

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

Lansing Board of Water and Light Erickson Station Unit 1 Stack Lansing, Michigan June 28, 2018

> Report Submittal Date July 10, 2018

> > © Copyright 2018 All rights reserved in Mostardi Platt

Project No. M181705

AUG 13 2018

1.0 EXECUTIVE SUMMARY

AIR QUALITY DIVISION

MOSTARDI PLATT conducted a Mercury and Air Toxics Standards (MATS) filterable particulate matter and hydrogen chloride emissions test program for the Lansing Board of Water and Light at the Erickson Station on the Unit 1 Stack in Lansing, Michigan on June 28, 2018. This report summarizes the results of the test program and test methods used.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION			
Test Location Test Date Test Parameters			
Unit 1 Stack	June 28, 2018	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCl)	

The purpose of the test program was to document FPM and HCl emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

	TEST RESULTS			
Test Location	Test Parameter	Emission Limits	LEE Emission Limits	Emission Rates
Unit 1 Ctook	FPM	≤0.030 lb/mmBtu	≤0.015 lb/mmBtu	0.0024 lb/mmBtu
Unit 1 Stack	HCI	≤0.002 lb/mmBtu	≤0.001 lb/mmBtu	0.0015 lb/mmBtu

Emissions on lb/mmBtu basis were determined using a standard F_d -Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by Lansing Board of Water and Light is included in Appendix A.

The Stationary Source Audit Sample Program audit sample was obtained from ERA and analyzed by Mostardi Platt. The results of the audit sample was compared to the assigned value by ERA and found to be acceptable. The audit sample result and evaluation are appended to this report.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION				
Location	Address	Contact		
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive P.O. Box 13007 Lansing, Michigan 48912	Ms. Trista Gregorski Environmental Engineer (517) 702-6865 (phone) trista.gregorski@lbwl.com		
Test Facility	Lansing Board of Water and Light Erickson Station 3725 South Canal Road Lansing, Michigan 48917			
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Christopher Eldridge Project Manager (630) 993-2100 (phone) celdridge@mp-mail.com		

The test crew consisted of Messrs. J. Hansen, J. Kukla, R. Simon, and C. Eldridge of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION				
Upstream Downstream Number of Location Diameters Diameters Test Parameter Sampling Points				
Unit 1 Stack	7.9	11.3	FPM, HCI	12

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. An ECOM analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Filter and probe temperatures were elevated to 320° Fahrenheit as described in 40CFR63, Subpart UUUUU. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 26A Hydrogen Chloride (HCI) Determination

Stack gas HCl concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted at the Elmhurst, Illinois laboratory of Mostardi Platt. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:

Lansing Board of Water and Light

Facility: Test Location: Unit 1 Stack

Erickson Station

Test Method:

5 MATS

est Method; 5 MAIS				
Source Condition	Normal	Normal	Normal	
Date	6/28/18	6/28/18	6/28/18	
Start Time	7:55	10:50	13:25	
End Time	10:07	13:02	15:37	
	Run 1_	Run 2	Run 3	Average
Stack Cond	itions			
Average Gas Temperature, °F	317.8	325.6	329.0	324.1
Flue Gas Moisture, percent by volume	12.3%	13.4%	13.4%	13.0%
Average Flue Pressure, in. Hg	28.69	28.69	28.69	28.69
Gas Sample Volume, dscf	85.871	84.777	84.798	85.149
Average Gas Velocity, ft/sec	50.881	50.866	51.103	50.950
Gas Volumetric Flow Rate, acfm	692,937	692,740	695,967	693,881
Gas Volumetric Flow Rate, dscfm	395,664	386,772	386,867	389,768
Gas Volumetric Flow Rate, scfm	451,026	446,402	446,539	447,989
Average %CO ₂ by volume, dry basis	14.2	14,5	14.5	14.4
Average %O ₂ by volume, dry basis	5.3	5.2	5.2	5.2
Isokinetic Variance	102.5	103.6	103.6	103.2
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0
Filterable Particulate Matter (Method 5 MATS)				
grams collected	0.00427	0.01125	0.00600	0.00717
mg/dscm	1.756	4.686	2.499	2.9804
grains/acf	0.0004	0.0011	0.0006	0.0007
grains/dscf	0.0008	0.0020	0.0011	0.0013
lb/hr	2.602	6.788	3.620	4.337
lb/mmBtu (Standard Fd Factor)	0.0014	0.0038	0.0020	0.0024
·				

Client:

Lansing Board of Water and Light

Facility:

Erickson Station

Test Location: Unit 1 Stack

Test Method: 26A

Source Condition Date	Normal 6/28/18	Normal 6/28/18	Normal 6/28/18		
Start Time	7:55	10:50	13:25		
End Time	9:42	12:38	15:12		
	Run 1	Run 2	Run 3	Average	
St	ack Conditions	s			
Average Gas Temperature, °F	322.5	330.0	332.4	328,3	
Flue Gas Moisture, percent by volume	12.6%	13.3%	12.4%	12.8%	
Average Flue Pressure, in. Hg	28.69	28.69	28.69	28.69	
Gas Sample Volume, dscf	76.452	76.239	75.886	76.192	
Average Gas Velocity, ft/sec	51.153	51.441	51.573	51.389	
Gas Volumetric Flow Rate, acfm	276,228	277,780	278,492	277,500	
Gas Volumetric Flow Rate, dscfm	156,153	154,311	155,916	155,460	
Gas Volumetric Flow Rate, scfm	178,693	177,991	177,913	178,199	
Average %CO ₂ by volume, dry basis	14.2	14.5	14.5	14.4	
Average %O ₂ by volume, dry basis	5.3	5.2	5.2	5.2	
Isokinetic Variance	103.7	104.6	103.1	103.8	
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0	
Hydrogen Chloride (HCI) Emissions					
ug of sample collected	4093.26	4282.86	3701.65	4025.92	
ррт	1.25	1.31	1.14	1.23	
mg/dscm	1.89	1.98	1.72	1.86	
lb/hr	1.1059	1.1467	1.0060	1.0862	
lb/mmBtu (Standard Fd Factor)	0.0016	0.0016	0.0014	0.0015	

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT	
A CHE	
Christopher S. Eldridge	Program Manager
Scotter Barre	
	Quality Assurance
Scott W. Banach	•