure, Pm	in Hg	29.41	29.40	29.41	29.40			
Measured Sample Volume, V _m	ft^3	50.50	50.32	50.34	50.39			
Sample Volume, V_m	std ft ³	46.07	45.28	45.12	45.49			
Sample Volume, V _m	std m ³	1.30	1.28	1.28	1.29			
Condensate Volume, V _w	std ft ³	1.57	1.39	1.70	1.55			
Gas Density, ρ_s	std lb/ft ³	0.0752	0.0753	0.0753	0.0753			
Total weight of sampled gas	lb	3.584	3.515	3.494	3.531			
Nozzle Size, A _n	ft ²	0.0006874	0.0006874	0.0006874	0.0006874			
Isokinetic Variation, 1	%	95	94	93	94			
Stack Data								
Average Stack Temperature, T _s	οŀ;	84	85	85	85			
Molecular Weight Stack Gas-dry, Md	lb/lb-mole	29.35	29.35	29.42	29.37			
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	28.98	29.01	29.00	29.00			
Stack Gas Specific Gravity, G _s		1.00	1.00	1.00	1.00			
Percent Moisture, B _{ws}	⁰ ⁄0	3.31	2.97	3.63	3.30			
Water Vapor Volume (fraction)		0.033	0.030	0.036	0.033			
Pressure, P _s	in Hg	27.46	27.46	27,46	27.46			
Average Stack Velocity, V _s	ft/sec	17.07	16.86	17.08	17.00			
Area of Stack	ſt ²	15.90	15.90	15.90	15.90			
Exhaust Gas Flowrate								
Flowrate	ft ³ /min, actual	16,293	16,085	16,295	16,224			
Flowrate	ft ³ /min, standard wet	14,512	14,315	14,493	14,440			
Flowrate	ft ³ /min, standard dry	14,033	13,890	13,966	13,963			
Flowrate	m³/min, standard dry	397	393	395	395			
Collected Mass								
Hydrogen chloride	mg	<0.200	< 0.200	<0.200	<0.200			
Concentration				2.00.1	A			
Hydrogen chloride	mg/dscf	< 0.0043	< 0.0044	< 0.0044	< 0.0044			
Hydrogen chloride	mg/dscm @ 7% Oxygen	< 0.22	< 0.23	<0.21	< 0.22			
Hydrogen chloride	ppmvd @ 7% Oxygen	<0.18	< 0.18	<0.17	< 0.18			

"Internation

A. A. S. C. A.

Table 15 - EUINC13 Exhaust Particulate Matter and Metals Emission Results							
Facility Source Designation		Great Lakes Water EUINC1					
Test Date	EUINC13 Jul 18, 2018 Jul 18, 2018 Jul 18, 2018						
Meter/Nozzle Information		Run 1 - M29	Run 2 - M29	Run 3 - M29	Average		
Meter Temperature, T _m	°F	89	94	95	93		
Meter Pressure, Pm	in Hg	29.50	29.50	29.50	29.50		
Measured Sample Volume, V _m	ft ³	51.07	51.40	50.96	51.14		
Sample Volume, V _m	std ft ³	47.04	46.91	46.37	46.77		
Sample Volume, V _m	std m ³	1.33	1.33	1.31	1.32		
Condensate Volume, V _w	std ft ³	2.02	2.02	1.81	1.95		
Gas Density, p _s	std lb/ft ³	0.0751	0.0750	0.0750	0.0750		
Total weight of sampled gas	lb	3.686	3.668	3.578	3.644		
Nozzle Size, A _n	ft ²	0.0006874	0.0006874	0.0006874	0.0006874		
Isokinetic Variation, I	%	99	98	97	98		
Stack Data							
Average Stack Temperature, T _s	Ŧ	80	78	78	79		
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.42	29.34	29.33	29.36		
Molecular Weight Stack Gas-wet, M_s	lb/lb-mole	28.95	28.88	28.90	28.91		
Stack Gas Specific Gravity, G _s	- /	1.00	1.00	1.00	1.00		
Percent Moisture, B _{ws}	%	4.11	4.12	3.76	4.00		
Water Vapor Volume (fraction)	in Hg	0.041 27,56	0.041 27.56	0.038 27.56	0.040 27.56		
Pressure, P _s Average Stack Velocity, V _s	ft/sec	16.65	16.69	16.60	16.65		
Area of Stack	ft ²	15.90	15.90	15.90	10.00		
Exhaust Gas Flowrate							
Flowrate	ft ³ /min, actual	15,891	15,931	15,839	15,887		
	ft ³ /min, standard wet	[4,319		13,839	13,387		
Flowrate		<i>,</i>	14,392				
Flowrate	ft ³ /min, standard dry	13,730	13,799	13,776	13,768		
Flowrate	m³/min, standard dry	389	391	390	390		
Collected Mass							
Particulate Matter (PM)	mg	19.2	22.8	16.5	19.5		
Mercury (Hg)	mg	0.0546 0.0676	0.0470 0.0410	0.0427 0.0386	0.0481 0.0491		
Lead (Pb) Cadmium (Cd)	mg mg	0.0076	0.0410	0.0125	0.0491		
`	0						
Concentration	116		0.40	0.26	0.42		
Particulate Matter (PM) Particulate Matter (PM)	mg/dscf mg/dscm @ 7% Oxygen	0.41 19	0.49 25	0.36 18	0.42 21		
Particulate Matter (PM)	ppmvd @ 7% Oxygen	15	20	15	17		
		0.0012	0.0010	0.0000	0.0010		
Mercury (Hg) Mercury (Hg)	mg/dscf mg/dscm @ 7% Oxygen	0.0012 0.054	0.0010	0.00092 0.047	0.0010 0.050		
Mercury (Hg)	ppmvd @ 7% Oxygen	0.044	0.042	0.038	0.041		
I and (Ph)	mg/dscf	0.0014	0.00087	0.00083	0.0010		
Lead (Pb) Lead (Pb)	mg/dscm @ 7% Oxygen	0.067	0.00087 0.044	0.00083	0.051		
Lead (Pb)	ppmvd @ 7% Oxygen	0.054	0.036	0.042	0.042		
Cadmium (Cđ)	mg/dscf	0.00037	0.00027	0.00027	0.00030		
Caumun (Cu)	mg/user	0.00037	0.00027	0.00027	0.00030		
Cadmium (Cd)	mg/dscm @ 7% Oxygen	0.017	0.014	0.014	0.015		

Table 16EUINC14 Exhaust O2, CO2, CO, NOx, and SO2 Emission ResultsGreat Lakes Water AuthorityDetroit, MichiganBureau Veritas Project No. 11018-000100.00Sampling Dates: July 13 and 16, 2018

Parameter	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Average
Sample Date	July 13	July 16					
Sample Start Time	8:15	10:15	12:05	14:00	15:40	8:15	
Test Duration (min)	60	60	60	60	60	60	60
O ₂ Concentration (C _{Avg} , %)	10.2	10.1	10.6	11.3	11.1	10.3	10.6
Corrected O ₂ Concentration (C _{Gas} , %)	10	10	11	11	11	10	11
CO_2 Concentration (C_{Avg} , %)	6.6	7.0	6.5	6.0	6.1	6.3	6.4
Corrected CO ₂ Concentration (C _{Gas} , %)	6.7	7.1	6.8	6.0	6.1	6.2	6.5
CO Concentration (C _{Avg} , ppmvd)	1,232.7	868.6	885.4				995.6
Corrected CO Concentration (C _{Gas} , ppmvd)	1,189	826	845				954
CO Concentration (ppmvd, @ 7% O ₂)	1,556	1,069	1,149				1,258
NO _x Concentration (C _{Avg} , ppmvd)	134.3	101.1	107.1				114.2
Corrected NO _x Concentration (C _{Gas} , ppmvd)	135	101	106				114
NO _x Concentration (ppmvd, @ 7% O ₂)	177	131	144				151
SO ₂ Concentration (C _{Avg} , ppmvd)	0.2	0.3	0.3				0.2
Corrected SO ₂ Concentration (C _{Gas} , ppmvd)	0.0	0.1	0.1				0.1
SO ₂ Concentration (ppmvd, @ 7% O ₂)	0.0	0.1	0.2				0.1

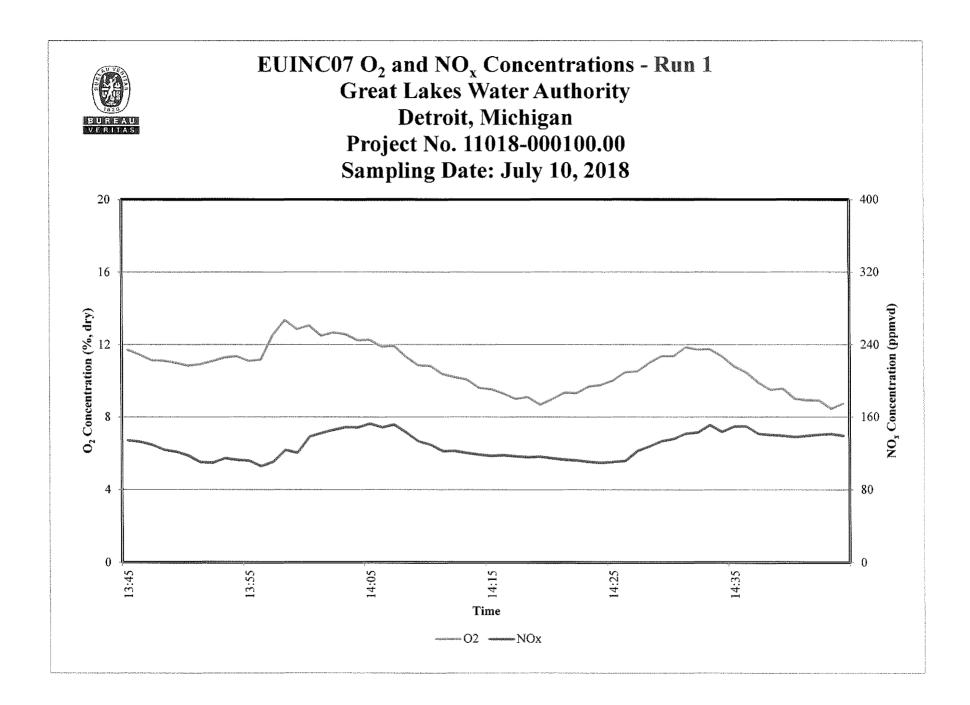
ppmvd = part per million by volume, dry basis

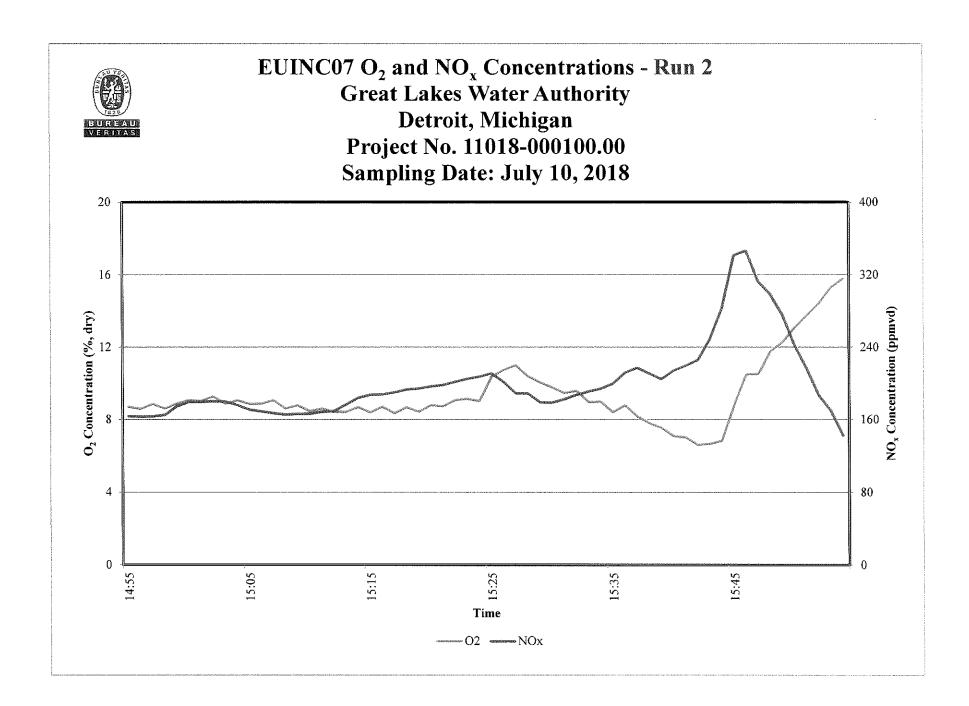
Facility							
Source Designation							
Test Date		Jul 13, 2018	Jul 13, 2018	Jul 13, 2018			
Meter/Nozzle Information	A12	M23 - Run 1	M23 - Run 2	M23 - Run 3	Ayerage		
Meter Temperature, T _m	°F	97	105	107	103		
Meter Pressure, Pm	in Hg ft ³	29.60	29.59	29.60	29.60		
Measured Sample Volume, V ₁₀		50,85	50,93	50,41	50.73		
Sample Volume, V _m	std ft ³	48.12	47.56	46.92	47.53		
Sample Volume, V _m	std m ³	1,36	1.35	1.33	1.35		
Condensate Volume, V	std ft ³	1.20	2.05	3.55	2.26		
Gas Density, p.	std lb/ft3						
	lb	0.0758	0.0755	0.0745	0.0753		
Total weight of sampled gas	ft ²	3.739	3.743	3.595	3.692		
Nozzle Size, A _n		0,0006874	0.0006874	0.0006874	0.0006874		
Isokinetic Variation, I	%	99	100	101	100		
Stack Data							
Average Stack Temperature, T _s	°F	84	83	85	84		
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.48	29,54	29.52	29.51		
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.20	29.07	28.71	28.99		
Stack Gas Specific Gravity, Gs		1.01	1.00	0.99	1.00		
Percent Moisture, B _{ws}	%	2.44	4.13	7.03	4.53		
Water Vapor Volume (fraction)		0.024	0.041	0.070	0.045		
Pressure, P _s	in Hg	27.66	27,66	27.66	27.66		
Average Stack Velocity, V _s	ft/sec	16.83	16.68	16.90	16.80		
Area of Stack	ft ²	15.90	15.90	15.90	15.90		
Exhaust Gas Flowrate							
Flowrate	ft ³ /min, actual	16,058	15,914	16,131	16,035		
Flowrate	ft3/min, standard wet	14,402	14,312	14,438	14,384		
Flowrate	ft ³ /min, standard dry	14,050	13,722	13,423	13,732		
Flowrate	m ³ /min, standard dry	398	389	380	389		
Collected Mass Dioxins							
2,3,7,8-Tetra CDD	P 0	<2.1	<2.2	<2,0	<2.1		
1,2,3,7,8-Penta CDD	pg pg	<2.1	<2.2	<2.3	<2.2		
1,2,3,4,7,8-Hexa CDD	pg	<2,2	<2.2	<2.3	<2.2		
1,2,3,6,7,8-Hexa CDD	pg	<1.9	<1.9	<2.3	<2.0		
1,2,3,7,8,9-Hexa CDD	pg	<2.0	<2.0	<2.2	<2.1		
1,2,3,4,6,7,8-Hepta CDD	pg	<2.3	2.2	3,0	2.5		
1,2,3,4,6,7,8,9-Octa CDD	pg	14.2	8.6	14.3	12.4		
Total Tetra CDD	pg	<7,3	6,1	7.2	6.9		
Total Penta CDD	pg	<2.8	<2.2	<2.3	<2.4		
Total Hexa CDD	pg	<9.5	<12	<2.3	<7.9		
l'otal Hepta CDD	pg	<2.3	2.2	3.0	2.5		
Total Dioxins	pg	36.1	31.1	29.1	32.1		
Furans							
2,3,7,8-Tetra CDF	pg	142	96.1	102	113		
1,2,3,7,8-Penta CDF	pg	18.5	15,3	20.2	18.0		
2,3,4,7,8-Penta CDF	pg	69.8	42.8	56.8	56.5		
1,2,3,4,7,8-Hexa CDF	pg	19.5	10.4	11.5	13.8		
1,2,3,6,7,8-Hexa CDF	pg	8.0	5.4	5.6	6.3		
2,3,4,6,7,8-Hexa CDF	pg	13.6	7.6	9.2	10.1		
1,2,3,7,8,9-Hexa CDF	pg	<2.6	<2.8	<2.4	<2.6		
1,2,3,4,6,7,8-Hepta CDF	pg	4.7	2.5	5.3	4.2		
1,2,3,4,7,8,9-Hepta CDF 1,2,3,4,6,7,8,9-Octa CDF	pg	<3.6 <2.4	<3.4 <2.2	<2.7 2.4	<3.2 2.3		
r,2,3,4,0,7,8,9-Octa CDF Fotal Tetra CDF	pg	<2.4 692	<2.2 479	2,4 707			
Fotal Penta CDF	pg	341	479 211	278	626 277		
Fotal Hexa CDF	pg	69.7	41.3	48.7	53.2		
Total Hepta CDF	pg	4.7	41.3 <2,8	48.7	4.3		
Fotal Furans	pg pg	4,7	<2.8 736	1,041	4.5 963		
		-,0		-,	705		
fotal Dioxin + Furan	pg	1,146	767 30.6	1,071	995		
fotal Dioxin + Furan (TEQ)		45.0		35,8	37.1		

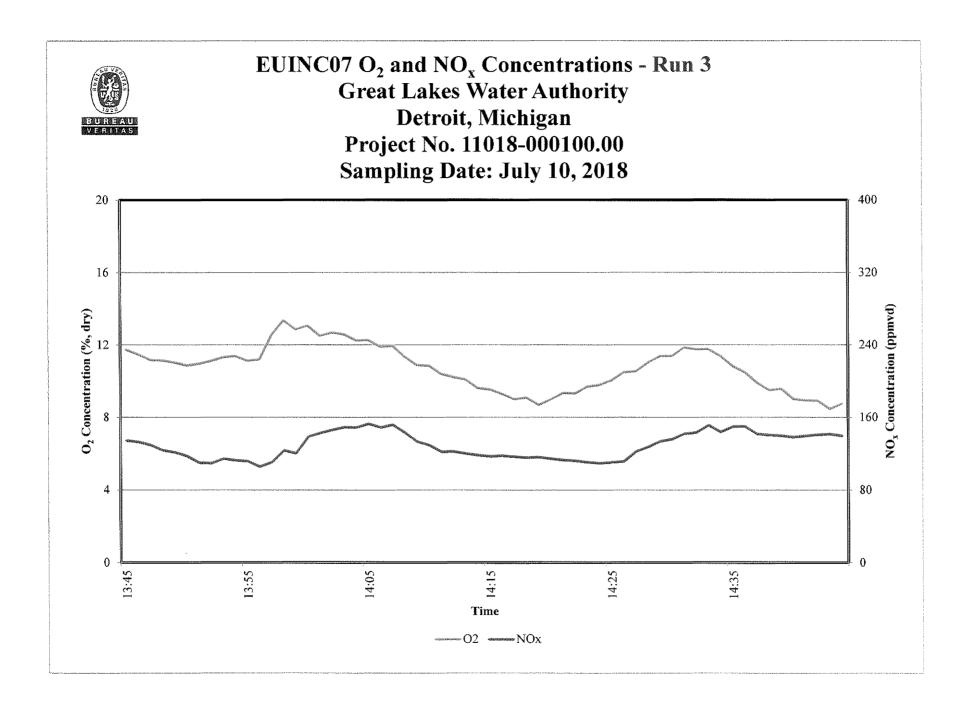
l

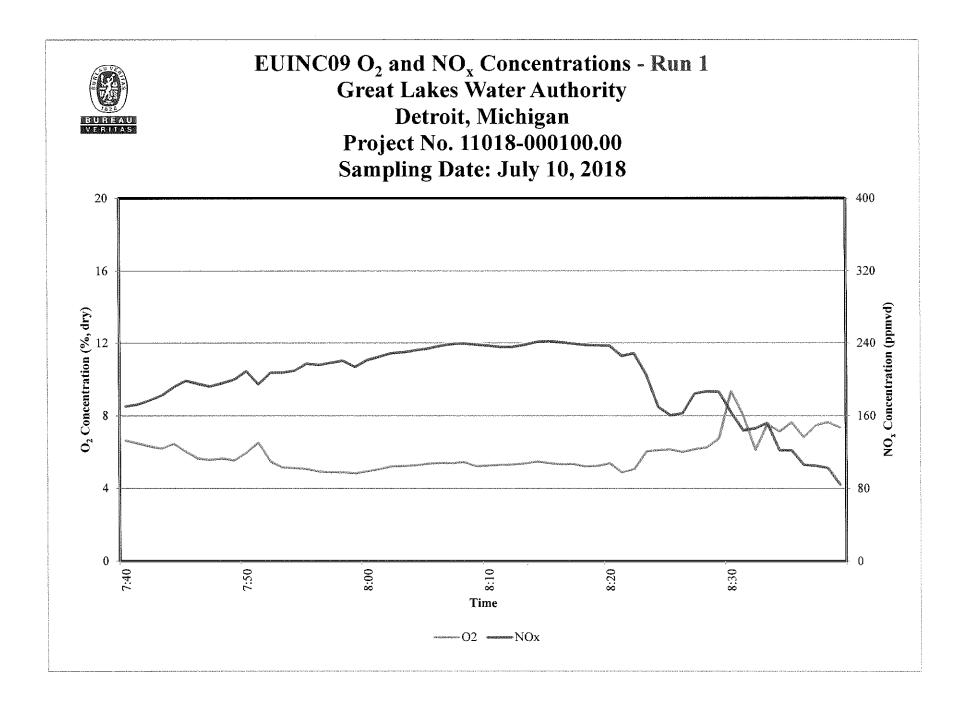
Table 17 (continued) - EUINC14 Exhaust Dioxin and Furan Emission Results Facility Great Lakes Water Authority							
Source Designation		EUINC14					
Test Date		Jul 13, 2018	Jul 13, 2018	Jul 13, 2018			
Run		M23 - Run 1	M23 - Run 2	M23 - Run 3	Average		
Concentration			(1345 THIN 2	1120 Xun 0	тичене		
Conclassion							
Dioxins							
2,3,7,8-Tetra CDD	ng/dscm (a) 7% Oxygen	<2.0E-03	<2.1E-03	<2.1E-03	<2.1E-03		
1,2,3,7,8-Penta CDD	ng/dscm @ 7% Oxygen	<2.1E-03	<2.1E-03	<2.4E-03	<2.2E-03		
1,2,3,4,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<2.1E-03	<2.1E-03	<2.4E-03	<2.2E-03		
1,2,3,6,7,8-Hexa CDD	ng/dscm @ 7% Oxygen	<1.8E-03	<1.8E-03	<2.4E-03	<2.0E-03		
1,2,3,7,8,9-Hexa CDD	ng/dscm @ 7% Oxygen	<1.9E-03	<1.9E-03	<2.3E-03	<2.0E-03		
1.2.3.4.6.7.8-Hepta CDD	ng/dscm @ 7% Oxygen	<2.2E-03	2.1E-03	3.1E-03	2.5E-03		
1,2,3,4,6,7,8,9-Octa CDD	ng/dscm @ 7% Oxygen	1.4E-02	8.3E-03	1.5E-02	1.2E-02		
Total Tetra CDD	ng/dscm @ 7% Oxygen	<7.0E-03	5.9E-03	7.4E-03	6.8E-03		
Total Penta CDD	ng/dscm @ 7% Oxygen	<2,7E-03	<2.1E-03	<2.4E-03	<2.4E-03		
Total Hexa CDD	ng/dscm @ 7% Oxygen	<9.1E-03	<1.2E-02	<2.4E-03	<7.7E-03		
Total Hepta CDD	ng/dscm @ 7% Oxygen	<2.2E-03	2.1E-03	3.1E-03	2.5E-03		
Total Dioxins	ng/dscm @ 7% Oxygen	3,5E-02	3.0E-02	3.0E-02	3.2E-02		
Furans	5 0 .0						
2,3,7,8-Tetra CDF	ng/dscm @ 7% Oxygen	1,4E-01	9.3E-02	1.0E-01	1.1E-01		
1,2,3,7,8-Penta CDF	ng/dscm @ 7% Oxygen	1.8E-02	1.5E-02	2.1E-02	1.8E-02		
2,3,4,7,8-Penta CDF	ng/dscm @ 7% Oxygen	6.7E-02	4.1E-02	5.8E-02	5.6E-02		
1,2,3,4,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	1.9E-02	1.0E-02	1.2E-02	1.4E-02		
1,2,3,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	7.7E-03	5.2E-03	5.7E-03	6.2E-03		
2,3,4,6,7,8-Hexa CDF	ng/dscm @ 7% Oxygen	1.3E-02	7.3E-03	9,4E-03	1.0E-02		
1,2,3,7,8,9-Hexa CDF	ng/dscm @ 7% Oxygen	<2.5E-03	<2.7E-03	<2.5E-03	<2.6E-03		
1,2,3,4,6,7,8-Hepta CDF	ng/dscm @ 7% Oxygen	4.5E-03	2.4E-03	5.4E-03	4.1E-03		
1,2,3,4,7,8,9-Hepta CDF	ng/dscm @ 7% Oxygen	<3.5E-03	<3.3E-03	<2.8E-03	<3.2E-03		
1,2,3,4,6,7,8,9-Octa CDF	ng/dscm @ 7% Oxygen	<2.3E-03	<2.1E-03	2.5E-03	2.3E-03		
Total Tetra CDF	ng/dscm @ 7% Oxygen	6.7E-01	4.6E-01	7.3E-01	6.2E-01		
Total Penta CDF	ng/dscm @ 7% Oxygen	3.3E-01	2.0E-01	2.9E-01	2.7E-01		
Total Hexa CDF	ng/dscm @ 7% Oxygen	6.7E-02	4.0E-02	5.0E-02	5.2E-02		
Total Hepta CDF	ng/dscm @ 7% Oxygen	4.5E-03	<2.7E-03	5.4E-03	4.2E-03		
Total Furans	ng/dscm @ 7% Oxygen	1.1E+00	7.1E-01	1.1E+00	9.5E-01		
Total Dioxin + Furan	ng/dscm @ 7% Oxygen	ł.1	0,74	1.1	0.98		
Total Dioxin + Furan (TEQ)	ng/dscm @ 7% Oxygen	0.043	0.030	0,037	0.037		

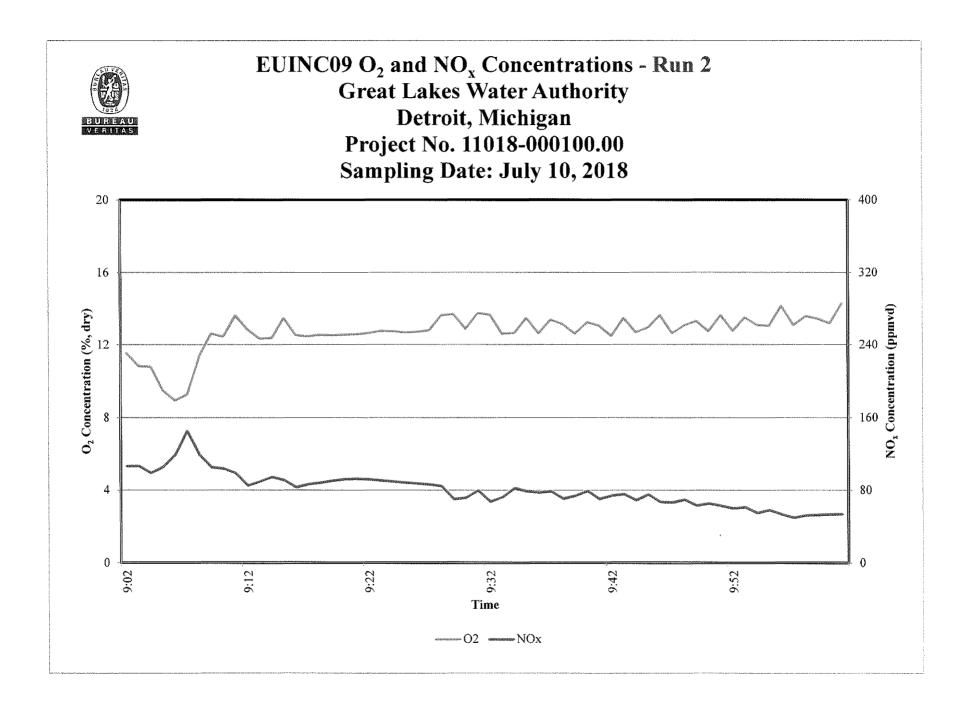

<``__

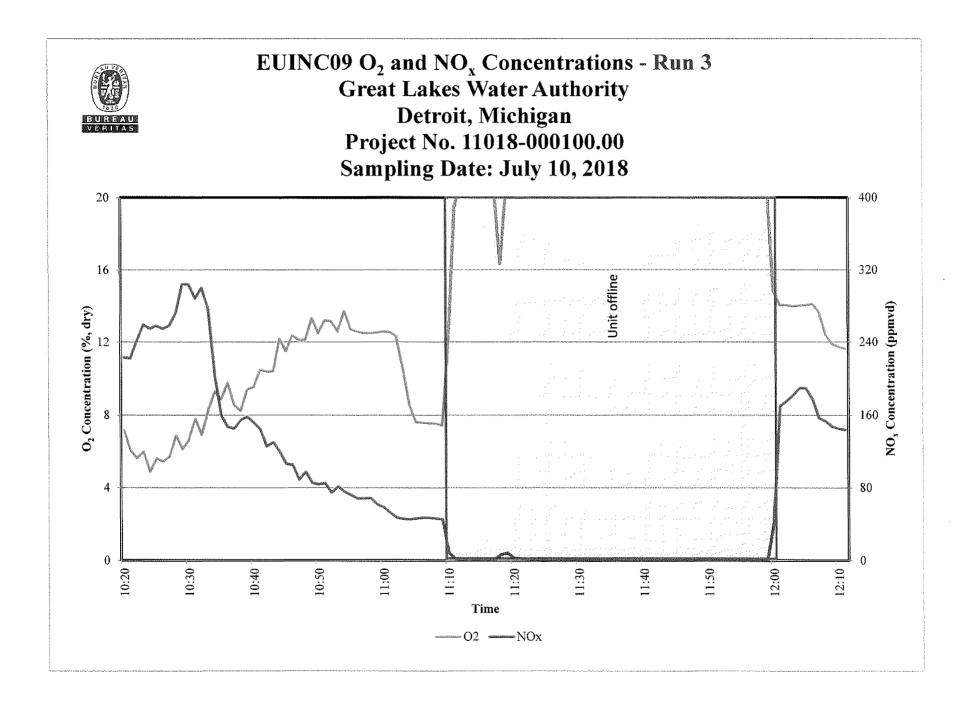

Table 18 - EUINC14 Exhaust Hydrogen Chloride Emission Results						
Facility	Great Lakes Water Authority EUINC14					
Source Designation						
Test Date		Jul 13, 2018	Jul 13, 2018	Jul 13, 2018		
Meter/Nozzle Information Meter Temperature, T _m	of.	M26A - Run 1 N 84	<u>126A - Kun 2 N</u> 89	126A - Run 3 91	Average 88	
Meter Pressure, P _m	r in Hg	84 29.60	89 29.60	29.60	88 29.60	
Measured Sample Volume, V _m	ft ³	49.23	48.77	47.54	48.51	
Sample Volume, V_m	std ft ³	45.93	45.06	43.74	44.91	
Sample Volume, V_m	std m ³	1.30	45.00	43.74		
	std ft ³				1.27	
Condensate Volume, V _w		1.84	1.69	2.80	2.11	
Gas Density, ρ_s	std lb/ft ³	0.0754	0.0756	0.0748	0.0753	
Total weight of sampled gas	lb	3.602	3,535	3.366	3.501	
Nozzle Size, A _n	\hbar^2	0.0006874	0.0006874	0.0006874	0.0006874	
Isokinetic Variation, I	%	95	96	94	95	
Stack Data						
Average Stack Temperature, T _s	°F	87	87	87	87	
Molecular Weight Stack Gas-dry, Ma	lb/lb-mole	29.48	29.54	29.52	29.51	
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.04	29.13	28.82	29.00	
Stack Gas Specific Gravity, Gs		1.00	1.01	1.00	1.00	
Percent Moisture, Bws	%	3.86	3.61	6.02	4.50	
Water Vapor Volume (fraction)		0.039	0.036	0.060	0.045	
Pressure, P _s	in Hg	27.66	27.66	27.66	27.66	
Average Stack Velocity, V _s	ft/scc	17.01	16.55	16.89	16.82	
Area of Stack	ft^2	15.90	15.90	15.90	15.90	
Exhaust Gas Flowrate						
Flowrate	ft ³ /min, actual	16,229	15,795	16,119	16,047	
Flowrate	ft ³ /min, standard wet	14,483	14,088	14,396	14,322	
Flowrate	ft ³ /min, standard dry	13,924	13,579	13,529	13,678	
Flowrate	m ³ /min, standard dry	394	385	383	387	
Collected Mass						
Hydrogen chloride	mg	<0.200	<0.200	<0.200	<0.200	
Concentration						
Hydrogen chloride	mg/dscf	< 0.0044	< 0.0044	< 0.0046	< 0.0045	
Hydrogen chloride	mg/dscm @ 7% Oxygen	< 0.20	< 0.20	<0.22	<0.21	
Hydrogen chloride	ppmvd @ 7% Oxygen	<0.16	<0.17	< 0.18	<0.17	

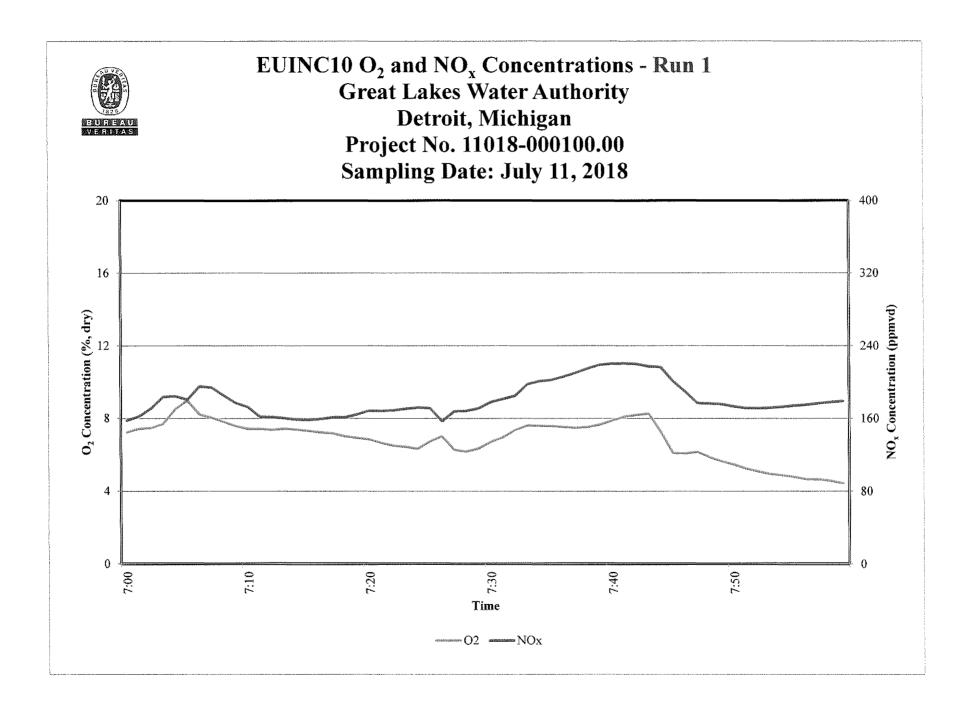


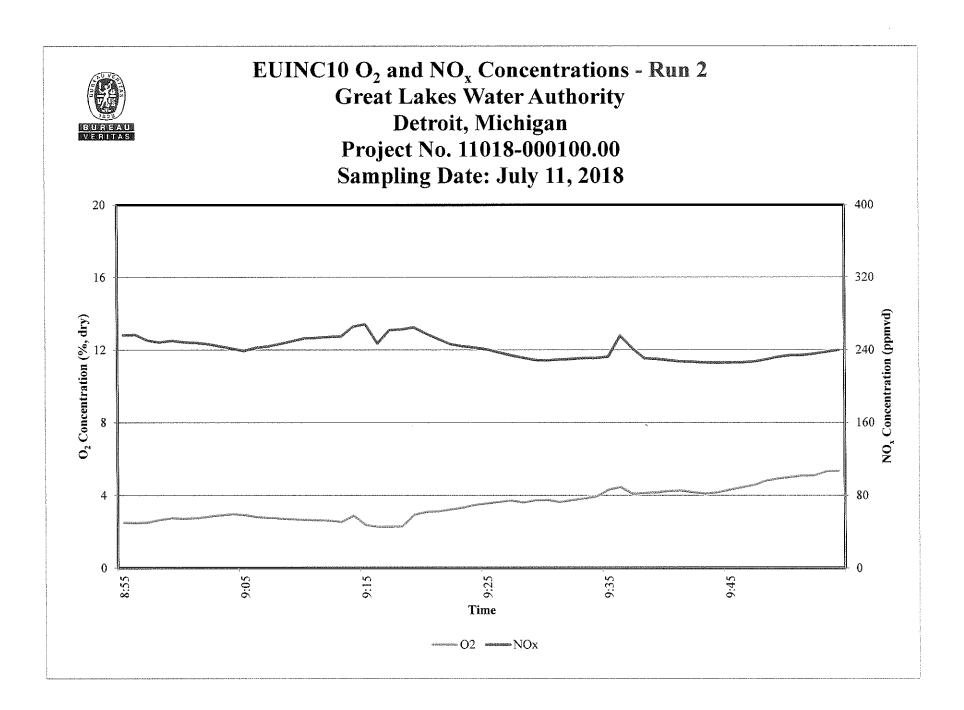

	INC14 Exhaust Par			als Emissio	n Results
Facility Source Designation		Great Lakes Water EUINC14			
Test Date		Jul 13, 2018	Jul 13, 2018	Jul 16, 2018	
Meter/Nozzle Information		M5/29 - Run 1 N		M5/29 - Run 3	Average
Meter Temperature, T _m	ф	94	95	86	92
Meter Pressure, P _m	in Hg	29.60	29.60	29.60	29,60
Measured Sample Volume, V _m	ft ³	50.20	51.26	50.42	50.63
Sample Volume, V _m	std ft ³	45.98	46.85	46.80	46.54
Sample Volume, V _m	std m ³	1.30	1.33	1.33	1.32
Condensate Volume, V _w	std ft ³	0.42	1.62	1.95	1.33
Gas Density, p _s	std lb/ft ³	0.0761	0.0754	0.0751	0.0755
Total weight of sampled gas	lb	3.530	3.653	3.616	3.600
Nozzle Size, A _n	ft^2	0.0006874	0.0006874	0.0006874	0.0006874
Isokinetic Variation, I	%	94	99	98	97
Stack Data					
Average Stack Temperature, T_s	٥F	87	90	81	86
Molecular Weight Stack Gas-dry, M _d	lb/lb-mole	29.41	29.42	29.40	29.41
Molecular Weight Stack Gas-wet, Ms	lb/lb-mole	29.31	29.04	28.95	29.10
Stack Gas Specific Gravity, G _s	9/0	1.01 0.90	1.00 3.34	1.00 4.00	1.00 2.75
Percent Moisture, B _{ws} Water Vapor Volume (fraction)	70	0.009	0.033	0.040	0.027
Pressure, P _s	in Hg	27.66	27.66	27.66	27.66
Average Stack Velocity, Vs	ft/sec	16.72	16.80	16.65	16.72
Area of Stack	ft ²	15.90	15.90	15.90	15.90
Exhaust Gas Flowrate					
Flowrate	ft ³ /min, actual	15,952	16,031	15,885	15,956
Flowrate	ft ³ /min, standard wet	14,224	14,222	14,321	14,256
Flowrate	ft ³ /min, standard dry	14,096	13,747	13,748	13,864
Flowrate	m³/min, standard dry	399	389	389	393
Collected Mass					
Particulate Matter (PM)	mg	14.3	11.4	11.3	12.3
Mercury (Hg)	mg	0.0279	0.0235	0.0477	0.0330
Lead (Pb) Cadmium (Cd)	mg	0.0373 0.0102	0.0307 0.00816	0.0165 0.00458	0.0282 0.0076
	mg	0.0102	0.00810	0.00458	0.0070
Concentration					
Particulate Matter (PM)	mg/dscf	0.31	0.24	0.24 11	0.27
Particulate Matter (PM) Particulate Matter (PM)	mg/dscm @ 7% Oxygen ppmvd @ 7% Oxygen	16 13	12 10	9.1	13 11
Mercury (Hg)	mg/dscf	0.00061	0.00050	0.0010	0.00071
Mercury (Hg)	mg/dscm @ 7% Oxygen	0.000	0.00030	0.0010	0.00071
Mercury (IIg)	ppmvd @ 7% Oxygen	0.025	0.020	0.039	0.028
Lead (Pb)	mg/dscf	0.00081	0.00066	0.00035	0.00061
Lead (Pb)	mg/dscm @ 7% Oxygen	0.041	0.033	0.016	0.030
Lead (Pb)	ppmvd @ 7% Oxygen	0.034	0.027	0.013	0.025
Cadmium (Cd)	mg/dscf	0.00022	0.00017	0.00010	0.00016
Cadmium (Cd)	mg/dscm @ 7% Oxygen	0.011	0.0087	0.0045	0.0082
Cadmium (Cd)	ppmvd @ 7% Oxygen	0.0093	0.0071	0.0037	0.0067

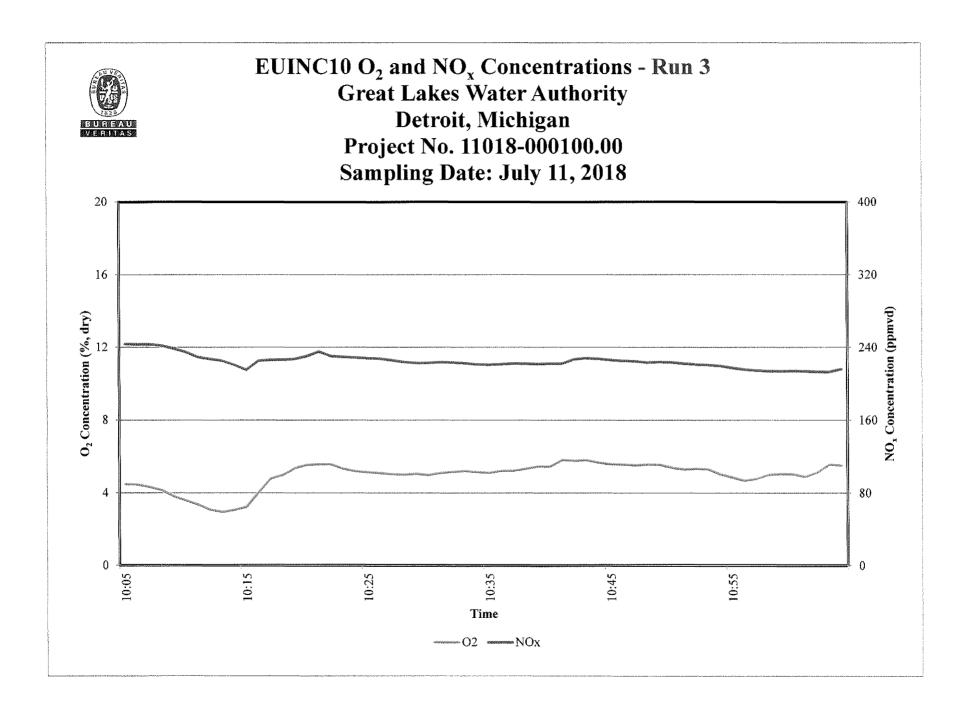

1. A.

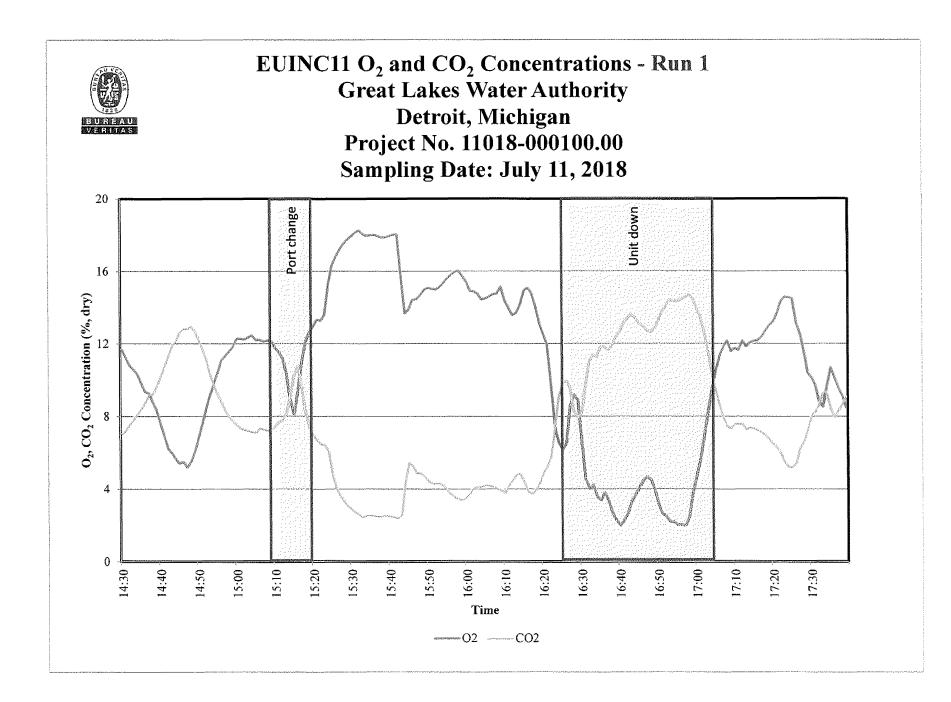


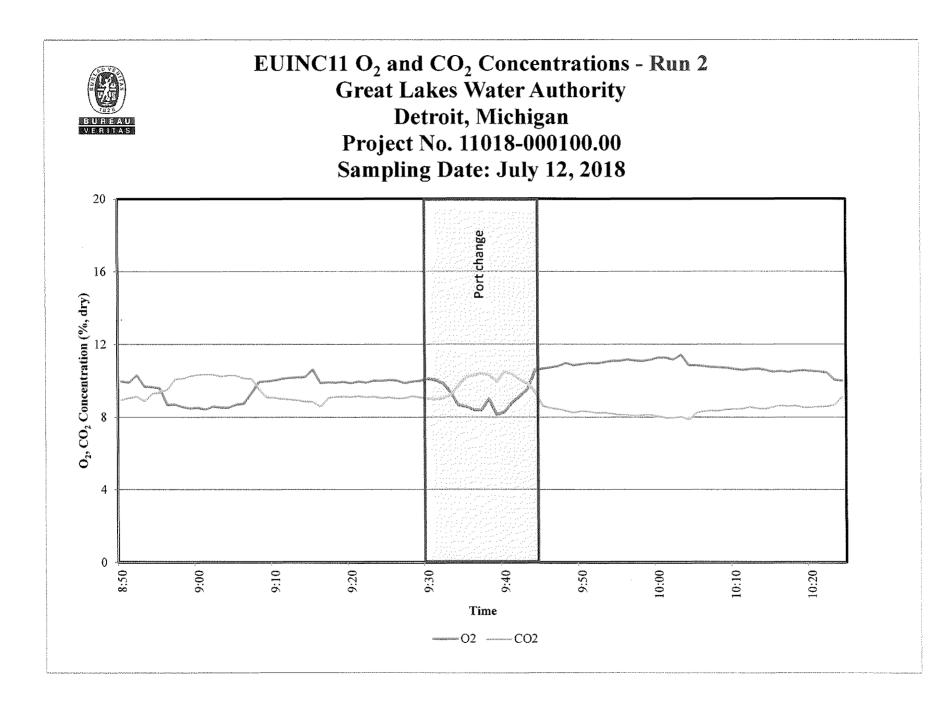


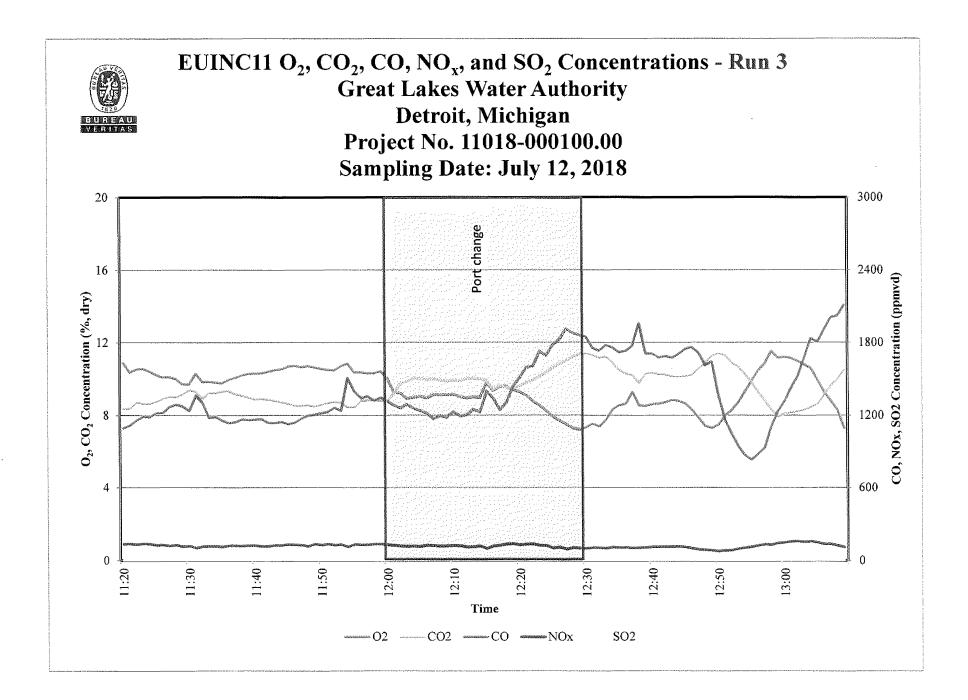


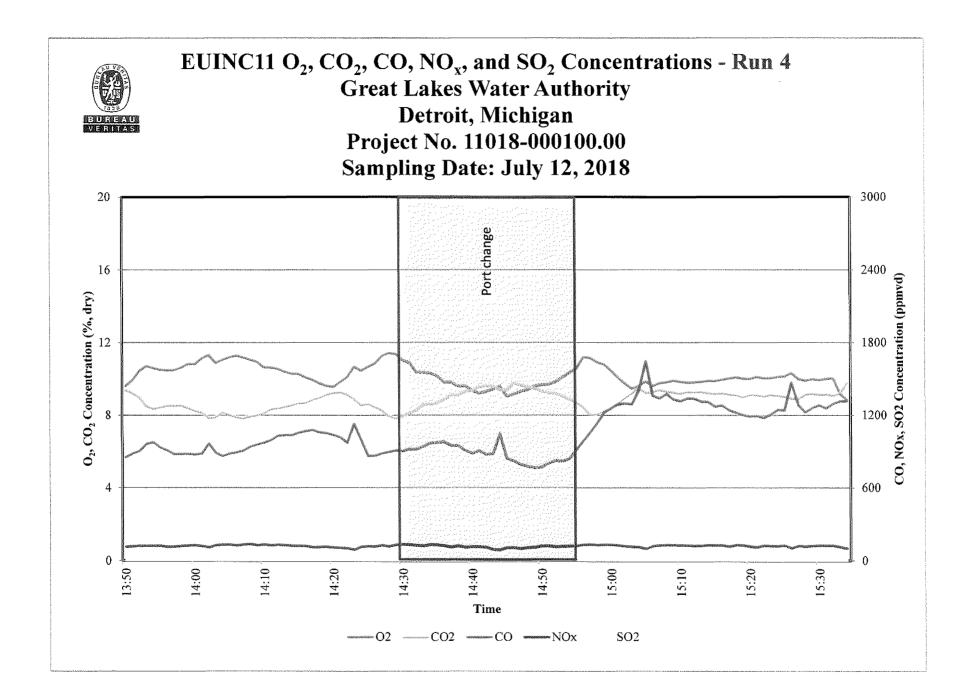


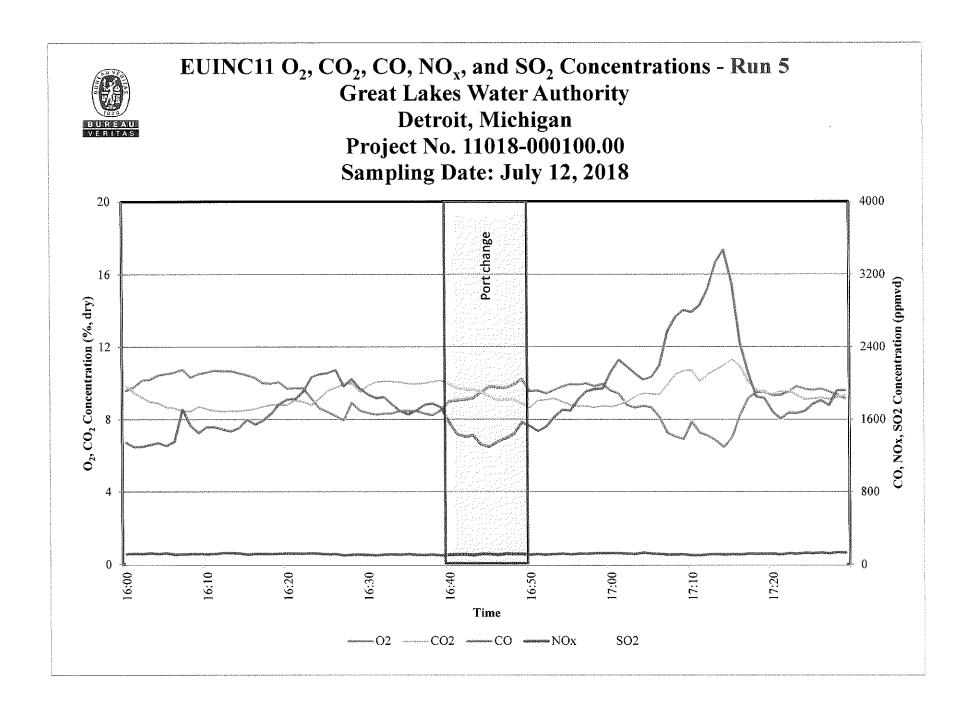


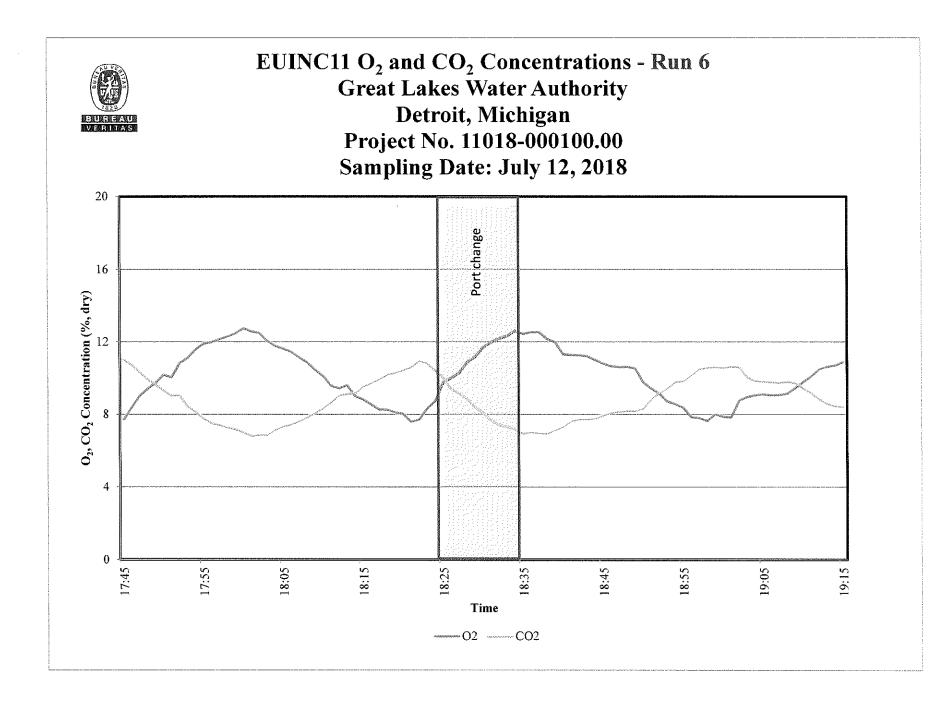


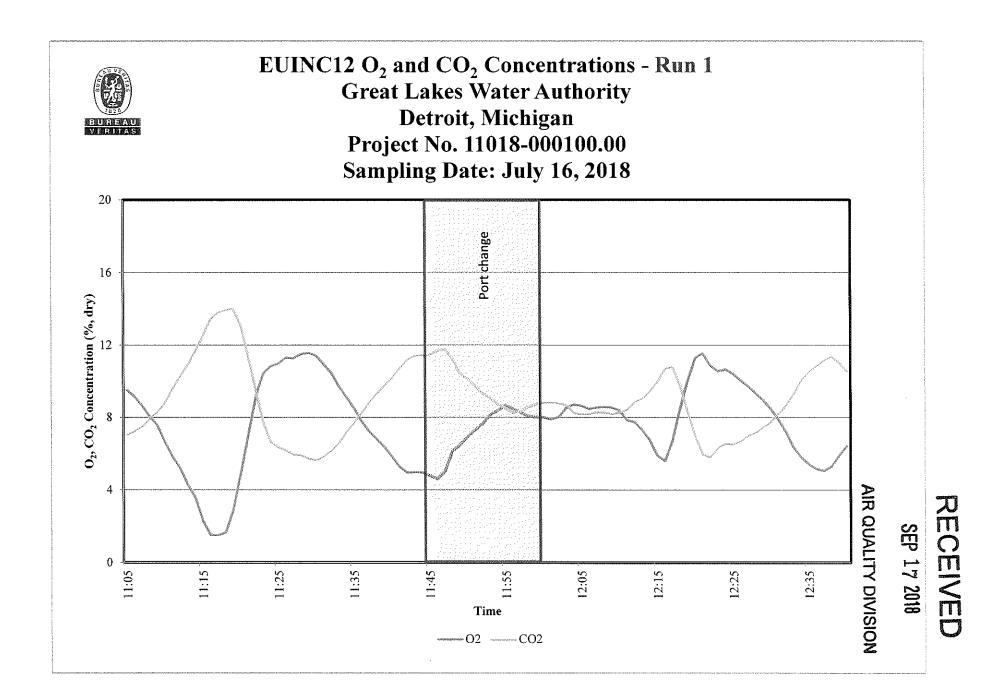


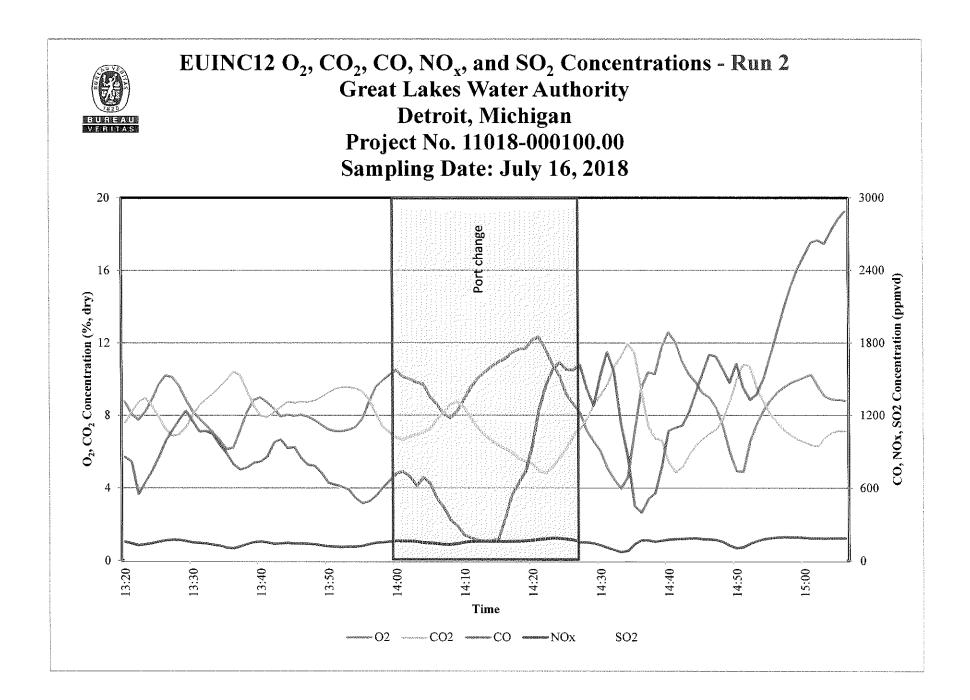


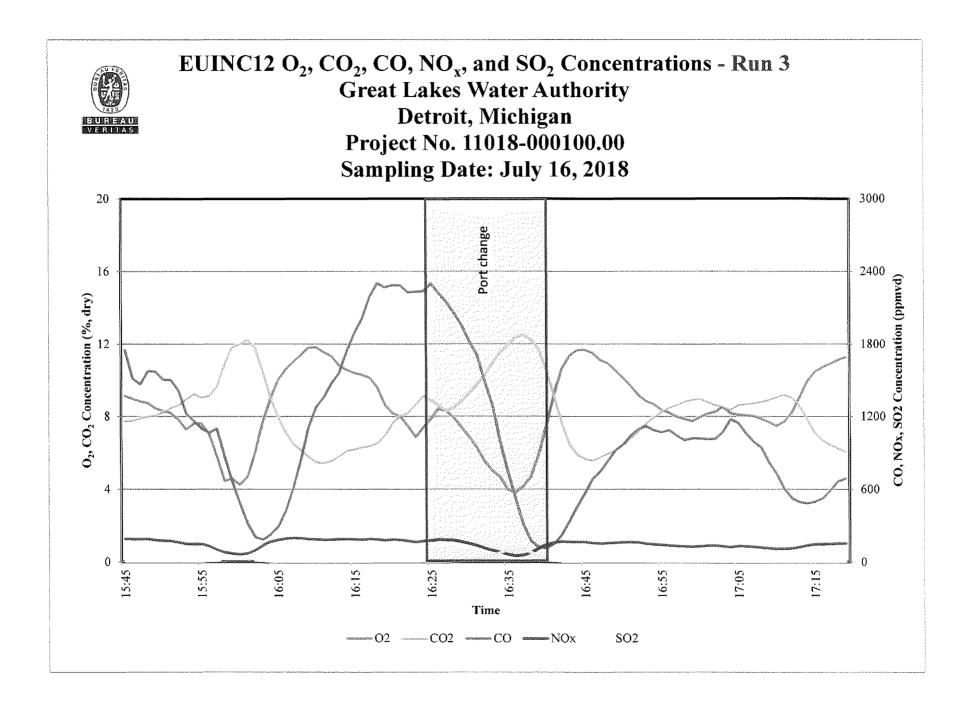


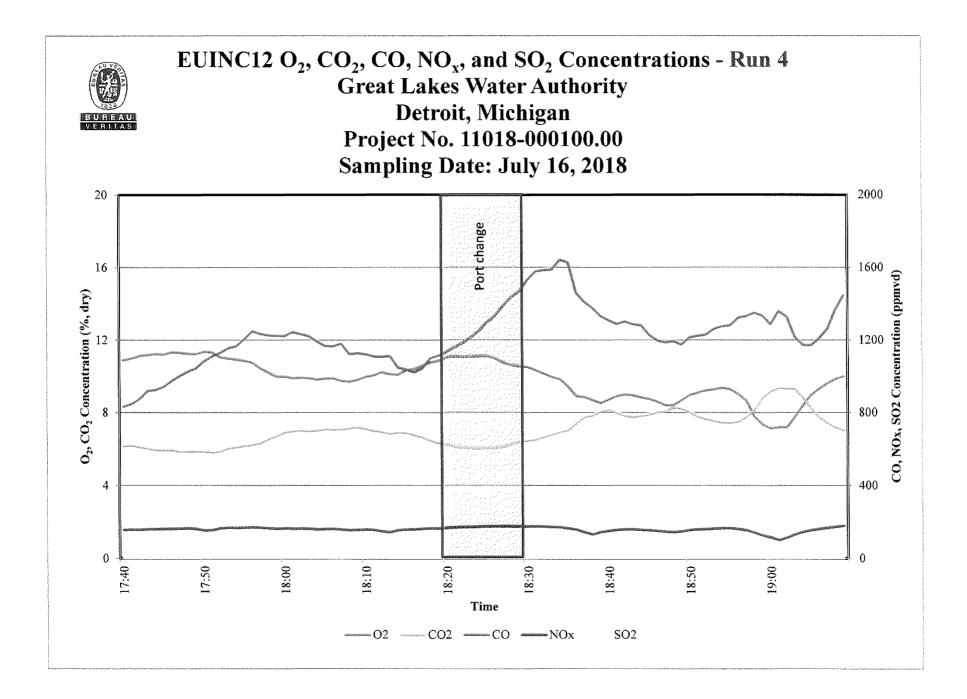

And the second s

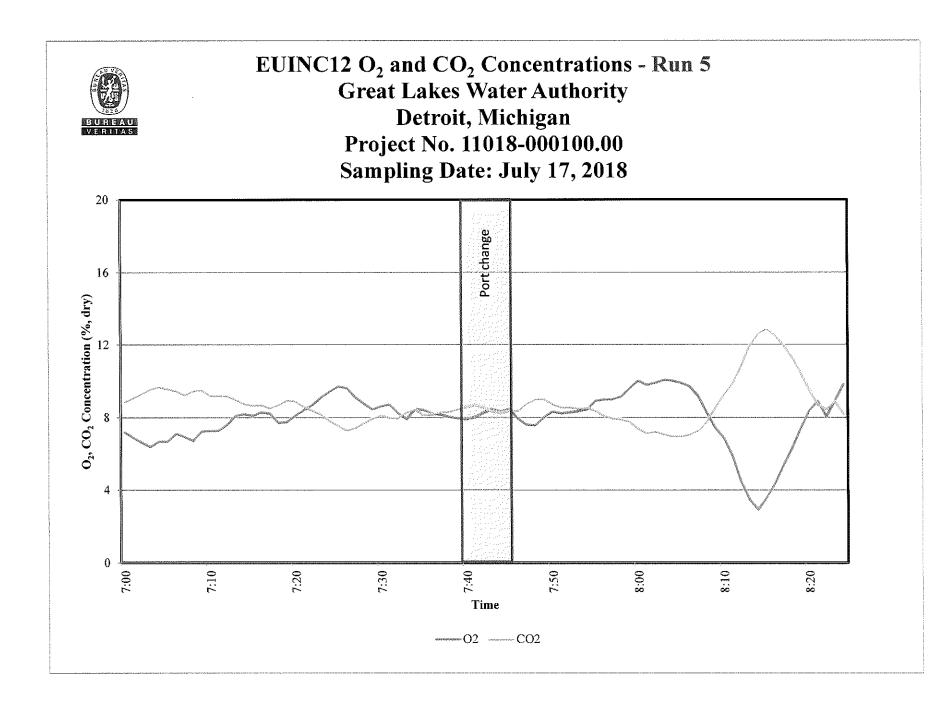


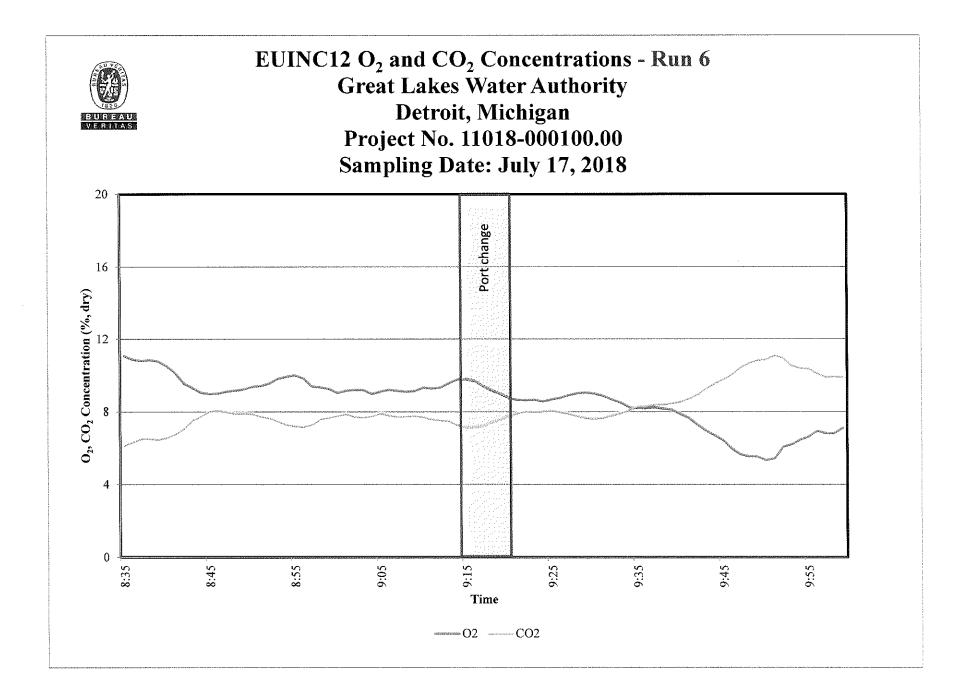

and the second se

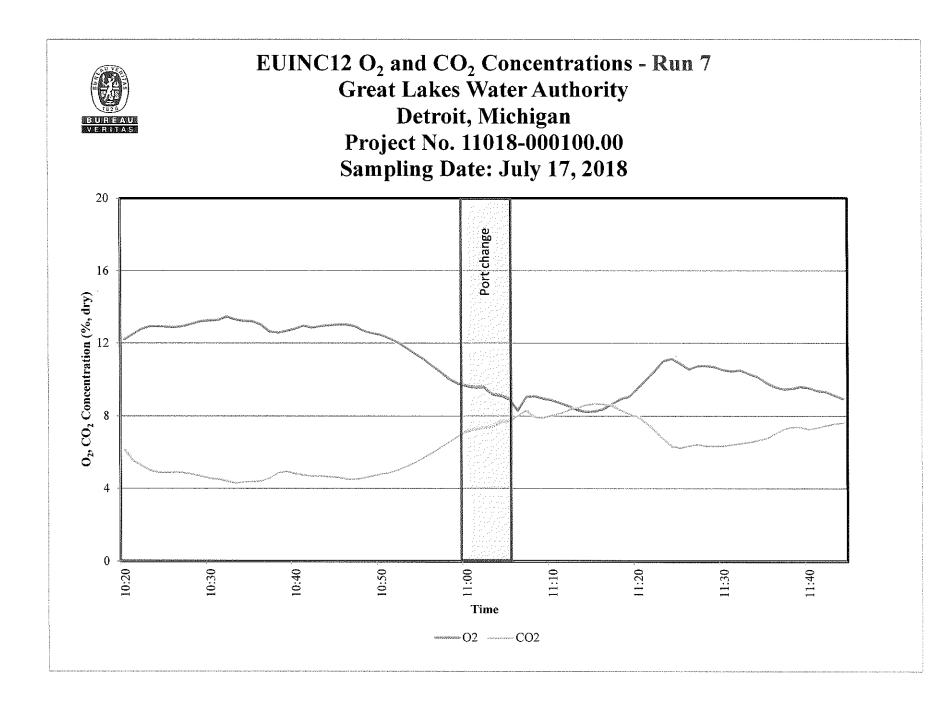


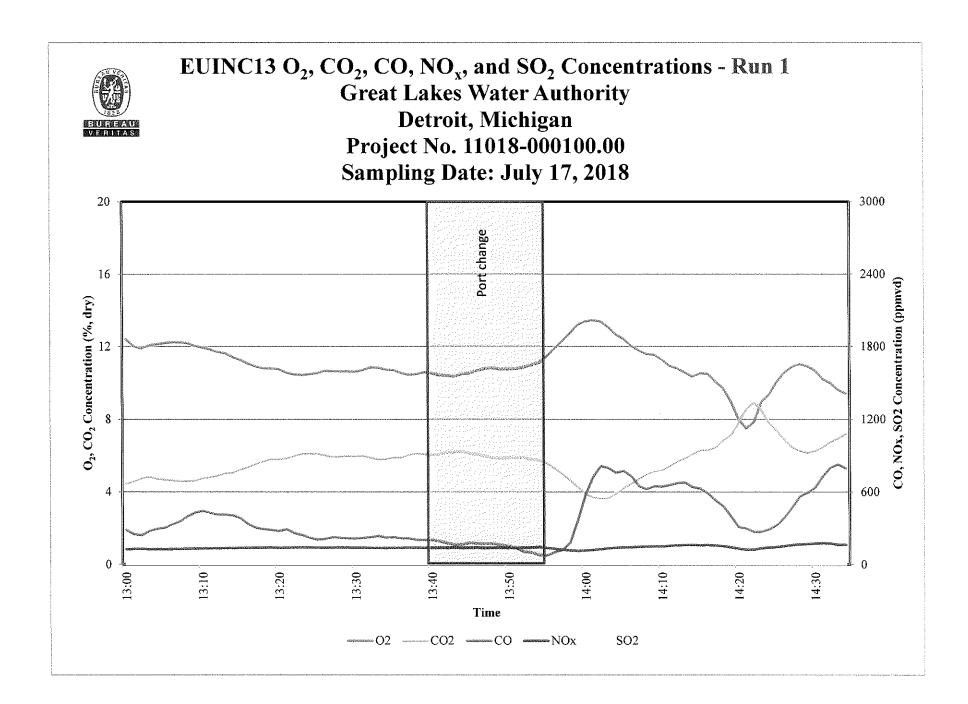


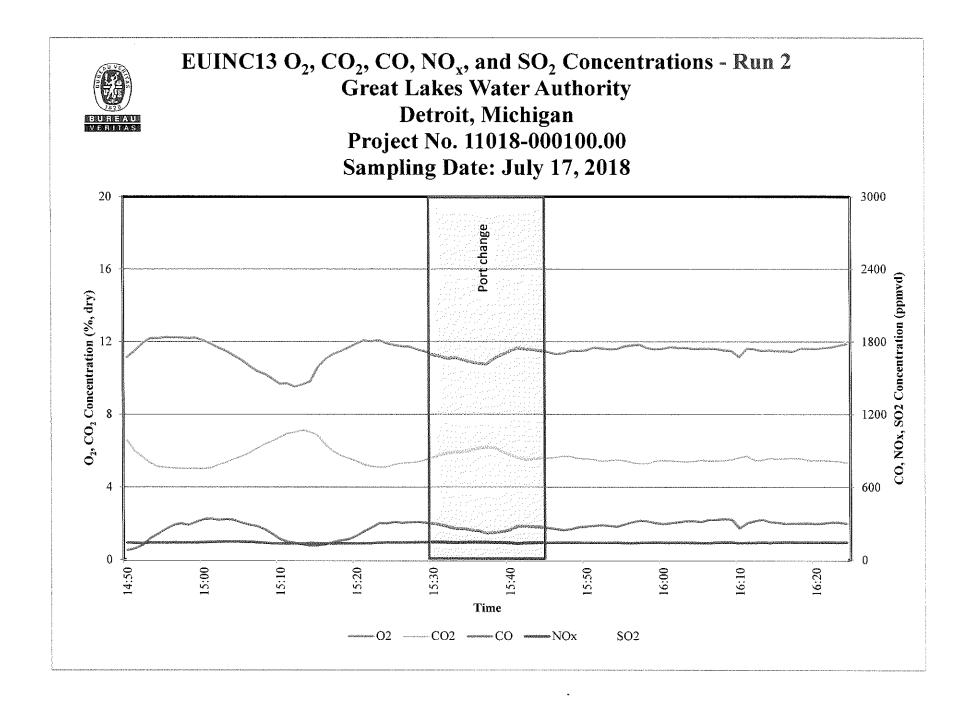


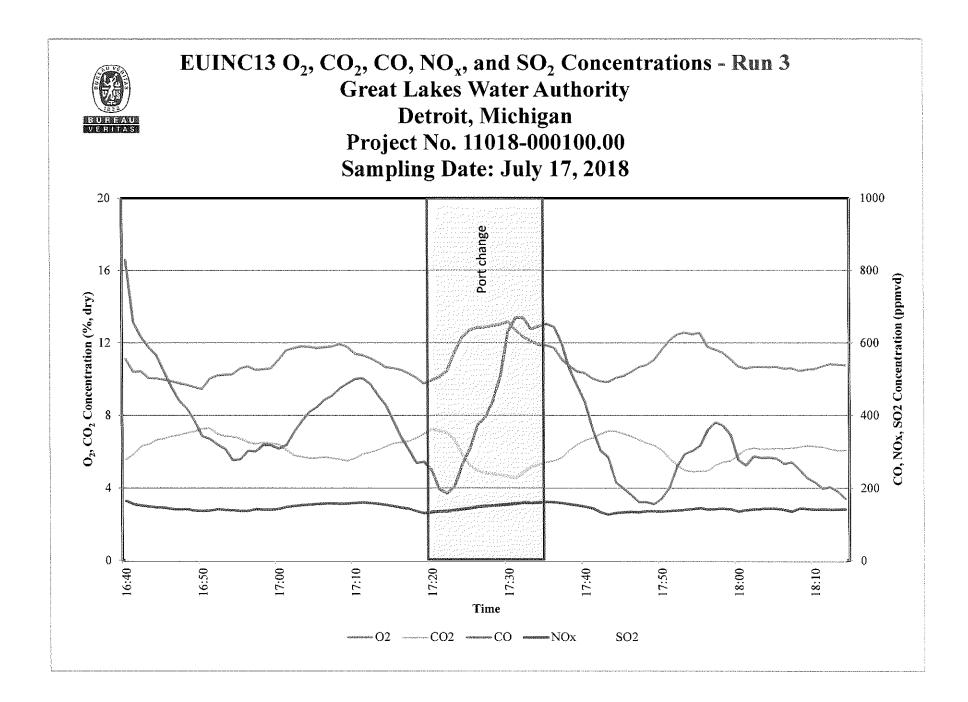


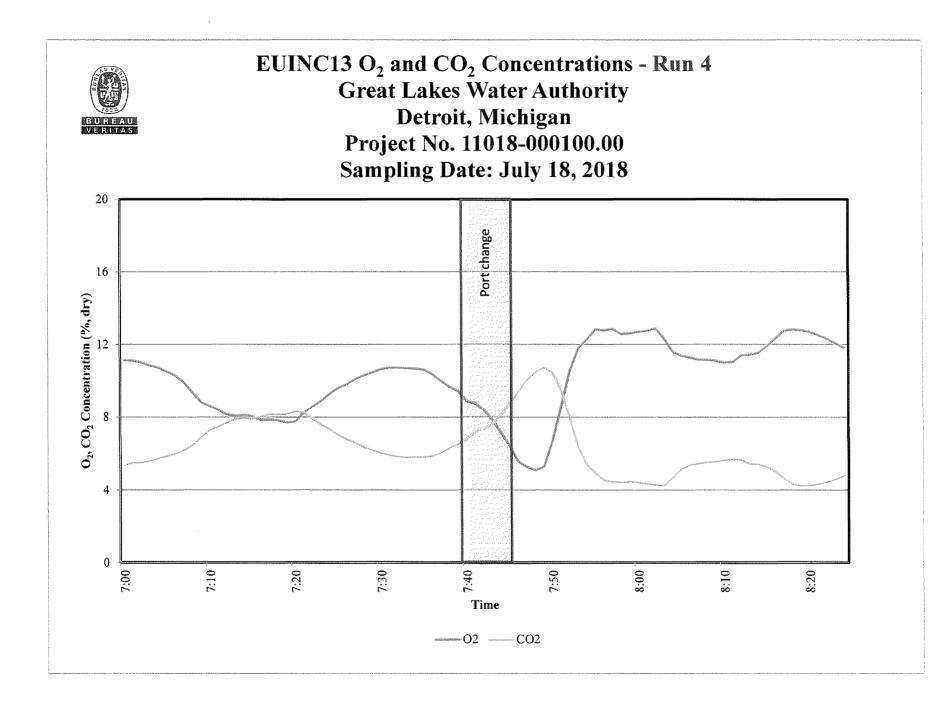


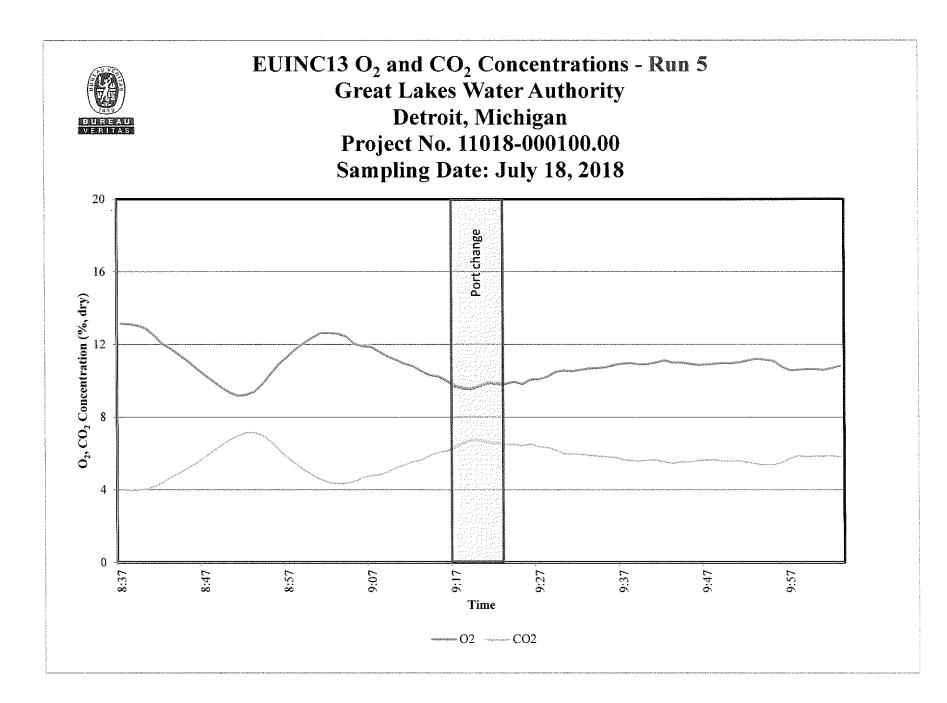


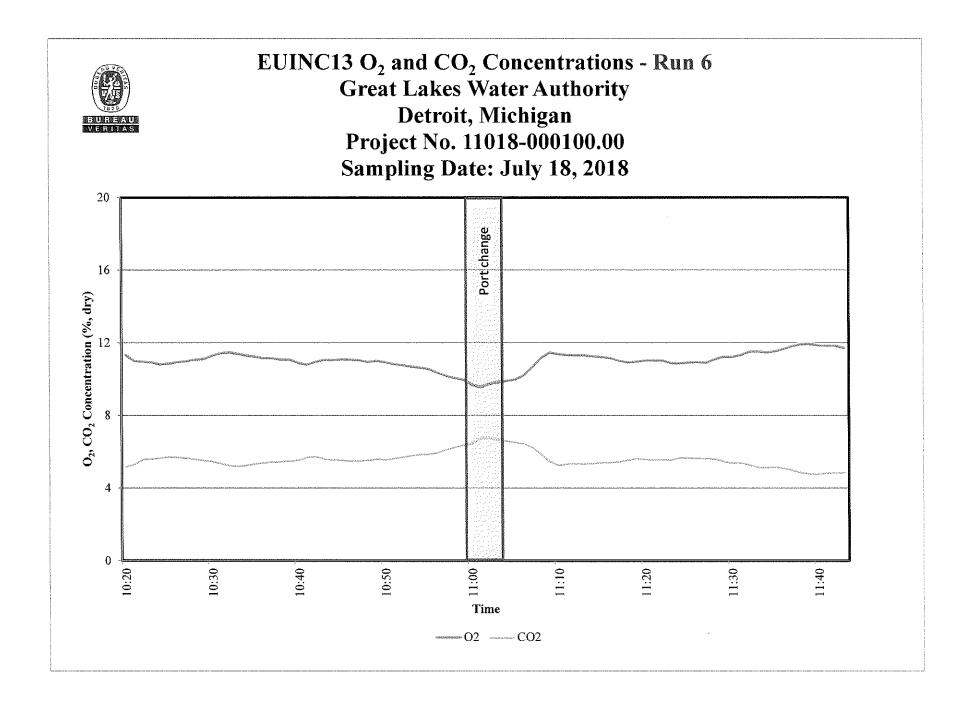

A A MARRIE

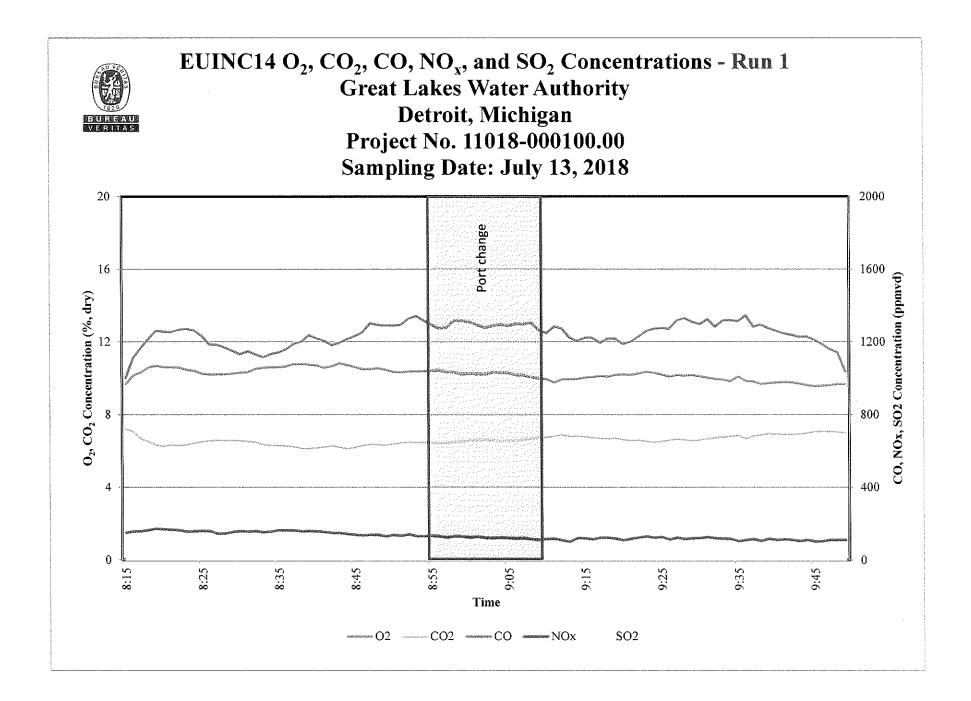


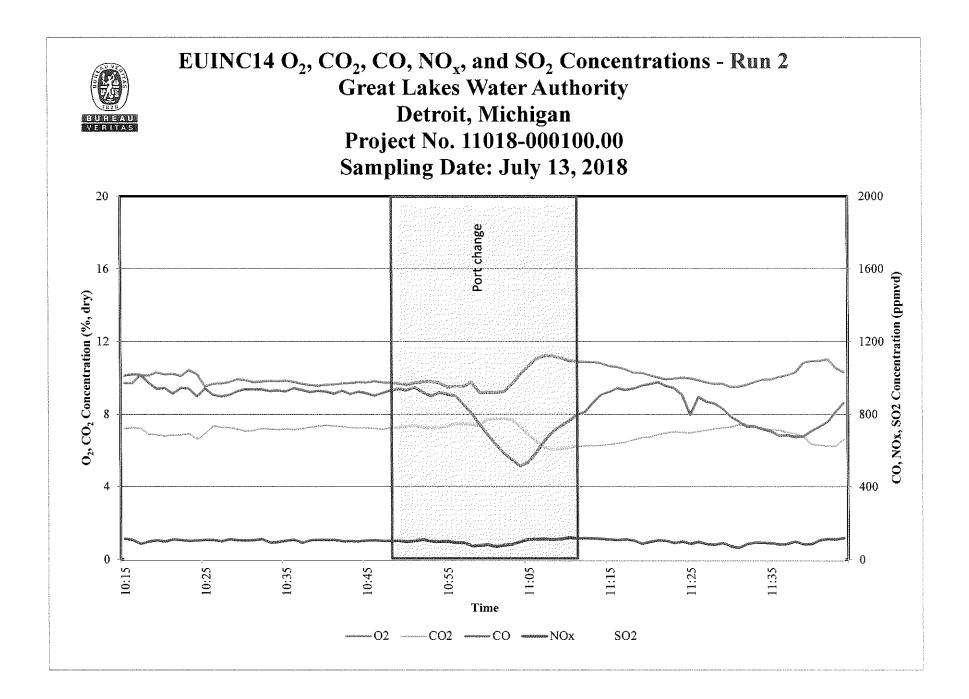


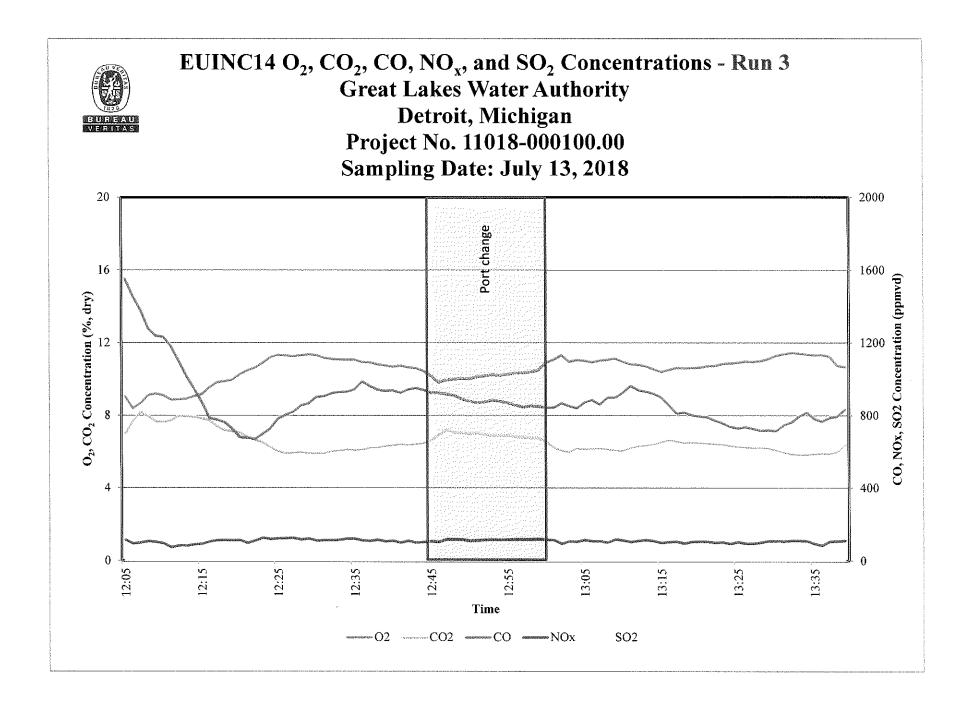


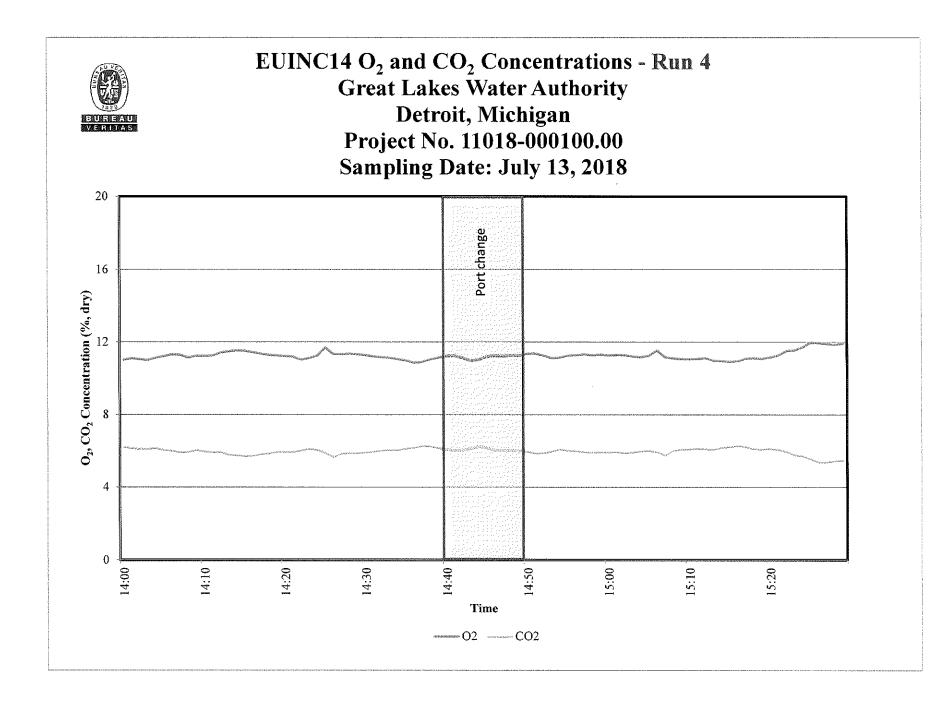











· · ·

