1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted an Appendix E emissions test program for Lansing Board of Water and Light. at the Delta Energy Park Facility on EUCTGSC1 Stack while firing natural gas on December 14 and 15, 2021. This report summarizes the results of the test program and test methods used in accordance with Mostardi Platt Test Protocol M214404B dated September 30, 2021. Mostardi Platt is a self-certified Air Emissions Testing Body (AETB). A copy of Mostardi Platt's self-certification can be found in Appendix A.

The test location, test dates, and test parameters are summarized below.

TEST INFORMATION					
Test Location Test Date Test Parameters					
EUCTGSC1 Stack	December 14 and 15, 2021	Nitrogen Oxides (NO _x) and Oxygen (O ₂)			

The purpose of this test program was to generate a curve relating the NO_X emission rate to the heat input for four load conditions while firing on natural gas at EUCTGSC1 Stack. This testing was performed in order to satisfy the requirement of the Title 40, *Code of Federal Regulations*, Part 75, Appendix E (40CFR75). Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

Date	Fuel Type	Operating Condition	Operating Load (MW)	Heat Input, MMBtu/hr	NO _x Emission Rate, Ib/mmBtu	NO _X Emission Rate, ppmv @ 15% O ₂
12/15/21		Low	37.0	389.5	0.072	19.55
12/15/21	Natural Gas	Low/Mid	43.0	432.7	0.070	19.01
12/14/21		Mid/High	50.0	482.6	0.076	20.61
12/14/21		High	57.0	545.7	0.084	22.92

The gas cylinders used to perform the RATA are summarized below.

	GAS CYLINDER INFORMATION									
Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date						
NOx	Airgas	CC422303	18.05 ppm	4/27/2023						
NOx	Airgas	XC025254B	35.53 ppm	5/17/2022						
O ₂	Airgas	SG9139271BAL	11.99%	11/22/2029						
O ₂	Airgas	CC48111	22.28%	6/19/2028						

No deviations, additions, or exclusions from the test protocol, test methods, the Mostardi Platt Quality Manual, or the ASTM Standard D 7036-12 occurred. The specific test conditions encountered did not interfere with the collection of the data.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORM	TEST PERSONNEL INFORMATION							
Location	Address	Contact						
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive P.O. Box 13007 Lansing, Michigan 48912	Mr. Nathan Hude Environmental Regulatory Compliance (517) 702-6170 (cell phone)						
Test Facility	Lansing Board of Water and Light Delta Energy Park Facility 3725 South Canal Road Lansing, Michigan 48917 Permit to Install 74-18A	nathan.hude@lbwl.com						
Testing Company Supervisor	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Ryan Simon Project Manager 630-993-2100 (phone) rimons@mp-mail.com QI Group V (certified on 1/4/2018)						
Testing Company Personnel		Mr. Weslee Rogman Test Technician						

A copy of the QI certification for test personnel is included in Appendix B. Mr. Matthew Karl from EGLE was onsite to observe the test program.

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR75 and 40CFR60, Appendix A in addition to the Mostardi Platt Quality Manual. A drawing depicting the sampling ports and test point locations is found in Appendix C and a drawing depicting the sampling train is found in Appendix D. Calculation and nomenclature explanations are found in Appendix E, and reference test method data are found in Appendix F. Operating data as provided by Buckeye Power Inc. are found in Appendix G.

The following methodologies were used during the test program:

Gaseous Sample Plan

Mostardi Platt completed twelve test runs on natural gas in which sampling was conducted on both sides of the duct concurrently. Two points per port were sampled per side for a total of 16 points.

Method 3A Oxygen (O₂) Determination

Stack gas O_2 concentrations and lbs/mmBtu emission rates were determined in accordance with USEPA Method 3A. The O_2 instrument operated in the nominal range of 0% to 25% with the specific range determined by the high-level calibration gas. High-range calibrations were performed using USEPA Protocol gas. NOx calibration gas was introduced to check instrument zero. A mid-range % O_2 level in balance nitrogen was also introduced. Zero and mid-range calibrations were performed using USEPA Protocol gas after each test run. Copies of the gas

cylinder certifications are found in Appendix G. This testing met the performance specifications as outlined in the Method.

Method 7E Nitrogen Oxide (NO_X) Determination

Stack gas NO_x concentrations and emission rates were determined in accordance with USEPA Method 7E, 40CFR60, Appendix A. A Thermo Scientific Model 42iHL Chemiluminescence Nitrogen Oxides Analyzer was used to determine nitrogen oxides concentrations, in the manner specified in the Method. The instrument operated in the nominal range of 0 ppm to 50 ppm with the specific range determined by the high-level span calibration gas of 35.53 ppm.

The analyzer is based on the principle that nitric oxide (NO) and ozone (O₃) react to produce a characteristic luminescence with an intensity linearly proportional to the NO concentration. Infrared light emission results when electronically excited nitrogen dioxide (NO₂) molecules decay to lower energy states. Specifically,

$$NO+O_3 \rightarrow NO_2+O_2+hv$$

 NO_2 must first be transformed into NO before it can be measured using the chemiluminescent reaction. NO_2 is converted to NO by stainless steel NO_2 -to-NO converters heated to about 627 degrees C for the NO_X analyzer. The flue gas air sample is drawn into the analyzer through the sample bulkhead. The sample flows through a particulate filter, a capillary, and then to the mode solenoid valve. The solenoid valve routes the sample either straight to the reaction chamber (NO mode) or through the NO_2 -to-NO converter and then to the reaction chamber (NO_X mode).

Dry air enters the analyzers through the dry air bulkhead, through a flow sensor, and then through a silent discharge ozonator. The ozonator generates the necessary ozone concentration needed for the chemiluminescent reaction. The ozone reacts with the NO in the ambient air sample to produce electronically excited NO_2 molecules. A photomultiplier tube (PMT) housed in a thermoelectric cooler detects the NO_2 luminescence.

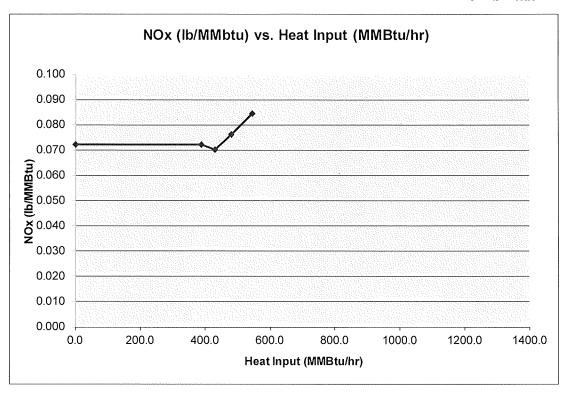
The NO and NO_X concentrations calculated in the NO and NO_X modes are stored in memory. The difference between the concentrations are used to calculate the NO₂ concentration.

Stack gas was delivered to the analyzer via a Teflon® sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run. This testing met the performance specifications as outlined in the Method.

A list of calibration gases used and the results of all calibration and other required quality assurance checks can be found in Appendix H. Copies of calibration gas certifications are found in Appendix I. Copies of the NO_2 to NO converter efficiency tests can be found in Appendix J. This testing met the performance specifications as outlined in the Method.

3.0 TEST RESULT SUMMARIES

Lansing Board of Water and Light Delta Energy Park


EUCTGSC1

Appendix E Emission Test Natural Gas Results Summary

	Results Summary												
Date	Run	Start Time	End Time	Load Condition	Operating Load MW	Fuel Usage, 100 scf/hr	Heat Input mmBtu/hr	F-Factor	O₂ %, dry	NO _x ppmvd	NO _x ppmvd @ 15%O₂	NO _x Ib/mmBtu	NO _x lb/hr
12/14/2021	1-1	9:06	10:03	High	57.0	5200.7	546.1	8710	13.6	28.3	22.87	0.084	45.87
12/14/2021	1-2	10:18	11:15	High	57.0	5200.4	546.0	8710	13.7	28.3	23,19	0.085	46.41
12/14/2021	1-3	11:31	12:31	High	57.0	5175.9	543.5	8710	13.7	27.7	22.70	0.084	45.65
				Average	57.0	5192.3	545,2	8710	13.67	28,10	22.92	0.084	45.98
12/14/2021	2-1	13:03	13:59	Mid/High	50.0	4597.3	482.7	8710	13.8	25.4	21.11	0.078	37,65
12/14/2021	2-2	14:15	15:11	Mid/High	50.0	4595.8	482.6	8710	13.7	24.9	20.40	0.075	36.20
12/14/2021	2-3	15:28	16:36	Mid/High	50.0	4595.1	482.5	8710	13.9	24.1	20.31	0.075	36.19
				Average	50.0	4596.1	482.6	8710	13.80	24.80	20.61	0.076	36.68
12/15/2021	3-1	8:03	8:58	Low/Mid	43.0	4125.6	433.2	8710	13.5	22.7	18.10	0.067	29.02
12/15/2021	3-2	9:13	10:07	Low/Mid	43.0	4122.1	432.8	8710	14.2	22.7	19,99	0.074	32.03
12/15/2021	3-3	10:24	11:19	Low/Mid	43.0	4108.8	431.4	8710	13.7	23.2	19.01	0.070	30.20
				Average	43.0	4118.8	432.5	8710	13.80	22.87	19.03	0.070	30.42
12/15/2021	4-1	11:46	12:39	Low	37.0	3711.7	389.8	8710	13.8	23.5	19.53	0.072	28.07
12/15/2021	4-2	12:55	13:47	Low	37.0	3707.8	389.3	8710	13.8	24.1	20,03	0.074	28.81
12/15/2021	4-3	14:02	14:55	Low	37.0	3708.0	389.4	8710	13.7	23.3	19.09	0.070	27.26
	Average					3709.2	389.5	8710	13.77	23.63	19.55	0.072	28.04

	Fuel Heat Input (MMBtu/hr)			NOx (lb/MMBtu)		
Megawatts (MW)	X	NOx (ppmvd)	O2 (%, dry)	Y	b	m
0	0.0			0.07216	0.072160	0.0000000
37	389.5	23.6	13.77	0.07216	0.090467	-0.0000470
43	432.5	22.9	13.80	0.07014	0.018979	0.0001183
50	482.6	24.8	13.80	0.07607	0.010243	0.0001364
57	545.2	28.1	13.67	0.08461		

Y = b + mx

If Heat Input is:

NOx (lb/MMBtu) is:

<389.5

=0.07216

>=389.5 and <432.4666€=0.090467 + -0.000047 * Heat Input (MMBtu/hr)

>=432.46666666667 an=0.018979 + 0.0001183 * Heat Input (MMBtu/hr)

>=482.6

=0.010243 + 0.0001364 * Heat Input (MMBtu/hr)

4.0 PROCESS DATA

Plant operating data was recorded during each test run in order to correlate emission rates to fuel use in accordance with permit conditions and applicable regulations. Plant operating data is found in Appendix G.

5.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As the program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results. The test program was performed in accordance with the site specific test plan, test methods, the Mostardi Platt Quality Manual, and the ASTM Standard D 7036-12, as applicable.

MOSTARDI PLATT

Program Manager

Ryan Simon

Auth Banach

Quality Assurance

·

APPENDICES

•		

Appendix A – Mostardi Platt Self-Certification

March 23, 2012

Effective immediately, Mostardi Platt self-certifies that all Part 75 test projects conform to the ASTM D 7036-04 Standard Practice. The following contact information is provided as required by the Standard:

Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126

630-993-2100

tplatt@mp-mail.com

Also, attached is a list of each Qualified Individual (QI) with the type of exam (e.g., Group I, II, III IV and/or V), the date the exam was taken and the name and email address of the exam provider.

Should you have any questions or need additional information, please contact Thomas Platt, P.E. at 630-993-2683.

Approved:

By:

Chief Executive Officer

888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

QSTI AETB Import Data

				AETB Phone		Exam Date			
QI Last Name	QI First Name	QI Middle	AETB Name	Number		mm/dd/yyyy	Exam Provider Name	Exam Provider Email	
[REQUIRED]	[REQUIRED]	Initial	[REQUIRED]	[REQUIRED]	AETB Email [REQUIRED]	[REQUIRED]	(REQUIRED)	[REQUIRED]	Comment
Avila	Nicholas	N	Mostard Platt		tplatt@mp-mail.com		Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Burton	Stuart	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com		Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Carlisle	Robert	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com		Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Carlson	Jeremy	J	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/19/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Colangelo	Nicholas	С	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/1/2019	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
Coleman	Paul	F	Mostard Platt		tplatt@mp-mail.com		Source Evaluation Society	qstlprogram@gmail.com	Group V (Part 75)
Crivlare	Jeffrey	M	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Dyra	Sean	P	Mostard Platt	630-993-2100	tplatt@nip-mail.com	1/24/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Ehlers	Eric	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/17/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Eldridge	Christopher	5	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/18/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Gross	Jeffrey	М	Mostard Platt	630-993-2100	tplatt@mp-mail.com	11/20/2018	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
Gutwein	Chet	Α	Mostard Platt	630-993-2100	tplatt@mp-mail.com	4/15/2015	Source Evaluation Society	astiprogram@gmail.com	Group I & III
Gutwein	Chet	Α	Mostard Platt	630-993-2100	tplatt@mp-mail.com	10/13/2015	Source Evaluation Society	qstiprogram@gmail.com	Group II & IV
Hendricks	Benjamin	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/30/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Howe	Jacob	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/17/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Jensen	Christopher	E	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Jones	Kyle	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/11/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Kaschinske	Jordan	R	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/8/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Kossack	Daniel	J	Mostard Platt	630-993-2100	tplatt@mp-mail.com	11/22/2016	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Kukla	Joshua	R	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2019	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Lawlor	Brendan	J.	Mostard Platt	630-993-2100	tplatt@mp-mail.com	3/3/2017	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Lipinski	Michal		Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/31/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
McGough	Scott	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/27/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Nestor	John	5	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Panek	Damian	P	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/19/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Peterson	Mark	E	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Platt	Martin	E	Mostard Platt	630-993-2100	tplatt@mp-mail.com	7/3/2019	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
Reice	Charlie	R	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/13/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Russ	Allen	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/8/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Russ	Timothy	E	Mostard Platt	630-993-2100	tplatt@mp-mail.com	4/8/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Sands	Stuart	T	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
Sather	Michael	P	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/7/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Simon	Ryan	K	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2018	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Sollars	Richard	J	Mostard Platt	630-993-2100	tplatt@mp-mail.com	9/9/2016	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Spoolstra	Ryan	N	Mostard Platt	630-993-2100	tplatt@mp-mail.com		Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
Trezak	Christopher	S	Mostard Platt	630-993-2100	tplatt@mp-mail.com	4/14/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)

Appendix B - QI Certificate

Qualified Individual

Ryan K. Simon

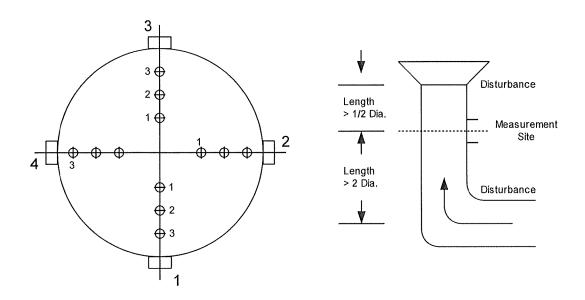
Has satisfactorily completed the requirements of

ASTM D 7036 - 04, Section 8.3

Standard Practice for Competence of Air Emission Testing Bodies

Examinations provided by Source Evaluation Society: www.sesnews.org, (919) 544-6338

All Part 75 test methods, under my supervision, shall conform to the company's Quality Manual and to this practice, in all respects.


Passed Group V Exam on 1/4/2018

Expiration Date: 1/4/2023

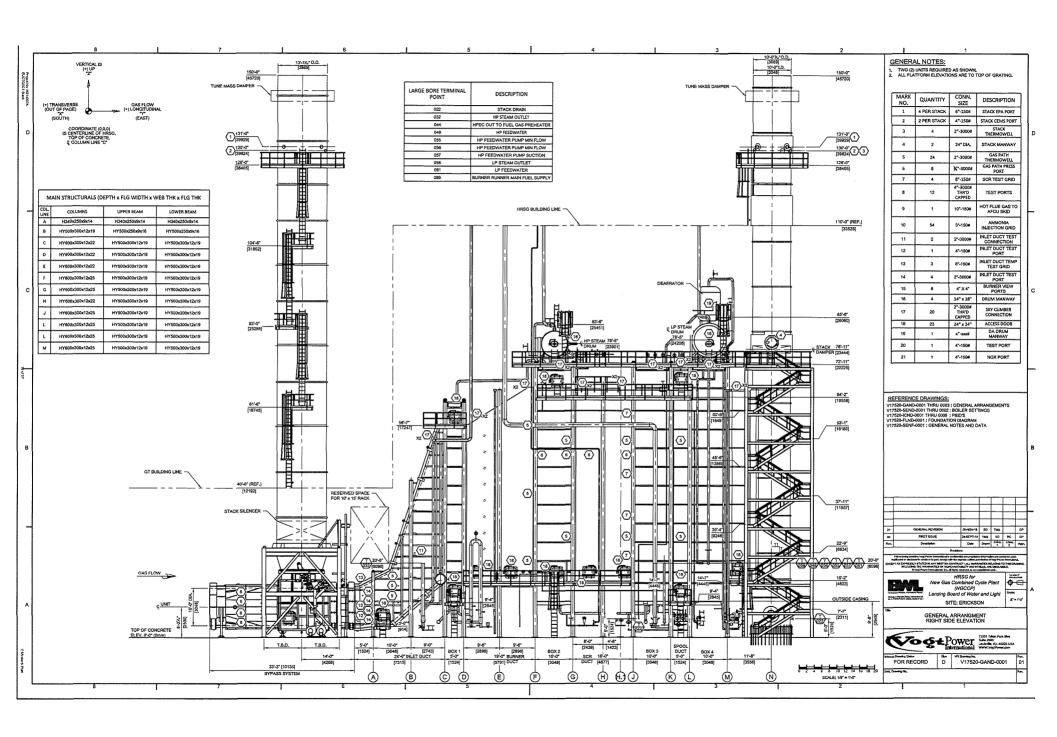
Signature:	Date: 1/2 5/2 0/8
Quality Manager: Manager & Alasti	Technical Director: Setty Banach

Appendix C - Test Section Diagram

EQUAL AREA TRAVERSE FOR ROUND DUCTS

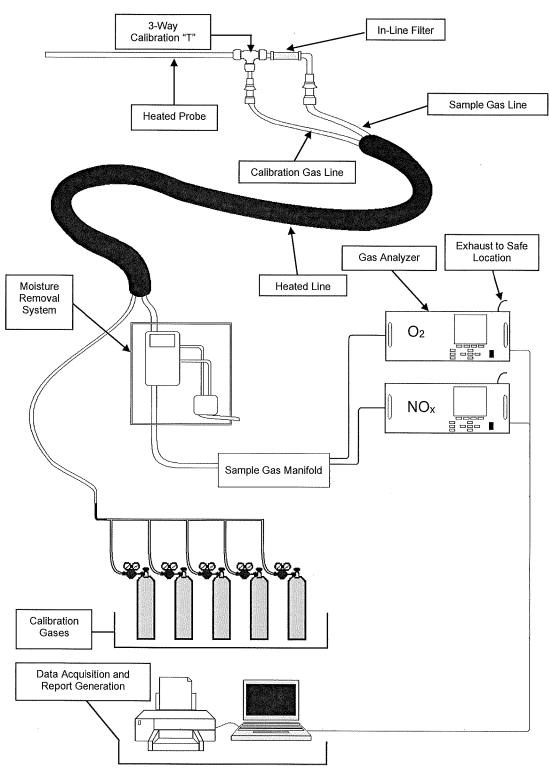
Job: Lansing Board of Water & Light Delta Energy Park

Date: December 14 and 15, 2021


Test Location: EUCTGSC1 Stack

Duct Diameter: 13 Feet

Duct Area: 132.75 Square Feet


No. Points Across Diameter: 6

Rev. 0.1

Appendix D - Sample Train Diagram

USEPA Methods 3A and 7E Extractive Gaseous Sampling Diagram

