MI-ROP-B4942 Renewable Operating Permit (ROP) Test Report

Corteva Agriscience Harbor Beach, Michigan

December 2019

Table of Contents

SECTION	DESCRIPTION	PAGE
1	Introduction	3
2	Process Vent Emission Control Summary	4
3	Source Description	10
4	Sampling and Analytical Procedures	11
5	Test Results Discussion	13
6	Enclosed Flare Testing	14
7	Bioreactor R-722 Wastewater Treatment Sampling and Analysis	16
Appendix	Supporting Data Appendix	

1.0 Introduction

Corteva Agriscience (Corteva) owns and operates the Dow AgroSciences facility in Harbor Beach, Michigan. Corteva conducted performance testing at this facility the week of October 21-25, 2019. The testing was performed to demonstrate ongoing compliance with the Pesticide Active Ingredient (PAI) MACT (40CFR63, Subpart MMM) emission standards. To comply with this standard, organic hazardous air pollutant (OHAP) emissions were maintained below 20 ppmv OHAP using catalytic incineration and thermal oxidation as controls. Measurements were also collected to assess compliance with Renewable Operating Permit (ROP) State Registration Number (SRN) B4942 for EU_PROCESS emission limits and to support emission factors used to develop emission estimates used in Michigan Air Emission Reporting System (MAERS) and EPCRA TRI reporting.

EU_PROCESS process vent emissions are collected in a common header and routed to one of five thermal treatment units (TTUs). Four of the TTUs are catalytic thermal treatment units (TTUs). These catalytic TTUs are designated TTU-850, TTU-855, TTU-860, and TTU-865. The remaining TTU is a regenerative thermal oxidizer (RTO). This unit is designated TTU-870.

In addition, the EU_PROCESS enclosed flare was tested to demonstrate compliance with PAI MACT requirements (see Section 6). This flare is used to treat Bioreactor R-722 wastewater treatment unit (WTU) vent emissions.

The Bioreactor R-722 WTU was tested to demonstrate acceptable treatment of the PAI MACT Group 1 wastewater stream prior to discharging to the City of Harbor Beach POTW (see Section 7).

Additional information can be found in the EGLE approved Test Plan submitted on August 23, 2019 and approved by EGLE October 14, 2019.

The following personnel are the facility and testing contacts for test report questions.

Primary Corteva Contact

Jim McGee Corteva Agriscience Harbor Beach Operations 305 North Huron Avenue Phone: (989) 479-5283 Email: james.mcgee@corteva.com

Testing Resource

Michael Krall Montrose Environmental Group 3526 Loop 337, Suite 100 New Braunfels, TX 78130 Phone: (512) 971-7873 Email: mkrall@montrose-env.com EU-PROCESS complies with emission limits set forth in Renewable Operating Permit (ROP) MI-ROP-B4942 and Permit 107-18A. The table below presents the emission limits for EU-PROCESS.

Pollutant	Limit	Time Period / Operating Scenario	Equipment	Monitoring / Testing Method	Underlying Applicable Requirement
1. Organic HAP as defined in 40 CFR 63.1361	20 ppmv +	Hourly	EUPROCESS emissions exhaust through TTU- 850	SC IV.2.a, SC IV.3, SC V.2.	40 CFR 63.1362(b)
2. Organic HAP as defined in 40 CFR 63.1361	20 ppmv +	Hourly	EUPROCESS emissions exhaust through TTU- 855	SC IV.2.a, SC IV.3, SC V.2.	40 CFR 63.1362(b)
3. Organic HAP as defined in 40 CFR 63.1361	20 ppmv +	Hourly	EUPROCESS emissions exhaust through TTU- 860	SC IV.2.a, SC IV.3, SC V.2.	40 CFR 63.1362(b)
4. Organic HAP as defined in 40 CFR 63.1361	20 ppmv +	Hourly	EUPROCESS emissions		40 CFR 63.1362(b)
5. Organic HAP as defined in 40 CFR 63.1361	20 ppmv or 98% destruction	EUPROCESS emissions Hourly exhaust through TTU- 870		SC IV.2.a, SC IV.3, SC V.2.	40 CFR 63.1362(b)
6. VOC	8.7 lb/hr	Hourly	EUPROCESS emissions exhausted through each TTU: TTU850, TTU855, TTU860, TTU865, & TTU870	SC IV.2, SC IV.3, SC V1	R336.1225 R336.1702(a)
7. Opacity	Visible emissions from the process shall not exceed a 6-minute average of 5% opacity.	6-minutes	EUPROCESS	SC III.1, SC VI.1	R336.1301(1)(c)
8. Ammonia	31 lb/hr ¹	Hourly	EUPROCESS	SC VI.1	R336.1225
9. Ammonia	2.0 tons per year ¹	12-month rolling time period as determined at the end of each calendar month	EUPROCESS	SC V.1	R336.1224
10. PM	0.006 lb/1000 lb of exhaust gas, calculated	Hourly	EUPROCESS emissions exhausted through any	SC. IV.2, SC VI.1	R336.1331

¹This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

Tables 1 through 5 summarize emission measurements calculated from the test data.

While are emission rates are acceptable, ammonia emission rates for TTU-865 and TTU-870 are higher than expected. Ammonia emission rates and the subsequent facility investigation is discussed in Section 5.

In Table 5, the carbon monoxide emission rate is high because the firebox temperature was minimized to establish a minimum firebox temperature per PAI MACT requirements.

TTU 850	Run 1 10/25/2019 1007 - 1114	Run 2 10/25/2019 1144 - 1251	Run 3 10/25/2019 1317 - 1424	Average
Ρ	ROCESS DATA			
Fire Box Temperature (°F)	654.6	655.2	654.4	654.7
Catalyst Inlet Temperature (°F)	650.3	650.9	649.9	650.4
Catalyst Outlet Temperature (°F)	649.4	651.0	648.8	649.7
Catalyst Temperature Differential (°F)	0.9	0.1	1.1	0.7
Natural Gas Flow (MMscf/hr)	0.264	0.261	0.265	0.264
EN	IISSIONS DATA			
Stack Gas Flow (dscf/min)	34,620	34,690	34,770	34,693
Stack Gas Dry Molecular Weight (lb/lb-mol)	29.07	29.07	29.07	29.07
NOx (ppmv)	5.0	5.3	5.3	5.2
NOx (lb/hr)	1.25	1.31	1.32	1.29
NOx Natural Gas Emission Factor (lb/MMscf)	4.73E-06	5.02E-06	4.98E-06	4.89E-06
CO (ppmv)	0.4	0.2	0.0	0.2
CO (lb/hr)	0.06	0.03	0.0	0.05
CO Natural Gas Emission Factor (lb/MMscf)	2.27E-07	1.15E-07	0.0	1.89E-07
VOC (ppmv)	1.3	1.5	1.3	1.4
VOC (lb/hr)	0.33	0.38	0.32	0.34
PM (grains/dscf)	0.00014	0.00024	0.000003	0.00013
PM (lb/hr)	0.042	0.071	0.001	0.038
PM (lb/lb x 10 ³ stack gas)	0.000268	0.000452	0.0000063	0.000242
PM Emission Factor (lb/scf)	1.59E-07	2.72E-07	3.77E-09	1.44E-07
NH3 (ppmv)	ND	ND	ND	ND
NH3 (lb/hr)	ND	ND	ND	ND
NH3 Emission Factor (lb/scf)	ND	ND	ND	ND
MeOH (ppmv)	1.4	1.8	1.8	1.6
MeOH (lb/hr)	0.23	0.27	0.27	0.26
MeOH Emission Factor (lb/scf)	8.71E-07	1.03E-06	1.02E-06	9.85E-07
Inlet Flow (dscf/min)	55,783	55,675	55,069	55,509
Inlet MeOH (ppmv)	197.3	176.8	184.7	186.2
Inlet MeOH (lb/hr)	54.9	43.4	44.9	47.7
Inlet MeOH Emission Factor (lb/dscf)	0.059	0.047	0.49	0.52
MeOH DRE (%)	99.57	99.38	99.40	99.45

Table 1. TTU 850 Results

TTU 855	Run 1 10/24/2019 1425 - 1532	Run 2 10/24/2019 1606 - 1714	Run 3 10/25/2019 0755 - 0902	Average
F	ROCESS DATA			
Fire Box Temperature (°F)	654.9	654.9	654.9	654.9
Catalyst Inlet Temperature (°F)	653.7	653.7	653.7	653.7
Catalyst Outlet Temperature (°F)	651.1	651.1	651.0	651.1
Catalyst Temperature Differential (°F)	2.6	2.6	2.7	2.6
Natural Gas Flow (MMscf/hr)	0.214	0.215	0.215	0.215
EN	AISSIONS DATA			
Stack Gas Flow (dscf/min)	23,762	23,709	23,232	23,568
Stack Gas Dry Molecular Weight (lb/lb-mol)	29.06	29.07	29.08	29.07
NOx (ppmv)	15.2	10.4	8.3	11.3
NOx (lb/hr)	2.60	1.76	1.38	1.91
NOx Natural Gas Emission Factor (lb/MMscf)	1.21E-05	8.19E-06	6.42E-06	8.88E-06
CO (ppmv)	1.0	0.5	1.6	1.0
CO (lb/hr)	0.10	0.05	0.16	0.11
CO Natural Gas Emission Factor (lb/MMscf)	4.67E-07	2.33E-07	7.44E-07	5.12E-07
VOC (ppmv)	5.5	4.5	5.2	5.0
VOC (lb/hr)	0.94	0.76	0.86	0.86
PM (grains/dscf)	0.000004	0.000004	0.00085	0.00029
PM (lb/hr)	0.001	0.001	0.17	0.057
PM (lb/lb x 10 ³ stack gas)	0.000093	0.0000093	0.00162	0.00055
PM Emission Factor (lb/scf)	4.67E-09	4.65E-09	7.91E-07	2.65E-07
NH3 (ppmv)	ND	ND	ND	ND
NH3 (lb/hr)	ND	ND	ND	ND
NH3 Emission Factor (lb/scf)	ND	ND	ND	ND
MeOH (ppmv)	16.3	17.8	18.0	17.4
MeOH (lb/hr)	1.93	1.86	1.84	1.88
MeOH Emission Factor (lb/scf)	9.02E-06	8.65E-06	8.56E-06	8.74E-06
Inlet Flow (dscf/min)	32,488	32,017	29,290	31,265
Inlet MeOH (ppmv)	220.3	253.9	369.7	281.3
Inlet MeOH (lb/hr)	35.71	35.85	47.76	39.77
Inlet MeOH Emission Factor (lb/dscf)	0.066	0.067	0.098	0.076
MeOH DRE (%)	94.59	94.80	96.14	95.18

Table 2. TTU 855 Results

TTU 860	Run 1 10/23/2019 1648 - 1757	Run 2 10/24/2019 0822 - 0928	Run 3 10/24/2019 0957 - 1103	Average
Ρ	ROCESS DATA			
Fire Box Temperature (°F)	654.9	654.8	655.0	654.9
Catalyst Inlet Temperature (°F)	646.8	646.9	646.6	646.8
Catalyst Outlet Temperature (°F)	644.8	645.0	644.4	644.7
Catalyst Temperature Differential (°F)	2.0	1.9	2.2	2.0
Natural Gas Flow (MMSCF/hr)	0.119	0.129	0.131	0.126
EN	IISSIONS DATA			
Stack Gas Flow (dscf/min)	25,547	29,110	27,085	27,248
Stack Gas Dry Molecular Weight (lb/lb-mol)	29.09	29.09	29.09	29.09
NOx (ppmv)	13.0	9.9	11.1	11.3
NOx (lb/hr)	2.38	2.31	1.93	2.21
NOx Natural Gas Emission Factor (lb/MMscf)	2.00E-05	1.79E-05	1.47E-05	1.75E-05
CO (ppmv)	1.4	1.6	1.5	1.5
CO (lb/hr)	0.15	0.19	0.19	0.18
CO Natural Gas Emission Factor (lb/MMscf)	1.26E-06	1.47E-06	1.45E-06	1.43E-06
VOC (ppmv)	3.8	4.6	4.0	4.2
VOC (lb/hr)	0.71	0.97	0.82	0.83
PM (grains/dscf)	0.0002	0.0005	0.00002	0.0002
PM (lb/hr)	0.04	0.11	0.004	0.05
PM (lb/lb x 10 ³ stack gas)	0.00035	0.00083	0.000033	0.00040
PM Emission Factor (lb/scf)	3.36E-07	8.53E-07	3.05E-08	3.97E-07
NH3 (ppmv)	ND	ND	ND	ND
NH3 (lb/hr)	ND	ND	ND	ND
NH3 Emission Factor (lb/scf)	ND	ND	ND	ND
MeOH (ppmv)	10.3	14.9	15.9	13.7
	1.32	14.9	1.89	1.71
MeOH (lb/hr) MeOH Emission Factor (lb/scf)	1.32 1.11E-05	1.92 1.49E-05	1.89 1.44E-05	1.36E-05
Inlet Flow (dscf/min)	35,726	40,293	40,253	38,757
Inlet MeOH (ppmv)	275.3	342.0	295.9	304.4
Inlet MeOH (lb/hr)	49.07	60.77	52.53	54.12
Inlet MeOH Emission Factor (lb/dscf)	0.082	0.090	0.78	0.084
MeOH DRE (%)	97.32	98.85	96.39	96.85

Table 3. TTU 860 Results

TTU 865	Run 1 10/23/2019 1012 - 1120	Run 2 10/23/2019 1144 - 1307	Run 3 10/23/2019 1338 - 1446	Average
Ρ	ROCESS DATA			
Fire Box Temperature (°F)	656.7	656.4	657.0	656.7
Catalyst Inlet Temperature (°F)	647.2	646.4	646.2	646.6
Catalyst Outlet Temperature (°F)	642.0	640.9	640.6	641.2
Catalyst Temperature Differential (°F)	5.2	5.5	5.6	5.4
Natural Gas Flow (MMscf/hr)	0.170	0.174	0.176	0.173
EN	IISSIONS DATA			
Stack Gas Flow (dscf/min)	30,178	30,409	28,513	29,700
Stack Gas Dry Molecular Weight (lb/lb-mol)	29.10	29.10	29.09	29.10
NOx (ppmv)	23.3	22.8	24.1	23.4
NOx (lb/hr)	5.0	5.0	4.9	5.0
NOx Natural Gas Emission Factor (lb/MMscf)	2.94E-05	2.87E-05	2.78E-05	2.89E-05
CO (ppmv)	1.6	1.6	0.9	1.4
CO (lb/hr)	0.22	0.22	0.11	0.18
CO Natural Gas Emission Factor (lb/MMscf)	1.29E-06	1.26E-06	6.25E-07	1.04E-06
VOC (ppmv)	4.4	4.7	5.2	4.8
VOC (lb/hr)	0.97	1.03	1.06	1.02
PM (grains/dscf)	0.000003	0.000039	0.000271	0.00010
PM (lb/hr)	0.001	0.010	0.066	0.026
PM (lb/lb x 10 ³ stack gas)	0.000007	0.00007	0.00051	0.000197
PM Emission Factor (lb/scf)	5.88E-09	5.75E-08	3.75E-07	1.50E-07
NH3 (ppmv)	43.7	0.55	ND	14.8
NH3 (lb/hr)	0.21	0.003	ND	0.07
NH3 Emission Factor (lb/scf)	1.24E-06	1.72E-08	ND	6.29E-07
MeOH (ppmv)	6.8	8.1	11.9	8.9
MeOH (lb/hr)	1.02	1.09	1.50	1.20
MeOH Emission Factor (lb/scf)	6.00E-06	6.26E-06	8.52E-06	6.94E-06
Inlet Flow (dscf/min)	38,687	37,279	39,226	38,397
Inlet MeOH (ppmv)	148.1	296.5	334.7	259.8
Inlet MeOH (lb/hr)	28.59	48.75	57.91	45.08
Inlet MeOH (b)/h/)	0.044	0.078	0.089	0.070
MeOH DRE (%)	96.43	97.76	97.41	97.20

Table 4. TTU 865 Results

TTU 870	Run 1 10/22/2019 1057 - 1214	Run 2 10/22/2019 1647 - 1757	Run 3 10/22/2019 1816 - 1925	Average
F	ROCESS DATA		II	
Fire Box Temperature (°F)	1,500.4	1,500.5	1,500.9	1,500.6
Natural Gas Flow (MMscf/Hr)	0.228	0.193	0.225	0.215
EN	AISSIONS DATA			
Stack Gas Flow (dscf/min)	33,951	42,892	43,382	40,075
Stack Gas Dry Molecular Weight (lb/lb-mol)	29.05	29.03	29.05	29.04
NOx (ppmv)	6.8	5.9	5.6	6.1
NOx (lb/hr)	1.65	2.05	2.35	2.02
NOx Natural Gas Emission Factor (lb/MMscf)	7.24E-06	1.06E-05	1.04E-05	9.40E-06
CO (ppmv)	116.3	112.4	121.0	116.6
CO (lb/hr)	17.2	22.0	23.2	20.8
CO Natural Gas Emission Factor (lb/MMscf)	7.54E-05	1.14E-04	1.03E-04	9.67E-05
VOC (ppmv)	2.5	2.8	3.1	2.8
VOC (lb/hr)	0.62	0.86	0.97	0.82
PM (grains/dscf)	0.0006	0.0002	0.0016	0.0008
PM (lb/hr)	0.18	0.06	0.61	0.28
PM (lb/lb x 10 ³ stack gas)	0.00117	0.000309	0.00311	0.00153
PM Emission Factor (lb/scf)	7.89E-07	3.11E-07	2.71E-06	1.30E-06
NH3 (ppmv)	76.6	72.3	82.7	77.2
NH3 (lb/hr)	0.41	0.48	0.56	0.48
NH3 Emission Factor (lb/scf)	1.80E-06	2.49E-06	2.49E-06	2.26E-06
MeOH (ppmv)	5.5	4.5	5.6	5.2
MeOH (lb/hr)	0.94	0.85	1.08	0.95
MeOH Emission Factor (lb/scf)	4.12E-06	4.40E-06	4.80E-06	4.42E-06
Inlet Flow (dscf/min)	69,390	72,291	73,486	71,722
Inlet MeOH (ppmv)	247.4	299.3	261.3	269.3
Inlet MeOH (lb/hr)	85.66	95.43	84.68	88.59
Inlet MeOH Emission Factor (lb/dscf)	0.074	0.079	0.069	0.074
MeOH DRE (%)	98.91	99.11	98.73	98.91

Table 5. TTU 870 Results

3.0 Source Description

EU_PROCESS process vent emissions are collected in a common header and routed to one of five thermal treatment units. Four of the units are catalytic thermal treatment units (TTUs). The fifth unit is a newly commissioned regenerative thermal oxidizer (RTO) installed under Permit 107-18A. The additional control device was installed to increase redundancy and to improve the reliability of the control system for EU_PROCESS.

Prior to venting to the atmosphere, all associated fermentation, crystallization, and packaging process vents are sent to one of the five TTUs. The 4 catalytic units currently operate at a minimum firebox temperature of 650°F. The RTO operates at a minimum firebox temperature of 1,550°F.

The TTUs primary function is to control VOC. VOC may include MeOH, organic acids, and cyclical volatiles. Ammonia may also be present in process vents routed to the TTUs.

Additional information can be found in the submitted August 2019 test protocol.

All sampling ports for the catalytic units are located 25 feet (6.3 stack diameters) downstream and 12 feet (3 stack diameters) from flow disturbances, while the sampling ports for TTU 870 are located 30 feet (5.5 stack diameters) downstream and 14 feet (2.8 stack diameters) from flow disturbances.

The pollutants measured and the associated sampling methods were:

- VOC EPA Method 25A;
- PM EPA Method 5;
- MeOH EPA Method 308;
- NH₃ CTM 027;
- NOx EPA Method 7E; and
- CO EPA Method 10.

The table below lists the pollutants and sampling trains used to collect measurements and samples during the performance test. These methods were performed according to the protocol listed in the appropriate Appendix A, 40 CFR 60 EPA Reference Test Method. Schematic diagrams can be found in the EPA Reference Test Methods.

Detailed descriptions of the sampling and analytical methods can be found in the Test Plan that was submitted August 23, 2019 and approved by EGLE October 14, 2019.

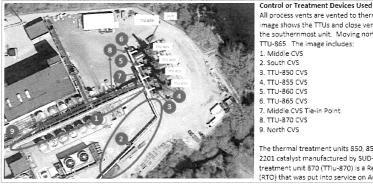
Sampling Location	No. of Runs	Parameter	Run Duration (min)	Reference Method	Units of Measurement
Stack Exhaust	3/unit	Flow Rate	60	EPA Methods 1-4	dscfm
Stack Exhaust	3/unit	VOC	60	EPA Method 25A	ppmv
Stack Exhaust	3/unit	PM	60	EPA Method 5	mg
Stack Exhaust	3/unit	NH₃	60	EPA CTM 027	μg
TTU Inlet and					
Stack Exhaust	3/unit	MeOH	60	EPA Method 308	μg
Stack Exhaust	3/unit	NOx	60	EPA Method 7E	ppmv
Stack Exhaust	3/unit	CO	60	EPA Method 10	ppmv
Stack Exhaust	3/unit	O ₂ /CO ₂	60	EPA Method 3A	%

Sampling and Analytical Procedures

The sampling and analytical procedures to be followed during the performance test are designed to demonstrate compliance with emission limits.

Sampling Method	Sampling Plan	Analytical Method	Analytical Plan
Method 1	Traverse locations determined prior to sampling	Not applicable	Not applicable
Method 2	Velocity measurements collected by traversing the stack	Not applicable	Not applicable
Method 4	Samples collected in conjunction with the PM and NH3 collection	Method 4 – Gravimetric	Samples completed on-site
Method 5	Samples collected using isokinetic methodology	Method 5 – Isokinetic	Samples completed on-site and analyzed by off-site lab
CTM-027	Samples collected using isokinetic methodology	CTM027 – Isokinetic	Samples completed on-site and analyzed by off-site lab
Method 308	Samples collected from a single point at TTU Inlet and Stack Exhaust	Method 308 – Single point	Samples completed on-site and analyzed by off-site lab
Method 3A	Samples collected from a single center point to an analyzer system	Method 3A – Paramagnetic/ Infrared	Samples completed on-site
Method 7E	Samples collected from a single center point to an analyzer system	Method 7E – Chemiluminescent	Samples completed on-site
Method 10	Samples collected from a single center point to an analyzer system	Method 10 – Non- dispersive Infrared	Samples completed on-site
Method 25A	Samples collected from a single center point to an analyzer system	Method 25A – Flame Ionization Detector	Samples completed on-site

5.0 **Test Results Discussion**


Section 2.0, Tables 1 through 5, summarize emission measurements calculated from the test data. As reported in these tables, all emission measurements are compliant with applicable limits. Table 5 shows that a minimum firebox temperature of 1,500 F is acceptable to meet OHAP control requirements.

Carbon monoxide (CO) emission rates reported in Table 5 are higher than normal levels. To establish a firebox operating parameter for RTO TTU-870, testing was performed at a minimum firebox temperature. This resulted in elevated CO emission rates.

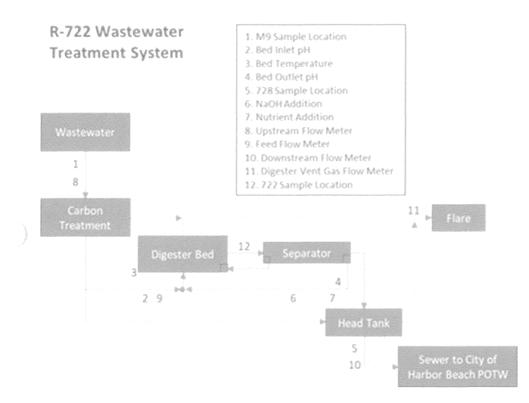
The original laboratory report for the particulate matter samples was in error as a final review revealed. The error resulted from contamination of TTU 860 Runs 1 and 2 from the graphite ferrule used for sealing the sampling nozzle to the probe. Pieces of the ferrule were discovered in the probe and nozzle rinses that biased the actual weight gain. The ferrule pieces were carefully picked off the samples and the samples were re-weighed per the method procedure. At this time, the final PM laboratory report has not been finalized and will be forwarded as soon as it becomes available as an addendum to the appendix.

Ammonia emission rates for TTU-865 and TTU-870 are higher than expected but acceptable. The facility is investigating. The illustration below shows the vent system. Closed Vent System (CVS) 9 was installed along with RTO TTU-870 pursuant to Permit 107-18A. This vent system routes fermentation vents to the TTU header. CVS-9 ties into the common header at the north end. CVS-2 also routes fermentation vents to the TTU header. CVS-2 ties into the common header at the south end.

The emission profiles of CVS-2 and CVS-9 should be essentially the same. The facility will investigate why the profiles, with respect to ammonia, appear to be different. Results from this investigation will be communicated to the EGLE Saginaw Bay District Office.

All process vents are vented to thermal treatment units. The image shows the TTUs and close vent system (CVS). TTU-850 is he southernmost unit. Moving north is TTU-855, TTU-860, and TTU-865. The image includes: 1. Middle CVS 2. South CVS 3. TTU-850 CVS 4 TTU-855 CVS 5. TTU-860 CVS 6. TTU-865 CVS 7. Middle CVS Tie-in Point 8. TTU-870 CVS 9. North CVS

The thermal treatment units 850, 855, 860, 865 use EnviCat[®] 2201 catalyst manufactured by SUD-CHEMIE Inc. Thermal treatment unit 870 (TTIu-870) is a Regenerative Thermal Oxidizer (RTO) that was put into service on August 9, 2019.


A comprehensive data appendix is attached to this report that includes:

- Detailed process and emissions results;
- Equipment calibrations including CEMS;
- Sample calculations used to generate the results; •
- Copies of all field data sheets; and
- Copies of the laboratory data reports including QA/QC.

6.0 Enclosed Flare Testing

The SRN B4942 PAI process unit consists of fermentation, product recovery crystallization, filtration, product drying and packaging, and waste broth processing equipment. Wastewater from the PAI process unit is directed to a closed anaerobic biological treatment process (Bioreactor R-722) to reduce the chemical oxygen demand (COD) and remove methanol. Bioreactor R-722 is a recirculating fluidized bed reactor that utilizes microorganisms in an activated carbon media to aerobically convert organic material in the presence of water into methane and carbon dioxide. The bioreactor water effluent is discharged to the local publicly owned treatment works (POTW). The exhaust gas from the bioreactor is primarily methane and carbon dioxide with lesser amounts of hydrocarbons.

The flow chart below illustrates the wastewater treatment system.

Gases collect in the headspace of the bioreactor and are exhausted to a non-assisted enclosed flare. Prior to the flare, the bioreactor vent gas is combined with a nitrogen purge stream and sent to a separator vessel for water removal. The bioreactor vent gas and nitrogen purge flow rates are measured prior to being combined using separate permanently installed mass flow meters. Bioreactor vent gas flow is measured using a thermal mass flow meter and automated control valve. The nitrogen flow is maintained using a mass flow meter.

The flare was tested to demonstrate ongoing compliance with PAI MACT requirements. The following EPA methods were used for the sampling and analysis.

Inlet Vent Flow Rate - EPA Alt-080/073

The gas velocity and volumetric flow rate will be determined using the plant on-line mass flow meters as allowed by EPA Alt-080/073. The bioreactor vent gas and nitrogen purge flow-rates are measured prior

to being combined using separate permanently installed mass flow meters. Bioreactor vent gas flow is measured using the process meter.

Visible Emissions Observations - EPA Method 22

Method 22 will be performed by an observer educated on the general procedures for determining the presence of visible emissions (no certification required). The emissions will be observed over a two-hour test period. The observer is required to take a five-minute break after every twenty minutes of observations.

TOC Sampling and Analysis – ASTM D1946-90

TOC sampling will be conducted on the flare inlet vent using evacuated stainless steel summa canisters, then analyses by ASTM D1946-90 to calculate the net heating value of the gas being combusted. Three runs of approximately 1-hour duration each will be conducted. Samples will be shipped to a contract laboratory for analysis.

The table below lists all the parameters and results during the flare performance test.

Enclosed Flare Testing Results							
Parameter	Run 1	Run 2	Run 3	Average			
Bioreactor Vent Gas Flow	64 lb/hr	45 lb/hr	45 lb/hr	51 lb/hr			
Flame Verification	>300°F	>300°F	>300°F	>300°F			
Flare Vent Gas Net Heating Value	806 BTU/scf	806 BTU/scf	804 BTU/scf	805 BTU/scf			
Visible Emissions Assessment	0 minutes	0 minutes	0 minutes	0 minutes			

7.0 Bioreactor R-722 Wastewater Treatment Sampling and Analysis

As summarized in Section 6, SRN B4942 wastewater from the PAI process unit is directed to a closed anaerobic biological treatment process (Bioreactor R-722) to reduce the chemical oxygen demand (COD) and remove methanol.

Bioreactor treatment efficiency sampling was initially accomplished in 2004. In June 2013, Corteva performed sampling to confirm ongoing compliance with the fraction removal requirements.

Samples were collected during the October 2019 test event, to again confirm ongoing compliance with fraction removal requirements. Refer to the flowchart in Section 6. Samples were collected at points 1 (M9 tank) and point 5 (V-728).

Results below confirmed ongoing compliance with the standard.

Bioreactor R-722 Wastewater Treatment Sampling and Analysis Results

Parameter	722 Run 1 (ug)	728 Run 1 (ug)	M9 Run 1 (ug)	722 Run 2 (ug)	728 Run 2 (ug)	M9 Run 2 (ug)	722 Run 3 (ug)	728 Run 3 (ug)	M9 Run 3 (ug)
Methanol	ND	7,220	69,373	32.1	1,663	62,820	ND	17,268	58,501
m-Xylene	ND	ND	26.2	ND	ND	26.1	ND	ND	23.0
o-Xylene	ND	ND	153	ND	ND	140	ND	ND	120
p-Xylene	ND	ND	102	ND	ND	101	ND	ND	87.7
1,2,3-TMB	ND	ND	61.6	ND	ND	58.6	ND	ND	53.4
NH ₃	264	80.3	332	275	76.7	438	282	121	519
Formic Acid	ND	7.10	2,779	ND	ND	2,183	ND	ND	1,548
Sulfate	1,038	369	584	1,096	1,740	2,280	961	922	4,242

One (1) ug was used to calculate S	vstem Removal perce	entages for non-detect (ND) measurements.

System Removal	Avg. Inlet (ug)	Avg. Outlet (ug)	System Removal
Methanol	63,565	8,717	86.3%
m-Xylene	25	1	96.0%
o-Xylene	138	1	99.3%
p-Xylene	97	1	99.0%
1,2,3-TMB	58	1	98.3%
NH ₃	430	93	78.4%
Formic Acid	2,170	3	99.9%
Sulfate	2,369	1,010	57.3%