CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 800-627-0033 www.cleanair.com

Consumers Energy 17000 Croswell Street West Olive, MI 49460

RECEIVED

OCT 1 1 2016

AIR QUALITY DIV.

REPORT ON HYDROGEN CHLORIDE COMPLIANCE TESTING

Performed for: CONSUMERS ENERGY UNIT 2 EXHAUST DUCT J.H. CAMPBELL GENERATING COMPLEX

> Client Reference No: 4400058909 CleanAir Project No: 13046-2 Revision 0: September 28, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Ken Sullivan Project Engineer ksullivan@cleanair.com (800) 627-0033 ext. 4527 Reviewed by,

Josh Childers Project Manager jchilders@cleanair.com (800) 632-1619 ext. 2072

RPTv4_6_9.dot 13046-2 Report_R0_lithd.docx 35282016 103500 13046-2

Copyright © 2016 Clean Air Engineering, Inc., Palatine, Illinois. All rights reserved.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

REVISION HISTORY

ii

REPORT ON HYDROGEN CHLORIDE COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	09/22/16	All	Draft version of original document.

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	09/28/16	All	Final version of original document.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

PROJECT OVERVIEW INTRODUCTION Consumers Energy contracted Clean Air Engineering (CleanAir) to perform hydrogen chloride (HCl) testing at the J.H. Campbell Generating Complex, located in West Olive, Michigan, for Mercury and Air Toxics Standards (MATS) compliance purposes. This report summarizes Consumers Energy's demonstration of compliance with the 40 CFR Part 63 UUUUU MATS emission limit of 0.002 lb/MMBtu for HCl on EUBOILER2 (Unit 2) Exhaust Duct (AQD Source ID B2835), in accordance with procedures outlined in EPA Method 320 of 40 CFR Part 63, Appendix A. All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (EPA) and the Michigan Department of Environmental Quality (DEO). Key Project Participants Individuals responsible for coordinating and conducting the test program were: K. Cunningham – Consumers Energy S. Lachance – DEQ K. Sullivan – CleanAir Test Program Parameters The testing was performed at the Unit 2 Exhaust Duct on July 8 and August 9, 2016, and included the following emissions measurements: hydrogen chloride (HCl) flue gas composition (e.g., CO₂ and H₂O) ٠ Consumers Energy attempted to demonstrate compliance with the applicable limit while Unit 2 burned both a 100% Powder River Basin (PRB) fuel (July 8) and a 60%/40% blend of PRB and Eastern fuel (August 9). The test programs were conducted while Unit 2 was operating at full load (90% to 110% design capacity) conditions during burning of 60%/40% PRB/Eastern fuel and 70% to 85% design capacity during burning of 100% PRB fuel. Unit 2 is de-rated while burning of 100% PRB coal.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedules

The on-site schedules followed during the test program is outlined in Tables 1-1 and 1-2.

Table 1-1: Schedule of Activities – Unit 2 100% PRB

Run	Location	Mothod	Analyte	Date	Start Time	End
<u>anumper</u> 1	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	7/08/16	08:45	Time 10:10
2	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	7/08/16	10:25	11:27
3	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	7/08/16	11:43	12:45

Table 1-2:

Schedule of Activities - Unit 2 60%/40% PRB/Eastern Blend

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	8/09/16	10:50	11:50
2	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	8/09/16	12:06	13:06
3	Unit 2 Exhaust Duct	USEPA M320/3A	HCI/CO ₂	8/09/16	14:13	15:14

Results Summary

Table 1-3 summarizes the results of the test program. A more detailed presentation of the test conditions and results of analysis is shown on page 2-1.

Table 1-3: Summary of Test Results						
<u>Source</u> Constituent	Sampling Method	Average Emission	Applicable Limit ¹			
<u>Unit 2 Exhaust Duct (100</u> HCI (Ib/MMBtu)	<u>% PRB)</u> EPA M320/3A	0.00050	0.0020			
Unit 2 Exhaust Duct (60%) HCI (Ib/MMBtu)	/40% PRB/Eastern Blend) EPA M320/3A	0.00024	0.0020			

¹ Compliance limits obtained from 40 CFR 63, Subpart UUUUU Mercury and Air Toxics Standards.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

PROJECT OVERVIEW

Discussion of Test Program

CleanAir performed three (3) 60-minute test runs for each fuel tested, utilizing EPA Method 320 in conjunction with EPA Method 3A, to determine HCl emission rates in lb/MMBtu. CleanAir conducted testing at Unit 2 while the unit was operated at 70% to 85% load while burning 100% PRB fuel and at 100% load while burning 60%/40% PRB/Eastern fuel.

All HCl concentrations were measured as parts per million on a wet volumetric basis (ppmwv). HCl concentrations measured in ppmwv were converted to lb/MMBtu by measuring diluent CO₂ concentrations concurrently through the utilization of EPA Method 3A. In accordance with specifications outlined in 40 CFR Part 75, Appendix F, Section 3.3.6 and in Section 63.10007 of the MATS rule, a default Fc factor of 1840 was utilized to convert HCl concentrations to emission rates (as presented in Table 1 in Section 3.3.5 of Part 75, Appendix F).

Sample calculations for concentrations and emission rates are presented in Appendix B of this report. Further description of the sample location and process schematic are presented in Section 3 of this report. Further description of test methodology is presented in Section 4 and in Appendix A of this report.

All sampling data presented in this report is based on Eastern Standard Time (EST).

End of Section 1 – Project Overview

1-3

Client Reference No: 4400058909

CleanAir Project No: 13046-2

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

RESULTS

2-1

		e 2-1: 00% PRB		_	
Run No.	·	1	2	3	Average
Date (20	016)	Jul 8	Jul 8	Jul 8	
Start Tin	ne (approx.)	08:45	10:25	11:43	
Stop Tin	ne (approx.)	10:10	11:27	12:45	
Process	s Conditions				
R _P	Gross Load (MW)	297	298	299	298
F۵	Carbon dioxide-based F-factor (dscf/MMBtu)	1,840	1,840	1,840	1,840
Gas Cor	nditions				
CO₂	Carbon dioxide (dry volume %)	12.1	12.1	12.1	12.1
B _w	Actual water vapor in gas (% by volume)	11.6	11.6	11.7	11.6
HCI Res	ults				
Csw	Concentration (ppmwv)	0.47	0.29	0.29	0.35
C _{sd}	Concentration (lb/scf)	4.5E-08	2.7E-08	2.7E-08	3.3E-08
EFc	Emission Rate - F₀-based (lb/MMBtu)	0.00068	0.00041	0.00041	0.00050

Table 2-2: Unit 2 – 60%/40% PRB/Eastern Blend

Run No.		1	2	3	Average
Date (20	016)	Aug 9	Aug 9	Aug 9	
Start Tin	ne (approx.)	10:50	12:06	14:13	
Stop Tin	ne (approx.)	11:50	13:06	15:14	
Process	s Conditions				
R _P	Gross Load (MVV)	348	367	338	351
Fc	Carbon dioxide-based F-factor (dscf/MMBtu)	1,840	1,840	1,840	1,840
Gas Cor	iditions				
CO ₂	Carbon dioxide (dry volume %)	12.6	12.7	12.6	12.6
Bw	Actual water vapor in gas (% by volume)	10.4	10.4	10.2	10.3
HCI Res	ults				
C_{sw}	Concentration (ppmwv)	0.24	0.14	0.14	0.17
\mathbf{C}_{sd}	Concentration (lb/scf)	2.3E-08	1.3E-08	1.3E-08	1.6E-08
EFc	Emission Rate - F _c -based (lb/MMBtu)	0.00033	0.00019	0.00019	0.00024

End of Section 2 - Results

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

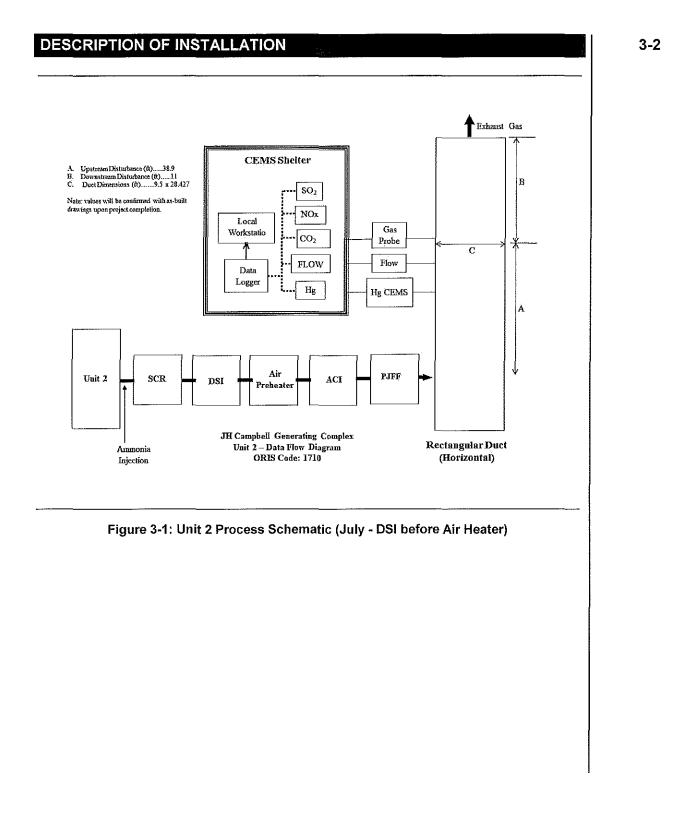
Client Reference No: 4400058909 CleanAir Project No: 13046-2

DESCRIPTION OF INSTALLATION

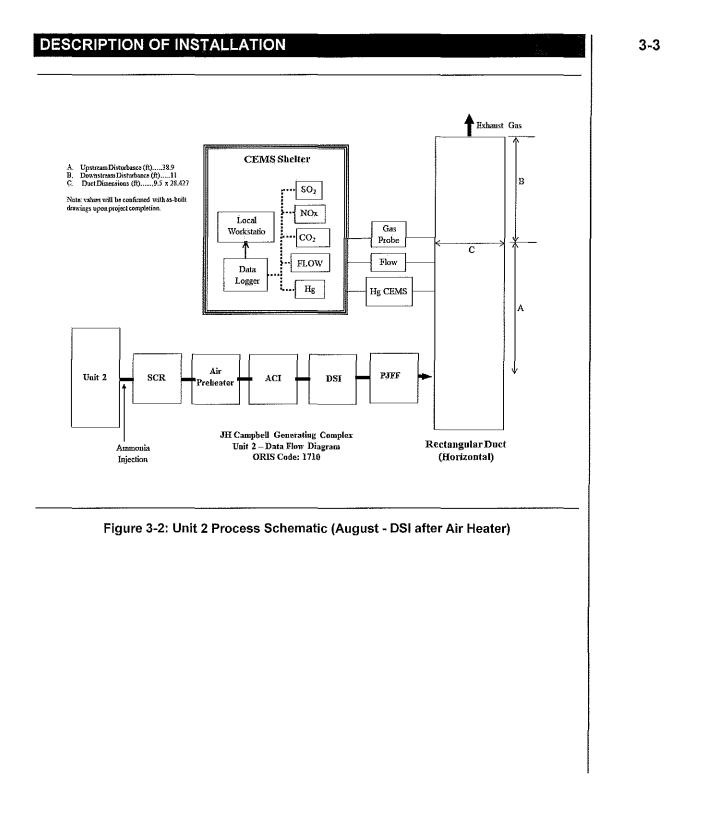
PROCESS DESCRIPTION

Consumers Energy owns and operates the J.H. Campbell Generating Complex, located in West Olive, Michigan. The complex is comprised of three units with the combined electrical generating capacity of 1,450 megawatts (MW) and capable of consuming 6 million tons of coal per year. Testing described in this report was performed at the exhaust duct of Unit 2.

Unit 2 is rated at approximately 380 MW gross (360 MW net). Unit 2 is equipped with dry sorbent injection (DSI), activated carbon injection (ACI) and a pulse jet fabric filter (PJFF) baghouse to control emissions. Unit 2 also utilizes a selective catalytic reduction (SCR) reactor for additional abatement of emissions.


Unit 2 burns 100% PRB subbituminous low-sulfur coal with the capability of burning a blend of 60% subbituminous coal and 40% bituminous coal. When Unit 2 is burning the 100% PRB fuel, it is de-rated to a maximum gross capacity of 300 MW. Thus, during testing, Unit 2 was operating within 10% of maximum achievable load.

Consumers Energy collected and logged gross load generation (MW) data during the test program and provided this data to CleanAir for presentation in this report. Consumers Energy accessed this data via the J.H. Campbell's CEMS DAHS.


Schematics of the processes for Unit 2 are shown in Figures 3-1 and 3-2 on pages 3-2 and 3-3, respectively.

Consumers Energy changed the location of the Unit 2 DSI system after 100% PRB testing was completed and before 60%/40% PRB/Eastern blend testing had commenced. During 100% PRB testing, the DSI was located before the air pre-heater. During 60%/40% PRB/Eastern testing, the DSI was located after the air pre-heater. Figures 3-1 and 3-2 reflect this change.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

DESCRIPTION OF INSTALLATION

DESCRIPTION OF SAMPLING LOCATIONS

Sampling point locations were determined according to EPA Method 3A, with references to EPA Methods 1 and 7E.

Table 3-1 outlines the sampling point configurations. The figures shown on pages 3-5 and 3-6 illustrate the sampling points and orientation of sampling ports for the source tested in the program.

Table 3-1: Sampling Points							
<u>Source</u> Constituent	Method	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Unit 2 Exhaust Duct (100% PRB)						
HCI/CO ₂	EPM M320/3A	1	4	3	5	60	3-3
HCI/CO ₂	EPM M320/3A	2-3	1	1	60	60	3-3
Unit 2 Exhaust Duct (60%/40% PRB/Easte	rn Blend)				
HCI/CO₂	EPM M320/3A	1-3	1	1	60	60	3-4

A stratification check for CO_2 was conducted during Run 1 of 100% PRB testing in order to comply with specifications outlined in EPA Method 3A. The stratification check passed criteria required for single port, single point testing. Consequently, subsequent to Run 1 of 100% PRB testing, test runs were conducted at a single point most representative of the average CO_2 concentration during the stratification check.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX Client Reference No: 4400058909 CleanAir Project No: 13046-2

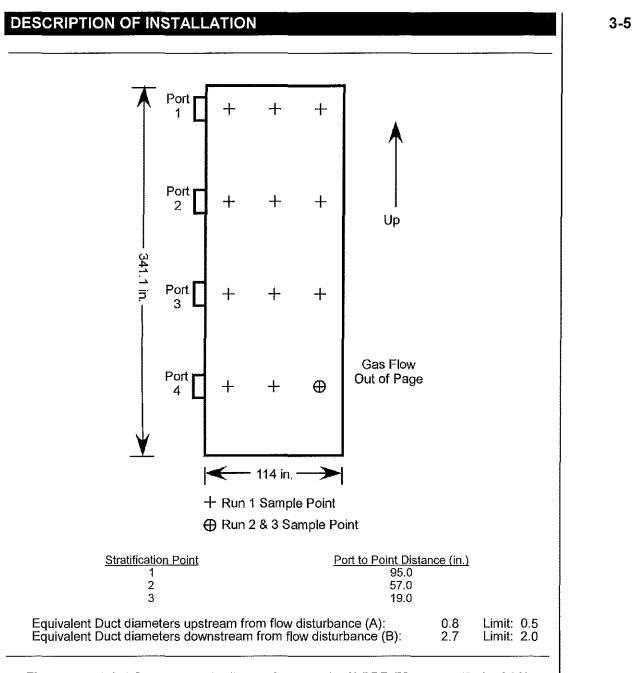
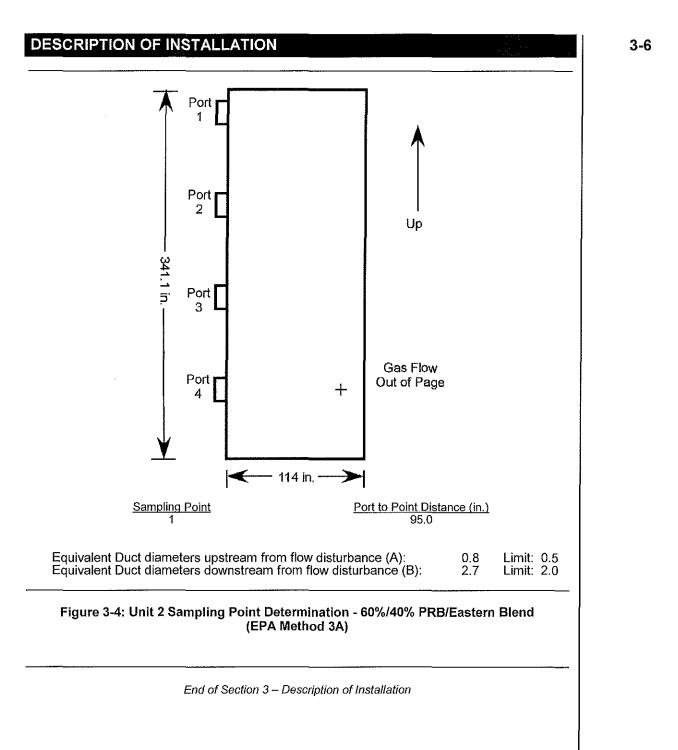



Figure 3-3: Unit 2 Sampling Point Determination - 100% PRB (Mod. EPA Method 3A)

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

	gineering followed procedures as detailed in EPA Methods 1, 3A, 301 and lowing table summarizes the methods and their respective sources.
	Table 4-1:
	Summary of Sampling Procedures
Title 40 CFR Pa	rt 60 Appendix A
Method 1 Method 3A ¹	"Sample and Velocity Traverses for Stationary Sources" "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Title 40 CFR Pa	rt 63 Appendix A
Method 301 Method 320	"Field Validation of Pollutant Measurement Methods from Various Waste Media" "Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy"
¹ Method 3A ref	erences various Method 7E provisions which were followed.
	ds appear in detail in Title 40 of the Code of Federal Regulations (CFR) orld Wide Web at http://ecfr.gpoaccess.gov.
	the sampling apparatus and major specifications of the sampling, recovery I procedures are summarized for each method in Appendix A.
	owed specific quality assurance and quality control (QA/QC) procedures the individual methods and as prescribed in CleanAir's internal Quality
Sampling S	<i>/stem</i>
The FTIR sar (ppmwv) and constant rate 375°F. The b maintained at	npling system was utilized to determine concentrations for both HCl CO ₂ (%wv). The FTIR sampling system extracted effluent gas at a and utilized a stainless steel probe and heated filter box maintained at back-end of the probe was connected to a heated Teflon sample line approximately 375°F, which delivered the sample gas from the stack to be gas entered the FTIR on a hot-wet basis.
method (EPA	s calibrated/validated according to each respective analyte reference Method 320 and 3A) procedures. All calibration gas certificates are ppendix D of this report.
	d 320 Sampling prporated guidelines as stated in 40 CFR 63, Appendix A, EPA Method ement of Vapor Phase Organic and Inorganic Emissions by Extractive

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

METHODOLOGY Prior to each testing, a calibration transfer standard (CTS) was used to demonstrate suitable agreement between sample spectra and reference spectra. The CTS was introduced at a point as close as practical to the probe tip right before the external particulate filter. Subsequent to the CTS check, a spike/tracer gas (in this case, a mixed HCl/SF₆ cylinder) was introduced into the sampled exhaust gas stream prior to the FTIR at a constant flow rate of no more than 10% of the total sample flow. The system "passed" the QA spikes when the average spike concentration was within 0.7 to 1.3 times the expected concentration. All QA spike checks are included in Appendices D and E of this test report. Data was validated and corrected per specifications outlined in EPA Method 301. If the QA spike-check was not within a range of $\pm 10\%$ of the expected value, then a correction factor (CF) was applied to the average concentration of the applicable run (i.e. the average concentration of HCl for the run was "bias adjusted"). A unique CF was applied for data pertaining to each fuel because testing occurred during different mobilizations with different sample systems. The CF applied to data for 100% PRB testing was established pre-Run 1 to testing for a different unit which occurred during the same mobilization. Sample calculations for QA spikes and CF are presented in Appendix B. A total of 60 minutes of reference spectra were collected for each run. Each sample spectrum was documented with the sampling conditions, the sampling time (period when the cell is being filled), the time the spectrum was recorded, the instrumental conditions (path length, temperature, pressure, resolution and signal integration time) and a spectral filename. Following each sampling run, another CTS spectrum was recorded. The pre- and posttest CTS spectra were then compared. The peak absorbance in pre- and post-test CTS was compared to the required $\pm 5\%$ of the mean value for the run to be valid. An on-site minimum detectable concentration (MDC) analysis was performed for target analytes using procedures outlined in ASTM D 6348 A2.3. The MDC is calculated as three times the standard deviation of the concentrations from ten representative background spectra taken during the MDC analysis. The results of this study is shown in Appendix D of this report. The MDC concentration was used for HCl resultant run concentrations for any runs that resulted in an HCl concentration less than the MDC.

CONSUMERS ENERGY J.H. CAMPBELL GENERATING COMPLEX

Client Reference No: 4400058909 CleanAir Project No: 13046-2

METHODOLOGY EPA Method 3A Sampling The FTIR sample system was also utilized to determine the diluent CO_2 concentration of the effluent gas. In addition to all QA/QC procedures outlined in EPA Method 320, all QA/QC procedures outlined in EPA Method 3A were performed. Calibration error-checks were performed by introducing zero nitrogen (N_2), high-range and mid-range calibration gases to the inlet of the FTIR. The FTIR was challenged on-site using certified mixtures of O₂/CO₂ calibration gases. Analyzer bias checks were conducted before and after each run. Bias checks were performed by introducing calibration gas to the inlet of the sampling system's heated external filter. Per EPA Method 3A specifications, the average results for each run were drift-corrected. EPA Method 3A diluent QA/QC checks are presented in Appendix F of this report. An FTIR CO₂ interference check with moisture and the FTIR calibration curve used to quantify CO₂ concentrations are presented in Appendix D of this report. End of Section 4 – Methodology