Report of a...

RECEIVED SEP 15 2023

Relative Accuracy Test Audit ITY DIVISION

Performed for ...

Cleveland-Cliffs, Inc. Tilden Mining Company, L.C. Ishpeming, Michigan

On...

Unit 1

At the...

Tilden Mine National Mine, Michigan

July 25-26, 2023

Project #: 053.62

By...

Network Environmental, Inc. Grand Rapids, MI

performed for

Cleveland-Cliffs, Inc. Tilden Mining Company, L.C. 1 Tilden Mine Road P.O. Box 2000 Ishpeming, MI 49849-0901 Contact: Tom O'Brien Telephone: (906) 475-3306 e-mail: thomas.obrien@clevelandcliffs.com

Performed at the:

Tilden Mine National Mine, MI

Performed by

Network Environmental, Inc. 2629 Remico Street SW Suite B Grand Rapids, MI 49519 Contact: David D. Engelhardt Telephone: (616) 530-6330 Fax: (616) 530-0001 E-mail: netenviro@aol.com

TABLE OF CONTENTS

		<u>Page</u>
I.	Introduction	1
II.	Presentation of Results	2-15
	II.1 Table 1 – North NO _x (Lbs/Hr) Relative Accuracy	2
	II.2 Table 2 – North SO ₂ (Lbs/Hr) Relative Accuracy	3
	II.3 Table 3 – North NO _x (PPM) Relative Accuracy	4
	II.4 Table 4 – North SO₂ (PPM) Relative Accuracy	5
	II.5 Table 5 – North O_2 (%) Relative Accuracy	6
	II.6 Table 6 – North Air Flow (KSCFH) Relative Accuracy	7
	II.7 Table 7 – North Moisture (%) Relative Accuracy	8
	II.8 Table 8 – South NO _x (Lbs/Hr) Relative Accuracy	9
	II.9 Table 9 – South SO ₂ (Lbs/Hr) Relative Accuracy	10
	II.10 Table 10 – South NO _x (PPM) Relative Accuracy	. 11
	II.11 Table 11 – South SO ₂ (PPM) Relative Accuracy	12
	II.12 Table 12 – South O ₂ (%) Relative Accuracy	13
	II.13 Table 13 – South Air Flow (KSCFH) Relative Accuracy	14
	II.14 Table 14 – South Moisture (%) Relative Accuracy	15
III.	Discussion of Results	16-17
IV.	CEMS Specifications	17
۷.	Sampling and Analytical Protocol	18-20
	Figure 1 - NO _x , SO ₂ , O ₂ & CO ₂ Sampling Train	21
	Figure 2 - Moisture Sampling Train	22
	Figure 3 - Air Flow Sampling Train	23

Appendices

Reference Method DAS & Calibration Data	Α
CEM Data	В
Reference Method Air Flow Data	С
Analyzer Specifications & Calibration Gas Certifications	D
Calculations	Ε
Raw Data	F

I. INTRODUCTION

Network Environmental, Inc. was retained by the Tilden Mining Company, L.C. of Ishpeming, Michigan to perform a relative accuracy test audit (RATA) at the Tilden Mine located in National Mine, Michigan.

The purpose of the testing was to conduct a Relative Accuracy Test Audit (RATA) on the Continuous Emission Monitoring System (CEMS) that services Unit 1. There are two (2) exhaust stacks (North & South) on Unit 1. Each exhaust stack has it's own CEMS. The CEMS on Unit 1 is for Oxides of Nitrogen (NO_x), Sulfur Dioxide (SO₂), air flow rate, Oxygen (O₂) and moisture.

The RATA's were performed over the period of July 25-26, 2023. Stephan K. Byrd, Richard D. Eerdmans and David D. Engelhardt of Network Environmental, Inc. conducted the RATA's in accordance with Part 60 of Title 40 of the Code of Federal Regulations. The following reference test methods were employed to conduct the RATA sampling:

- Air Flow Rates U.S. EPA Methods 1-2
- Oxygen & Carbon Dioxide (O₂ & CO₂) U.S. EPA Method 3A
- Moisture U.S. EPA Method 4
- Sulfur Dioxide (SO₂) U.S. EPA Method 6C
- Oxides of Nitrogen (NO_x) U.S. EPA Method 7E

Assisting with the RATA's were Mr. Jason Sammon of CEMSOURCE and Mr. Dan McGrath of the Tilden Mine.

II. PRESENTATION OF RESULTS

	NO _x (Li	NORT CLEV TILDEN	II.1 TABLE 1 ATIVE ACCURA UNIT 1 H WASTE GAS /ELAND CLIFFS MINING COMP NAL MINE, MI JULY 25, 2023	CY DETERMIN STACK 5, INC. PANY, L.C. CHIGAN	ATION	
Run #	Time	RI	eference meth	IOD	СЕМ	DIFF
$\frac{2m}{1+m} \frac{2m}{2} \frac{2m}{m} \frac{2m}{2} \frac{2m}{m} \frac{2m}{m}$		NO _x (1)	DSCFM (2)	Lbs/Hr ⁽³⁾	Lbs/Hr ⁽³⁾	
1	10:37-11:02	154.5	254,338	280.69	270.10	10.59
2	11:19-11:44	181.7	248,619	322.73	317.70	5.03
3	12:04-12:29	149.3	247,789	264.20	263.40	0.80
4	12:50-13:15	149.8	251,267	268.83	264.80	4.03
5	13:29-13:53	169.6	250,527	303.44	292.90	10.54
6	14:08-14:32	188.1	253,386	340.46	325.70	14.76
7	14:49-15:14	174.8	253,102	316.04	303.00	13.04
8	15:29-15:54	158.3	252,662	285.67	272.50	13.17
9	16:07-16:32	160.1	254,131	290.59	276.90	13.69

Mean Reference Value = 296.9611

Absolute Value of the Mean of the Differences = 9.5167

Standard Deviation = 4.9885

Confidence Co-efficient = 3.8345

Relative Accuracy = 4.50% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

- (2) DSCFM = Dry Standard Cubic Feet Per Minute (Standard Temperature & Pressure = 68 °F & 29.92 in. Hg)
- (3) Lbs/Hr = Pounds Per Hour

SEP 15 2003

RECEIVED

AIR QUALITY DIVISION

	50 ₂ (LE	NORT CLEV TILDEN	II.2 TABLE 2 ATIVE ACCURA UNIT 1 TH WASTE GAS /ELAND CLIFFS MINING COM DNAL MINE, MI JULY 25, 202	CY DETERMIN STACK 5, INC. PANY, L.C. CHIGAN	ATION	
Run #	Time	R	EFERENCE METH	łÓD	CEM	DIFF
$\frac{1}{2} \frac{1}{2} \frac{1}$		SO ₂ (1)	DSCFM ⁽²⁾	Lbs/Hr ⁽³⁾	Lbs/Hr ⁽³⁾	
1	10:37-11:02	20.0	254,338	50.60	48.1	2.50
2	11:19-11:44	14.1	248,619	34.94	37.3	-2.36
3	12:04-12:29	17.8	247,789	43.72	43.3	0.42
4	12:50-13:15	19.0	251,267	47.57	46.8	0.77
5	13:29-13:53	18.3	250,527	45.52	45.2	0.32
6	14:08-14:32	20.0	253,386	50,41	49.3	1.11
7	14:49-15:14	18.5	253,102	46.57	46.4	0.17
8	15:29-15:54	18.2	252,662	45.79	45.0	0.79
9	16:07-16:32	16.2	254,131	40.92	39.8	1.12

Mean Reference Value = 45.1156

Absolute Value of the Mean of the Differences = 0.5378

Standard Deviation = 1.2859

Confidence Co-efficient = 0.9884

Relative Accuracy = 3.38% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

(2) DSCFM = Dry Standard Cubic Feet Per Minute (Standard Temperature & Pressure = 68 °F & 29.92 in. Hg)
(3) Lbs/Hr = Pounds Per Hour

	NO _x (II.3 TABLE 3 (PPM) RELATIVE ACCURACY I UNIT 1 NORTH WASTE GAS S CLEVELAND CLIFFS, J TILDEN MINING COMPA NATIONAL MINE, MICH JULY 25, 2023	TACK INC. NY, L.C.	
 	Time	REFERENCE METHOD	CEM	DIFF
		NO _x ⁽¹⁾	NO _x ⁽¹⁾	
1	10:37-11:02	154.5	158.2	-3.7
2	11:19-11:44	181.7	184.0	-2.3
3	12:04-12:29	149.3	155.0	-5.7
4	12:50-13:15	149.8	155.8	-6.0
5	13:29-13:53	169.6	174.1	-4.5
6	14:08-14:32	188.1	194.6	-6.5
7	14:49-15:14	174.8	179.7	-4.9
8	15:29-15:54	158.3	161.7	-3.4
9	16:07-16:32	160.1	166.2	-6.1

Mean Reference Value = 165.1333

Absolute Value of the Mean of the Differences = 4.7889

Standard Deviation = 1.4295

Confidence Co-efficient = 1.0988

Relative Accuracy = 3.57% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

II.4 TABLE 4	
지는 것을 같다. 영향 문제는 것 같은 것은 것은 것을 알고 있는 것을 즐기면 가지 않는 것을 통하게 하는 것을 수 없을 것 같다. 물건은 것을 못	
SO ₂ (PPM) RELATIVE ACCURACY DETERMINA	TTON
302 (PPP) RELATIVE ACCORACT DETERMINA	ITON
UNIT 1	오늘꾼옷
NORTH WASTE GAS STACK	
NORTH WASTE GAS STACK	
CLEVELAND CLIFFS, INC.	
CLEVELAND CLIFFS, INC.	집이 모양하는
TILDEN MINING COMPANY, L.C.	
ILDEN MINING COMPANY, L.C.	
NATIONAL MINE MICHICAN	
NATIONAL MINE, MICHIGAN	
7111 V AF 3033	
JULY 25, 2023) : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :

Run #	Time	REFERENCE METHOD	.CEM. SO2 ⁽¹⁾	DIFF
1	10:37-11:02	20.0	20.3	-0.3
2	11:19-11:44	14.1	15.5	-1.4
3	12:04-12:29	17.8	18.3	-0.5
4	12:50-13:15	19.0	19.8	-0.8
5	13:29-13:53	18.3	19.3	-1.0
6	14:08-14:32	20.0	21.2	-1.2
7	14:49-15:14	18.5	19.8	-1.3
8	15:29-15:54	18.2	19.2	-1.0
- 9	16:07-16:32	16.2	17.2	-1.0

Mean Reference Value = 18.0111

Absolute Value of the Mean of the Differences = 0.9444

Standard Deviation = 0.3609

Confidence Co-efficient = 0.2774

Relative Accuracy = 6.78% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

	O ₂ (II.5 TABLE 5 (%) RELATIVE ACCURACY DE UNIT 1 NORTH WASTE GAS S CLEVELAND CLIFFS, J TILDEN MINING COMPA NATIONAL MINE, MICH JULY 25, 2023	TACK INC. NY, L.C.	
Run # 1	Time	REFERENCE METHOD	CEM	DIFF
ar dh'r Ar yn y		O ₂ ⁽¹⁾	O ₂ (1)	
1	10:37-11:02	18.6	18.8	-0.2
2	11:19-11:44	18.7	19.0	-0.3
3	12:04-12:29	18.6	18.8	-0.2
4	12:50-13:15	18.5	18.8	-0.3
5	13:29-13:53	18.7	18.8	-0.1
6	14:08-14:32	18.7	18.7	0.0
7	14:49-15:14	18.7	18.8	-0.1
8	15:29-15:54	18.5	18.8	-0.3
9	16:07-16:32	18.6	18.8	-0.2

Mean Reference Value = 18.6222

Absolute Value of the Mean of the Differences = 0.1889

Standard Deviation = 0.1054

Confidence Co-efficient = 0.0810

Relative Accuracy = 1.45% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of % by volume on a dry basis

RECEIVED

SEP 15 2021

AIR QUALITY DIVISION

	AIR FLOW (I	II.6 TABLE 6 KSCFH) RELATIVE ACCUR UNIT 1 NORTH WASTE GAS CLEVELAND CLIFFS, TILDEN MINING COMP NATIONAL MINE, MIC JULY 25, 2023	RACY DETERMINAT STACK , INC. ANY, L.C. CHIGAN	FION
Run #	Time	REFERENCE METHOD	CEM	DIFF
		KSCFH ⁽¹⁾	KSCFH ⁽¹⁾	
1	10:37-11:02	16,707	15,826	881
2	11:19-11:44	16,578	15,930	648
3	12:04-12:29	16,508	15,718	790
4	12:50-13:15	16,777	15,788	989
5	13:29-13:53	16,886	15,728	1,158
6	14:08-14:32	17,098	15,787	1,311
7	14:49-15:14	17,144	15,941	1,203
8	15:29-15:54	17,074	15,795	1,279
9	16:07-16:32	17,136	15,647	1,489

Mean Reference Value = 16,878.67

Absolute Value of the Mean of the Differences = 1,083.11

Standard Deviation = 273.86

Confidence Co-efficient = 210.50

Relative Accuracy = 7.66% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Thousand Standard Cubic Feet Per Hour

																	1	[]	.7	7		T/	AI	BI	LE		7															
	M	10	[([5	T	ſL	JF	R	E	(9/	0))	R	E	Ļ	A'	T.							UI	R/	A	C]	1	D	E.	F E	EF	21	1]	Ēſ	V/	47	ΓΙ	0	N	l
												N	37		D'	Т	L	े ।		-57	(70	947	T		SA	C	•	े 27	- A	ſ	v											
												1.1				1.16				tai ka	1.12	~ 2.1			F		242		1.25													
										٦	14.2.2	L	D	E	N		M	I	N	I	N	G	C	X)/	11	7	۱r	1)	۱,	L											
												N	A	I	[(1.5	M			H	I	G/	41	V										
Ķ				1									9) 9)	ġ.			-	U	JL	.Y		25	>,	4	20	2	3		-					Q.								

Run #	Time	REFERENCE METHOD	CEM	DIFF
		Moisture ⁽¹⁾	Moisture ⁽¹⁾	
1	10:37-11:02	8.66	9.6	-0.94
2	11:19-11:44	10.02	9.2	0.82
3	12:04-12:29	9.94	9.4	0.54
4	12:50-13:15	10.14	9.8	0.34
5	13:29-13:53	10.98	10.4	0.58
6	14:08-14:32	11.08	11.1	-0.02
7	14:49-15:14	11.42	11.4	0.02
8	15:29-15:54	11.21	10.6	0.61
9	16:07-16:32	11.02	10.9	0.12

Mean Reference Value = 10.4967

Absolute Value of the Mean of the Differences = 0.2300

Standard Deviation = 0.5257

Confidence Co-efficient = 0.4041

Relative Accuracy = 6.04% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of % by volume on a dry basis

II.8 TABLE 8 NO_x (LBS/HR) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023

'Run #''	Time	, R	EFERENCE METH	HOD	CEM:	DIFF
		NO _x ⁽¹⁾	DSCFM (2)	Lbs/Hr ⁽³⁾	Lbs/Hr ⁽³⁾	
1	16:56-17:21	269.2	456,908	878.70	969.90	-91.20
2	17:38-18:03	274.7	447,633	878.46	937.60	-59.14
3	18:18-18:43	272,3	450,688	876.72	914.50	-37.78
4	18:57-19:22	263.9	449,721	847.75	886.30	-38.55
5	19:36-20:01	278.6	442,253	880.20	977.60	-97.40
6	20:24-20:49	271.9	423,323	822.36	982.30	-159.94
7	21:04-21:29	261.7	444,924	831.77	916.70	-84.93
8	21:44-22:09	243.0	446,418	774.99	844.80	-69.81
9	22:25-22:50	276.2	446,168	880.24	941.70	-61.46

Mean Reference Value = 852.3544

Absolute Value of the Mean of the Differences = 77.8011

Standard Deviation = 37.3877

Confidence Co-efficient = 28.7387

Relative Accuracy = 12.50% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

(2) DSCFM = Dry Standard Cubic Feet Per Minute (Standard Temperature & Pressure = 68 °F & 29.92 in. Hg)

(3) Lbs/Hr = Pounds Per Hour

II.9 TABLE 9 SO₂ (LBS/HR) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023							
Run #	Time	Ŕ	eference meth	łOD	CEM	DIFF	
		SO ₂ ⁽¹⁾	DSCFM (2)	Lbs/Hr ⁽³⁾	Lbs/Hr ⁽³⁾		
1	16:56-17:21	16.3	456,908	74.05	77.6	-3.55	
2	17:38-18:03	19.2	447,633	85.60	87.3	-1.70	
3	18:18-18:43	22.1	450,688	98.92	93.9	5.02	
4	18:57-19:22	20.1	449,721	89.85	86.0	3.85	
5	19:36-20:01	22.2	442,253	97.49	99.2	-1.71	
6	20:24-20:49	20.6	423,323	86.72	94.9	-8.18	
7	21:04-21:29	20.1	444,924	89.07	91.3	-2.23	
8	21:44-22:09	13.1	446,418	58.04	57.0	1.04	
9	22:25-22:50	19.2	446,168	85.27	81.2	4.07	

Mean Reference Value = 85.0011

Absolute Value of the Mean of the Differences = 0.3767

Standard Deviation = 4.2821

Confidence Co-efficient = 3.2915

Relative Accuracy = 4.32% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

(2) DSCFM = Dry Standard Cubic Feet Per Minute (Standard Temperature & Pressure = 68 °F & 29.92 in. Hg)

(3) Lbs/Hr = Pounds Per Hour

II.10 TABLE 10 NO_x (PPM) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023

Run #	Time	REFERENCE METHOD	CEM NOx ⁽¹⁾	DIFF
1	16:56-17:21	269.2	295.7	-26.5
2	17:38-18:03	274.7	297.8	-23.1
3	18:18-18:43	272.3	295.3	-23.0
4	18:57-19:22	263.9	287.2	-23.3
5	19:36-20:01	278.6	304.3	-25.7
6	20:24-20:49	271.9	301.3	-29.4
7	21:04-21:29	261.7	288.2	-26.5
8	21:44-22:09	243.0	269.4	-26.4
9	22:25-22:50	276.2	305.6	-29.4

Mean Reference Value = 267.9444

Absolute Value of the Mean of the Differences = 25.9222

Standard Deviation = 2.4626

Confidence Co-efficient = 1.8929

Relative Accuracy = 10.38% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

II.11 TABLE 11 SO₂ (PPM) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023

Run #	Time	REFERENCE METHOD	CEM SO2 ⁽¹⁾	DIFF
1	16:56-17:21	16.3	17.0	-0.7
2	17:38-18:03	19.2	19.9	-0.7
3	18:18-18:43	22.1	21.8	0.3
4	18:57-19:22	20.1	20.0	0.1
5	19:36-20:01	22.2	22.2	0.0
6	20:24-20:49	20.6	20.9	-0.3
7	21:04-21:29	20.1	20.6	-0.5
8	21:44-22:09	13.1	13.1	0.0
9	22:25-22:50	19.2	18.9	0.3

Mean Reference Value = <u>19.2111</u>

Absolute Value of the Mean of the Differences = 0.1667

Standard Deviation = 0.3969

Confidence Co-efficient = 0.3051

Relative Accuracy = 2.46% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of PPM by volume on a dry basis

II.12 TABLE 12 O₂ (%) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023

<u>Run #</u>	Time	REFERENCE METHOD	CEM ^I O2 ⁽¹⁾	DIFF
1	16:56-17:21	17.1	16.7	0.4
2	17:38-18:03	17.0	16.7	0.3
3	18:18-18:43	17.1	16.7	0.4
4	18:57-19:22	17.1	16.7	0.4
5	19:36-20:01	17.1	16.7	0.4
6	20:24-20:49	17.1	16.7	0.4
7	21:04-21:29	17.2	16.8	0.4
8	21:44-22:09	17.5	17.0	0.5
9	22:25-22:50	17.1	16.6	0.5

Mean Reference Value = 17.1444

Absolute Value of the Mean of the Differences = 0.4111

Standard Deviation = 0.0601

Confidence Co-efficient = 0.0462

Relative Accuracy = 2.67% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of % by volume on a dry basis

	II.13 TABLE 13	
AIR FLOW (KS	SCFH) RELATIVE ACCURACY DE	TERMINATION
	UNIT 1 SOUTH WASTE GAS STACK	
	CLEVELAND CLIFFS, INC.	
	TILDEN MINING COMPANY, L.C.	•
	NATIONAL MINE, MICHIGAN	
	JULY 26, 2023	

Time	REFERENCE METHOD	CÉM	DIFF
	KSCFH ⁽¹⁾	KSCFH ⁽¹⁾	
16:56-17:21	31,689	31,666	23
17:38-18:03	31,387	30,488	899
18:18-18:43	31,447	30,104	1,343
18:57-19:22	31,274	29,962	1,312
19:36-20:01	30,755	31,167	-412
20:24-20:49	29,323	31,626	-2,303
21:04-21:29	31,052	30,956	96
21:44-22:09	31,160	30,632	528
22:25-22:50	31,070	29,944	1,126
	16:56-17:21 17:38-18:03 18:18-18:43 18:57-19:22 19:36-20:01 20:24-20:49 21:04-21:29 21:44-22:09	Time KSCFH ⁽¹⁾ 16:56-17:21 31,689 17:38-18:03 31,387 18:18-18:43 31,447 18:57-19:22 31,274 19:36-20:01 30,755 20:24-20:49 29,323 21:04-21:29 31,052 21:44-22:09 31,160	Time KSCFH ⁽¹⁾ KSCFH ⁽¹⁾ 16:56-17:21 31,689 31,666 17:38-18:03 31,387 30,488 18:18-18:43 31,447 30,104 18:57-19:22 31,274 29,962 19:36-20:01 30,755 31,167 20:24-20:49 29,323 31,626 21:04-21:29 31,052 30,956 21:44-22:09 31,160 30,632

Mean Reference Value = <u>31,017.44</u>

Absolute Value of the Mean of the Differences = 290.22

Standard Deviation = 1,151.36

Confidence Co-efficient = $\underline{885.01}$

Relative Accuracy = 3.79% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Thousand Standard Cubic Feet Per Hour

II.14 TABLE 14 MOISTURE (%) RELATIVE ACCURACY DETERMINATION UNIT 1 SOUTH WASTE GAS STACK CLEVELAND CLIFFS, INC. TILDEN MINING COMPANY, L.C. NATIONAL MINE, MICHIGAN JULY 26, 2023

Run #	Time	REFERENCE METHOD	CEM Moisture ⁽¹⁾	DIFF
1	16:56-17:21	13.49	13.3	0.19
2	17:38-18:03	14.43	13.5	0.93
3	18:18-18:43	14.01	13.9	0.11
4	18:57-19:22	13.72	13,7	0.02
5	19:36-20:01	13.72	13.6	0.12
6	20:24-20:49	13.38	13.7	-0.32
7	21:04-21:29	14.03	14.0	0.03
8	21:44-22:09	14.04	14.2	-0.16
9	22:25-22:50	13.84	13.8	0.04

Mean Reference Value = 13.8511

Absolute Value of the Mean of the Differences = 0.1067

Standard Deviation = 0.3457

Confidence Co-efficient = 0.2657

Relative Accuracy = 2.69% of the mean of the reference method

Relative Accuracy Needs To Be Less Than 20% Of Reference Method

(1) Concentration in terms of % by volume on a dry basis

RECEIVED

SEP 15 2023

AIR QUALITY DIVISION

III. DISCUSSION OF RESULTS

The results of the RATA's are presented in Tables 1 through 14 (Section II.1 through II.14) as follows: **North**

- Table 1 NO_x Lbs/Hr
- Table 2 SO₂ Lbs/Hr
- Table 3 NO_x PPM
- Table 4 SO₂ PPM
- Table 5 O₂ %
- Table 6 Air Flow
- Table 7 Moisture

South

- Table 8 NO_x Lbs/Hr
- Table 9 SO₂ Lbs/Hr
- Table 10 NO_x PPM
- Table 11 SO₂ PPM
- Table 12 O₂ %
- Table 13 Air Flow
- Table 14 Moisture

The results of the RATA's are summarized as follows:

Source	Parameter	EPA Performance Specification	Actual Performance	RATA Frequency
	NO _x – Lbs/Hr	≤20% of RM	4.50% of RM	Annual
	SO ₂ – Lbs/Hr	≤20% of RM	3.38% of RM	Annual
	NO _x – PPM	≤20% of RM	3.57% of RM	Annual
Unit 1 North	SO₂ – PPM	≤20% of RM	6.78% of RM	Annual
NOTUT	O ₂ – %	≤20% of RM or ±1.0% Diff	1.45% RM 0.19 Avg, Diff	Annual
	Air Flow - KSCFH	≤20% of RM	7.66% of RM	Annual
	Moisture – %	≤20% of RM	6.04% of RM	Annual

Source	Parameter	EPA Performance Specification	Actual Performance	RATA Frequency
	NO _x – Lbs/Hr	NO _x – Lbs/Hr ≤20% of RM 12.50°		Annual
	SO₂ – Lbs/Hr	≤20% of RM	4.32% of RM	Annual
	NO _x – PPM	≤20% of RM	10.38% of RM	Annual
Unit 1	SO ₂ – PPM	≤20% of RM	2.46% of RM	Annual
South	O ₂ – %	≤20% of RM or ±1.0% Diff	2.67% RM 0.41 Avg. Diff	Annual
	Air Flow - KSCFH	≤20% of RM	3.79% of RM	Annual
	Moisture – %	≤20% of RM	2.69% of RM	Annual

IV. CEMS SPECIFICATIONS

Location	Parameter	Manufacturer / Model #	Serial #
	NO _x / O ₂	Teledyne Monitor Labs / T200H/O2	148
Unit 1 North	SO ₂	Teledyne Monitor Labs / T100H	146
	Air Flow	Teledyne Monitor Labs / UF150	1501325
Location	Parameter	Manufacturer / Model #	Serial #
	NO _x / O ₂	Teledyne Monitor Labs / T200H/O2	149
Unit 1 South	SO ₂	Teledyne Monitor Labs / T100H	147
	Air Flow	Teledyne Monitor Labs / UF150	1501324

V. SAMPLING AND ANALYTICAL PROTOCOL

The RATA's were performed in accordance with 40 CFR Part 60. Sampling was performed on the 161" ID North stack and the 233" ID South stack. Twenty-Four (24) point traverses were used on all stacks for the air flow determinations. The actual sampling point dimensions for the velocity traverses can be found in Appendix F.

The sampling methods used for the reference method determinations were as follows:

V.1 Oxides of Nitrogen – The NO_x sampling was conducted in accordance with U.S. EPA Reference Method 7E. A Thermo Environmental Model 42H gas analyzer was used to monitor the exhaust stacks. A heated Teflon sample line was used to transport the exhaust gases to a gas conditioner to remove moisture and reduce the temperature. From the gas conditioner stack gases were passed to the analyzer. The analyzer produces instantaneous readouts of the NO_x concentrations (PPM).

The analyzer was calibrated by direct injection prior to the testing. A span gas of 484.0 PPM was used to establish the initial instrument calibration. Calibration gases of 251.0 PPM and 127.0 PPM were used to determine the calibration error of the analyzer. The sampling system (from the back of the stack probe to the analyzer) was injected, using the 251.0 PPM gas to determine the system bias. After each sample, a system zero and system injection of 251.0 PPM were performed to establish system drift and system bias during the test period. All calibration gases were EPA Protocol 1 Certified. A 50.9 PPM NO₂ gas was used to determine conversion efficiency for the analyzer. The conversion efficiency was 94.30%.

The analyzer was calibrated to the output of the data acquisition system (DAS) used to collect the data from the unit. All reference method data was corrected using Equation 7E-5 from U.S. EPA Method 7E. A schematic diagram of the sampling train is shown in Figure 1.

V.2 Sulfur Dioxide – The SO₂ sampling was conducted in accordance with U.S. EPA Reference Method 6C. A Bovar Model 721M gas analyzer was used to monitor the exhausts. Sample gas was extracted through a heated probe. A heated teflon sample line was used to transport the exhaust gases to a gas conditioner to remove moisture and reduce the temperature. From the gas conditioner stack gases were passed to the analyzer. The analyzer produces instantaneous readouts of the SO₂ concentrations (PPM).

The analyzer was calibrated by direct injection prior to the testing. A span gas of 95.2 PPM was used to establish the initial instrument calibration. A calibration gas of 50.2 PPM was used to determine the calibration error of the analyzer. The sampling system (from the back of the stack probe to the analyzer) was injected using the 50.2 PPM gas to determine the system bias. After each sample, a system zero and system injection of 50.2 PPM were performed to establish system drift and system bias during the test period. All calibration gases were EPA Protocol 1 Certified.

The analyzer was calibrated to the output of the data acquisition system (DAS) used to collect the data from the unit. All reference method data was corrected using Equation 7E-5 from U.S. EPA Method 7E. A schematic diagram of the sampling train is shown in Figure 1.

V.3 Oxygen – The O_2 sampling was conducted in accordance with U.S. EPA Reference Method 3A. A heated Teflon sample line was used to transport the exhaust gases from the exhaust stacks to a gas conditioner to remove moisture and reduce the temperature. From the gas conditioner the stack gases were passed to a Servomex Series 1400 O_2 analyzer. This analyzer produces instantaneous readouts of the oxygen concentrations (%).

The analyzer was calibrated by direct injection prior to the testing. A span gas of 21.0% was used to establish the initial instrument calibration. Calibration gases of 6.03% and 12.0% were used to determine the calibration error of the analyzer. The sampling system (from the back of the stack probe to the analyzer) was injected using either the 6.03% or the 12.0% gas to determine the system bias. After each sample, a system zero and system injection of either 6.03% or 12.0% were performed to establish system drift and system bias during the test period. All calibration gases were EPA Protocol 1 Certified.

The analyzer was calibrated to the output of the data acquisition system (DAS) used to collect the data. All reference method data was corrected using Equation 7E-5 from U.S. EPA Method 7E. A schematic diagram of the sampling train is shown in Figure 1.

V.4 Carbon Dioxide - The CO₂ sampling was conducted in accordance with U.S. EPA Reference Method 3A. A heated Teflon sample line was used to transport the exhaust gases from the exhaust stacks to a gas conditioner to remove moisture and reduce the temperature. From the gas conditioner the stack gases were passed to a Servomex Series 1400 CO₂ analyzer. This analyzer produces instantaneous readouts of the carbon dioxide concentrations (%).

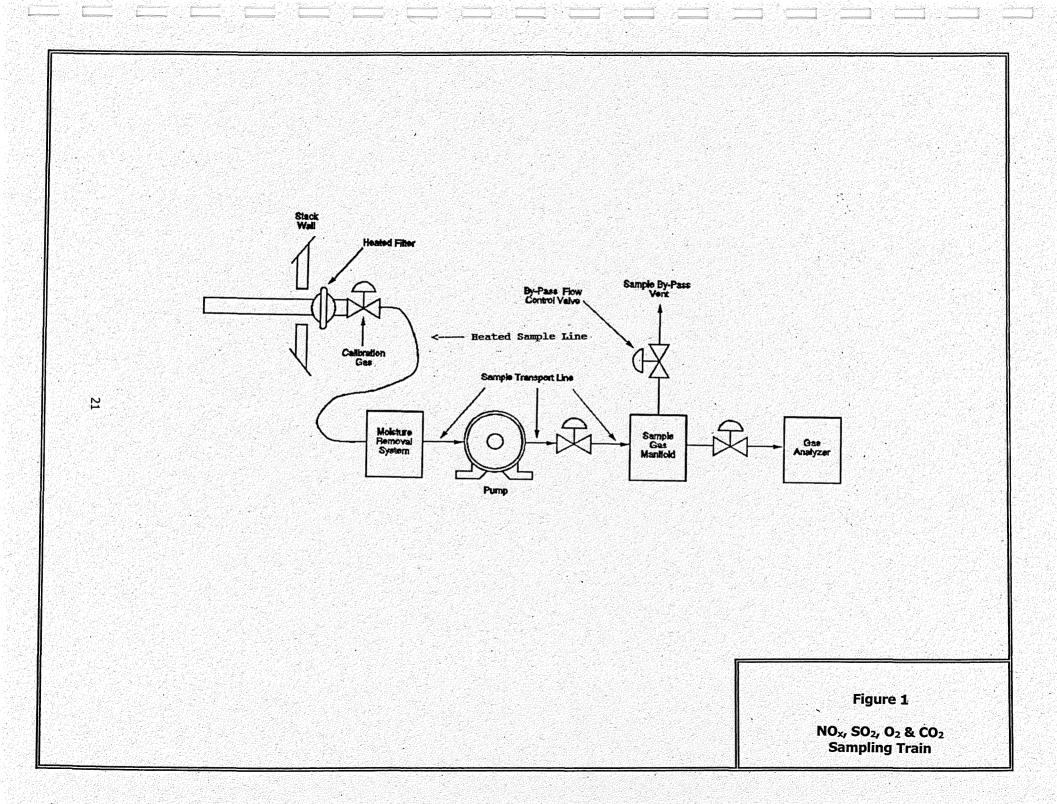
The analyzer was calibrated by direct injection prior to the testing. A span gas of 21.1% was used to establish the initial instrument calibration. Calibration gases of 5.95% and 11.9% were used to determine the calibration error of the analyzer. The sampling system (from the back of the stack probe to the analyzer) was injected using either the 5.95% or the 11.9% gas to determine the system bias. After each sample, a system zero and system injection of either 5.95% or 11.9% were performed to establish system drift and system bias during the test period. All calibration gases were EPA Protocol 1 Certified.

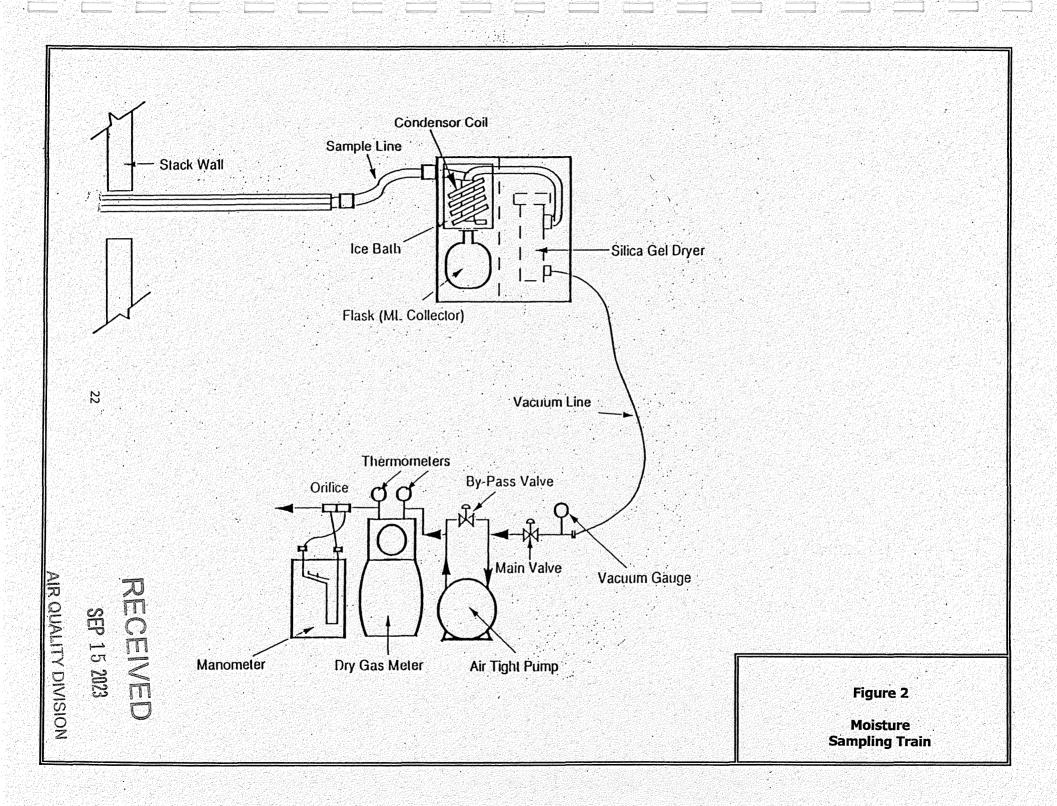
The analyzer was calibrated to the output of the data acquisition system (DAS) used to collect the data. All reference method data was corrected using Equation 7E-5 from U.S. EPA Method 7E. A schematic diagram of the sampling train is shown in Figure 1.

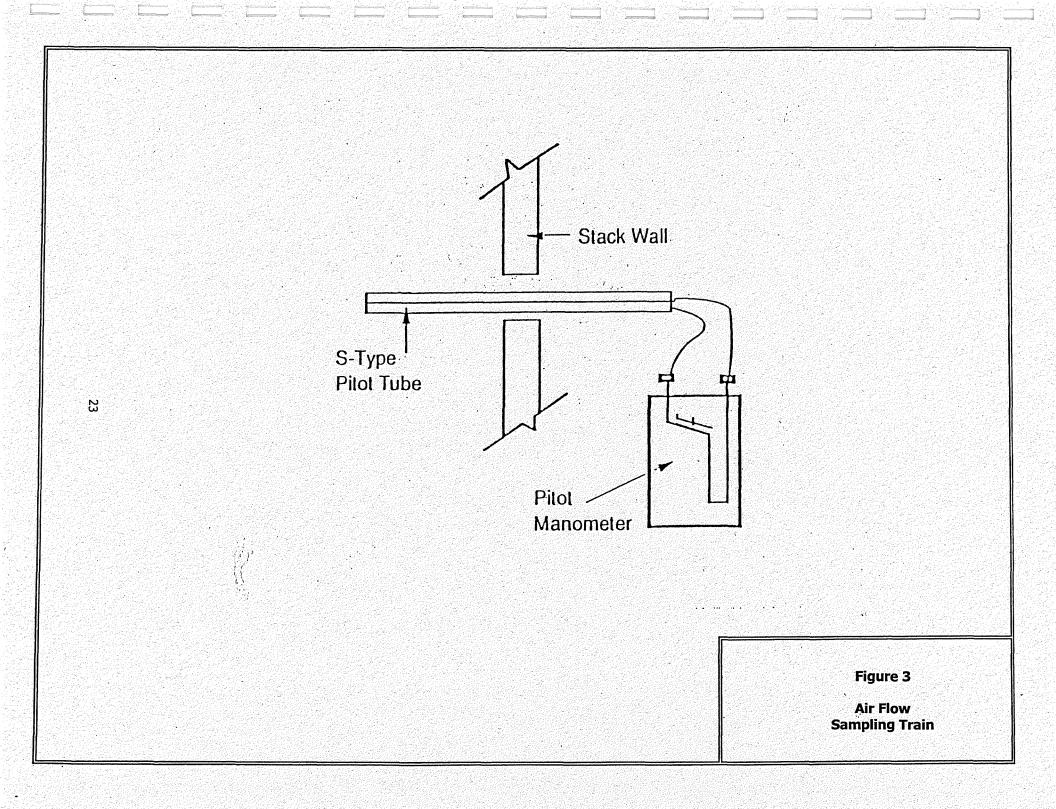
V.5 Moisture - Moisture samples were collected in accordance with U.S. EPA Method 4. Samples were withdrawn from the stack and passed through a condensing coil with drop out before being passed through pre-weighed silica gel. The water collected was measured to the nearest 0.5 g and the silica gel was reweighed to the nearest 0.5 g. The moisture collected along with the sample volume was used to determine the percent moisture in the exhaust. Each sample was twenty five (25) minutes in duration and had a minimum sample volume of twenty-one (21) standard cubic feet. A diagram of the moisture sampling train is shown in Figure 2.

V.6 Air Flows - The air flow rates were determined in conjunction with the other sampling by employing U.S. EPA Reference Methods 1 and 2. Sampling was performed on the 161" ID North stack and the 233" ID South stack. Twenty-Four (24) point traverses were used on all the stacks. The actual sampling point dimensions for the velocity traverses can be found in Appendix F.

Velocity pressures were determined using an S-Type pitot tube. Temperatures were measured using a Type K thermocouple. A diagram of the air flow sampling train is shown in Figure 3.


This report was prepared by:


David D. Engelhardt Vice President This report was reviewed by:


day.

Stephan K. Byrd President

20

