

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

Lansing Board of Water and Light Erickson Station Unit 1 Stack Lansing, Michigan June 25 and 26, 2019

> Report Submittal Date July 11, 2019

> > © Copyright 2019 All rights reserved in Mostardi Platt

Project No. M191306B

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	
2.0 TEST METHODOLOGY	
Method 2 Volumetric Flowrate Determination	2
Method 3A Oxygen (O2)/Carbon Dioxide (CO2) Determination	
Method 5 Filterable Particulate Matter (FPM) Determination	3
Method 26A Hydrogen Chloride (HCI) Determination	3
3.0 TEST RESULT SUMMARIES	4
4.0 CERTIFICATION	6
APPENDICES Appendix A - Plant Operating Data	3
Appendix B - Test Section Diagram	11
Appendix C - Sample Train Diagrams	
Appendix D - Calculation Nomenclature and Formulas	18
Appendix E - Laboratory Sample Analysis	32
Appendix F - Reference Method Test Data (Computerized Sheets).	
Appendix G - Field Data Sheets	63
Appendix H - Calibration Data	84
Appendix I - Gas Cylinder Certifications	102

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a Mercury and Air Toxics Standards (MATS) filterable particulate matter and hydrogen chloride emissions test program for the Lansing Board of Water and Light at the Erickson Station on the Unit 1 Stack in Lansing, Michigan on June 25 and 26, 2019. This report summarizes the results of the test program and test methods used.

The test location, test date, and test parameters are summarized below.

	TEST INFORMATIO	N
Test Location	Test Date	Test Parameters
Unit 1 Stack	June 25 and 26, 2019	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCl)

The purpose of the test program was to document FPM and HCl emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

		TEST R	RESULTS	
Test Location	Test Parameter	Emission Limits	LEE Emission Limits	Emission Rates
Unit 1 Stack	FPM	≤0.030 lb/mmBtu	≤0.015 lb/mmBtu	0.004 lb/mmBtu
Unit I Stack	HCI	≤0.002 lb/mmBtu	≤0.001 lb/mmBtu	0.001 lb/mmBtu

Emissions on lb/mmBtu basis were determined using a standard F_d -Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by Lansing Board of Water and Light is included in Appendix A.

The HCl Run No. 1 was not analyzed due to sampling equipment malfunction. The teflon sample line had overheated and melted during the run. A fourth test run was conducted and all four test runs are included in Appendix F. Emissions are based on Runs 2, 3, and 4.

The Stationary Source Audit Sample Program audit sample was obtained from ERA and analyzed by Mostardi Platt. The results of the audit sample were compared to the assigned value by ERA and found to be acceptable. The audit sample result and evaluation are appended to this report.

The identifications of the individuals associated with the test program are summarized below.

	TEST PERSONNEL INFORMAT	TON
Location	Address	Contact
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive P.O. Box 13007 Lansing, Michigan 48912	Mr. Nathan Hude Environmental Regulatory Compliance (517) 490-3069 (cell phone)
Test Facility	Lansing Board of Water and Light Erickson Station 3725 South Canal Road Lansing, Michigan 48917	nathan.hude@lbwl.com
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Stuart L. Burton Project Manager (630) 993-2100 (phone) sburton@mp-mail.com

The test crew consisted of Messrs. A. Riddle, C. Eldridge, K. Beckham, R. Simon, and S. Burton of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

	TES	T POINT INFORMA	TION	
Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points
Unit 1 Stack	7.9	11.3	FPM, HCI	12

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. An ECOM analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Filter and probe temperatures were elevated to 320° Fahrenheit as described in 40CFR63, Subpart UUUUU. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 26A Hydrogen Chloride (HCI) Determination

Stack gas HCl concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted at the Elmhurst, Illinois laboratory of Mostardi Platt. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client: Lansing Board of Water and Light

Facility: Erickson Station
Test Location: Unit 1 Stack
Test Method: 5 MATS

rest metroa. Chirtic				
Source Condition	Normal	Normal	Normal	
Date	6/25/19	6/25/19	6/25/19	
Start Time	9:35	12:30	15:10	
End Time	11:44	14:39	17:19	
	Run 1	Run 2	Run 3	Average
Stack Cond	itions			
Average Gas Temperature, °F	331.5	336.2	336.3	334.7
Flue Gas Moisture, percent by volume	12.1%	11.4%	12.4%	12.0%
Average Flue Pressure, in. Hg	28.59	28.59	28.59	28.59
Gas Sample Volume, dscf	90.362	98.251	98.265	95.626
Average Gas Velocity, ft/sec	43.955	45.568	45.608	45.044
Gas Volumetric Flow Rate, acfm	598,614	620,584	621,128	613,442
Gas Volumetric Flow Rate, dscfm	335,161	348,414	344,633	342,736
Gas Volumetric Flow Rate, scfm	381,509	393,192	393,496	389,399
Average %CO ₂ by volume, dry basis	14.1	13.7	14.9	14.2
Average %O ₂ by volume, dry basis	5.4	6.4	5.5	5.8
Isokinetic Variance	98.0	102.5	103.6	101.4
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0
Filterable Particulate Mat	ter (Method	5 MATS)		
grams collected	0.01409	0.00991	0.01048	0.01149
mg/dscm	5.507	3.562	3.766	4.2783
grains/acf	0.0013	0.0009	0.0009	0.0010
grains/dscf	0.0024	0.0016	0.0016	0.0019
lb/hr	6.912	4.648	4.861	5.474
Ib/mmBtu (Standard Fd Factor)	0.005	0.003	0.003	0.004

Client:

Lansing Board of Water and Light

Facility: Test Location: Unit 1 Stack

Erickson Station

Test Method: 26A

Source Condition	Normal	Normal	Normal
Date	6/26/19	6/26/19	6/26/19
Start Time	7:22	9:21	11:15
End Time	9:07	11:06	13:00

End Time 9:07 Run 2 11:06 Run 3 13:00 Run 4 Stack Conditions Average Gas Temperature, °F 323.9 332.0 336.3 Flue Gas Moisture, percent by volume 13.1% 13.1% 12.8% Average Flue Pressure, in. Hg 28.73 28.73 28.73 Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740 Gas Volumetric Flow Rate, scfm 401,513 401,289 399,926	
Stack Conditions Average Gas Temperature, °F 323.9 332.0 336.3 Flue Gas Moisture, percent by volume 13.1% 13.1% 12.8% Average Flue Pressure, in. Hg 28.73 28.73 28.73 Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	
Average Gas Temperature, °F 323.9 332.0 336.3 Flue Gas Moisture, percent by volume 13.1% 13.1% 12.8% Average Flue Pressure, in. Hg 28.73 28.73 28.73 Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	Average
Flue Gas Moisture, percent by volume 13.1% 13.1% 12.8% Average Flue Pressure, in. Hg 28.73 28.73 28.73 Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	
Average Flue Pressure, in. Hg 28.73 28.73 28.73 Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	330.7
Gas Sample Volume, dscf 79.935 79.504 79.648 Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	13.0%
Average Gas Velocity, ft/sec 45.591 46.033 46.130 Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	28.73
Gas Volumetric Flow Rate, acfm 620,892 626,911 628,233 Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	79.696
Gas Volumetric Flow Rate, dscfm 348,904 348,587 348,740	45.918
	625,345
Gas Volumetrie Flow Pate com 401 513 401 280 300 026	348,744
Gas volumente flow Rate, Schill 401,515 401,209 599,920	400,909
Average $%CO_2$ by volume, dry basis 13.8 13.6 13.6	13.7
Average $\%O_2$ by volume, dry basis 5.9 5.8 5.7	5.8
Isokinetic Variance 104.1 103.6 103.8	103.8
Standard Fuel Factor Fd, dscf/mmBtu 9,820.0 9,820.0 9,820.0	9,820.0
Hydrogen Chloride (HCI) Emissions	
ug of sample collected 3170.00 3425.00 3930.00	3508.33
ppm 0.92 1.00 1.15	1.03
mg/dscm 1.40 1.52 1.74	1.55
Ib/hr 1.830 1.986 2.276	2.031
Ib/mmBtu (Standard Fd Factor) 0.001 0.001 0.002	0.001

^{*}Run No. 1 not analyzed due to sample equipment malfunction

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

MOSTARDI PLATT

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

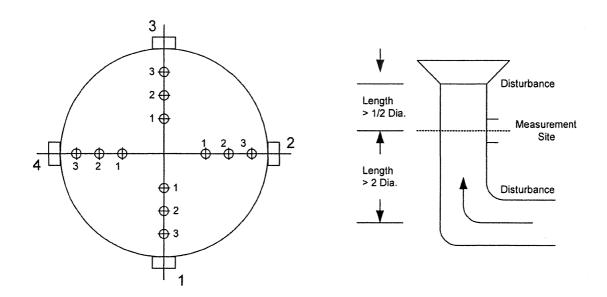
Stuart L. Burton

Program Manager

Authr Banace

Quality Assurance

Appendix A - Plant Operating Data


Project No. M191306B Unit 1 Stack

Date/Time	✓ V Þ	UNIT01 MW Σ マ
06/25/2019	08:00	150
06/25/2019	08:15	154
06/25/2019	08:30	154
06/25/2019	08:45	154
06/25/2019	09:00	154
06/25/2019	09:15	154
06/25/2019	09:30	154
06/25/2019	09:45	154
06/25/2019	10:00	154
06/25/2019	10:15	154
06/25/2019	10:30	154
06/25/2019	10:45	154
06/25/2019	11:00	154
06/25/2019	11:15	154
06/25/2019	11:30	154
06/25/2019	11:45	154
06/25/2019	12:00	154
06/25/2019	12:15	154
06/25/2019	12:30	154
06/25/2019	12:45	154
06/25/2019	13:00	154
06/25/2019	13:15	154
06/25/2019	13:30	154
06/25/2019	13:45	154
06/25/2019	14:00	154
06/25/2019	14:15	154
06/25/2019	14:30	154
06/25/2019	14:45	154
06/25/2019	15:00	154
06/25/2019	15:15	154
06/25/2019	15:30	154
06/25/2019	15:45	154
06/25/2019	16:00	154

Date/Time	UNIT01 MW Σ マ
06/26/2019 06:00	150
06/26/2019 06:15	155
06/26/2019 06:30	155
06/26/2019 06:45	154
06/26/2019 07:00	154
06/26/2019 07:15	153
06/26/2019 07:30	153
06/26/2019 07:45	154
06/26/2019 08:00	154
06/26/2019 08:15	155
06/26/2019 08:30	155
06/26/2019 08:45	155
06/26/2019 09:00	156
06/26/2019 09:15	156
06/26/2019 09:30	156
06/26/2019 09:45	156
06/26/2019 10:00	156
06/26/2019 10:15	156
06/26/2019 10:30	155
06/26/2019 10:45	154
06/26/2019 11:00	154
06/26/2019 11:15	154
06/26/2019 11:30	153
06/26/2019 11:45	153
06/26/2019 12:00	153
06/26/2019 12:15	148

Appendix B - Test Section Diagram

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Lansing Board of Water and Light

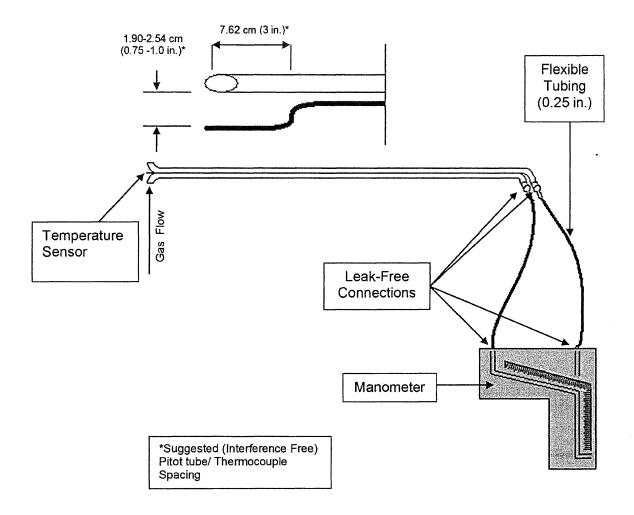
Erickson Station Lansing, Michigan

Date: June 25 and 26, 2019

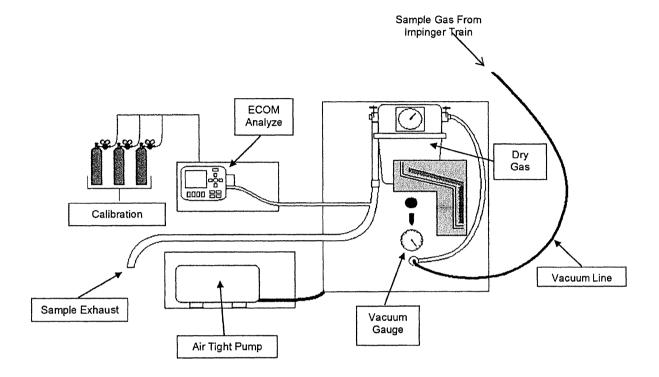
Test Location: Unit 1 Stack

Stack Diameter: 17.0 feet

Stack Area: 226.980 feet squared

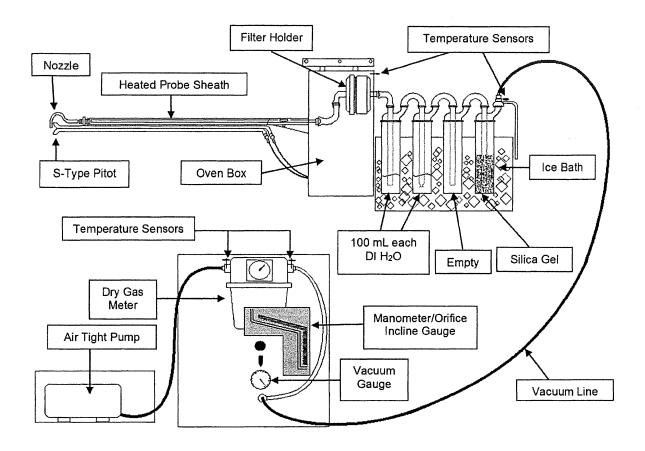

No. Points Across Diameter: 3

No. of Ports: 4

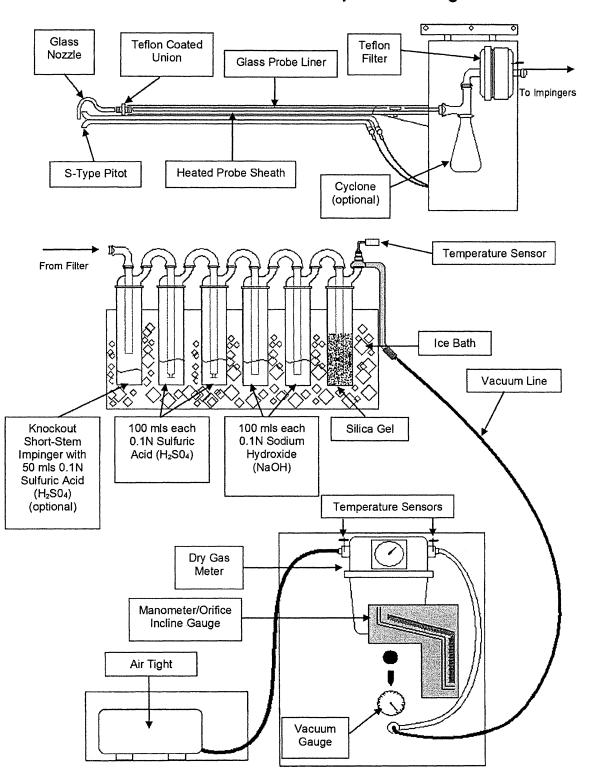

Port Length: 78 inches

Appendix C - Sample Train Diagrams

USEPA Method 2- Type S Pitot Tube Manometer Assembly



USEPA Method 3A - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing ECOM To Measure from Sample Exhaust



9/19/2017

USEPA Method 5- Particulate Matter Sample Train Diagram

USEPA Method 26A – HCI Sample Train Diagram

ATD-068 USEPA Method 26A Rev. 1.1 8/17/2015