RECEIVED

OCT 25 2022

AIR QUALITY DIVISION

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

Lansing Board of Water and Light Erickson Station Unit 1 Stack Lansing, Michigan Project No. M223207A September 9, 2022 SLOR

B4001_test_20220909

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

Lansing Board of Water and Light Erickson Station Unit 1 Stack Lansing, Michigan September 9, 2022

> Report Submittal Date October 11, 2022

> > © Copyright 2022 All rights reserved in Mostardi Platt

Project No. M223207A

Corporate Headquarters 888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100 .

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY Method 1 Traverse Point Determination Method 2 Volumetric Flowrate Determination Method 3A Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination Method 5 Filterable Particulate Matter (FPM) Determination Method 26A Hydrogen Chloride (HCI) Determination	2 2 2
3.0 TEST RESULT SUMMARIES	

APPENDICES

Appendix A - Plant Operating Data	7
Appendix B - Test Section Diagram	9
Appendix C - Sample Train Diagrams	11
Appendix D - Calculation Nomenclature and Formulas	
Appendix E - Laboratory Sample Analysis	30
Appendix F - Reference Method Test Data (Computerized Sheets)	
Appendix G - Field Data Sheets	53
Appendix H - Calibration Data	68
Appendix I - Gas Cylinder Certifications	88

1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a Mercury and Air Toxics Standards (MATS) filterable particulate matter and hydrogen chloride emissions test program for the Lansing Board of Water and Light at the Erickson Station on the Unit 1 Stack in Lansing, Michigan on September 9, 2022. This report summarizes the results of the test program and test methods used.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION				
Test Location Test Dates Test Parameters				
Unit 1 Stack	September 9, 2022	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCI)		

The purpose of the test program was to document FPM and HCI emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS				
Test Location	Test Parameter	Emission Limits	LEE Emission Limits	Emission Rates
Linit 1 Steels	FPM	≤0.030 lb/mmBtu	≤0.015 lb/mmBtu	0.0015 lb/mmBtu
Unit 1 Stack	HCI	≤0.002 lb/mmBtu	≤0.001 lb/mmBtu	0.0011 lb/mmBtu

Emissions on lb/mmBtu basis were determined using a standard F_d -Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by Lansing Board of Water and Light is included in Appendix A.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION				
Location	Address	Contact		
Test Coordinator	Lansing Board of Water and Light 1201 S. Washington Ave. Lansing, Michigan 48910	Nathan Hude Environmental Regulatory Compliance – Air		
Test Facility	Lansing Board of Water and Light Erickson Station 3725 S. Canal Road Lansing, Michigan 48917	(517) 705-6170 (phone) Nathan.hude@lbwl.com		
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Stuart Burton Project Manager 630-993-2100 (phone) sburton@mp-mail.com		

The test crew consisted of C. Buglio, K. Beckham, T. Long, T. Yanowsky, and S Burton of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION				
				Number of Sampling Points
Unit 1 Stack	7.9	11.8	FPM, HCI	12

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. An ECOM analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Filter and probe temperatures were elevated to 320° Fahrenheit as described in 40CFR63, Subpart UUUUU. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 26A Hydrogen Chloride (HCI) Determination

Stack gas HCI concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted at the Elmhurst, Illinois laboratory of Mostardi Platt. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:Lansing Board of Water and LightFacility:Erickson StationTest Location:Unit 1 StackTest Method:5 MATS

Source Condition Date	Normal 9/9/22	Normal 9/9/22	Normal 9/9/22	
Start Time	7:10	9:35	12:00	
End Time	9:23	11:47	14:12	
	Run 1	Run 2	Run 3	Average
Stack Conc	ditions			
Average Gas Temperature, °F	300.9	301.0	301.0	301.0
Flue Gas Moisture, percent by volume	9.5%	11.2%	10.9%	10.5%
Average Flue Pressure, in. Hg	28.85	28.85	28.85	28.85
Gas Sample Volume, dscf	80.423	80.644	80.582	80.550
Average Gas Velocity, ft/sec	35.432	35.726	35.651	35.603
Gas Volumetric Flow Rate, acfm	482,544	486,542	485,530	484,872
Gas Volumetric Flow Rate, dscfm	292,322	288,966	289,300	290,196
Gas Volumetric Flow Rate, scfm	322,882	325,521	324,844	324,416
Average %CO ₂ by volume, dry basis	12.4	12.5	12.5	12.5
Average %O ₂ by volume, dry basis	7.2	7.2	7.1	7.2
Isokinetic Variance	100.0	101.4	101.2	100.9
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0
Filterable Particulate Mat	tter (Metho	d 5 MATS)		
grams collected	0.00482	0.00305	0.00302	0.00363
mg/dscm	2.117	1.336	1.324	1.592
mg/wscm	1.915	1.186	1.179	1.427
grains/acf	0.0006	0.0003	0.0003	0.0004
grains/dscf	0.0009	0.0006	0.0006	0.0007
lb/hr	2.317	1.445	1.434	1.732
lb/mmBtu (Standard Fd Factor)	0.0020	0.0012	0.0012	0.0015

Client: Lansing Board of Water and I Facility: Erickson Station Test Location: Unit 1 Stack Test Method: 26A MATS	-			
Source Condition	Normal	Normal	Normal	
Date	9/9/22	9/9/22	9/9/22	
Start Time	7:10	9:23	11:33	
End Time	8:59	11:12	13:23	
	Run 1	Run 2	Run 3	Average
Sta	ack Condition	S		
Average Gas Temperature, °F	300.3	300.7	300.8	300.6
Flue Gas Moisture, percent by volume	11.3%	11.9%	11.8%	11.7%
Average Flue Pressure, in. Hg	28.80	28.80	28.80	28.80
Gas Sample Volume, dscf	64.387	64.718	65.026	64.710
Average Gas Velocity, ft/sec	35.258	35.468	35.577	35.434
Gas Volumetric Flow Rate, acfm	480,176	483,026	484,518	482,573
Gas Volumetric Flow Rate, dscfm	284,798	284,288	285,464	284,850
Gas Volumetric Flow Rate, scfm	320,986	322,750	323,676	322,471
Average %CO ₂ by volume, dry basis	12.4	12.5	12.5	12.5
Average %O ₂ by volume, dry basis	7.2	7.2	7.1	7.2
Isokinetic Variance	101.4	102.1	102.2	101.9
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0
Hydrogen C	hloride (HCl)	Emissions		
ug of sample collected	2032.00	2116.00	2119.00	2089.00
ppm	0.74	0.76	0.76	0.75
mg/dscm	1.11	1.15	1.15	1.14
lb/hr	1.189	1.230	1.231	1.216
lb/mmBtu (Standard Fd Factor)	0.0010	0.0011	0.0011	0.0011

4.0 CERTIFICATION

Mostardi Platt is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

Program Manager

Stuart L. Burton

world

Scott W. Banach

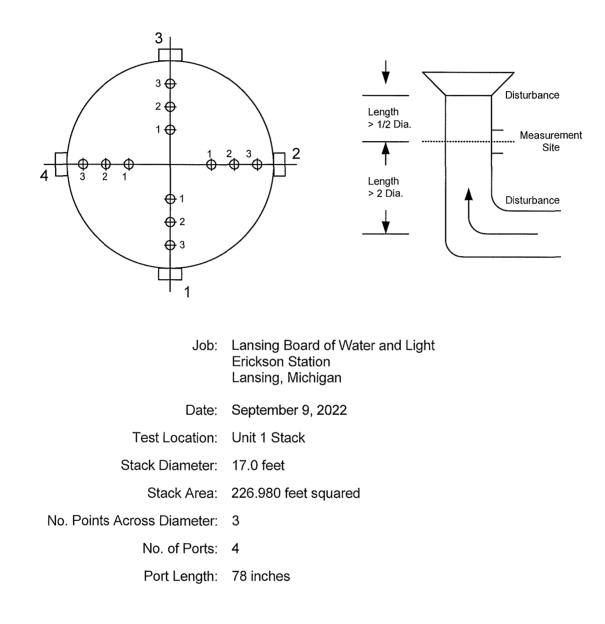
Quality Assurance

APPENDICES

Appendix A - Plant Operating Data

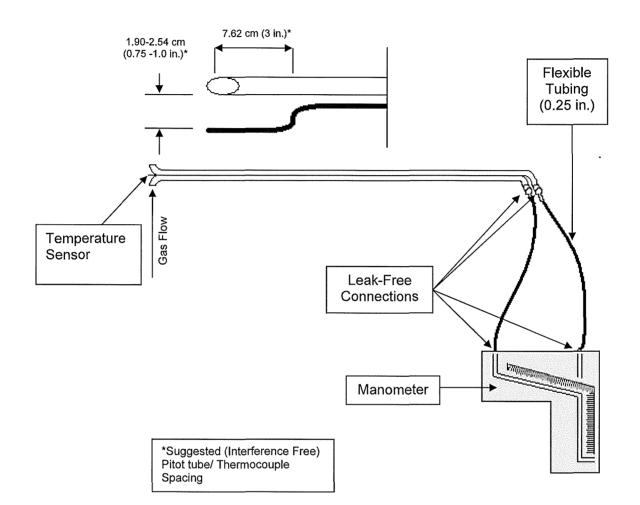
OCT 25 2022

AIR QUALITY DIVISION

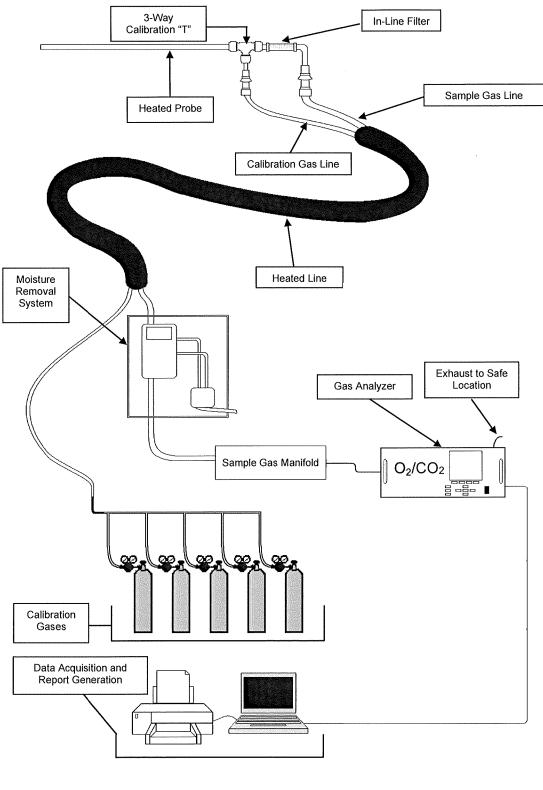

©Mostardi Platt

MATS Report CEMS Data

Date/Time	UNIT01 HEATIN Value	UNIT01 MW Value
09/09/2022 07:00	1239.9	99
09/09/2022 07:15	1224.8	99
09/09/2022 07:30	1238.5	99
09/09/2022 07:45	1233.7	99
09/09/2022 08:00	1232.6	99
09/09/2022 08:15	1225.9	99
09/09/2022 08:30	1229	99
09/09/2022 08:45	1228.9	99
09/09/2022 09:00	1235.4	99
09/09/2022 09:15	1227.4	99
09/09/2022 09:30	1227.6	99
09/09/2022 09:45	1243.6	99
09/09/2022 10:00	1241	99
09/09/2022 10:15	1242.3	99
09/09/2022 10:30	1244.5	99
09/09/2022 10:45	1246.9	99
09/09/2022 11:00	1244.8	99
09/09/2022 11:15	1244	99
09/09/2022 11:30	1256.4	99
09/09/2022 11:45	1254.3	99
09/09/2022 12:00	1240.2	99
09/09/2022 12:15	1246	99
09/09/2022 12:30	1237.8	99
09/09/2022 12:45	1248.9	99
09/09/2022 13:00	1248.6	99
09/09/2022 13:15	1241.7	99
09/09/2022 13:30	1228.5	99
09/09/2022 13:45	1231	99
09/09/2022 14:00	1227.9	99
09/09/2022 14:15	1226.5	99


Appendix B - Test Section Diagram

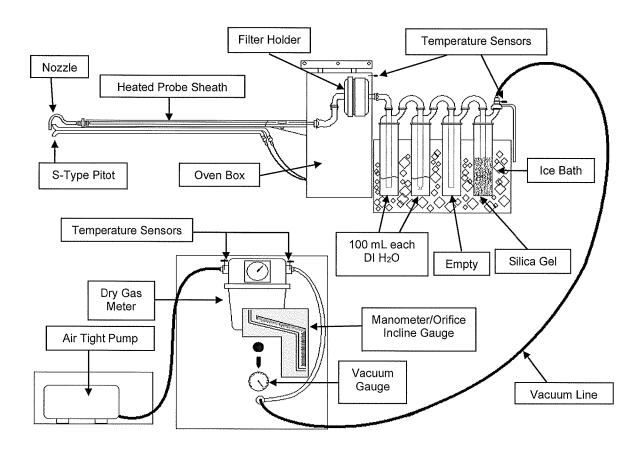
EQUAL AREA TRAVERSE FOR ROUND DUCTS



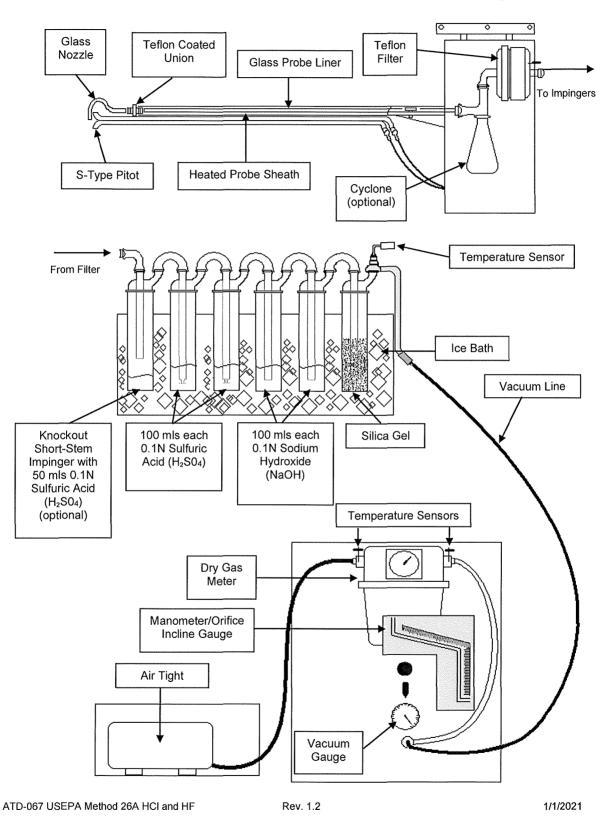
Appendix C - Sample Train Diagrams

•

USEPA Method 2 – Type S Pitot Tube Manometer Assembly



USEPA Method 3A Extractive Gaseous Sampling Diagram


ATD-012 Extractive 3A

Rev. 1.3

1/1/2021

USEPA Method 5- Particulate Matter Sample Train Diagram

USEPA Method 26A – HCI and HF Sample Train Diagram

Appendix D - Calculation Nomenclature and Formulas