

Pfizer Inc 7000 Portage Road Kalamazoo, MI 49001

March 8, 2019

Via FedEx TRK# 774654440653

Michigan Department of Environmental Quality Air Quality Division – Technical Programs Unit Constitution Hall, 2nd Floor, South 525 West Allegan Street Lansing, MI 48933

RE: NOx RATA Test Report

To Whom It May Concern:

Please find two copies of the NOx stack test report for EUEBLR43-8-S1, as required by Renewable Operating Permit (ROP) No. MI-ROP-B3610-2014.

The stack test was performed on February 6, 2019. The NOx emissions were 0.126 lb/MMBTU versus an allowable limit of 0.20 lb/MMBTU.

The boiler is located at our facility at 7000 Portage Road, Kalamazoo, Michigan. If you need any additional information or have any questions, please feel free to contact me at (269) 833-3842 or e-mail jeffrey.robey@pfizer.com.

Sincerely,

Koven

Jeff Robey / Manager EHS PGS Kalamazoo Site

c: Ms. Monica Brothers, MDEQ-AQD

RENEWABLE OPERATING PERN REPORT CERTIFICATION Authorized by 1994 P.A. 451, as amended. Failure to provide this information may re	AIT esult in civil	MAR 1 3 20 and/or criminal pena	19 alties.
Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan must be certified by a responsible official. Additional information regarding the reports and c for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department upon request.	n's Renew documenta nt of Enviro	able Operating Per ition listed below n onmental Quality, a	mit (ROP) progran nust be kept on file Air Quality Division
Source Name Pharmacia & Upjohn Company, LLC	(County Kalama	zoo
Source Address 7000 Portage Road	City _I	Kalamazoo	
AQD Source ID (SRN) B3610 ROP No. MI-ROP-B3610- 2014	F	ROP Section No.	1
Please check the appropriate box(es):	1.		
Reporting period (provide inclusive dates): From To 1. During the entire reporting period, this source was in compliance with ALL terms term and condition of which is identified and included by this reference. The method method(s) specified in the ROP.	and cond d(s) used to	litions contained ir o determine comp	n the ROP, each liance is/are the
2. During the entire reporting period this source was in compliance with all terms term and condition of which is identified and included by this reference, EXCEPT deviation report(s). The method used to determine compliance for each term and c unless otherwise indicated and described on the enclosed deviation report(s).	and cond for the de condition is	ditions contained i viations identified s the method spec	n the ROP, each on the enclosed cified in the ROP,
Semi-Annual (or More Frequent) Report Certification (Pursuant to Rule 213(3)(c	:))		
 Reporting period (provide inclusive dates): From To 1. During the entire reporting period, ALL monitoring and associated recordkeeping deviations from these requirements or any other terms or conditions occurred. 2. During the entire reporting period, all monitoring and associated recordkeeping redeviations from these requirements or any other terms or conditions occurred, EXCE enclosed deviation report(s). 	g requirem equiremen EPT for the	nents in the ROP v nts in the ROP were e deviations identi	vere met and no re met and no fied on the
M Other Penert Cartification			
Reporting period (provide inclusive dates): From <u>3/7/2019</u> To <u>3</u> Additional monitoring reports or other applicable documents required by the ROP are a Boiler 8 NOx Stack Test Report	3/7/2019 attached a	s described:	

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete

Ron Perry	Site Leader		269-833-0196
Name of Responsible Official (print or type)	Title		Phone Number
Cluber,		7	MARCH Zag

Signature of Responsible Official

* Photocopy this form as needed.

EQP 5736 (Rev 11-04)

Date

AIR QUALITY DIVISION

Chicago Office: 1500 Boyce Memorial Dr. Ottawa, IL 61350 Phone 815-433-0545 888 STACK TEST Fax 815-433-0592

REPORT OF NOX EMISSION TESTING ON THE #8 BOILER EXHAUST STACK AT THE PFIZER FACILITY LOCATED IN KALAMAZOO, MI

Prepared for:

PFIZER, INC. 7000 PORTAGE ROAD KALAMAZOO, MI 49001

Prepared by:

STACK TEST GROUP, INC. 1500 BOYCE MEMORIAL DRIVE OTTAWA, IL 61350

FEBRUARY 6, 2019 STACK TEST GROUP, INC. PROJECT NO. 18-3114A

Report Prepared By:

Gary A. Kohnke Project Manager

Report Reviewed By:

Nicholas M. Sergenti, QSTI Project Manager

www.stacktestgroup.com • e-mail: info@stacktestgroup.com Offices in Chicago, Indianapolis & Philadelphia

TABLE OF CONTENTS

Pag	e#

1.0	Executi	ve Sun	nmary	1
2.0	Introdu	ction		1
3.0	Summa	ry of S	ampling Procedures	2
	3.1	Oxyge	n & NOx	2
		3.1.1	Sampling Method and Procedures	2
		3.1.2	Sample Duration and Frequency	2
		3.1.3	Calibration	2
		3.1.4	Data Reduction	2
4.0	Discuss	ion of	Results	2
	,	Table 4	4.1 – Boiler #8 Test Results	3
APPENDIX A	L		EXAMPLE CALCULATIONS	
APPENDIX B	1		CALIBRATION DATA	
APPENDIX C	۹ ,		NOx DATALOGGER RECORDIN	IGS
APPENDIX D			CALIBRATION GAS CERTIFICA	TION SHEETS
APPENDIX E			BOILER OPERATING DATA	
APPENDIX F			FIELD PARAMETER SHEET	

.

1.0 EXECUTIVE SUMMARY

On February 6, 2019, The Stack Test Group, Inc. performed nitrogen oxides (NOx) emission testing on the #8 boiler at the Pfizer facility located in Kalamazoo, Michigan. Testing was conducted on the exhaust stack of the #8 boiler serving this facility. Three one-hour tests were conducted on this stack. Testing was conducted while firing with natural gas. Presented below are the average results of these tests.

NOx Concentration:	93.1 Parts per Million
NOx Emission Rate:	0.126 Pounds per MMBTU
NOx Emission Limit:	0.20 lb/MMBTU

2.0 INTRODUCTION

The Stack Test Group, Inc. conducted NOx emission testing on the exhaust stack of the #8 boiler (EUEBLR43-8-S1). Testing was performed at the Pharmacia & Upjohn Company, LLC, a subsidiary of Pfizer, Inc., located in Kalamazoo, MI on February 6, 2019. The Portage Steam Generating System is located at 7000 Portage Road, Kalamazoo, MI 49001. The facility generates 175 pounds per square inch gauge pressure steam at 377 degrees Fahrenheit utilizing six boilers. Three of the boilers are stoker coal boilers. Three use natural gas as the primary fuel.

Three NOx tests lasting one-hour in duration were conducted on the #8 boiler. The purpose of this testing was to determine the concentrations and emission rates of the NOx exhausting from the #8 boiler per the requirements of the renewable operating permit (ROP) for this source. The ROP number is MI-ROP-B361002008c. The ROP specifies the NOx testing be completed once during the five year term of this permit.

The exhaust stack for the #8 boiler shares a common stack with the #7 boiler. During this test series, the #7 boiler remained off.

Testing was conducted while Pfizer personnel operated the boiler at the maximum routine operating conditions. Testing was conducted while firing the boiler with natural gas. All pollutant emissions were calculated using the EPA Oxygen F-Factor found in U.S. EPA Reference Method 19. The F-Factor for the #8 boiler was determined to be 8,710 based on the published number in 40 CFR 60 Appendix A Method 19, for natural gas.

Testing was supervised by Mr. Gary A. Kohnke of the Stack Test Group, Inc. and coordinated by Mr. Jeff Robey, Pfizer Environmental of Pharmacia & Upjohn Company, LLC.

All testing followed the guidelines of U.S. EPA Reference Methods 3A and 7E. This report contains a summary of results for the above mentioned tests and all the supporting field, process, and computer generated data.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 Oxygen (O₂) & Nitrogen Oxides (NOx)

3.1.1 Sample Collection

Oxygen concentrations and nitrogen oxides (NOx) emissions were determined using U.S. EPA Methods 3A & 7E. A gas sample was drawn from the exhaust duct through a filter and transported to a Universal gas conditioner through a heated Teflon line set to 250° F. The gas conditioner removed moisture from the gas stream and pumped a dry gas sample through a Teflon line and manifold flow system to a Servomex Model 1440C paramagnetic oxygen analyzer and a Thermal Electron Corporation (TECO) Model 42C Chemiluminescent NO-NO₂ gas analyzer.

3.1.2 Sample Duration and Frequency

The samples were collected in triplicate with each test lasting sixty minutes in duration. A sample was drawn at least twice as long as the response time before the beginning of each test. The response time was approximately 40 seconds.

3.1.3 Calibration

At the beginning of the test series, the analyzers were calibrated and then checked for calibration error by introducing zero, mid-range and high-range calibration gases to the back of each analyzer. Following each test run, a system bias was performed by introducing a zero and mid-range calibration gases to the outlet of the probe. Calibration gases used were U.S. EPA Protocol 1 certified.

3.1.4 Data Reduction

The analyzer outputs were recorded on a data logger and laptop computer. These oneminute data logger readings were then average using an Excel spreadsheet. The raw data logger readings are included in Appendix E.

4.0 TEST RESULTS

Presented in this section are the results of this test series. Test results are reported in Table 4.1. Table 4.1 presents the NOx results from the #8 boiler exhaust stack. The NOx results in parts per million (ppm) and lb/MMBTU and the oxygen results in terms of percent.

Copies of the calculations used to determine these emission rates may be found in Appendix A. Copies of the calibration data are presented in Appendix B. Copies of the NOx and O_2 data are presented in Appendix C. Copies of the calibration gas certification sheets are presented in Appendix D.

Table 4.1

.

NOx Test Results Pfizer 02/06/19 #8 Boiler Exhaust Stack Firing Natural Gas

<u>T1</u>	T2	Т3	Avg.
08:05 AM	09:15 AM	10:22 AM	
09:05 AM	10:15 AM	11:22 AM	λ.
4.8	4.8	4.8	4.8
94.0	93.7	91.6	93.1
1.12E-05	1.12E-05	1.09E-05	1.11E-05
0.127	0.126	0.124	0.126
	<u>T1</u> 08:05 AM 09:05 AM 4.8 94.0 1.12E-05 0.127	T1 T2 08:05 AM 09:15 AM 09:05 AM 10:15 AM 4.8 4.8 94.0 93.7 1.12E-05 1.12E-05 0.127 0.126	T1 T2 T3 08:05 AM 09:15 AM 10:22 AM 09:05 AM 10:15 AM 11:22 AM 4.8 4.8 4.8 94.0 93.7 91.6 1.12E-05 1.12E-05 1.09E-05 0.127 0.126 0.124

APPENDIX A

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

V_{wsid}

 $= (0.04707) (V_{lc})$

Where:

V _{lc}	total volume of liquid collected in impingers and silica gel (ml)
V _{wstd}	volume of water collected at standard conditions (ft ³)
0.04707	conversion factor (ft ³ /ml)

2. Volume of gas metered, standard conditions (dscf)

 $=\frac{(17.64)(V_m)\left(P_{bar}+\frac{\Delta H}{13.6}\right)(Y_d)}{(460+T_m)}$

P _{bar}	barometric pressure (in. Hg)
T_m	average dry gas meter temperature (°F)
Vm	volume of gas sample through the dry gas meter at meter conditions (ft^3)
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions (ft ³)
Yd	gas meter correction factor (dimensionless)
ΔH	average pressure drop across meter box orifice (in. H ₂ O)
17 .6 4	conversion factor (°R/in. Hg)
13.6	conversion factor (in. H ₂ O/in. Hg)
460	°F to °R conversion constant

SAMPLE CALCULATIONS (CONTINUED)

3. Volume of gas metered, standard conditions (dscm)

$$=\frac{\left(V_{mstd}(ft)\right)}{35.35}$$

١

Where:

V _{mstd(ft)}	volume of gas sample through the dry gas meter at standard conditions (ft ³)
V _{mstd(m)}	volume of gas sample through the dry gas meter at standard conditions (m ³)
35.35	conversion factor (ft^3 to m^3)
13.6	conversion factor (in. H ₂ O/in. Hg)

4. Sample gas pressure (in. Hg)

$$P_s = P_{bar} + \left(\frac{P_g}{136}\right)$$

Where:

Pbar	barometric pressure (in. Hg)
Pg	sample gas static pressure (in. H ₂ O)
Ps	absolute sample gas pressure (in. Hg)
13.6	conversion factor (in. H ₂ O/in. Hg)

5. Actual vapor pressure (in. Hg)¹

 $= P_s$

 P_{v}

Where:

Pv	vapor pressure, actual (in. Hg)
Ps	absolute sample gas pressure (in. Hg)

6. Moisture content (%)

 $=\frac{V_{wstd}}{V_{mstd}+V_{wstd}}$

$\mathbf{B}_{\mathbf{wo}}$	proportion of water vapor in the gas stream by volume (%)
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions (ft ³)
V _{wstd}	volume of water collected at standard conditions (ft ³)

¹ For effluent gas temperatures over 212°F, P_v is assumed to be equal to P_s .

SAMPLE CALCULATIONS (CONTINUED)

7. Saturated moisture content (%)

 $=\frac{\left(P_{\nu}\right)}{\left(P_{\nu}\right)}$

Where:

B _{ws}	proportion of water vapor in the gas stream by volume at saturated conditions (%)
Ps	absolute sample gas pressure (in. Hg)
Pv	vapor pressure, actual (in. Hg)

Whichever moisture value is smaller is used for B_{wo} in the following calculations.

8. Molecular weight of dry gas stream (lb/lb·mole)

$$M_{d} = M_{CO_{2}} \frac{(CO_{2})}{(100)} + M_{O_{2}} \frac{(O_{2})}{(100)} + M_{CO+N_{2}} \frac{(CO+N_{2})}{(100)}$$

Where:

Md	dry molecular weight of sample gas (lb/lb·mole)
M _{CO2}	molecular weight of carbon dioxide (lb/lb·mole)
Mo ₂	molecular weight of oxygen (lb/lb·mole)
M _{CO} +N ₂	molecular weight of carbon monoxide and nitrogen (lb/lb·mole)
CO2	proportion of carbon dioxide in the gas stream by volume (%)
O ₂	proportion of oxygen in the gas stream by volume (%)
CO+N ₂	proportion of carbon monoxide and nitrogen in the gas stream by volume (%)
100	conversion factor (%)

9. Molecular weight of sample gas (lb/lb·mole)

 $= (M_d)(1 - B_{wo}) + (M_{H_2O})(B_{wo})$

\mathbf{B}_{wo}	proportion of water vapor in the gas stream by volume
M _d	dry molecular weight of sample gas (lb/lb·mole)
М _{Н2} о	molecular weight of water (lb/lb·mole)
Ms	molecular weight of sample gas, wet basis (lb/lb·mole)

SAMPLE CALCULATIONS (CONTINUED)

10. Velocity of sample gas (ft/sec)

$$V_{s} = \left(K_{p}\right)\left(C_{P}\right)\left(\overline{\sqrt{\Delta P}}\right)\left(\sqrt{\frac{\left(\overline{T_{s}}+460\right)}{\left(M_{s}\right)\left(P_{s}\right)}}\right)$$

Where:

Kp	velocity pressure coefficient (dimensionless)
Cp	pitot tube constant
Ms	molecular weight of sample gas, wet basis (lb/lb·mole)
Ps	absolute sample gas pressure (in. Hg)
Ts	average sample gas temperature (°F)
Vs	sample gas velocity (ft/sec)
$\sqrt{\Delta P}$	average square roots of velocity heads of sample gas (in. H ₂ O)
460	°F to °R conversion constant

11. Total flow of sample gas (acfm)

$$Q_a = (60)(A_s)(V_s)$$

Where:

cross sectional area of sampling location (ft ²)
volumetric flow rate at actual conditions (acfm)
sample gas velocity (ft/sec)
conversion factor (sec/min)

$$Q_{std} = \frac{(Q_a)(P_s)(17.64)(1-B_{wo})}{(\overline{T_s}+460)}$$

Bwo	proportion of water vapor in the gas stream by volume
Ps	absolute sample gas pressure (in. Hg)
Qa	volumetric flow rate at actual conditions (acfm)
Qstd	volumetric flow rate at standard conditions, dry basis (dscfm)
Ts	average sample gas temperature (°F)
17.64	conversion factor (°R/in. Hg)
460	°F to °R conversion constant

STG PROJECT No: 18-3114A

SAMPLE CALCULATIONS (CONTINUED)

13. NOx concentration (lb/dscf)

E_{lb/dscf}

Where:

Elb/dscf	emission rate
C _{ppm} MW	molecular weight of NOx (46)
385.3	conversion factor

14. NOx emission (lb/hr)

$$E_{lb/hr} = (lb/dscf)(60)(dscfm)$$

Where:

E _{lb/hr}	emission rate
Elb/dscf	concentration
Edscf	concentration
60 _{min/hr}	conversion factor

 $=\frac{(ppm)(MW)}{(385.3\times10^6)}$

15. NOx emission (lb/MMBTU)

E_{Ib/MMBTU}

= (lb/dscf)(F - Factor)(20.9/(20.9 - O2))

E16/MMBTU	emission rate
Elb/dscf	concentration

APPENDIX B

CALIBRATION DATA

Pfizer Inc. Project #18-3114A Kalamazoo, MI 2/6/2019 Boller #8

,

Analyte	Oxygen		Dry	
Initial Calibration	Value	Response	Calibration Error	
High	24.01	24	0.04%	
Mid	12.18	12.2	0.08%	
Low (Zero)	0	0.1	0.42%	
Typa	Run Average	Pre Zero	Post Zero	Pr Upec
Initial System Bias Check			0.1	
Run 1	4.9	0.1	0.2	· · ·
Run 2	4.9	0.2	0.1	- (J. 1997)
Dun 3	A A	01	0.1	220111

*Corrected Run Average and Upscale System Blas cell formulas must be adjusted if the high calibration gas is used for post calibration upscale checks.

•

Туре	Run Average	Pre Zero	Post Zero	Pre Upscale	Post Upscale	*Corrected Run Average	Zero System Blas	*Upscale System Blas	Zero Drift	Upscale Drift
Initial System Bias Check			0.1		12.2		0.00%	0.00%		
Run 1	4.9	0.1	0.2	12.2	12.3	4.8	0.42%	0.42%	0.42%	0.42%
Run 2	4.9	0.2	0.1	12.3	12.1	4.8	0.00%	0.42%	0.42%	0.83%
Run 3	4.8	0.1	0.1	12.1	12.1	4,8	0.00%	0.42%	0.00%	0.00%

Pfizer Inc. Project #18-3114A Kalamazoo, MI 2/6/2019 Boiler #8

AnalyteNitrous ÖxidesDryInitial CalibrationValueResponseErrorHigh97.597.80.31%Mid50.2550.30.05%Low (Zero)00.30.31%

*Corrected Run Average and Upscale System Blas cell formulas must be adjusted if the high calibration gas is used for post calibration upscale checks.

Туре	Run Average	Pre Zero	Post Zero	Pre Upscale	Post Upscale	*Corrected Run Average	Zero System Blas	*Upscale System Blas	Zero Drift	Upscale Drift	lb/dscf
Initial System Blas Check			0.4		50.6		0.10%	0.31%			
Run 1	94.0	0.4	0.2	50.6	50.2	94.0	0.10%	0.10%	0.21%	0.41%	1.12E-05
Run 2	94.1	0.2	0.2	50.2	50.9	93.7	0.10%	0.62%	0.00%	0.72%	1.12E-05
Run 3	91.9	0.2	0.3	50.9	50.2	91.6	0.00%	0.10%	0.10%	0.72%	1.09E-05

APPENDIX C

۵

DATALOGGER DATA

Pfizer Kalamazoo, MI Boiler #8

Run #1

Date	Time	02	CO2	NOX
2019/02/06	08:05:00	4.7	9.0	95.2
2019/02/06	08:06:00	4.7	8.9	95.2
2019/02/06	08.07:00	4.8	8.9	94.7
2019/02/06	08:08:00	5.0	8.8	94.2
2019/02/06	08:09:00	5.1	8.7	94.2
2013/02/06	08:10:00	5.0	8.8	93.2
2019/02/00	08.10.00	5.0	88	93.2
2019/02/06	00.11.00	4.0	8.8	94.2
2019/02/06	08.12.00	4.5	8.0	0/7
2019/02/06	08:13:00	4.0	0.5	04.7
2019/02/06	08:14:00	5.0	0.7	02.2
2019/02/06	08:15:00	5.0	0.7	04.2
2019/02/06	08:16:00	5.0	8.8	94.2
2019/02/06	08:17:00	4.9	8.8	94.Z
2019/02/06	08:18:00	4.8	8.9	95.7
2019/02/06	08:19:00	4.9	8.9	95.2
2019/02/06	08:20:00	4.8	8.9	94.7
2019/02/06	08:21:00	4.8	8.9	95.2
2019/02/06	08:22:00	4.9	8.8	95.2
2019/02/06	08:23:00	5.0	8.8	93.7
2019/02/06	08:24:00	4.8	8.8	94.2
2019/02/06	08:25:00	4.9	8.8	94.2
2010/02/06	08:26:00	4.9	8.8	94.2
2013/02/06	08.27.00	5.0	8.8	94.2
2019/02/06	00.27.00	49	88	93.7
2019/02/08	08.20.00		87	93.7
2019/02/06	08:29:00	D.1 E 1	8.6	92.7
2019/02/06	08:30:00	D. I	0.0	05.7
2019/02/06	08:31:00	5.0	0.0	00.Z
2019/02/06	08:32:00	4.9	8.8	09.7
2019/02/06	08:33:00	4.9	8.8	93.7
2019/02/06	08:34:00	4.9	8.8	94.2
2019/02/06	08:35:00	4.9	8.9	94.2
2019/02/06	08:36:00	4.9	8.8	94.7
2019/02/06	08:37:00	4.9	8.8	94.2
2019/02/06	08:38:00	4.9	8.8	93.2
2019/02/06	08:39:00	4.8	8.9	94.2
2019/02/06	08:40:00	5.0	8.8	94.2
2019/02/06	08:41:00	5.0	8.8	94.2
2019/02/06	08:42:00	4.9	8.9	93.7
2019/02/06	08:43:00	4.8	8.9	94.2
2010/02/06	08:44:00	5.1	8.7	92.7
2013/02/00	08:45:00	50	8.8	93.7
2019/02/00	00.40.00	5.0	88	93.7
2019/02/08	00.40.00	5.0	87	93.2
2019/02/06	08:47:00	5.0	87	93.2
2019/02/06	08:48:00	40	9.0	03.2
2019/02/06	08:49:00	4.9	8.0	027
2019/02/06	08:50:00	5.0	0.7	02.7
2019/02/06	08:51:00	5.0	0.7	53.Z
2019/02/06	08:52:00	4.8	8.8	93.7
2019/02/06	08:53:00	4.9	8.8	94.2
2019/02/06	08:54:00	4.9	8.8	89.2
2019/02/06	08:55:00	4.8	8.9	93.7
2019/02/06	08:56:00	4.9	8.8	93.7
2019/02/06	08:57:00	4.8	8.8	95.2
2019/02/06	08:58:00	4.8	8.9	94.2
2019/02/06	08:59:00	4.9	8.8	94.2
2019/02/06	09:00:00	4.8	8.9	94.7
2019/02/06	09.01:00	4.8	8.8	94.7
2010/02/06	09.02.00	4.9	8.8	94.7
2013/02/06	09:03:00	5.0	8.8	94.2
2013/02/00	00.00.00	5.0	8.7	94.7
2013/02/00	00.04.00	0.0		
	A11010707	4.0	8.8	94 N
	Average=	4.0	0.0	07.0

Pfizer Kalamazoo, MI Boiler #8

Run #2

,

Date	Time	02	CO2	NOX
2019/02/06	09:15:00	4.8	9.2	93.7
2019/02/06	09:16:00	4.7	9.2	94.7
2010/02/06	09.17.00	4.7	9.2	94.2
2013/02/06	09:18:00	4.7	9.2	95.2
2013/02/00	09:19:00	4.7	9.2	95.2
2010/02/00	09:20:00	4.6	9.3	94.7
2019/02/00	00.21.00	47	9.3	94.7
2019/02/06	00.22.00	48	9.2	96.2
2019/02/06	09.22.00	4.8	92	95.7
2019/02/06	09.23.00	4.8	92	94.7
2019/02/06	09:24:00	4.0	0.1	94.2
2019/02/06	09:25:00	4.5	0.1	94.2
2019/02/06	09:26:00	4.9	0.0	95.2
2019/02/06	09:27:00	4.0	0.2	93 7
2019/02/06	09:28:00	4.8	9.2	94.2
2019/02/06	09:29:00	4.8	9.2	07.2
2019/02/06	09:30:00	5.1	9.0	0C 7
2019/02/06	09:31:00	4.9	9.1	02.7
2019/02/06	09:32:00	5.0	9.1	80.7
2019/02/06	09:33:00	4.9	9.1	09.1
2019/02/06	09:34:00	4.9	9.1	94.2
2019/02/06	09:35:00	4.9	9.1	94.7
2019/02/06	09:36:00	4.8	9.2	95.2
2019/02/06	09:37:00	4.8	9.2	94.2
2019/02/06	09:38:00	4.8	9.2	95.2
2019/02/06	09:39:00	4.9	9.1	94.7
2019/02/06	09:40:00	4.7	9.2	95.2
2019/02/06	09:41:00	4.8	9.2	95.2
2019/02/06	09:42:00	4.9	9.1	94.2
2019/02/06	09:43:00	4.8	9.2	94.7
2013/02/00	09:44:00	4.8	9.2	95.7
2019/02/00	09:45:00	4.8	9.2	94.7
2019/02/06	00.46.00	48	9.2	94.7
2019/02/06	00.47.00	49	9.1	94.7
2019/02/06	09.49.00	48	9.2	95.2
2019/02/06	09:40:00	4.0	92	94.7
2019/02/06	09:49:00	48	92	95.2
2019/02/06	09:00:00	4.0	91	93.7
2019/02/06	09:51:00	4.5	92	95.2
2019/02/06	09:52:00	4.0	0.2	94.2
2019/02/06	09:53:00	4.0	0.2	94.7
2019/02/06	09:54:00	4.0	0.1	94.7
2019/02/06	09:55:00	4.0	0.1	94 7
2019/02/06	09:56:00	4.9	9.1 0.0	05.2
2019/02/06	09:57:00	5.0	9.0	037
2019/02/06	09:58:00	5.0	9.0	03.7
2019/02/06	09:59:00	5.0	9.1	04.2
2019/02/06	10:00:00	5.0	9.1	02.2
2019/02/06	10:01:00	5.0	9.0	93.2
2019/02/06	10:02:00	5.0	9.0	93.7
2019/02/06	10:03:00	5.1	9.0	93.7
2019/02/06	10:04:00	5.1	9.0	93.7
2019/02/06	10:05:00	5.0	9.1	93.2
2019/02/06	10:06:00	5.0	9.0	94.2
2019/02/06	10:07:00	5.1	9.0	93.2
2019/02/06	10:08:00	5.0	9.1	94.2
2019/02/06	10:09:00	5.0	9.0	94.2
2019/02/06	10:10:00	5.1	9.0	92.2
2019/02/06	10:11:00	5.0	9.0	92.7
2010/02/08	10:12:00	5.1	9.0	93.2
2013/02/06	10:13:00	5.0	9.1	93.2
2013/02/00	10:14:00	5.0	9.0	93.7
2013/02/00	10.1100			
	Average=	4.9	9.1	94.1

Pfizer Kalamazoo, MI Boiler #8

Run #3

Date	Time	02	CO2	NOX
2010/02/06	10.22.00	47	9.1	93.2
2019/02/06	10.22.00	4.0	0.1	93.2
2019/02/06	10:23:00	4.0	9.1	00.2
2019/02/06	10:24:00	4.7	9.1	92.2
2019/02/06	10:25:00	4.6	9.1	93.2
2010/02/08	10.26.00	4.6	9.2	92.7
2019/02/00	40.07.00	4.5	93	94.2
2019/02/06	10:27:00	4.0	0.0	04.2
2019/02/06	10:28:00	4.5	9.2	94.2
2019/02/06	10:29:00	4.5	9.3	93.7
2019/02/06	10:30:00	4.5	9.2	93.7
2010/02/00	10:21:00	46	91	93.2
2019/02/08	10.01.00	4.7	0.1	937
2019/02/06	10:32:00	4.7	9.1	00.7
2019/02/06	10:33:00	4.9	9.0	92.2
2019/02/06	10:34:00	4.9	9.0	92.2
2010/02/06	10:35:00	48	9.0	92.2
2019/02/08	10.00.00	4.0	0.0	92.2
2019/02/06	10:36:00	4.0	9.0	04.7
2019/02/06	10:37:00	4.8	9.0	91.7
2019/02/06	10:38:00	4.7	9.0	92.7
2010/02/06	10.39.00	47	9.0	92.7
2015/02/00	40:40:00	4.9	9.0	92.2
2019/02/06	10:40:00	4.0	0.0	04 7
2019/02/06	10:41:00	4.8	9.0	91.7
2019/02/06	10:42:00	4.9	9.0	90.2
2019/02/06	10:43:00	4.9	9.0	90.2
2010/02/06	10:44:00	48	9.0	91.7
2019/02/08	10.45.00	4.0	9.0	91.2
2019/02/06	10:45:00	4.9	0.0	01 2
2019/02/06	10:46:00	4.8	9.0	01.2
2019/02/06	10:47:00	4.7	9.1	91.8
2019/02/06	10:48:00	4.9	9.0	91.2
2010/02/06	10:49:00	48	9.0	92.2
2019/02/00	10.50.00	4.9	9.0	92.2
2019/02/06	10.00.00	4.0	0.0	02.2
2019/02/06	10:51:00	4.8	9.0	077
2019/02/06	10:52:00	4.7	9.1	01.1
2019/02/06	10:53:00	4.7	9.1	92.7
2019/02/06	10:54:00	4.8	9.0	92.2
2010/02/00	10:55:00	49	90	91.2
2019/02/00	10.55.00	4.6	0.1	92.2
2019/02/06	10:50:00	4.0	5.1	02.0
2019/02/06	10:57:00	4.6	9.2	93.0
2019/02/06	10:58:00	4.7	9.1	93.2
2019/02/06	10:59:00	4.6	9.2	92.7
2010/02/06	11.00.00	46	9.2	92.7
2015/02/00	11:00:00	47	01	92.2
2019/02/06	11.01.00	4.1	0.1	027
2019/02/06	11:02:00	4.8	9.1	00.0
2019/02/06	11:03:00	4.8	9.1	92.2
2019/02/06	11:04:00	4.7	9.1	92.2
2010/02/06	11:05:00	4.7	9.1	92.2
2013/02/00	11.00.00	A 7	91	91.7
2019/02/06	11.00.00	4.7	0.1	91 2
2019/02/06	11:07:00	4.7	9.1	04.7
2019/02/06	11:08:00	4.8	9.0	91.7
2019/02/06	11:09:00	4.8	9.0	91.7
2010/02/06	11.10.00	4.9	9.0	90.7
2010/02/08	11.11.00	AB	9.1	90.7
2019/02/06	11.11.00	4.0	0.0	90.7
2019/02/06	11:12:00	4.3	0.0	04.7
2019/02/06	11:13:00	5.0	0.9	94.1
2019/02/06	11:14:00	5.3	8.8	90.2
2019/02/06	11:15:00	5.0	8.9	90.3
2010/02/06	11:16:00	51	8.9	91.7
2019/02/00	44.47.00	5.0	89	88.7
2019/02/06	11:17:00	5.0	0.0	00.7
2019/02/06	11:18:00	5.2	0.0	00.2
2019/02/06	11:19:00	5.1	8.9	90.2
2019/02/06	11:20:00	5.1	8.9	90.2
2019/02/06	11:21:00	5.1	8.9	90.7
2010/02/00				
	Aug 70 40 4	48	9.0	91.9
	Avelage=	4.0	0.0	

Pfizer Inc. Project# 18-3114A Kalamazoo, MI Boiler #8

Stratification Check

Date	Time	02	NOX
2019/02/05	13:52:00	4.8	91.7
2019/02/05	13:53:00	4.8	91.7
2019/02/05	13:54:00	4.7	93.7
2019/02/05	13:55:00	5.1	94.2
2019/02/05	13:56:00	5.2	93.2
2019/02/05	13:57:00	5.1	93.7
2019/02/05	13:58:00	5.0	95.2
2019/02/05	13:59:00	5.1	91.7
2010/02/05	14:00:00	5.0	91.7
2010/02/05	14:01:00	4.8	91.7
2010/02/05	14:02:00	4.7	91.2
2013/02/05	14:03:00	4.5	97.2
2010/02/05	14:05:00	4.6	96.2
2013/02/05	14:06:00	4.5	96.2
2019/02/05	14:07:00	4.5	96.2
2018/02/05	14:08:00	4.5	98.2
2019/02/05	14:00:00	4.7	94.2
2019/02/05	14:00:00	47	94.7
2019/02/05	14.10.00	49	98.2
2019/02/05	14.12:00	50	96.7
2019/02/05	14.12.00	4.8	93.2
2019/02/05	14:13:00	4.0	94.2
2019/02/05	14:14:00	4.9	94.2
2019/02/05	14:15:00	4.9	08.7
2019/02/05	14:16:00	4.9	50.1
		89.8	94.6

-

99.3

APPENDIX D

CALIBRATION GAS CERTIFICATION SHEETS

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number. Gas Code: E03NI76E15A0295 CC100644 ASG - Chicago - IL B12015 CO2,O2,BALN Reference Number:54-7Cylinder Volume:152Cylinder Pressure:2013Valve Outlet:590Certification Date:DecDec 15:2023

54-124528695-1 152.5 CF 2015 PSIG 590 Dec 15, 2015

Expiration Date: Dec 15, 2023

Contification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impunities which affect the use of this celibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS						
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	12.00 %	12.26 %	·· G1	+/- 1.0% NIST Traceable	
OXYGEN		12.00 %	12.18 %	G1	+/- 1.0% N/ST Traceable	12/15/2015
NITROGE	N	Balance			1 August	
CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	06120402	CC184369	19.66 % CARBON	DIOXIDE/NITROGEN	+/- 0.5%	May 01, 2016
NTRM	98051016	SG9163074BAL	12.05 % OXYGEN	I/NITROGEN	+/- 0.7%	Dec 02, 2017
Instrument/Make/Model Analytical Principle Last Multipoint Calibration						
CO2-1 HO	RIBA VIA-510	/1E3H7P5	NDIR		Dec 04, 2015	
02-1 HOR	IBA MPA-510 3	VUYL9NR	Paramagnetic		Dec 12, 2015	

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-124528695-1

CERTIFICATE OF ANALYSIS

Airgas Specialty Gases

Grade of Product: EPA Protocol

Airgas USA, LLC 12722 South Wentworth Ave.

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:	E03NI52E15A38Q7 CC7607 ASG - Chicago - IL B12016 CO2,O2,BALN	Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:	54-124572686- 163.9 CF 2015 PSIG 296 Aug 26, 2016	1Chlcago, IL 60628 773-785-3000 Fax: 773-785-1928 Airgas.com
Expiration Date: Aug 26, 2024				

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

e	bo not ose this cylinder below too psig i.e. o.r megepascais.					
	ANALYTICAL RESULTS					
Compon	ient	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	24.00 %	23.62 %	G1	+/- 1.2% NIST Traceable	08/26/2016
OXYGEN		24.00 %	24.01 %	G2	+/- 0.6% NIST Traceable	08/26/2016
NITROGE	N	Balance				
CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060817	CC416652	24.04 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 16, 2019
NTRM	06120112	CC195607	9.898 % OXYGEN/N	ITROGEN	+/- 0.7%	Jun 26, 2018
ANALYTICAL EQUIPMENT						
Instrument/Make/Model		Analytical Principle		Last Multipoint Calib	pration	
CO2-1 HO	RIBA VIA-510 V	'1E3H7P5	NDIR		Aug 13, 2016	
02-1 HOR	UBA MPA-510 3	VUYL9NR	Paramagnetic		Aug 22, 2016	

Triad Data Available Upon Request

Alar Hurain

Approved for Release

Page 1 of 54-124572686-1

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02NI99E15A0147 CC349435 ASG - Chicago - IL B12015 NO,NOX,BALN

147 Reference Number: 4 Cylinder Volume: 7 - IL Cylinder Pressure: 7 Valve Outlet: 6 Certification Date: 5 Expiration Date: Jun 11, 2023

54-124496423-1 144.3 CF 2015 PSIG 660 Jun 11, 2015

Airgas Specialty Gases 12722 South Wentworth Avenue Chicago, IL 60628 (773) 785-3000 Fax: (773) 785-1928 Airgas.com

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascats.

ANALYTICAL RESULTS							
Compo	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relat Uncertainty	ive /	Assay Dates
NOX		50.00 PPM	50.25 PPM	G1	+/- 0.9% NIS	T Traceable	06/04/2015, 06/11/2015
NITRIC C	DXIDE	50.00 PPM	50.25 PPM	G1	+/- 0.9% NIS	T Traceable	06/04/2015, 06/11/2015
NITROG	EN	Balance					
			CALIBRA	TION STAN	DARDS		
Туре	Lot ID	Cylinder N	o Concentrat	ion		Uncertainty	Expiration Date
NTRM	130610)7 CC42272	1 99.86 PPM N	ITRIC OXIDE/NITR	OGEN	+/- 0.8%	Nov 19, 2019
PRM	12312	680179	10.01 PPM N	ITROGEN DIOXIDE	/NITROGEN	+/- 2.0%	Feb 14, 2012
GMIS	0207201	402 CC50098	7 4.845 PPM N	ITROGEN DIOXIDE	NITROGEN	+/- 2.0%	Feb 07, 2017
The SRM,	PRM or RGM	noted above is only in refer	ence to the GMIS used it	n the assay and not pa	nt of the analysis.		
ΑΝΑΙ ΥΤΙΩΑΙ ΕΩΙΠΟΜΕΝΤ							
J A		In dal		noinie	I PICAL	Rultin at a Calle	
Instrum	enuwiake/i	noaei	Analytical Pri	ncibie	Last	multipoint Calibi	auvn
Nexus 47	0 AEP00004	28	FTIR		May 2	8, 2015	
Nexus 47	0 AEP00004	28	FTIR		May 2	8, 2015	

Triad Data Available Upon Request

Allari Hunain

Approved for Release

Page 1 of 54-124496423-1

Customer Date **Delivery** Receipt Gas Standard Final Analysis Date Expiration Date

LIQUID TECHNOLOGY CORPORATION

"INDUSTRY LEADER IN SPECIALTY GASES"

Certificate of Analysis - EPA PROTOCOL GAS -

Stack Test Group (Ottawa, IL) February 14, 2013 DR-45816 100 ppm Nitric Oxide/Nitrogen - EPA PROTOCOL February 11, 2013 February 11, 2021

Component **Balance** Gas Nitric Oxide Nitrogen

Analytical Data:

DO NOT USE BELOW 100 psig

EPA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations Nitric Oxide: 96.5 ppm +/- 0.47 ppm Nitrogen: Balance Total Oxides of Nitrogen: 97.5 ppm ** Total NOX for Reference Use Only **

Reference Standards:		
SRM/GMIS:		GMIS
Cylinder Number:	,	ND-45697
Concentration:		97.47 ppm NO/Nitrogen
Expiration Date:		07/18/14

Certification Instrumentation

Component:	Nitric Oxide
Make/Model:	Thermo 42i-LS
Serial Number:	1033445889
Principal of Measurement:	Chemiluminescence
Last Calibration:	January 31, 2013

Cylinder Data Cylinder Serial Number: Cylinder Volume:

EB-0040614 140 Cubic Feet Cylinder Outlet: Cylinder Pressure: CGA 660 2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

Dil S.P

Certified by:

David Scott

PGVP Vendor ID: E12013

"UNMATCHED EXCELLENCE"

2048 APEX COURT APOPKA, FLORIDA 32703 ~ PHONE (407)-292-2990 FAX (407)-292-3313 WWW.LIQUIDTECHCORP.COM

APPENDIX E

×.

e

BOILER OPERATING DATA

Run 1 Process Data

Date/Time	Steam Flow (lb/hr)	Natural Gas Usage (SCFH)
2/6/19 8:05 AM	83,118	102,545
2/6/19 8:06 AM	83,011	102,515
2/6/19 8:07 AM	82,904	102,485
2/6/19 8:08 AM	82,898	102,479
2/6/19 8:09 AM	82,771	102,526
2/6/19 8:10 AM	82,922	102,433
2/6/19 8:11 AM	82,984	102,578
2/6/19 8:12 AM	82,650	102,452
2/6/19 8:13 AM	82,659	102,553
2/6/19 8:14 AM	82,750	102,535
2/6/19 8:15 AM	83,062	102,528
2/6/19 8:16 AM	83,214	102,558
2/6/19 8:17 AM	82.930	102.613
2/6/19 8:18 AM	82.925	102.601
2/6/19 8:19 AM	82.853	102,503
2/6/19 8:20 AM	82.817	102.582
2/6/19 8:21 AM	83.207	102.521
2/6/19 8:22 AM	82,980	102,536
2/6/19 8:23 AM	82,700	102,513
2/6/19 8:24 AM	82,659	102,461
2/5/19 8·25 AM	83 158	102,531
2/6/19 8:26 AM	83 194	102,509
2/6/19 8-27 AM	83.064	102,505
2/6/19 8·28 AM	87 022	102,488
2/6/10 8·20 AM	82,555	102,408
2/6/10 8:20 AM	82 759	102,500
2/0/19 8:30 AM	82 03,230	102,333
2/6/19 8:31 AM	82,527	102,470
2/0/19 8.32 AN	82,333	102,487
2/0/19 8:35 AN	83,010	102,502
2/0/19 8.54 AIVI	92 096	102,009
2/0/19 0:33 AIVI	00,000	102,422
2/0/19 8:50 AIVI	600,60	102,504
2/0/19 0.37 AIVI	03,033	102,551
2/0/19 8:58 AM	00,100	102,492
2/0/19 8.55 AIVI	03,134	102,505
2/0/19 8:40 ANI	03,244	102,555
2/0/19 6.41 AIVI	05,070	102,429
2/0/19 6:42 AW	02,010	102,404
2/0/19 0:43 AM	82,900	102,538
2/0/19 8:44 AM	82,937	102,484
2/6/19 8:45 AM	85,203	102,416
2/0/19 8:40 AM	82,931	102,578
2/0/19 8:4/ AM	83,448	102,469
2/0/19 8:48 AM	83,143	102,478
2/6/19 8:49 AM	82,838	102,487
2/6/19 8:50 AM	82,855	102,489
2/6/19 8:51 AM	83,643	102,552
2/6/19 8:52 AM	83,660	102,500
2/6/19 8:53 AM	83,692	102,498
2/6/19 8:54 AM	83,454	102,523
2/6/19 8:55 AM	83,315	102,518
2/6/19 8:56 AM	83,202	102,579
2/6/19 8:57 AM	82,661	102,481
2/6/19 8:58 AM	82,839	102,509
2/6/19 8:59 AM	83,387	102,559
2/6/19 9:00 ΔΜ	83 408	102,555
2/6/10 0.01 AM	83 800	102,000
2/0/19 9:01 AIVI	000,00	102,501
2/0/19 9:02 AM	03,530	102,507
2/6/19 9:03 AM	85,678	102,530
2/6/19 9:04 AM	83,898	102,579

Run 2 Process Data

5

¢

Date/Time	Steam Flow (ib/hr)	Natural Gas Usage (SCFH)
2/6/19 9:15 AM	82,123	102,255
2/6/19 9:16 AM	83,171	102,251
2/6/19 9:17 AM	83,167	102,234
2/6/19 9:18 AM	83,442	102,388
2/6/19 9:19 AM	83,220	102,431
2/6/19 9:20 AM	83,108	102,552
2/6/19 9:21 AM	83,106	102,555
2/6/19 9:22 AM	83,143	102,585
2/6/19 9:23 AM	83,558	102,608
2/6/19 9:24 AM	83,838	102,601
2/6/19 9:25 AM	83,825	102,558
2/6/19 9:26 AM	83,418	102,600
2/6/19 9:27 AM	83,295	102,622
2/6/19 9:28 AM	83,127	102,554
2/6/19 9:29 AM	83,075	102,506
2/6/19 9:30 AM	83,170	102,475
2/6/19 9:31 AM	83,265	102,443
2/6/19 9:32 AM	83,274	102,441
2/6/19 9:33 AM	83,560	102,497
2/6/19 9:34 AM	83,262	102.532
2/6/19 9:35 AM	82.726	102,477
2/6/19 9:36 AM	82.797	102,512
2/6/19 9:37 AM	83.379	102.570
2/6/19 9·38 AM	83,099	102,534
2/6/19 9:39 AM	83,092	102.587
2/6/19 9:40 AM	83,258	102,630
2/6/19 9:41 AM	82,302	102,523
2/6/19 9:42 AM	82,295	102,522
2/6/19 9·43 AM	82 919	102,653
2/6/19 9·44 AM	82 995	102 694
2/6/19 9:45 AM	83.051	102,632
2/6/19 9:46 AM	83,177	102 480
2/5/19 9:47 AM	83,059	102,539
2/6/19 9·48 AM	83,037	102,596
2/6/19 9:49 AM	83,548	102,491
2/6/19 9:50 AM	83,251	102,488
2/6/19 9:51 AM	83,105	102,542
2/6/19 9:52 AM	82,960	102,596
2/6/19 9:53 AM	82,962	102,576
2/6/19 9:54 AM	83,201	102,555
2/6/10 0:55 AM	83 /87	102 420
2/6/10 9:56 AM	82 772	102,472
2/6/10 0:57 ***	92 117	102,472
2/0/19 3.37 AM	02,112	206,201
2/0/19 9:38 AM	03,300	102,437
5/0/13 3:23 W	85,253	102,455
2/6/19 10:00 AM	85,408	102,458
2/6/19 10:01 AM	84,246	102,424
2/6/19 10:02 AM	84,134	102,428
2/6/19 10:03 AM	84,110	102,438
2/6/19 10:04 AM	83,176	102,504
2/6/19 10:05 AM	83,310	102,548
2/6/19 10:06 AM	83,767	102,481
2/6/19 10:07 AM	83,735	102,514
2/6/19 10:08 AM	83,473	102,493
2/6/19 10:09 AM	83,663	102,576
2/6/19 10:10 AM	83,435	102,537
2/6/19 10:11 AM	82,815	102,476
2/6/19 10:12 AM	82.980	102.511
2/6/19 10:13 AM	83.144	102.547
2/6/19 10·14 AM	83 156	102.548
C/ U/ 20 20:27 / (IVI	03/230	040,401

Run 3 Process Data

Date/Time	Steam Flow (lb/hr)	Natural Gas Usage (SCFH)
2/6/19 10:22 AM	83,409	102,510
2/6/19 10:23 AM	82,919	102,474
2/6/19 10:24 AM	82,908	102,474
2/6/19 10:25 AM	83,107	102,518
2/6/19 10:26 AM	83,251	102,556
2/6/19 10:27 AM	84,711	102,496
2/6/19 10:28 AM	84,274	102,561
2/6/19 10:29 AM	83,842	102,598
2/6/19 10:30 AM	83,236	102,529
2/6/19 10:31 AM	83,145	102,555
2/6/19 10:32 AM	82,898	102,569
2/6/19 10:33 AM	83,121	102,524
2/6/19 10:34 AM	83,344	102,480
2/6/19 10:35 AM	83,362	102,476
2/6/19 10:36 AM	84,118	102,316
2/6/19 10:37 AM	84,509	102,378
2/6/19 10:38 AM	84,275	102,374
2/6/19 10:39 AM	83,914	102,482
2/6/19 10:40 AM	83,250	102,448
2/6/19 10:41 AM	82,018	102,558
2/6/19 10:42 AM	82,466	102,570
2/6/19 10:43 AM	83,622	102,563
2/6/19 10:44 AM	83,321	102,561
2/6/19 10:45 AM	83,312	102,560
2/6/19 10:46 AM	83,310	102,498
2/6/19 10:47 AM	83,461	102,471
2/6/19 10:48 AM	84,089	102,351
2/6/19 10:49 AM	83,774	102,493
2/6/19 10:50 AM	83,196	102,606
2/6/19 10:51 AM	82,775	102,619
2/6/19 10:52 AM	82,676	102,587
2/6/19 10:53 AM	82,788	102,593
2/6/19 10:54 AM	83,305	102,572
2/6/19 10:55 AM	83,823	102,551
2/6/19 10:56 AM	83,671	102,550
2/6/19 10:57 AM	83,114	102,581
2/6/19 10:58 AM	83,289	102,609
2/6/19 10:59 AM	83,295	102,617
2/6/19 11:00 AM	83,597	102,489
2/6/19 11:01 AM	83,212	102,466
2/6/19 11:02 AM	83.126	102.527
2/6/19 11:03 AM	82,953	102.440
2/6/19 11:04 AM	83,184	102,470
2/6/19 11:05 AM	83.274	102,479
2/6/19 11:05 AM	Q2 751	102,475
2/6/10 11:00 AN	03,231 97 930	102,475
2/6/10 11:07 AW	02,030	102,403
2/0/15 11:00 AN	02,741	102,421
2/0/19 11:09 AM	50,USU	102,000
2/0/19 11:10 AM	83,581	102,485
2/0/19 11:11 AM	84,243	102,415
2/6/19 11:12 AM	83,442	102,441
2/6/19 11:13 AM	83,874	102,536
2/6/19 11:14 AM	83,289	102,444
2/6/19 11:15 AM	83,307	102,454
2/6/19 11:16 AM	83,326	102,463
2/6/19 11:17 AM	83,232	102,463
2/6/19 11:18 AM	83,644	102,389
2/6/19 11:19 AM	83,427	102,434
2/6/19 11:20 AM	84,476	102,391
2/6/19 11:21 AM	83,276	102,299

Stratification Test Process Data

Date/Time	Steam Flow (lb/hr)	Natural Gas Usage (SCFH)
2/5/19 1:52 PM	80,598	99,168
2/5/19 1:53 PM	80,528	99,124
2/5/19 1:54 PM	80,444	99,131
2/5/19 1:55 PM	80,393	99,137
2/5/19 1:56 PM	80,494	99,143
2/5/19 1:57 PM	80,493	99,144
2/5/19 1:58 PM	80,195	99,206
2/5/19 1:59 PM	80,370	99,652
2/5/19 2:00 PM	80,786	100,612
2/5/19 2:01 PM	81,315	101,254
2/5/19 2:02 PM	81,775	101,721
2/5/19 2:03 PM	81,946	101,927
2/5/19 2:04 PM	82,200	102,233
2/5/19 2:05 PM	82,565	102,416
2/5/19 2:06 PM	82,587	102,443
2/5/19 2:07 PM	82,618	102,477
2/5/19 2:08 PM	82,642	102,426
2/5/19 2:09 PM	83,076	102,559
2/5/19 2:10 PM	83,098	102,522
2/5/19 2:11 PM	83,149	102,501
2/5/19 2:12 PM	83,149	102,471
2/5/19 2:13 PM	82,512	102,456
2/5/19 2:14 PM	81,855	102,467
2/5/19 2:15 PM	81,611	102,423
2/5/19 2:16 PM	81,413	102,388

APPENDIX F

FIELD PARAMETER SHEET

.

STACK TEST GROUP, INC. Air Quality Services

) (

r

675

NOx Sampling Train Calculations					
Client: Project No:	Pfizer 18-3114A				
Date:	02/06/19				
Source:	Boiler #8 Firing Natural Gas				
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	<u>Avg.</u>	
Start Time	08:05 AM	09:15 AM	10:22 AM		
Finish Time	09:05 AM	10:15 AM	11:22 AM		
NOx Calculations:					
Oxygen, %:	4.8	4.8	4.8	4.8	
NOx, ppmv:	94.0	93.7	91.6	93.1	
NOx, Ib/DSCF:	1.12E-05	1.12E-05	1.09E-05	1.11E-05	
LBS/MMBTU (F-Factor = 8,710):	0.127	0.126	0.124	0.126	