Test Results of Bake Oven VOC Capture Efficiency and Paint Solids Transfer Efficiency for the Topcoat Operations

> Chrysler Group LLC Warren Truck Assembly Plant 21500 Mound Road Warren, Michigan

RECEIVED

DEC 1 6 2013

AIR QUALITY DIV.

Prepared for Chrysler Group LLC Auburn Hills, Michigan

Permit MI-ROP-B2767-2011

Bureau Veritas Project Nos. 11013-000181.00 and 11013-000184.00 December 12, 2013

Move Forward with Confidence

Bureau Veritas North America, Inc. 22345 Roethel Drive Novi, Michigan 48375-4710 248.344.1770 www.us.bureauveritas.com/hse

Contents

1.0	Introduction	1
1.1	Summary of Test Program	1
1.2	Purpose of Testing	3
1.3	Contact Information	4
2.0	Source and Sampling Locations	6
2.1	Process Description.	6
2.3	Operating Parameters	7
2.4	Process Sampling Locations	8
3.0	Summary and Discussion of Results	9
3.1	Objectives and Test Matrix	9
3.2	Field Test Changes and Issues	9
3.3	Presentation of Results	9
4.0	Sampling and Analytical Procedures	12
4.1	Test and Analytical Methods	13
4.1.1	Paint Solids Transfer Efficiency	13
4.1.2	VOC Capture Efficiency	15
4.1.3	Solids and Density Determination (USEPA Method 24)	16
4.2	Procedures for Obtaining Process Data	16
4.3	Sampling Identification and Custody	16
5.0	QA/QC Activities	18
5.1	Pretest OA/OC Activities	18
5.2	OA/OC Audits	18
5.3	TE QA/QC Blanks	18
5.4	QA/QC Problems	19

1-1	Identification of Sources, Parameters, and Test Dates	3
1-2	Emission Limits	4
1-3	Key Contact Information	5
2-1	Color 2 Applicator Parameter Summary	6
2-2	Operating Parameters	8
2-3	Method 24 Coating Analytical Results	8
3-1	Color 2 Coating Solids Transfer Efficiency Results Summary	10

Contents

3-2	VOC Capture Efficiency Results Summary11
4-1	Sampling and Analytical Test Methods12
5-1	QA/QC Blanks

Figure

4-1	Paint solids transfer efficiency vehicle weigh station	14
4-2	Blank test panels	15
4-3	Coated test panels	16

Appendix

Appendix Table

1.	Paint Solids	Transfer Efficiency	Results	

- 2. Basecoat Bake Oven VOC CE Results Color 2 and Reprocess
- 3. Basecoat Bake Oven VOC CE Results Tutone
- 4. Clearcoat Bake Oven VOC CE Results Color 2 and Reprocess
- 5. Clearcoat Bake Oven VOC CE Results Tutone

Appendix Figure

- 1. Color1 and 2 Process Map
- 2. Reprocessing Process Map
- 3. Tutone Process Map

Appendix

- A Calibration and Inspection Sheets
- B Sample Calculations and Calculation Spreadsheets Solids TE, Oven Solvent Loading, and VOC CE Sample Calculations Silver Metallic Transfer Efficiency Summary White Solid Basecoat Transfer Efficiency Summary Clearcoat Transfer Efficiency Summary Color 2 VOC Loading and Capture Efficiency Calculations Reprocess VOC Loading and Capture Efficiency Calculations Tutone VOC Loading and Capture Efficiency Calculations

Contents

- C Field Data Sheets TE Vehicle Weigh Station Data Panel Test Data TE Paint Metering Data
- D Computer-Generated Data Sheets TE Vehicle Weigh Station Data TE Paint Metering Data Transfer Efficiency Vehicle Film Builds Panel Test Vehicle Film Builds
- E Facility Operating Data Booth Airflow Applicator Parameter Summary Bake Oven Temperatures Air Handling Spraybooth Conditions
- F Laboratory Results
- G Test Notification and Correspondence

Executive Summary

Chrysler Group LLC retained Bureau Veritas North America, Inc. to conduct surface coating testing of the topcoat coating operations at the Warren Truck Assembly Plant (WTAP) in Warren, Michigan. Chrysler Group LLC operates a body shop, paint shop, and final assembly line to manufacture the Dodge Ram 1500 vehicle at this facility. Chrysler Group LLC operates four topcoat paint booths identified as Color 1, Color 2, Reprocess, and Tutone. The testing was performed from October 10 through 17, 2013, to measure the following parameters:

- Paint solids transfer efficiency (TE)—the percent of paint solids sprayed that deposit on the painted part. TE was measured when applying white solid basecoat, silver metallic basecoat, and standard clearcoat in the Color 2 line.
- Bake oven volatile organic compound (VOC) capture efficiency (CE)—the percent of VOC captured from the curing of the coating in the bake ovens. VOC CE is used to calculate the mass of VOCs captured per gallon of applied coating solids (lb VOC/gacs) —commonly referred to as oven solvent loading (OSL). Bake oven VOC CE was measured at Color 2, Reprocess, and Tutone when applying silver metallic basecoat and standard clearcoat.

The results of the testing will be used to calculate monthly emissions.

The testing was conducted in accordance with applicable procedures in the U.S. Environmental Protection Agency document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations" and Appendix A to Subpart IIII of 40 CFR 63, "Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions from Solvent-borne Coatings Using Panel Testing."

The results of the testing are summarized below. Detailed results are presented in Tables 1 through 5 after the Tables tab of this report.

Paint Solids Transfer Efficiency Results

			Result			Solids Transfer
Process	Batch Vehicle Weight Gain (lb)	Batch Paint Sprayed (gal)	Coating Density (lb/gal)	Solids Weight Fraction (lb solids/lb coating)	Batch Solids Sprayed (lb)	Efficiency (%)
Metallic Basecoat – Silver	6.13	2.03	8.29	0.51	8.61	71.2
Solid Basecoat – White	11.27	2.66	10.39	0.63	17.43	64.6
Clearcoat – Standard	8.64	2.73	8.62	0.57	13.50	64.0

Color 2 Coating Solids Transfer Efficiency Results Summary

VOC Capture Efficiency Results

voc Capture Enterency Results Summary							
Section	Section VOC CE [†] (%)	Section VOC CE at 100% Transfer Efficiency (%)	Silver Metallic Loading (lb/gacs)	Clearcoat Loading (lb/gacs)			
Color 2		(70)	(
			· ···				
Basecoat Bake Oven VOC CE	8.8	12.4	1.25	-			
Clearcoat Bake Oven VOC CE	32.2	50.4	-	3.98			
Reprocess							
Basecoat Bake Oven VOC CE	5.2	7.3	0.74	-			
Clearcoat Bake Oven VOC CE	24.1	37.6		2.97			
Tutone	-						
Basecoat Bake Oven VOC CE	9.2	12.9	1.31	-			
Clearcoat Bake Oven VOC CE	29.5	46.0	-	3.64			
*: section VOC CE calculated using measured	l transfer efficiency	· · · · · · · · · · · · · · · · · · ·					

VOC Capture Efficiency Results Summary

1.0 Introduction

Chrysler Group LLC retained Bureau Veritas North America, Inc. to conduct surface coating testing of the topcoat coating operations at the Warren Truck Assembly Plant (WTAP) in Warren, Michigan. Chrysler Group LLC operates a body shop, paint shop, and final assembly line to manufacture the Dodge Ram 1500 vehicle at this facility. Chrysler Group LLC operates four topcoat paint booths identified as Color 1, Color 2, Reprocess, and Tutone. The compliance test program was performed from October 10 through 17, 2013, to measure the following parameters:

- Paint solids transfer efficiency (TE)—the percent of paint solids sprayed that deposit on the painted part. TE was measured when applying white solid basecoat, silver metallic basecoat, and standard clearcoat in the Color 2 line.
- Bake oven volatile organic compound (VOC) capture efficiency (CE)—the percent of VOC captured from the curing of the coating in the bake ovens. The bake oven VOC CE is used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs)— commonly referred to as oven solvent loading (OSL). Bake oven VOC CE was measured at Color 2, Reprocess, and Tutone when applying silver metallic basecoat and standard clearcoat.

The results of the testing will be used to calculate monthly emissions.

The testing program was conducted in accordance with applicable procedures in the U.S. Environmental Protection Agency document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations" and Appendix A to Subpart IIII of 40 CFR 63, "Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions from Solvent-borne Coatings Using Panel Testing."

1.1 Summary of Test Program

The topcoat paint process at WTAP is comprised of four topcoat paint lines in which basecoat and clearcoat are applied. Currently, coatings are applied to the Dodge Ram 1500 production models. Vehicles that were being prepared or assembled were used in the test program. The test program is summarized below.

VOC Capture Efficiency Testing

RECEIVED

DEC 1 6 2013

AIR QUALITY DIV.

Color 2, Reprocess, and Tutone. VOC CE testing was performed on these lines on October 10 and 11, 2013. Testing was conducted following procedures contained in Section 21, "Test Procedures for Determining Exhaust Control Device VOC Loading (Capture Efficiency) by Panel Test" of the USEPA document, "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations."

The procedure measured the loss of VOC from freshly painted surface panels by weight difference. The panels were subjected to basecoat and clearcoat coatings and the weight of the panels were measured before entering and after exiting the controlled zone. The weight loss from organic compound volatilization and the volume of solids deposited on the test panels were used to calculate:

- The percent VOC captured and directed to VOC abatement from the coating zones
- The VOC captured in pounds of VOC per gallon of applied coating solids (lb VOC/gacs)

The panels were weighed to measure the percent of basecoat and/or clearcoat paint VOCs captured within the basecoat bake oven. Captured basecoat bake oven VOC emissions are directed to a regenerative thermal oxidizer for VOC abatement.

Paint Solids Transfer Efficiency Testing

Color 2. Paint solids transfer efficiency testing was performed on October 14 through 17, 2013, following the procedures in Section 18, "Transfer Efficiency Test Procedure—In Plant" of the USEPA document, "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations." The procedure measures the weight of coating solids applied to vehicles.

The testing consisted of routing two pre-weighed control vehicles and three pre-weighed test vehicles through the Color 2 spray booths and bake oven. Three color families were evaluated: solid white basecoat, metallic silver basecoat, and standard clearcoat. After cured vehicles emerged from the oven, they were allowed to cool and re-weighed. Using the vehicle body weight gain, representing the weight of solids applied the percent paint solids transfer efficiency was calculated.

Table 1-1 summarizes the sources, parameters, and test dates.

Emission Unit	Source	Parameter	Test Date	Coating Tested					
EU - Color Two	Color 2	Bake Oven VOC CE	October 10, 2013	Metallic basecoat- silver Clearcoat- standard					
		Paint solids TE	October 14 through 17, 2013	Metallic basecoat – silver Solid basecoat – white Clearcoat- standard					
EU - Reprocess	Reprocess	Bake Oven VOC CE	October 10, 2013	Metallic basecoat- silver Clearcoat- standard					
EU - Tutone	Tutone	Bake Oven VOC CE	October 11, 2013	Metallic basecoat- silver Clearcoat- standard	_				
VOC CE = volatil TE = transfer effi	le organic compoun	d capture efficiency	·	· · · · · · · · · · · · · · · · · · ·	_				

 Table 1-1

 Identification of Sources, Parameters, and Test Dates

1.2 Purpose of Testing

The testing was performed in order to satisfy requirements within MDEQ Renewable Operating Permit MI-ROP-B2767-2011 for the EU-Tutone and FG-Topcoat conditions. The effective date of the permit is January 1, 2011. The results of the testing will be used to calculate daily and monthly emissions. The permit emission limits are presented in Table 1-2.

Table 1-2 Emission Limits

Pollutant Limit		Time Period and Operating Scenario	Equipment	Underlying Applicable Requirements
VOC	12.3 lb/gallon of applied coating solids	Calendar month average	FG-Topcoat	R336.1702(a) 40 CFR 60 Subpart MM
VOC	270.2 lb	Per hour operated in a calendar month	Spray booths of each topcoat line	R336.1220
VOC	582.11 ton	12-month rolling period	Spray booths of each topcoat line	R336.1220
VOC	6.8 lb	Per hour operated in a calendar month	Bake Ovens of each topcoat line	R336.1220
VOC	15.67 ton	12-month rolling period	Bake Ovens of each topcoat line	R336.1220
VOC	89.9 lb	Per hour operated in a calendar month	High Bake Repair Spray booth	R336.1220
VOC	193.74 ton	12-month rolling period	High Bake Repair Spray booth	R336.1220
VOC	2.3 lb	Per hour operated in a calendar month	High Bake Repair bake oven	R336.1220
VOC	5.22 ton	12-month rolling period	High Bake Repair bake oven	R336.1220
VOC	12.3 lb/gallon of applied coating solids	Calendar month average	EU-Tutone	40 CFR Subpart MM
VOC	381.1 lb	Per hour operated in a calendar month	Tutone Spray booth	R336.1220
VOC	821 ton	12-month rolling time period	Tutone Spray booth	R336.1220
VOC	9.51 lb	Per hour operated in a calendar month	Tutone bake oven	R336.1220
VOC	20.53 ton	12-month rolling time period	Tutone bake oven	R336.1220

1.3 Contact Information

Mr. Thomas Schmelter, Senior Project Manager, and Dillon King, Consultant, with Bureau Veritas, oversaw the environmental test program with the assistance of Mr. Jim Belanger, Manager with JLB Industries, Inc. Chrysler Group LLC personnel provided process coordination and recorded operating parameters. Messrs. Thomas Maza and Iranna Konanahalli, with Michigan Department of Environmental Quality witnessed the testing. Contact information for these individuals is presented in Table 1-3.

Facility	Testing Company					
Chrysler Group LLC	Bureau Veritas North America, Inc.					
Rohit Patel	Thomas Schmelter, QSTI					
Air Compliance Manager	Senior Project Manager					
800 Chrysler Drive	22345 Roethel Drive					
Auburn Hills, Michigan 48326-2757	Novi, Michigan 48375-4710					
Telephone: 248.512.1599	Telephone 248.344.3003					
Email: rgp6@chrysler.com	Email: thomas.schmelter@us.bureauveritas.com					
Matthew Smith	Dillon King					
Environmental Specialist	Consultant					
21500 Mound Road	22345 Roethel Drive					
Warren, Michigan 48091	Novi, Michigan 48375-4710					
Telephone: 586.497.2444	Telephone 248.344.3002					
Email: mws54@chrysler.com	Email: dillon.king@us.bureauveritas.com					
Michigan Department	t of Environmental Quality					
Thomas Maza	Iranna Konanahalli					
Environmental Quality Analyst	Environmental Quality Analyst					
Detroit Office	Southeast Michigan District					
Cadillac Place, Suite 2-300	27700 Donald Court					
3058 West Grand Boulevard	Warren, Michigan 48092-2793					
Detroit, Michigan 48202-6058	Telephone: 586.753.3741					
Telephone: 313.456.4709	Facsimile: 586.753.3731					
Email: mazat@michigan.gov	Email: konanahallii@michigan.gov					

Table 1-3Key Contact Information

2.0 Source and Sampling Locations

2.1 **Process Description**

The topcoat paint process at the WTAP facility is comprised of four topcoat paint systems in which basecoat and clearcoat coatings are applied. The normal operating production line speed throughout the paint shop is approximately 72 jobs per hour, however when the vehicle enters into the topcoat system paint booths the speed is reduced to 36 jobs per hour. The vehicles in the test were processed in the same manner as regular production vehicles and process data was recorded to confirm that testing is conducted under normal booth conditions. Currently, the paint shop applies coatings to the Dodge Ram 1500 truck.

The topcoat spray booths use a downdraft ventilation and water-wash system located below the booth grating to control paint overspray. Solvent-borne basecoat and clearcoat are applied by electrostatic applicators. Figures 1 through 3 present the Color 1, Color 2, Reprocess, and Tutone spraybooths process maps, which depict the process flow and coating zones directed to abatement for VOC control.

Paint is applied to vehicles automatically and manually in booths. Color 1 and Color 2 lines consist of a basecoat robot cut-in zone, basecoat manual cut-in zone, basecoat electrostatic bells, basecoat robots zone, manual pick-up zone, a clearcoat robot cut-in zone, clearcoat electrostatic bells zone, clearcoat manual pick-up zone, and bake oven. A summary of the spray gun applicator parameters is presented in Table 2-1. Closed loop beakering verification of the applicators at the Color 2 line is presented in Appendix A.

Operation	Manufacturer	Applicator	Fluid Tip/Bell Size (mm)	Air Cap	Gun Voltage (kV)	Revolutions per Minute	Gun-to- Target Distance (inch)
BC Robot Engine	ABB	Eco2 HX 1	1.1	N/A	N/A	25,000	6-10
BC Bell	Behr	EcoBell	1.1	N/A	60-80	50,000 Silver 55,000 White	10
BC Robot	ABB	Eco HX	.7 side/ .9	N/A	50	65,000 Silver/	10

Table 2-1Color 2 Applicator Parameter Summary

		1 1				U	
Operation	Manufacturer	Applicator	Fluid Tip/Bell Size (mm)	Air Cap	Gun Voltage (kV)	Revolutions per Minute	Gun-to- Target Distance (inch)
			overhead			55,000 White	
CC Robot	ABB	EFC-2	3	A71L	80	N/A	10
CC Bell	Behr	EcoBell	1.1	N/A	60-80	55,000	10
nım: millimeter kV: kilovolts OH: overhead		• • • • • • • • • • • • • • • • • • •	·			•	

Table 2-1Color 2 Applicator Parameter Summary

2.2 Control Equipment

The topcoat spray booths use a downdraft ventilation system and water-wash system below the booth grating to control paint overspray. Captured basecoat bake oven VOC emissions are directed to a regenerative thermal oxidizer for VOC abatement. The downdraft ventilation and water wash system was not evaluated during this test program; however, they were in operation in accordance with the facility's Renewable Operating Permit.

2.3 Operating Parameters

The following operating parameters were recorded during the testing:

- Line speed
- Coating use
- Applicator information
- Bake oven temperature
- Spray booth relative humidity
- Spray booth temperature
- Spray booth airflow

Table 2-2 and Appendix E present the operating parameters recorded during testing.

Table 2-2Operating Parameters

	Speed (ft/min)	Temperature (°F)	Humidity	Temperature (°F)
Color 2	16.4 FPM	64-82	38-84%	229-344

2.4 Process Sampling Locations

Facility personnel collected seven process samples of the coatings applied during the testing. The coatings were collected following procedures in USEPA's "Standard Procedure for Collection of Coating and Ink Samples for Analysis by Methods 24 and 24A."

The coatings were collected at the point of application in 4-ounce glass containers with minimal headspace. The coating-as-applied samples were analyzed using USEPA Method 24 to measure VOC content, water content, and density. The Method 24 coating analytical results are summarized in Table 2-3 and included in Appendix F.

· · · · · · · · · · · · · · · · · · ·	Parameter						
Sample	Date	% Non-	%	Density		VOC	
·		volatile	Volatile	g/ml	lb/gal	g/L	lb/gal
WTAP Silver Basecoat CE	10/10/13	51.71	48.29	0.992	8.27	478.8	4.00
WTAP Clearcoat CE	10/10/13	55.93	44.07	1.032	8.61	454.6	3.79
WTAP Silver Basecoat CE	10/11/13	51.59	48.41	0.989	8.25	478.6	3.99
WTAP Clearcoat CE	10/11/13	55.47	44.53	1.033	8.62	459.8	3.84
WTAP Silver Basecoat TE	10/14/13	51.16	48.84	0.994	8.29	485.3	4.05
WTAP White Basecoat TE	10/15/13	62.99	37.01	1.244	10.39	460.6	3.84
WTAP Clearcoat TE	10/16/13	57,49	42.51	1.033	8.62	439	3.66

Table 2-3Method 24 Coating Analytical Results

3.0 Summary and Discussion of Results

3.1 Objectives and Test Matrix

The testing was performed as required by MDEQ Renewable Operating Permit MI-ROP-B2767-2011 for the EU-Tutone and FG-Topcoat conditions. The effective date of the permit is January 1, 2011. The results of the testing will be used to calculate daily and monthly emissions. The sources, parameters, processes, and test date are presented in Table 1-1 and the permit emission limits are presented in Table 1-2.

3.2 Field Test Changes and Issues

The following sections summarize the field test changes and issues.

3.2.1 Capture Efficiency Testing for Reprocessing and Tutone

Bureau Veritas proposed to measure capture efficiency and oven solvent loading on topcoat lines Color 1 and Color 2. Because the process of Color 1 and Color 2 is identical, the capture efficiency values from the Color 2 tested booth applies to the Color 1 line. MDEQ requested capture efficiency testing also be conducted on the Tutone and Reprocessing topcoat lines.

3.2.2 Transfer Efficiency Test Vehicle 2 Metallic Basecoat – Silver

During transfer efficiency testing on the Color 2 topcoat line, a production vehicle was inserted between Test Vehicles 3 and 1. The production vehicle was programmed to be sprayed with a different color coating and, as a result, after the production vehicle was coated, the paint applicators had to fill the lines with metallic basecoat - silver. This led to an increase in the coating measured by the applicators.

As approved by MDEQ, the average volume of coating for Test Vehicles 3 and 2 was used to calculate transfer efficiency for Test Vehicle 2.

3.2.3 Exclusion of Metallic Basecoat – Silver Capture Efficiency Panel Weight

During processing through the bake oven, a foreign material adhered to one of the test panels for the capture efficiency testing of metallic basecoat – silver on Color 2. This resulted in added mass and the panel weight was excluded from the average used in calculations.

RECEIVED

DEC 1 6 2013

AIR QUALITY DIV.

3.3 Presentation of Results

The results are summarized in Tables 3-1 and 3-2. Detailed VOC CE and paint solids TE test results are presented in Tables 1 through 5 after the Tables tab of this report. Sample calculations and calculation spreadsheets are presented in Appendix B with raw and computer generated field data sheets behind Appendix C and D. Facility operating data are included in Appendix E.

Paint Solids Transfer Efficiency Results

		U U		•		v
			Result			
Process	Batch Vehicle Weight Gain (lb)	Batch Paint Sprayed (gal)	Coating Density (lb/gal)	Solids Weight Fraction (lb solids/lb coating)	Batch Solids Sprayed (lb)	Solids Transfer Efficiency (%)
Metallic Basecoat - Silver	6.13	2.03	8.29	0.51	8.61	71.2
Solid Basecoat - White	11.27	2.66	10.39	0.63	17.43	64.6
Clearcoat - Standard	8.64	2.73	8.62	0.57	13.50	64.0

Table 3-1

Color 2 Coating Solids Transfer Efficiency Results Summary

VOC Capture Efficiency Results

Section	Section VOC CE [†] (%)	Section VOC CE at 100% Transfer Efficiency (%)	Silver Metallic Loading (lb/gacs)	Clearcoat Loading (lb/gacs)	
Color 2					
Basecoat Bake Oven VOC CE	8.8	12.4	1.25	-	
Clearcoat Bake Oven VOC CE	32.2	50.4	-	3.98	
Reprocess					
Basecoat Bake Oven VOC CE	5.2	7.3	0.74	-	
Clearcoat Bake Oven VOC CE	24.1	37.6	-	2.97	
Tutone		· · · · · · · · · · · · · · · · · · ·			
Basecoat Bake Oven VOC CE	9.2	12.9	1,31	-	
Clearcoat Bake Oven VOC CE	29.5	46.0	-	3.64	
t : section VOC CE calculated using measured transfer efficiency					

Table 3-2VOC Capture Efficiency Results Summary

4.0 Sampling and Analytical Procedures

The testing was conducted in accordance with applicable procedures contained in the USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations" as referenced in 40 CFR 63, Subpart IIII. The parameters and analytical methods used are listed in Table 4-1.

Reference Method	Parameter	Analysis
Section 18, "Transfer Efficiency Test ProcedureIn	Paint solids	Gravimetric
Plant" of the USEPA document, "Protocol for	transfer efficiency	
Determining the Daily Volatile Organic Compound		
Emission Rate of Automobile and Light-Duty Truck		
Primer-Surfacer and Topcoat Operations."		
Section 21, "Test Procedures for Determining	VOC Capture	Gravimetric
Exhaust Control Device VOC Loading (Capture	efficiency	
Efficiency) by Panel Test" of the USEPA document,		
"Protocol for Determining the Daily Volatile Organic		
Compound Emission Rate of Automobile and Light-		
Duty Truck Primer-Surfacer and Topcoat		
Operations."		
ASTM D2369-10e1, "Standard Test Method for	Coating density,	Gravimetric
Volatile Content of Coatings," and D1475-98(2012),	solids content	
"Standard Test Method for Density of Liquid		
Coatings, Inks, and Related Products," incorporated		
by reference in USEPA 24, "Determination of		
Volatile Matter Content, Water Content, Density,		
Volume Solids, and Weight Solids of Surface		
Coatings."		
ASTM D7091-12, "Standard Practice for	Film build	Electromagnetic
Nondestructive Measurement of Dry Film Thickness		induction
of Nonmagnetic Coatings Applied to a Ferrous		
Metals and Nonmagnetic, Nonconductive Coatings		
Applied to Non-Ferrous Metals"		

 Table 4-1

 Sampling and Analytical Test Methods

4.1 Test and Analytical Methods

The test methods are summarized in the following sections.

4.1.1 Paint Solids Transfer Efficiency

Paint solids TE testing was conducted in accordance with the applicable procedures contained in Section 18 of the USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations" as referenced in 40 CFR 63, Subpart IIII, "National Emission Standards for Hazardous Air Pollutants: Surface Coating of Automobiles and Light-Duty Trucks."

TE was measured by comparing (1) the weight gain of the test vehicle batch after coating application and curing and (2) the weight of solids sprayed. For example, the vehicle weight gain measured after the solid basecoat application divided by the weight of the solid basecoat paint solids sprayed yields an overall TE for solid basecoat. Coating material use was monitored using integrated robot, bell, or manual in-line flow monitors. These devices measured material consumption in cubic centimeters (cc) on each applicator or at the corresponding gear pump. The summation of the coating applied through each applicator equals the total volume of paint sprayed.

TE was measured by three separate tests for metallic basecoat, solid basecoat, and clearcoat. The measured TE values are considered representative of coatings applied in each coating group (white basecoat TE was used as TE for the solid basecoats applied). As the process of each booth is identical, the TE values from the Color 2 tested booth applies to the Color 1 line at the facility.

Each test involved coating three car bodies. Two no-paint control vehicles were run through the process to account for sealer weight loss and measurement accuracy. The vehicles were weighed before and after solids were applied. Figure 4-1 presents a photograph of the vehicle weigh station.

Figure 4-1. Paint solids transfer efficiency vehicle weigh station

During the test, vehicles were processed in the same manner as normal production vehicles and process data were recorded to evaluate that testing was conducted under normal booth conditions. The general test sequence for each TE measurement was:

- Configure vehicle weigh station (VWS) to achieve measurement accuracy to ± 0.05 pounds.
- Pre-weigh batch of test vehicles and control vehicles.
- Load application equipment and route test vehicles to spray booth.
- Process test vehicles through spray booth as normal production vehicles.
- Record coating material use.
- Route test vehicles through bake oven.
- Allow test vehicles to cool and measure post-coating weight to calculate weight gain attributable to applied coating solids.
- Obtain coating samples for laboratory analysis to measure coating density and solids weight fraction.

Solids in each coating sample were analyzed by ASTM D2369, incorporated by reference in USEPA Method 24. Each coating sample was analyzed for density by ASTM D1475, incorporated by reference in USEPA Method 24.

4.1.2 VOC Capture Efficiency

CE testing was performed as defined in 40 CFR 63, Subpart IIII, Appendix A, "Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions from Solventborne Coatings Using Panel Testing." This procedure measures the loss of VOC from a freshly coated surface by weight difference attributable to the coating curing process in the oven, and is conducted in accordance with ASTM D5087 for solvent-borne coatings. The weight loss during the curing process is measured. The difference in weight between the wet and cured panels is attributable to the amount of VOC released in the oven. Measurements of oven VOC CE are also referenced as oven solvent loading.

The only variation to the protocol was that the panel testing took place on the paint line during actual vehicle coating and baking operations rather than in a laboratory environment.

One sample of each coating material used during the test was collected and analyzed to measure solids weight and density.

The VOC CE was measured by routing one test vehicle through each coating line with groups of clean, labeled, pre-weighed, electrocoated and baked 4-inch-by-12-inch panels attached to the body of the vehicle using magnets. The panels were positioned at locations where:

- The target film build for the process is most prevalent.
- The panels would be easily accessible for placement and removal.
- The vehicle areas were relatively flat and would accommodate panel placement.

Photographs of the panels used during testing presented in Figures 4-2 and 4-3.

The vehicle was painted as a typical production unit during production hours.

VOC CE of the basecoat bake oven was measured during this test program. For the basecoat bake oven testing, the vehicle movement stopped after the coating had been applied just prior to the bake

Figure 4-2. Blank test panels

oven; the test panels were carefully removed and weighed. After weights for each panel were recorded, the panels were remounted on the vehicle for processing through the bake oven. When the panels emerged from the bake oven, they were removed from the vehicle, allowed to cool, and reweighed on the same scale. The difference in weight between the wet and cured panels is attributable to the amount of VOC released in the oven.

Solids in each coating sample were analyzed by ASTM D2369 and D1475, incorporated by reference in USEPA Method 24 to measure the coating solids content and density.

Figure 4-3. Coated test panels

4.1.3 Solids and Density Determination (USEPA Method 24)

Solids and density measurements followed USEPA Method 24, "Determination of Volatile Matter Content, Water Content, Density, Volume Solids, and Weight Solids of Surface Coatings." The coating was collected following procedures in USEPA's "Standard Procedure for Collection of Coating and Ink Samples for Analysis by Methods 24 and 24A." Samples were collected at the point of application into a 1-quart glass container with minimal headspace.

The coating-as-applied samples were analyzed following USEPA Method 24 procedures to measure the non-volatile and volatile content, density, and VOC density. Laboratory results are included in Appendix F.

4.2 **Procedures for Obtaining Process Data**

Process data were recorded by Chrysler Group LLC personnel. The process data are summarized in Section 2.0 and included in Appendix E.

4.3 Sampling Identification and Custody

Detailed sampling and recovery procedures are described in Section 4.1. For each sample collected (i.e. coating), sample identification and custody procedures were completed as follows:

- Containers were sealed to prevent contamination.
- Containers were labeled with sample identification and date.
- Samples were logged using guidelines outlined in ASTM D4840-99(2004), "Standard Guide for Sampling Chain-of-Custody Procedures."
- Samples were delivered to the laboratory.

Chains of custody and laboratory analytical results are included in Appendix F.

5.0 QA/QC Activities

Equipment used in this environmental test program passed quality assurance/quality control (QA/QC) procedures. Refer to Appendix A for equipment calibration and inspection sheets.

5.1 Pretest QA/QC Activities

Before testing, the equipment was inspected and calibrated according to procedures outlined in the applicable procedures contained in the USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Primer-Surfacer and Topcoat Operations" as referenced in 40 CFR 63, Subpart IIII. Refer to Appendix A for inspection and calibration sheets.

5.2 QA/QC Audits

The results of select sampling and equipment QA/QC audits are presented in the following sections. Calibration measurements for scales are presented in Appendix A.

5.3 TE QA/QC Blanks

Two no-paint control vehicles were run through the process with each test batch to account for weight-loss attributable to sealers. The results of the control vehicles are presented in the Table 5-1.

Vehicle Identification	Vehicle Weight Gain (lb)	Vehicle Batch	Comment		
TE4	-0.12	Metallic	Corrected for three vehicles in test batch		
TE5	-0.07	Basecoat- Silver			
TE4	-0.02	Solid Basecoat-	Control vehicles within testing tolerances, not used to		
TE5	-0.02	White	adjust batch vehicle weight gain value		
TE4	-0.04	Clearcoat- Con Standard	Corrected for three vehicles in test batch		
TE5	-0.15				

Table 5-1 QA/QC Blanks

5.4 QA/QC Problems

No quality assurance/quality control problems were encountered during this test program.

RECEIVED

DEC 1 6 2013

AIR QUALITY DIV.

Limitations

The information and opinions rendered in this report are exclusively for use by Chrysler Group LLC. Bureau Veritas North America, Inc. will not distribute or publish this report without Chrysler Group LLC's consent except as required by law or court order. The information and opinions are given in response to a limited assignment and should be implemented only in light of that assignment. Bureau Veritas North America, Inc. accepts responsibility for the competent performance of its duties in executing the assignment and preparing reports in accordance with the normal standards of the profession, but disclaims any responsibility for consequential damages.

This report prepared by: Dillon King Consultant Health, Safety, and Environmental Services This report reviewed by: 1 AMAN Thomas R. Schmelter, **QST** Senior Project Manager Health, Safety, and Environmental Services Derck R, Wong, Ph.D., P.E. Director and Vice President

Health, Safety, and Environmental Services

Tables

Paint Solids Transfer Efficiency Results Chrysler Group LLC - Warren Truck Assembly Plant Warren, Michigan Bureau Veritas Project No. 11013-000181.00 Date: October 14, 2013 through October 16, 2013

Davamatan	Units	Source	
	Onits	Color 2	
Metallic Basecoat - Silver			
Batch Vehicle Weight Gain ⁺	pounds	6.13	
Batch Paint Sprayed	gallons	2.03	
Coating Density	pounds per gallon	8.29	
Weight Solids Fraction	percent	0.51	
Batch Solids Sprayed	pounds	8.61	
Solids Transfer Efficiency	percent	71.2	
Solid Basecoat - White			
Batch Vehicle Weight Gain‡	pounds	11.27	
Batch Paint Sprayed	gallons	2.66	
Coating Density	pounds per gallon	10.39	
Weight Solids Fraction	percent	0.63	
Batch Solids Sprayed	pounds	17.43	
Solids Transfer Efficiency	percent	64.6	
Clearcoat - Standard	······		
Batch Vehicle Weight Gain†	pounds	8.64	
Batch Paint Sprayed	gallons	2.73	
Coating Density	pounds per gallon	8.62	
Weight Solids Fraction	percent	0.57	
Batch Solids Sprayed	pounds	13.50	
Solids Transfer Efficiency	percent	64.0	

†: corrected for sealer weight loss

‡: control vehicles not used to adjust batch vehicle weight gain

Basecoat Bake Oven VOC CE Results - Color 2 and Reprocess

Chrysler Group LLC -Warren Truck Assembly Plant

Warren, Michigan

Bureau Veritas Project No. 11013-000184.00

Date: October 10, 2013

	Thutes	Sou	Source			
		Color 2	Reprocess			
Avorage Plants Davel Weight	aroma	187 670	187 233			
Average Didik I divi wolght	grams	107.070	107.233			
Average Coated Panel Weight After Date Oven	grams	188.202	188.508			
Average Coaled Panel weight Aner Bake Oven	grams	100.199	100.400			
Weight of Coating Solids Deposited	grams	0.529	1.247			
Weight of VOC's Available for Abatement	grams	0.063	0.088			
Weight of VOC's Available per Volume of Coating Solids	lb/gacs	1.25	0.74			
Mass of VOC's per Volume of Coating	lb/gal	4.12	4.12			
Tansfer Efficiency	percent	71.2	71.2			
Volume of Solids Deposited per Volume of Coating Sprayed	ratio	0.289	0.289			
Basecoat Bake Oven VOC Capture Efficiency	percent	8.8	5.2			
Basecoat Bake Oven VOC Capture Efficiency at 100% TE	percent	12.4	7.3			
Coating Density (1b/gal)	: 8.27					
Mass Fraction Solids	: 0.517					
Volume Fraction Solids						
VOC Mass Fraction: 0.498						
Solids Density (lb/gal)	: 10.53					
lb/gacs	lb/gacs: pounds per gallons of applied coating solids					
lb/gal: pounds per gallon						

Basecoat Bake Oven VOC CE Results - Tutone Chrysler Group LLC -Warren Truck Assembly Plant Warren, Michigan Bureau Veritas Project No. 11013-000184.00 Date: October 11, 2013

Dovemeter	Inite	Source	
		Tutone	
Average Blank Panel Weight	grams	188 016	
Average Coated Panel Weight Before Bake Oven	orams	188 867	
Average Coated Panel Weight After Bake Oven	grams	188.773	
Weight of Coating Solids Deposited	grams	0.757	
Weight of VOC's Available for Abatement	grams	0.095	
Weight of VOC's Available per Volume of Coating Solids	lb/gacs	1.31	
Mass of VOC's per Volume of Coating	lb/gal	4.12	
Tansfer Efficiency	percent	71.2	
Volume of Solids Deposited per Volume of Coating Sprayed	ratio	0.289	
Basecoat Bake Oven VOC Capture Efficiency	percent	9.2	
Basecoat Bake Oven VOC Capture Efficiency at 100% TE	percent	12.9	
Coating Density (lb/gal):	8.25	Į	
Mass Fraction Solids:	0.516		
Volume Fraction Solids:	0.406		
VOC Mass Fraction:	0.499		
Solids Density (lb/gal):	10.48		
lb/gacs:	pounds per gallons of	of applied coating solids	
lb/gal:	pounds per gallon		

Clearcoat Bake Oven VOC CE Results - Color 2 and Reprocess Chrysler Group LLC -Warren Truck Assembly Plant

Warren, Michigan Bureau Veritas Project No. 11013-000184.00 Date: October 10, 2013

	¥ Tas \$4.	Source		
Parameter	Units	Color 2	Reprocess	
Average Blank Panel Weight	grams	188.005	187.784	
Average Coated Panel Weight Before Bake Oven	grams	189.993	189.375	
Average Coated Panel Weight After Bake Oven	grams	189.419	189.005	
Weight of Coating Solids Deposited	grams	1.414	1.221	
Weight of VOC's Available for Abatement	grams	0.574	0.370	
Weight of VOC's Available per Volume of Coating Solids	lb/gacs	3.98	2.97	
Mass of VOC's per Volume of Coating	lb/gal	3.88	3.88	
Tansfer Efficiency	percent	64.0	64.0	
Volume of Solids Deposited per Volume of Coating Sprayed	ratio	0.314	0.314	
Clearcoat Bake Oven VOC Capture Efficiency	percent	32.2	24.1	
Clearcoat Bake Oven VOC Capture Efficiency at 100% TE	percent	50.4	37.6	
Coating Density (lb/gal):	8.61			
Mass Fraction Solids	: 0.559			
Volume Fraction Solids	: 0.491			
VOC Mass Fraction	0.451			
Solids Density (lb/gal):	9.81			
lb/gacs:	pounds per gallons o	f applied coating solids		
lb/gal:	pounds per gallon			

Clearcoat Bake Oven VOC CE Results - Tutone Chrysler Group LLC -Warren Truck Assembly Plant Warren, Michigan Bureau Veritas Project No. 11013-000184.00 Date: October 11, 2013

Daramatar	Imite	Source	
	Omis	Tutone	
Average Blank Panel Weight	grams	187.903	
Average Coated Panel Weight Before Bake Oven	grams	189.470	
Average Coated Panel Weight After Bake Oven	grams	189.044	
Weight of Coating Solids Deposited	grams	1.141	
Weight of VOC's Available for Abatement	grams	0.426	
Weight of VOC's Available per Volume of Coating Solids	lb/gacs	3.64	
Mass of VOC's per Volume of Coating	lb/gal	3.88	
Tansfer Efficiency	percent	64.0	
Volume of Solids Deposited per Volume of Coating Sprayed	ratio	0.314	
Clearcoat Bake Oven VOC Capture Efficiency	percent	29.5	
Clearcoat Bake Oven VOC Capture Efficiency at 100% TE	percent	46.0	
Coating Density (lb/gal):	8.62		
Mass Fraction Solids:	0.555		
Volume Fraction Solids:	0.491		
VOC Mass Fraction:	0.450		
Solids Density (lb/gal):	9.74		
lb/gacs:	pounds per gallons of applied coating solids		
lb/gal:	pounds per gallon		

Figures

.

