

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

Lansing Board of Water and Light Erickson Station Unit 1 Stack Lansing, Michigan August 3 and 4, 2016

RECEIVED

OCT 0 3 2016

AIR QUALITY DIV.

Report Submittal Date September 13, 2016

> © Copyright 2016 All rights reserved in Mostardi Platt

Project No. M163105C

888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

AIR QUALITY DIV.

OCT 0 3 2016

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating (RO) Permit program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Lansing Board of Water & Light	County Eaton
Source Address 3725 S. Canal Road City	Lansing
AQD Source ID (SRN) B4001 RO Permit No. MI-ROP-B4001-2015	RO Permit Section No.
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the RO Pe	rmit)
Reporting period (provide inclusive dates), From To	
1. During the entire reporting period, this source was in compliance with ALL terms and c	onditions contained in the RO Permit.
each term and condition of which is identified and included by this reference. The method(is/are the method(s) specified in the RO Permit.	s) used to determine compliance
\Box 2. During the entire reporting period this source was in compliance with all terms and c	onditions contained in the RO Permit
each term and condition of which is identified and included by this reference, EXCEP	T for the deviations identified on the
enclosed deviation report(s). The method used to determine compliance for each term an the RO Permit, unless otherwise indicated and described on the enclosed deviation report (nd condition is the method specified in s).
Somi Appual (or More Frequent) Report Cartification (General Condition No. 23 of the	a BO Permit
General Conduor No. 23 of the	le Ko Fernity
Reporting period (provide inclusive dates): From To	
1. During the entire reporting period, ALL monitoring and associated recordkeeping required and no deviations from these requirements or any other terms or conditions occurred.	rements in the RO Permit were met
\Box 2. During the entire reporting period, all monitoring and associated record keeping requirer	nents in the RO Permit were met and
no deviations from these requirements or any other terms or conditions occurred, EXCEPT	for the deviations identified on the
enclosed deviation report(s).	
☑ Other Report Certification	
Reporting period (provide inclusive dates): From na To na	
Additional monitoring reports or other applicable documents required by the RO Permit are at	tached as described:
1. Effection Relative Accuracy fest Audit fest Report	
2. Erickson Mercury Relative Accuracy Test Audit Report	
3. Erickson Mercury and Air Toxics Standard PM and HCl Emissions Te	st Report
4. Erickson Filterable Particulate Matter Compliance Emissions Test	Report

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete, and that any observed, documented or known instances of noncompliance have been reported as deviations, including situations where a different or no monitoring method is specified by the RO Permit.

Mark Matus	Director Tech. Services	517-702-6153
Name of Responsible Official (print or type)	Title 9 (22	Phone Number
Signature of Responsible Official		Date

RECEIVED

OCT 0 3 2016

1.0 EXECUTIVE SUMMARY AIR QUALITY DIV.

MOSTARDI PLATT conducted a Mercury and Air Toxics Standards (MATS) filterable particulate matter and hydrogen chloride emissions test program for the Lansing Board of Water and Light at the Erickson Station on the Unit 1 Stack in Lansing, Michigan on August 3 and 4, 2016. This report summarizes the results of the test program and test methods used.

The test location, test dates, and test parameters are summarized below.

TEST INFORMATION				
Test Location Test Date Test Parameters				
Unit 1 Stack	August 3 and 4, 2016	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCI)		

The purpose of the test program was to document FPM and HCI emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS					
Test Location	Test Parameter	Emission Limits	Emission Rates		
	FPM	≤0.030 lb/mmBtu	0.0111 lb/mmBtu		
	HCI	≤0.002 lb/mmBtu	0.0012 lb/mmBtu		

Emissions on lb/mmBtu basis were determined using a standard F_d-Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by Lansing Board of Water and Light is included in Appendix A.

The Stationary Source Audit Sample Program audit sample was obtained from ERA and submitted for analysis to Maxxam Analytical. The results of the audit sample was compared to the assigned value by ERA and found to be acceptable. The audit sample result and evaluation are appended to this report.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION				
Location	Address	Contact		
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive P.O. Box 13007 Lansing , Michigan 48912	Ms. Trista Gregorski Environmental Engineer (517) 702-6865 (phone) tmg@lbwl.com		
Test Facility	Lansing Board of Water and Light Erickson Station 3725 South Canal Road Lansing, Michigan 48917			
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Rich Sollars Project Manager (630) 993-2100 (phone) rsollars@mp-mail.com		

The test crew consisted of Messrs. C. Eldridge, B. Garcia, D. Dixon, J. Keable, and R. Sollars of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION					
Upstream Downstream Location Diameters Diameters Test Parameter Sampling Point					
Unit 1 Stack	7.9	11.3	FPM, HCI	12	

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. A Servomex analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Filter and probe temperatures were elevated to 320° Fahrenheit as described in 40CFR63, Subpart UUUUU. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was

calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 26A Hydrogen Chloride (HCI) Determination

Stack gas HCI concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted by Maxxam Analytics, Inc. of Mississauga, Ontario. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:	Lansing Board of Water and Light
Facility:	Erickson Station
Test Location:	Unit 1 Stack
Test Method:	5 MATS
	• • • • • • • • • • • • • • • • • • •

High Load 8/4/16	High Load 8/4/16	High Load 8/4/16			
7:22	10:25	13:05			
9:33	12:35	15:18			
Run 1	Run 2	Run 3	Average		
ditions					
325.8	333.6	336.1	331.8		
12.0%	11.1%	10.6%	11.2%		
28.93	28.93	28.93	28.93		
72.319	68.170	70.870	70.453		
53.133	53.190	53.603	53,309		
723,606	724,388	730,007	726,000		
413,869	414,112	418,380	415,454		
470,069	465,956	468,096	468,040		
14.2	14.2	14.2	14.2		
5.6	5.6	5.6	5.6		
103.5	97.5	100.4	100.5		
9,820.0	9,820.0	9,820.0	9,820.0		
Filterable Particulate Matter (Method 5 MATS)					
0.0198	0.0305	0.0288	0.0264		
0.0024	0.0039	0.0036	0.0033		
0.0042	0.0069	0.0063	0.0058		
14.986	24.504	22.486	20.659		
0.0081	0.0132	0.0120	0.0111		
	High Load 8/4/16 7:22 9:33 Run 1 ditions 325.8 12.0% 28.93 72.319 53.133 723,606 413,869 470,069 514.2 5.6 103.5 9,820.0 atter (Method 0.0198 0.0024 0.0042 14.986 0.0081	High Load High Load 8/4/16 8/4/16 8/4/16 8/4/16 7:22 10:25 9:33 12:35 Run 1 Run 2 dditions 325.8 325.8 333.6 12.0% 11.1% 28.93 28.93 72.319 68.170 53.133 53.190 723,606 724,388 413,869 414,112 470,069 465,956 14.2 14.2 5.6 5.6 9,820.0 9,820.0 9,820.0 9,820.0 9,820.0 9,820.0 0.0198 0.0305 0.0024 0.0039 0.0042 0.0069 14.986 24.504 0.0081 0.0132	High Load High Load High Load High Load 8/4/16 8/4/16 8/4/16 8/4/16 7:22 10:25 13:05 9:33 12:35 15:18 Run 1 Run 2 Run 3 dditions 325.8 333.6 336.1 2.325.8 333.6 336.1 12.0% 1.1.1% 10.6% 28.93 28.93 28.93 28.93 28.93 28.93 5.3.133 53.190 53.603 723,606 723,606 724,388 730,007 413,869 410,069 465,956 468,096 470,069 465,956 468,096 14.2 14.2 14.2 5.6 5.6 5.6 103.5 97.5 100.4 9,820.0 9,820.0 9,820.0 40.0198 0.0305 0.0288 0.00198 0.0305 0.0288 0.0024 0.0039 0.0036 0.0042 <t< th=""></t<>		

Client:	Lansing Board of Water and	Light				
Facility:	Erickson Station					
Test Location:	Unit 1 Stack					
Test Method:	26A					
	Source Condition	High	High	High		
	Date	8/3/16	8/3/16	8/3/16		
	Start Time	8:23	10:57	13:44		
	End Time	10:38	13:0 9	15:54		
r		Run 1	Run 2	Run 3	Average	
L	St	ack Condition	5			
A	/erage Gas Temperature, °F	325.9	331.0	331.3	329.4	
Flue Gas N	loisture, percent by volume	11.9%	12.0%	10.7%	11.5%	
Av	erage Flue Pressure, in. Hg	28.89	28.93	28.93	28.92	
	Gas Sample Volume, dscf	67.646	72.910	74.179	71.578	
	Average Gas Velocity, ft/sec	51.316	53,158	53.207	52.560	
Gas	Volumetric Flow Rate, acfm	698,863	723,950	724,614	715,809	
Gas V	olumetric Flow Rate, dscfm	399,369	411,061	417,553	409,328	
Gas	Volumetric Flow Rate, scfm	453,370	467,171	467,476	462,672	
Average	%CO ₂ by volume, dry basis	14.3	14.3	14.3	14.3	
Averaç	ge %O₂ by volume, dry basis	5.4	5.4	5.4	5.4	
	Isokinetic Variance	101.2	101.7	106.1	103.0	
Standard	Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9 <u>,8</u> 20.0	
Hydrogen Chloride (HCI) Emissions						
	ug of sample collected	3000	3000	3000	3000	
	ppm	1.03	0.96	0.94	0.98	
	mg/dscm	1.57	1.45	1.43	1.48	
	lb/hr	2.34	2.24	2.23	2.27	
lb/r	nmBtu (Standard Fd Factor)	0.0013	0.0012	0.0012	0.0012	

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

R.d. 31

Program Manager

Rich Sollars

Scotter Bannel

Quality Assurance

Scott W. Banach