

Compliance Emission Test Report

Lasing Board of Water and Light Delta Energy Park Facility EUCTGHRSG3 Lansing, Michigan September 21 and 22, 2022

> Report Submittal Date October 26, 2022

> > © Copyright 2022 All rights reserved in Mostardi Platt

Project No. M223707A

Corporate Headquarters 888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY Method 1 Traverse Point Determination Method 3A Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination Method 5 Filterable Particulate Matter Determination Method 202 Condensable Particulate Determination Method 10 Carbon Monoxide (CO) Determination Method 25A Volatile Organic Compound (VOC) Determination	3 3 3
3.0 TEST RESULT SUMMARIES	5
4.0 CERTIFICATION	7
APPENDIX Appendix A – Plant Operating Data Appendix B - Test Section Diagrams Appendix C - Sample Train Diagrams Appendix D - Calculation Nomenclature and Formulas Appendix E - Laboratory Data Appendix F - Reference Method Test Data (Computerized Sheets) Appendix G - Field Data Sheets	11 13 17 26 28
Appendix H - Calibration Data Appendix I - Gas Cylinder Calibration Sheets	53

1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a compliance emission test program for Lansing Board of Water and Light at the Delta Energy Park Facility in Lansing, Michigan on the EUCTGHRSG3 on September 21 and 22, 2022. This report summarizes the results of the test program and test methods used.

The test location, test dates, and test parameters are summarized below.

	TEST INFORMATION							
Test Location Test Dates Test Parameters								
EUC	TGHRSG3	September 21 and 22, 2022	Filterable Particulate Matter (FPM), Condensable Particulate Matter (CPM), Total Particulate Matter (TPM), Carbon Monoxide (CO), and Volatile Organic Compound (VOC)					

The purpose of this test program was to demonstrate compliance with permitted limits while operating EUCTGHRSG3 at maximum achievable load in accordance with Permit to Install 74-18C.

Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

Test Results								
Test Location	Date	Test Parameter	Emission Limits	Emission Rates				
EUCTGHRSG3			PM2.56.02 lb/hr	2.716 lb/hr				
	9/21/22 and 9/22/22		PM106.02 lb/hr	2.716 lb/hr				
	0/04/00	со	9.0 lb/hr	1.9 lb/hr				
	9/21/22	VOC	5.0 lb/hr	0.1 lb/hr				

Summary of operating data as provided by Lansing Board of Water and Light are found in Appendix A.

	GAS CYLINDER INFORMATION								
Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date					
Propane	Airgas	SG9179783CAL	0.0 ppm	5/3/2029					
Propane	Airgas	CC313139	10.05 ppm	2/22/2027					
Propane	Airgas	CC84160	20.39 ppm	12/27/2029					
Propane	Airgas	CC69724	29.94 ppm	12/22/2028					
CO ₂	Airgas	CC89183	0.0%	3/15/2030					
CO ₂	Airgas	CC280498	9.913%	4/18/2030					
CO ₂	Airgas	XC022692B	18.68%	12/26/2025					
O2	Airgas	CC89183	0.0%	3/15/2030					
O2	Airgas	CC280498	10.03%	4/18/2030					
O2	Airgas	XC022692B	19.1 <mark>3</mark> %	12/26/2025					
СО	Airgas	CC280498	0.0 ppm	4/18/2030					
CO	Airgas	CC89183	23.84 ppm	3/15/2030					
CO	Airgas	ALM-055143	49.81 ppm	6/8/2029					

The gas cylinders used to perform the CO and VOC are summarized below.

The identification of individuals associated with the test program is summarized below.

TEST PERSONNEL INFORMATION							
Location	Address	Contact					
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive PO Box 13007 Lansing, Michigan 48912-1610	Nathan Hude Environmental Compliance Specialist (517) 702-6170 (phone)					
Test Facility	Lansing Board of Water and Light Delta Energy Park Facility 3725 South Canal Road Lansing, MI 48917 Permit to Install 74-18C	nathan.hude@lbwl.com					
Testing Company Personnel	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Tim Russ Senior Project Manager 630-993-2100 (phone) truss@mp-mail.com					
Testing Company Personnel		Joshua Kukla Test Engineer					
		Ryan Spoolstra Test Engineer					
		Scott McGough Test Engineer					
Protection and the off a		Tiernan Long Test Engineer					
		Joshua Jimenez Test Technician					

2.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40CFR60, Appendix A and 40CFR51, Appendix M. Schematics of the test section diagrams and sampling trains used are included in Appendix B and C, respectively. Calculation nomenclature and example calculations are included in Appendix D. Appendix E includes laboratory sample analysis. Copies of reference method data sheets and field data sheets for each test run are included in Appendix F and G, respectively.

The following methodology was used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of each measurement location are summarized below.

TEST POINT INFORMATION							
Location Upstream Diameters Downstream Diameters Number of Sampling Points							
FUCTOURCOS	17 00		TPM	24			
EUCTGHRSG3	1.7	8.3	CO/VOC/O2/CO2	12			

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

 CO_2 and O_2 concentrations were measured to determine exhaust gas molecular weight in accordance with Method 3A. An ECOM analyzer was used to determine stack gas O_2 and CO_2 content and, by difference, nitrogen content. All the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of gas cylinder certifications are included in Appendix I.

Method 5 Filterable Particulate Matter Determination

Exhaust gas FPM concentrations and emission rates were determined in accordance with Method 5. An Environmental Supply Company sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Particulate matter in the sample probe was recovered using an acetone wash. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method. Laboratory analysis data are included in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 202 Condensable Particulate Determination

Stack gas condensable particulate matter concentrations and emission rates were determined in accordance with USEPA Method 202, in conjunction with Method 5B or 5 filterable particulate sampling. This method applies to the determination of condensable particulate matter (CPM) emissions from stationary sources. It is intended to represent condensable matter as material that condenses after passing through a filter and as measured by this method.

The CPM was collected in the impinger portion of the Method 5 (Appendix A, 40CFR60) type sampling trains. The impinger contents were immediately purged after each run with nitrogen (N_2) to remove dissolved sulfur dioxide (SO₂) gases from the impinger contents. The impinger solution was then extracted with hexane. The organic and aqueous fractions were then taken to dryness

NOV 1 0 2022

and the residues weighed. A correction was made for any ammonia present due to laboratory analysis procedures. The total of both fractions represents the CPM.

Laboratory analysis data are included in Appendix E. All the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 10 Carbon Monoxide (CO) Determination

Stack gas CO concentrations and emission rates were determined in accordance with Method 10. A Fischer Scientific Model 48i Gas Filter Correlation Analyzer was used to determine carbon monoxide concentrations, in the manner specified in the Method. The instrument operated in a range of 0 ppm to 100 ppm with the specific range determined by the high-level span calibration gas of 49.81 ppm.

The Model 48i operates on the principle that CO absorbs infrared radiation at a wavelength of 4.6 microns. Because infrared absorption is a non-linear measurement technique, it is necessary to transform the basic analyzer signal into a linear output. The Model 48i uses an internally stored calibration curve to accurately linearize the instrument output over any range up to a concentration of 10,000 ppm. The sample is drawn into the Model 48i through the sample bulkhead. The sample flows through the optical bench. Radiation from an infrared source is chopped and then passed through a gas filter alternating between CO and N2. The radiation then passes through a narrow bandpass interference filter and enters the optical bench where absorption by the sample gas occurs. The infrared radiation then exits the optical bench and falls on an infrared detector. The CO gas filter acts to produce a reference beam which cannot be further attenuated by CO in the sample cell. The N2 side of the filter wheel is transparent to the infrared radiation and therefore produces a measurement beam which can be absorbed by CO in the cell. The chopped detector signal is modulated by the alternation between the two gas filters with an amplitude related to the concentration of CO in the sample cell. Other gases do not cause modulation of the detector signal since they absorb the reference and measure beams equally. Thus, the GFC system responds specifically to CO. The Model 48i outputs the CO concentration to the front panel display, the analog outputs, and also makes the data available over the serial or Ethernet connection.

Stack gas was delivered to the analyzer via a Teflon® sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix H. Copies of the gas cylinder certifications are found in Appendix I. This testing met the performance specifications as outlined in the Method.

Method 25A Volatile Organic Compound (VOC) Determination

Total hydrocarbon (THC) concentrations and emission rates were determined in accordance with Method 25A. A VIG 20 Flame Ionization Detector (FID) was used to determine THC concentrations. Stack gas was delivered to the system via a Teflon® sampling line, heated to a minimum temperature of 300°F.

The system was calibrated before and after each test run using certified calibration gases of propane for the THC determination. Calibration data are presented in Appendix H, field sheets are presented in Appendix G, and copies of gas certifications are presented in Appendix I.

3.0 TEST RESULT SUMMARIES

Client:Lansing Board of Water & LightFacility:Delta Energy ParkTest Location:EUCTGSC3Test Method:5/202

Source Condition Date Start Time End Time	Normal 9/21/22 15:15 17:38 Run 1	Normal 9/22/22 7:20 9:37 Run 2	Normal 9/22/22 10:10 12:27 Run 3	Average
Stack Con				
Average Gas Temperature, °F	1031.9	1029.3	1030.6	1030.6
Flue Gas Moisture, percent by volume	8.2%	8.2%	7.7%	8.0%
Average Flue Pressure, in. Hg	28.95	28.95	28.95	28.95
Gas Sample Volume, dscf	88.06	88.951	89.584	88.865
Average Gas Velocity, ft/sec	102.888	103.759	104.245	103.631
Gas Volumetric Flow Rate, acfm	686,708	692,522	695,765	691,665
Gas Volumetric Flow Rate, dscfm	215,950	217,996	220,096	218,014
Gas Volumetric Flow Rate, scfm	235,182	237,584	238,483	237,083
Average %CO ₂ by volume, dry basis	4.0	4.2	4.1	4.1
Average %O ₂ by volume, dry basis	13.8	13.7	13.6	13.7
Isokinetic Variance	102.6	102.7	102.4	102.6
Standard Fuel Factor Fd, dscf/mmBtu	8,710.0	8,710.0	8,710.0	8,710.0
Filterable Particulate	Matter (Me	thod 5)		
grams collected	0.00253	0.00269	0.00435	0.00319
grains/acf	0.0001	0.0001	0.0002	0.0001
grains/dscf	0.0004	0.0005	0.0007	0.0005
lb/hr	0.821	0.872	1.413	1.035
lb/1000 lb of stack gas	0.001	0.001	0.001	0.001
Ib/mmBtu (Standard Fd Factor)	0.0016	0.0017	0.0027	0.0020
Condensable Particulate				
grams collected	0.01296	0.00081	0.00177	0.00518
grains/acf	0.0007	0.0000	0.0001	0.0003
grains/dscf	0.0023	0.0001	0.0003	0.0009
lb/hr	4.203	0.263	0.575	1.680
lb/1000 lb of stack gas	0.004	0.000	0.001	0.002
Ib/mmBtu (Standard Fd Factor)	0.0083	0.0005	0.0011	0.0033
Total Particulate				
grams collected	0.01549	0.00350	0.00612	0.00837
grains/acf	0.0008	0.0001	0.0003	0.0004
grains/dscf	0.0027	0.0006	0.0010	0.0014
lb/hr	5.024	1.135	1.988	2.716
lb/1000 lb of stack gas	0.005	0.001	0.002	0.003
Ib/mmBtu (Standard Fd Factor)	0.0099	0.0022	0.0038	0.0053

Lansing Board of Water & Light Delta Energy Park EUCTGHRSG3 (simple cycle stack) Gaseous Summary									
				No	ormal Load				
Test No.	Date	Start Time	End Time	CO ppmvd	CO₂ % (dry)	O ₂ % (dry)	Moisture, %	Flowrate , DSCFM	Flowrate, SCFM
1	09/21/22	15:45	16:49	2.1	4.2	13.9	8.2	215,950	235,182
2	09/22/22	07:20	08:19	1.8	4.2	13.8	8.2	217,996	237,584
3	09/22/22	10:10	11:09	2.0	4.2	13.9	7.7	220,096	238,483
	Aver	age		2.0	4.2	13.9	8.0	218,014	237,083

	Emission Rate Summary							
Test No.	Date	Start Time	End Time	CO lb/hr				
1	09/21/22	15:45	16:49	2.0				
2	09/22/22	07:20	08:19	1.7				
3	09/22/22	10:10	11:09	1.9				
	Average							

Lansing Board of Water & Light Delta Energy Park								
	EUCTGHRSG3 (simple cycle stack)							
	Gaseous Summary Normal Load							
				THC ppm	LUau			
Test		Start	End		Moisture,	Flowrate,	Flowrate	VOC as
No.	Date	Time	Time	(wet)	%	DSCFM	, SCFM	C3H8 lb/hr
1	09/21/22	15:45	16:44	0.0	8.2	215,950	235,182	0.0
2	09/22/22	07:20	08:19	0.1	8.2	217,996	237,584	0.2
3								
	Aver	age		0.1	8.0	218,014	237,083	0.1

4.0 CERTIFICATION

Mostardi Platt is pleased to have been of service to Whiting Clean Energy. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

mother Elluse

Program Manager

Timothy E. Russ

nall

Scott W. Banach

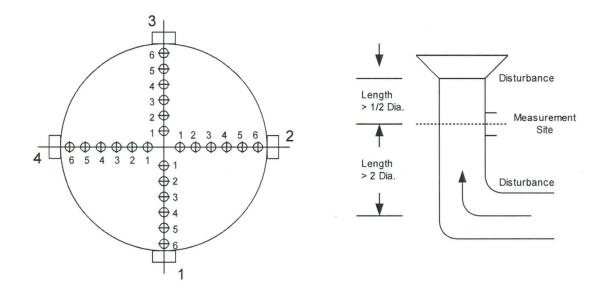
Quality Assurance

APPENDICES

Appendix A - Plant Operating Data

EUCTGHRSG3 Bypass Operational Data

Date/Time	CTGHRSG3 B_GASFLW (HSCFH) Value	CTGHRSG3 B_HEATIN (MMBTU/HR) Value	CTGHRSG3 LOADCTMW (MW) Value
		Run1	
09/21/2022 15:00	4652.7	488.5	50
09/21/2022 15:15	21/2022 15:15 4662.1 489.5		50
09/21/2022 15:30	4666.7	490	50
09/21/2022 15:45	4678.3	491.2	50
09/21/2022 16:00	4692.5	492.7	51
09/21/2022 16:15	4688.1	492.3	51
09/21/2022 16:30	4701.6	493.7	51
09/21/2022 16:45	4727.5	496.4	51
09/21/2022 17:00	4751	498.9	51
09/21/2022 17:15	4756.4	499.4	51
09/21/2022 17:30	4758.9	499.7	51
09/21/2022 17:45	4756.9	499.5	51
Averages:	4707.7	494.3	50.7
		Run2	
9/22/2022 7:15	5006.4	525.7	55
9/22/2022 7:30	5011.8	526.2	55
9/22/2022 7:45	5010.2	526.1	55
9/22/2022 8:00	5010.3	526.1	55
9/22/2022 8:15	5016.7	526.8	55
9/22/2022 8:30	5011.7	526.2	55
9/22/2022 8:45	5014.5	526.5	55
9/22/2022 9:00	5014.9	526.6	55
9/22/2022 9:15	5007.1	525.7	55
9/22/2022 9:30	5001.8	525.2	55
9/22/2022 9:45	4993.4	524.3	55
Averages:	5009.0	525.9	55.0
		Run3	
9/22/2022 10:00	4986.9	523.6	55
9/22/2022 10:15	4992.5	524.2	55
9/22/2022 10:30	4991.1	524.1	55
9/22/2022 10:45	4988.9	523.8	55
9/22/2022 11:00	4985.8	523.5	55
9/22/2022 11:15	4989.1	523.9	55
9/22/2022 11:30	4996.9	524.7	55
9/22/2022 11:45	4992.7	524.2	55
9/22/2022 12:00	4992.9	524.3	55
9/22/2022 12:15	4987	523.6	55
9/22/2022 12:30	4746.1	498.3	52
Averages:	4968.2	521.7	54.7


Appendix B - Test Section Diagrams

RECEIVED

NOV 1 0 2022

AIR QUALITY DIVISION

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Lansing Board of Water & Light

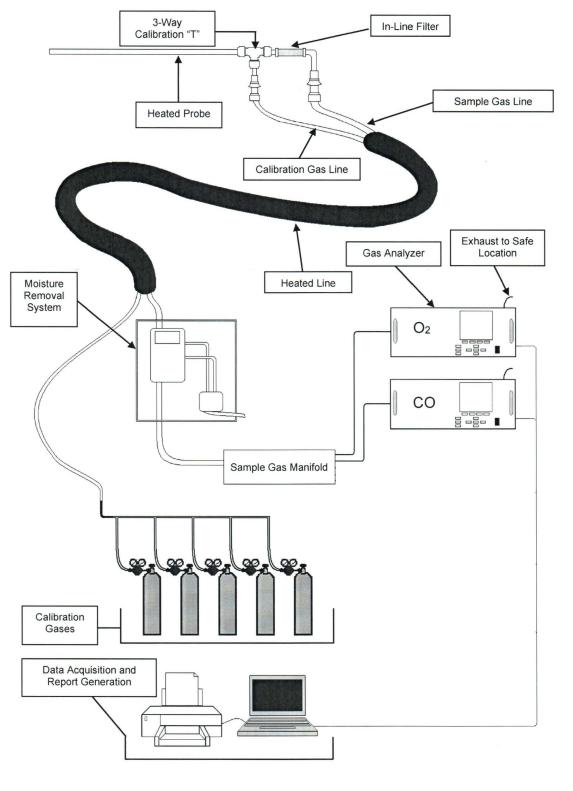
Delta Energy Park

Lansing, MI

Date: September 21 and 22, 2022

Test Location: EUCTGHRSG3 (Simple cycle)

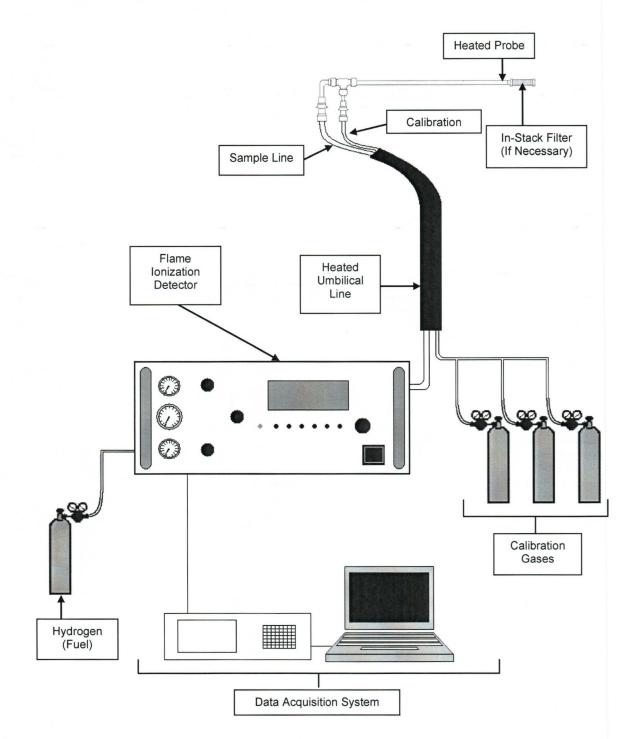
Duct Diameter: 11.901 Feet


Duct Area: 111.24 Square Feet

No. Points Across Diameter: 12

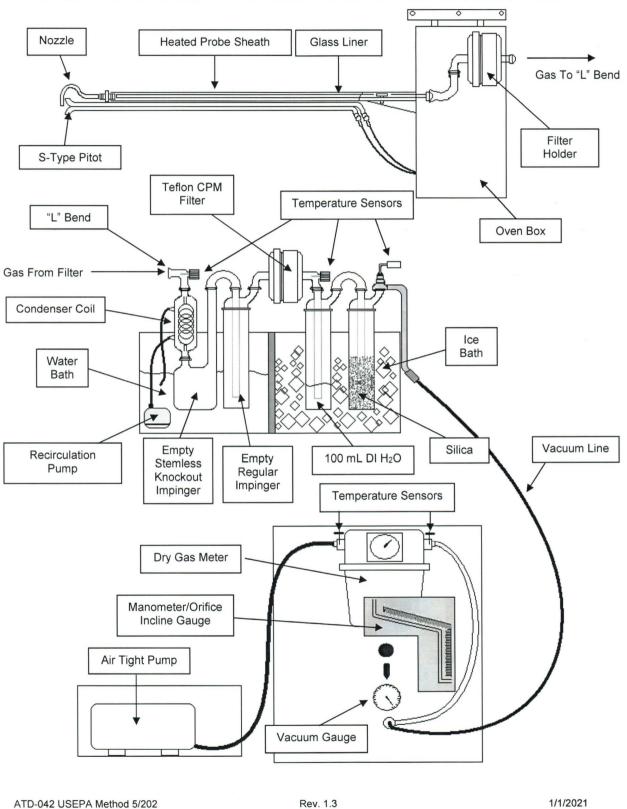
No. of Ports: 4

Port Length: 6 Inches


Appendix C - Sample Train Diagrams

USEPA Methods 3A and 10 Extractive Gaseous Sampling Diagram

ATD-011 Extractive 3A and 10


Rev. 1.3

USEPA Method 25A – Total Gaseous Organic Compound Sample Train

ATD-063 USEPA Method 25A

Rev. 1.2

USEPA Method 5/202- Filterable/Condensable Particulate Matter