FINAL REPORT

GERDAU MACSTEEL, INC

MONROE, MICHIGAN

MONROE MILL: STACK TEST REPORT - ELECTRIC ARC FURNACE (EAF) AND LADLE METALLURGY SYSTEM (LMF)

RWDI #2300259

January 27, 2023

SUBMITTED TO

Christopher Hessler Gerdau MacSteel, Inc Regional Environmental Manager Christopher.Hessler@gerdau.com

Gerdau MacSteel, Inc Monroe Mill 3000 East Front Street Monroe, Michigan 48161 T: 734.384.6544

Scott Miller EGLE, Air Quality Division 301 East Louis Glick Highway Jackson, Michigan 49201

TPU Supervisor EGLE, Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48933

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com | ext. 3703

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

FINAL REPORT

GERDAU MACSTEEL, INC

MONROE, MICHIGAN

MONROE MILL: STACK TEST REPORT - ELECTRIC ARC FURNACE (EAF) AND LADLE METALLURGY SYSTEM (LMF)

RWDI #2300259

January 27, 2023

SUBMITTED TO

Christopher Hessler Gerdau MacSteel, Inc Regional Environmental Manager Christopher.Hessler@gerdau.com

Gerdau MacSteel, Inc Monroe Mill 3000 East Front Street Monroe, Michigan 48161 T: 734.384.6544

Scott Miller EGLE, Air Quality Division 301 East Louis Glick Highway Jackson, Michigan 49201

TPU Supervisor EGLE, Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48933

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com | ext. 3703

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

RWDI#2300259 January 27, 2023

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM2.5, PM10, and Visual Emissions from the EAF and LMF. The test program was completed the week of November 28th, 2022.

Executive Table i: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	5.06 lb/hr	10.9 lb/hr	
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel	
PM10	7.29 lb/hr	10.9 lb/hr	
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr	

Executive Table ii: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.45 lb/hr	12.91 lb/hr	
PM10	2.60 lb/hr	12.91 lb/hr	
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from vents/openings	0% Opacity	6% Opacity	

FINAL REPORT

GERDAU MACSTEEL, INC

MONROE, MICHIGAN

MONROE MILL: STACK TEST REPORT - ELECTRIC ARC FURNACE (EAF) AND LADLE METALLURGY SYSTEM (LMF)

RWDI #2300259

January 27, 2023

SUBMITTED TO

Christopher Hessler Gerdau MacSteel, Inc Regional Environmental Manager Christopher.Hessler@gerdau.com

Gerdau MacSteel, Inc Monroe Mill 3000 East Front Street Monroe, Michigan 48161 T: 734.384.6544

Scott Miller EGLE, Air Quality Division 301 East Louis Glick Highway Jackson, Michigan 49201

TPU Supervisor EGLE, Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48933

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com | ext. 3703

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RVDI name and logo are registered trademarks in Canada and the United States of America.

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM2.5, PM10, and Visual Emissions from the EAF and LMF. The test program was completed the week of November 28th, 2022.

Executive Table i: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	5.06 lb/hr	10.9 lb/hr	
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel	
PM10	7.29 lb/hr	10.9 lb/hr	
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr	

Executive Table ii: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.45 lb/hr	12.91 lb/hr	
РМ10	2.60 lb/hr	12.91 lb/hr	
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from vents/openings	0% Opacity	6% Opacity	

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

Executive Table iii: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.61 lb/hr	8.95 lb/hr	
PM10	4.69 lb/hr	8.95 lb/hr	
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr	

Executive Table iv: Average – ROP Limits for – EUEAF – EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity	
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity	

Executive Table v: Average – ROP Limits for – EULMF – LMF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity	

1

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

TABLE OF CONTENTS

1	INTRODUCTION
1.1	Location and Dates of Testing1
1.2	Purpose of Testing1
1.3	Description of Source1
1.4	Personnel Involved in Testing2
2	SUMMARY OF RESULTS
2.1	Operating Data
2.2	Applicable Permit Number
3	SOURCE DESCRIPTION
3.1	Description of Process and Emission Control Equipment3
3.2	Process Flow Sheet or Diagram (if applicable)3
3.3	Type and Quantity of Raw and Finished Materials3
3.4	Normal Rated Capacity of Process
3.5	Process Instrumentation Monitored During the Test4
4	SAMPLING AND ANALYTICAL PROCEDURES4
4.1	Description of Sampling Train and Field Procedures44.1.1Stack Velocity, Temperature, and Volumetric Flow Rate Determination (USEPA Method 1-4)44.1.2Sampling for PM/PM2.5/PM10/CPM (USEPA Method 201A/202)5
4.2	Description of Recovery and Analytical Procedures5
4.3	Sampling Port Description5
5	TEST RESULTS AND DISCUSSION
5.1	Detailed Results
5.2	Discussion of Results7

RWDI#2300259 January 27, 2023

1 INTRODUCTION

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM₁₀, PM_{2.5}, and Visual Emissions from the Electric Arc Furnace (EAF) and Ladle Metallurgic Furnace (LMF).

1.1 Location and Dates of Testing

The test program was completed at the Gerdau Monroe Mill the week of November 28th, 2022.

1.2 Purpose of Testing

The purpose of this test program was conducted per PTI 75-18 and MI-ROP-B7061-2016.

1.3 Description of Source

Gerdau Monroe Mill is a producer of Special Bar Quality (SBQ) steel. The steel-melting process utilizes Electric Arc Furnace Technology (EAF). The EAF is a refractory-lined cylindrical vessel made of steel plates and having a bowl-shaped hearth and a dome-shaped roof. Water-cooled panels are used for the shell and roof to improve refractory efficiency. Three electrodes, powered by a transformer, are mounted on a superstructure above the furnace and are lowered and raised through ports in the furnace roof. The electrode conveys the energy for melting the scrap steel. Supplemental energy is provided by an oxy-fuel burner and an oxygen/coke lance which swings into the slag door area and operates during the melting/refining process. The furnace is mounted on curved rockers, which allow tilting for slagging and bottom tapping. The EAF melts scrap metal in a batch operation referred to as a heat.

The LMF is a complete ladle metallurgy system which includes arc reheating, alloy additions, powder injections and stirring.

MONROE MILL LMF AND EAF GERDAU MACSTEEL RWDI#2300259 January 27, 2023 RN

2 SUMMARY OF RESULTS

2.1 Operating Data

Gerdau personnel made sure the process was operating correctly and production was at acceptable capacity.

2.2 Applicable Permit Number

MI-ROP-B7061-2016 and PTI 75-18.

3 SOURCE DESCRIPTION

3.1 Description of Process and Emission Control Equipment

Emissions from the processes within the Melt Shop are directed to two baghouses (DVBAGHOUSE-01 and DVLMFBAGHOUSE). DVBAGHOUSE-01 serves EUEAF and also accepts emissions captured by the canopy hood in the Melt Shop. DVBAGHOUSE-01 is a positive pressure baghouse with reverse air cleaning. Three main exhaust fans and one direct evacuation control (DEC) fan. The baghouse is equipped with two exhaust stacks, SVBH-01-STACK1 and SVBH-01-STACK2. CO is combusted in the DEC combustion chamber. Screw conveyors transfer the collected baghouse dust to a pneumatic conveying system which transfers the dust into a silo for storage until removed from the site. The second baghouse (DVLMFBAGHOUSE) serves the LMF and VTD operations in the Melt Shop. DVLMFBAGHOUSE is a positive pressure baghouse with reverse air cleaning and is equipped with a single exhaust stack. Dust collected by DVLMFBAGHOUSE is stored in the baghouse hoppers until it is removed from the site.

Fugitive emissions from within the Melt Shop that reach the roof top monitors are captured and directed to the LMF Baghouse.

3.2 **Process Flow Sheet or Diagram (if applicable)**

A process flow diagram can be sent upon request.

3.3 Type and Quantity of Raw and Finished Materials

Scrap steel is charged per heat into the EAF. During the heat, additives, alloys, and fluxes are added.

3.4 Rated Capacity of Process

Maximum rated capacity is 130 tons of liquid steel produced per heat.

RWDI#2300259 January 27, 2023

3.5 Process Instrumentation Monitored During the Test

Operators regulate the process and control production rates.

- Cast Rate (tons/hr)
- Tap Amounts (tons)

4 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Description of Sampling Train and Field Procedures

The emission test program will utilize the following test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 Sample and Velocity Traverses for Stationary Sources
- Method 2 Determination of Stack Gas Velocity and Volumetric Flowrate
- Method 3 Determination of Molecular Weight of Dry Stack Gases (by Fyrite)
- Method 4 Determination of Moisture Content in Stack Gases
- Method 201A Determination of PM/PM2.5/PM10 from Stationary Sources
- Method 202 Determination of Condensable Particulate Matter from Stationary Sources
- Method 9 Visual Emissions from Stationary Sources

4.1.1 Stack Velocity, Temperature, and Volumetric Flow Rate Determination (USEPA Method 1-4)

Traverse points and determination of upstream and downstream distances from flow disturbance were determined using U.S. EPA Method 1.

The exhaust velocities and flow rates were determined following U.S. EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)". Velocity measurements were taken with a pre-calibrated S-Type pitot tube and incline manometer or digital manometer. Volumetric flow rates were determined following the equal area method as outlined in U.S. EPA Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a calibrated digital temperature indicator.

The dry molecular weight of the stack gas was determined following calculations outlined in U.S. EPA Method 3, using a fyrite.

Stack moisture content was determined through direct condensation and according to U.S. EPA Method 4, "Determination of Moisture Content of Stack Gases". Method 4 was conducted through the 201A/202 train.

RWDI#2300259 January 27, 2023

4.1.2 Sampling for PM/PM₁₀/PM_{2.5}/CPM (USEPA Method 201A/202)

Three (3) 240-minute tests were performed on SVBH-01-Stack-01 (EAF West (Red)), SVBH-01-Stack-02 (EAF East (White)) and SVBHLMF-Stack (LMF). All tests were completed simultaneously. RWDI's USEPA Method 201A/202 sampling train consists of (1) a stainless steel nozzle, (2) a stainless steel PM₁₀ cyclone head, (3) a stainless steel PM_{2.5} cyclone head, (4) an in stack filter housing, (5) a borosilicate glass probe or liner, (6) a vertical condenser, (7) an empty pot-bellied impinger, (8) an empty modified Greenburg-Smith (GS) impinger, (9) Teflon filter, (10) a second modified GS impinger with 100 ml of water and a third impinger containing silica gel, (11) a sample line and meter box. USEPA Method 201A collects the filterable fractions of PM/PM₁₀/PM_{2.5} and USEPA Method 202 collects the condensable fraction of PM₁₀ and PM_{2.5}.

A sampling train leak check was conducted before and after each test. After completion of each test, the filter was recovered, the nozzle, PM₁₀, and PM_{2.5} head were recovered into clean sample jars following USEPA Method 201A. The impinger train was purged with nitrogen for one hour at a flowrate of 14 liters per minute. After the purge, all the glassware was recovered per USEPA Method 202.

4.2 Description of Recovery and Analytical Procedures

The samples were all recovered following USEPA Method 201A and 202.

4.3 Sampling Port Description

The sampling locations are all outside.

Source	Diameter (in.)	Approximate Duct Diameters from Flow Disturbance	Number of Ports	Points per Traverse	Total Points per Test
SVBH-01-Stack-01 EUEAF Baghouse Stack 1 (EAF West (Red))	135	~2.6 downstream and 2.7 upstream	4	12	24
SVBH-01-Stack-02 EUEAF Baghouse Stack 2 (EAF East (White))	135.5	~2.6 downstream and ~2.7 upstream	4	12	24
SVBHLMF-Stack LMF Baghouse (LMF)	110	>8 downstream and >2 upstream	4	6	12

Table 4.3: Summary of Exhaust Parameters

January 27, 2023

5 TEST RESULTS AND DISCUSSION

5.1 Detailed Results

Table 5.1: Average - ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	5.06 lb/hr	10.9 lb/hr	
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel	
PM10	7.29 lb/hr	10.9 lb/hr	
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr	

Table 5.2: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.45 lb/hr	12.91 lb/hr	
PM10	2.60 lb/hr	12.91 lb/hr	
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from vents/openings	0% Opacity	6% Opacity	

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

Table 5.3: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.61 lb/hr	8.95 lb/hr	
РМ10	4.69 lb/hr	8.95 lb/hr	
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr	

Table 5.4: Average – ROP Limits for – EUEAF – EAF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf		
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity		
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity		
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity		

Table 5.5: Average – ROP Limits for – EULMF – LMF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity	

5.2 Discussion of Results

The detailed results can be found in **Appendices B, C, D,** and **E**. Note, the laboratory detected visible solid residue in LMF T1 <10 to >2.5 fraction of the acetone rinse from USEPA Method 201A. The data was used as is for the report. We believe this was an unrelated to the process emissions.

5.3 Variations in Testing Procedures

There were not testing variations.

MONROE MILL LMF AND EAF GERDAU MACSTEEL RWDI#2300259

January 27, 2023

5.4 Process Upset Conditions During Testing

There were no process upsets.

5.5 Maintenance Performed in Last Three Months

There has been no significant maintenance on the EAF or LMF in the last three months. Normal routine maintenance is completed as scheduled.

5.6 Re-Test

This was not a retest.

5.7 Audit Samples

This test did not require any audit samples.

5.8 Field Data Sheets

Field data sheets can be found in Appendices B, C, D, and E.

5.9 Calibration Sheets

Calibration sheets can be found in Appendix F.

5.10 Sample Calculations

Sample calculations can be found in **Appendix G**.

5.11 Laboratory Data

Laboratory data can be found in Appendix H.

TABLES

 $\left[\right]$

[

Table 1: Summary of Sampling Parameters and Methodology

Source Location	No. of Tests per Stack	Sampling Parameter	Sampling Method
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
SVBH-01-Stack 2	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
EAF - East (White)	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
SVBH-01-Stack 1	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
EAF - West (Red)	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
SVBHLMF-Stack	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
LIVII	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9

Notes:

[1] U.S. EPA - United States Environmental Protection Agency

Table 2A: Sampling	Summary and Sample Log	(PM/PM10/PM2.5)

Source and Test #	Sampling Date	Start Time	End Time	Filter ID / Trap ID
SVBH-01-Stack 2 (EAF - East (White)) - Veloc	ity / Total Particu	late / PM10 /	PM2.5	
Blank	2-Dec-22	-	_	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:25 PM	QZ 47-18
Test #2	1-Dec-22	8:21 AM	12:41 PM	QZ 47-36
Test #3	2-Dec-22	9:15 AM	2:12 PM	QZ 47-33
SVBH-01-Stack 1 (EAF - West (Red)) - Veloci	ty / Total Particul	ate / PM10 /	PM2.5	
Blank	2-Dec-22	-	-	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:31 PM	QZ 47-40
Test #2	1-Dec-22	8:21 AM	12:42 PM	QZ 47-39
Test #3	2-Dec-22	9:15 AM	2:05 PM	QZ 47-34
SVBHLMF-Stack (LMF) - Velocity / Total Part	iculate / PM10 / P	M2.5		
Blank	2-Dec-22	-	-	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:47 PM	QZ 47-9
Test #2	1-Dec-22	8:21 AM	1:12 PM	QZ 47-38
Test #3	2-Dec-22	9:15 AM	2:42 PM	QZ 47-32

Table 2B: Sampling Summary and Sample Log ((Visible Emissions)

2

Source and Test #	Sampling Date	Start Time	End Time
SVBH-01-Stack 2 (EAF - East (White)) - V	isible Emissions		
Test #1	1-Dec-22	8:57 AM	9:56 AM
Test #2	1-Dec-22	9:59 AM	10:59 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM
SVBH-01-Stack 1 (EAF - West (Red)) - Vis	sible Emissions		
Test #1	1-Dec-22	8:58 AM	9:57 AM
Test #2	1-Dec-22	10:00 AM	11:00 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM
SVBHLMF-Stack (LMF) - Visible Emission	ns		
Test #1	1-Dec-22	8:57 AM	9:56 AM
Test #2	1-Dec-22	9:59 AM	10:59 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM

.

.

Table 3A: Sampling Summary - Flow Characteristics SVBH-01-Stack 2 (EAF - EAST (White))

Stack Gas Paramo	tor	Test No. 1	Test No. 2	Test No. 3	TOTAL
Stack Gas Parameter		PM/PM10/PM2.5	PM/PM10/PM2.5	PM/PM10/PM2.5	AVERAGE
	esting Date	29-Nov-22	1-Dec-22	2-Dec-22	-
Stack Temperature	°F	185	172	176	178
Moisture	%	2.3%	1.5%	1.4%	1.7%
Velocity	ft/s	41.47	40.80	42.87	41.71
Referenced Flow Rate ^[3] Sampling Isokinetic Rate	CFM %	195,425 103	205,455 103	208,171 99	203,017 102

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 3B: Sampling Summary - Flow Characteristics SVBH-01-Stack 1 (EAF - West (Red))

Stack Gas Baram	ator	Test No. 1	Test No. 2	Test No. 3	TOTAL
Stack Gas Faraine	eter	PM/PM10/PM2.5	PM/PM10/PM2.5	PM/PM10/PM2.5	AVERAGE
	Testing Date	29-Nov-22	1-Dec-22	2-Dec-22	- 1995 - - 1995 - 19
Stack Temperature	°F	189	174	180	181
Moisture	%	2.6%	1.3%	1.9%	1.9%
Velocity	ft/s	37.76	36.43	37.14	37.11
Referenced Flow Rate ^[3]	CFM	175,372	178,302	177,236	176,970
Sampling Isokinetic Rate	%	99	98	97	98

Notes:

[3] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 3C: Sampling Summary - Flow Characteristics SVBHLMF-Stack (LMF)

Stack Gas Parameter		Test No. 1	Test No. 2	Test No. 3	TOTAL
		PM/PM10/PM2.5	PM/PM10/PM2.5	PM/PM10/PM2.5	AVERAGE
T	esting Date	29-Nov-22	1-Dec-22	2-Dec-22	
Stack Temperature	°F	115	104	121	113
Moisture	%	1.2%	0.7%	0.9%	0.9%
Velocity	ft/s	84.83	83.56	86.53	84.97
Referenced Flow Rate ^[1]	CFM	304,684	312,731	310,005	309,140
Sampling Isokinetic Rate	%	96	93	94	94

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

FINAL REPORT

GERDAU MACSTEEL, INC

MONROE, MICHIGAN

MONROE MILL: STACK TEST REPORT - ELECTRIC ARC FURNACE (EAF) AND

LADLE METALLURGY SYSTEM (LMF)

RWDI #2300259

January 27, 2023

SUBMITTED TO

Christopher Hessler Gerdau MacSteel, Inc **Regional Environmental Manager** Christopher.Hessler@gerdau.com

Gerdau MacSteel, Inc **Monroe Mill** 3000 East Front Street Monroe, Michigan 48161 T: 734.384.6544

Scott Miller EGLE, Air Quality Division 301 East Louis Glick Highway Jackson, Michigan 49201

TPU Supervisor EGLE, Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48933

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI **Project Manager** Steve.Smith@rwdi.com | ext. 3703

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. If RWDI name and logo are registered trademarks in Canada and the United States of America.

RWDI#2300259 January 27, 2023

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM2.5, PM10, and Visual Emissions from the EAF and LMF. The test program was completed the week of November 28th, 2022.

Executive Table i: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration				
Parameter	Test Average	Permit Limit			
PM2.5	5.06 lb/hr	10.9 lb/hr			
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel			
PM10	7.29 lb/hr	10.9 lb/hr			
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf			
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr			

Executive Table ii: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM2.5	2.45 lb/hr	12.91 lb/hr		
РМ10	2.60 lb/hr	12.91 lb/hr		
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf		
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr		
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity		
Visual Emissions from vents/openings	0% Opacity	6% Opacity		

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

Executive Table iii: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration	
Parameter	Test Average	Permit Limit
PM2.5	2.61 lb/hr	8.95 lb/hr
PM10	4.69 lb/hr	8.95 lb/hr
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr

Executive Table iv: Average – ROP Limits for – EUEAF – EAF Baghouse

	Concentration	
Parameter	Test Average	Permit Limit
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity

Executive Table v: Average – ROP Limits for – EULMF – LMF Baghouse

Parameter	Concentration			
Parameter	Test Average	Permit Limit	-	
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity		

FINAL REPORT

GERDAU MACSTEEL, INC

MONROE, MICHIGAN

MONROE MILL: STACK TEST REPORT - ELECTRIC ARC FURNACE (EAF) AND LADLE METALLURGY SYSTEM (LMF)

RWDI #2300259

January 27, 2023

SUBMITTED TO

Christopher Hessler Gerdau MacSteel, Inc Regional Environmental Manager Christopher.Hessler@gerdau.com

Gerdau MacSteel, Inc Monroe Mill 3000 East Front Street Monroe, Michigan 48161 T: 734.384.6544

Scott Miller EGLE, Air Quality Division 301 East Louis Glick Highway Jackson, Michigan 49201

TPU Supervisor EGLE, Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48933

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com | ext. 3703

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM2.5, PM10, and Visual Emissions from the EAF and LMF. The test program was completed the week of November 28th, 2022.

Executive Table i: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration	
Parameter	Test Average	Permit Limit
PM2.5	5.06 lb/hr	10.9 lb/hr
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel
PM10	7.29 lb/hr	10.9 lb/hr
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr

Executive Table ii: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM2.5	2.45 lb/hr	12.91 lb/hr	
PM10	2.60 lb/hr	12.91 lb/hr	
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from vents/openings	0% Opacity	6% Opacity	

RWDI#2300259 January 27, 2023

Executive Table iii: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration	
Parameter	Test Average	Permit Limit
PM2.5	2.61 lb/hr	8.95 lb/hr
PM10	4.69 lb/hr	8.95 lb/hr
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr

Executive Table iv: Average – ROP Limits for – EUEAF – EAF Baghouse

	Concentration	
Parameter	Test Average	Permit Limit
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity

Executive Table v: Average – ROP Limits for – EULMF – LMF Baghouse

Parameter	Concentration	
	Test Average	Permit Limit
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

TABLE OF CONTENTS

1	INTRODUCTION
1.1	Location and Dates of Testing1
1.2	Purpose of Testing1
1.3	Description of Source1
1.4	Personnel Involved in Testing2
2	SUMMARY OF RESULTS
2.1	Operating Data
2.2	Applicable Permit Number
3	SOURCE DESCRIPTION
3.1	Description of Process and Emission Control Equipment3
3.2	Process Flow Sheet or Diagram (if applicable)3
3.3	Type and Quantity of Raw and Finished Materials3
3.4	Normal Rated Capacity of Process
3.5	Process Instrumentation Monitored During the Test4
4	SAMPLING AND ANALYTICAL PROCEDURES4
4.1	Description of Sampling Train and Field Procedures
4.2	Description of Recovery and Analytical Procedures5
4.3	Sampling Port Description5
5	TEST RESULTS AND DISCUSSION
5.1	Detailed Results
5.2	Discussion of Results

MC GE RV Jai	ROE MILL LMF AND EAF AU MACSTEEL 1#2300259 ary 27, 2023
5.	Variations in Testing Procedures
5.4	Process Upset Conditions During Testing
5.!	Maintenance Performed in Last Three Months8
5.0	Re-Test
5.	Audit Samples
5.8	Field Data Sheets
5.9	Calibration Sheets
5.1	Sample Calculations
5.1	Laboratory Data

[

MONROE MILL LMF AND EAF **GERDAU MACSTEEL**

RWDI#2300259

January 27, 2023 LIST OF TABLES (TABLE SECTION)

Table 1:	Summary of Sampling Parameters and Methodology
Table 2A:	Sampling Summary and Sample Log (PM/PM10/PM2.5)
Table 2B:	Sampling Summary and Sample Log (Visible Emissions)
Table 3A:	Sampling Summary – Flow Characteristics SVBH-01-Stack 2 (EAF – East White)
Table 3B:	Sampling Summary – Flow Characteristics SVBH-01-Stack 1 (EAF – West Red)
Table 3C:	Sampling Summary – Flow Characteristics SVBHLMF-Stack (LMF)
Table 4A:	Average – ROP Limits for FGMELTSHOP – EAF, LMF, VTD
Table 4B:	Average – PTI Limits for EUEAF – EAF Baghouse
Table 4C:	Average – PTI Limits for FGLMFVTD – LMF Baghouse
Table 4D:	Average – ROP Limits for EUEAF – EAF Baghouse
Table 4E:	Average – ROP Limits for EULMF – LMF Baghouse
Table 5:	Opacity – Averaged Results

LIST OF TABLES (IN REPORT)

Table 1.4:	List of Testing Personnel	.2
Table 4.3:	Summary of Stack Parameters	.5
Table 5.1:	Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD	.6
Table 5.2:	Average – PTI Limits for – EUEAF - EAF Baghouse	.6
Table 5.3:	Average – PTI Limits for – FGLMFVTD – LMF Baghouse	.7
Table 5.4:	Average – ROP Limits for – EUEAF – EAF Baghouse	.7
Table 5.5:	Average – ROP Limits for – EULMF – LMF Baghouse	.7

LIST OF FIGURES (FIGURES TAB)

- Figure 1: EAF East/White Traverse Point Diagram
- Figure 2: EAF West/Red Traverse Point Diagram
- Figure 3: LMF Traverse Point Diagram
- USEPA Method 1-4, 201A/202 Sampling Train Figure 4:

FEB 07 2023

AIR QUALITY DIVISION

F

6

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023 <u> K</u>N

LIST OF APPENDICES

Appendix A: Test Plan and Approval Letter				
Appendix B: EAF East/White Data				
Appendix B-1	: EAF East/White Data – PM2.5 and PM10			
Appendix B-2	: EAF East/White Data – PM (Front Half Only)			
Appendix B-3	: EAF East/White – Spreadsheets and Field Notes			
Appendix C:	EAF West/Red Data			
Appendix C-1	EAF West/Red Data – PM2.5 and PM10			
Appendix C-2	: EAF West/Red Data – PM (Front Half Only)			
Appendix C-3	: EAF West/Red – Spreadsheets and Field Notes			
Appendix D:	LMF Data			
Appendix D-1	LMF Data – PM2.5 and PM10			
Appendix D-2: LMF Data – PM (Front Half Only)				
Appendix D-3	: LMF – Spreadsheets and Field Notes			
Appendix E:	Visual Emission Data			
Appendix F:	Calibration Documents			
Appendix G:	Sample Calculations			
Appendix H:	Analytical Data			
Appendix I:	Process Data			

January 27, 2023

1 INTRODUCTION

RWDI USA LLC (RWDI) has been retained by Gerdau MacSteel, Inc (Gerdau) to complete the emission sampling program at the Gerdau Monroe Mill located at 3000 East Front Street, Monroe, Michigan. The testing evaluated PM, PM₁₀, PM_{2.5}, and Visual Emissions from the Electric Arc Furnace (EAF) and Ladle Metallurgic Furnace (LMF).

1.1 Location and Dates of Testing

The test program was completed at the Gerdau Monroe Mill the week of November 28th, 2022.

1.2 Purpose of Testing

The purpose of this test program was conducted per PTI 75-18 and MI-ROP-B7061-2016.

1.3 Description of Source

Gerdau Monroe Mill is a producer of Special Bar Quality (SBQ) steel. The steel-melting process utilizes Electric Arc Furnace Technology (EAF). The EAF is a refractory-lined cylindrical vessel made of steel plates and having a bowl-shaped hearth and a dome-shaped roof. Water-cooled panels are used for the shell and roof to improve refractory efficiency. Three electrodes, powered by a transformer, are mounted on a superstructure above the furnace and are lowered and raised through ports in the furnace roof. The electrode conveys the energy for melting the scrap steel. Supplemental energy is provided by an oxy-fuel burner and an oxygen/coke lance which swings into the slag door area and operates during the melting/refining process. The furnace is mounted on curved rockers, which allow tilting for slagging and bottom tapping. The EAF melts scrap metal in a batch operation referred to as a heat.

The LMF is a complete ladle metallurgy system which includes arc reheating, alloy additions, powder injections and stirring.

1.4 Personnel Involved in Testing

Table 1.4: Testing Personnel

Christopher Hessler Regional Environmental Manager Christopher.Hessler@gerdau.com	Gerdau MacSteel, Inc	(734) 384-6544
Brad Bergeron Senior Project Manager Brad.Bergeron@rwdi.com		(519) 817-9888
Steve Smith Project Manager Steve.Smith@rwdi.com		(971) 940-5038
Mason Sakshaug Senior Scientist Mason.Sakshaug@rwdi.com		(989) 323-0355
Michael Nummer Senior Field Technician Michael.Nummer@rwdi.com	RWDI USA LLC 2239 Star Court	(586) 863-8237
Ben Durham Senior Field Technician Ben.Durham@rwdi.com	Rochester Hills, Ml 48309	(734) 474-1731
Juan Vargas Environmental Engineer Juan.Vargas@rwdi.com		(513) 293-3180
Hunter Griggs Field Technician Hunter.Griggs@rwdi.com		(810) 441-8351
Austin Kingsley Field Technician Austin.Kingsley@rwdi.com		(586) 863-3553

2 SUMMARY OF RESULTS

2.1 Operating Data

Gerdau personnel made sure the process was operating correctly and production was at acceptable capacity.

2.2 Applicable Permit Number

MI-ROP-B7061-2016 and PTI 75-18.

3 SOURCE DESCRIPTION

3.1 Description of Process and Emission Control Equipment

Emissions from the processes within the Melt Shop are directed to two baghouses (DVBAGHOUSE-01 and DVLMFBAGHOUSE). DVBAGHOUSE-01 serves EUEAF and also accepts emissions captured by the canopy hood in the Melt Shop. DVBAGHOUSE-01 is a positive pressure baghouse with reverse air cleaning. Three main exhaust fans and one direct evacuation control (DEC) fan. The baghouse is equipped with two exhaust stacks, SVBH-01-STACK1 and SVBH-01-STACK2. CO is combusted in the DEC combustion chamber. Screw conveyors transfer the collected baghouse dust to a pneumatic conveying system which transfers the dust into a silo for storage until removed from the site. The second baghouse (DVLMFBAGHOUSE) serves the LMF and VTD operations in the Melt Shop. DVLMFBAGHOUSE is a positive pressure baghouse with reverse air cleaning and is equipped with a single exhaust stack. Dust collected by DVLMFBAGHOUSE is stored in the baghouse hoppers until it is removed from the site.

Fugitive emissions from within the Melt Shop that reach the roof top monitors are captured and directed to the LMF Baghouse.

3.2 **Process Flow Sheet or Diagram (if applicable)**

A process flow diagram can be sent upon request.

3.3 Type and Quantity of Raw and Finished Materials

Scrap steel is charged per heat into the EAF. During the heat, additives, alloys, and fluxes are added.

3.4 Rated Capacity of Process

Maximum rated capacity is 130 tons of liquid steel produced per heat.

3.5 **Process Instrumentation Monitored During the Test**

Operators regulate the process and control production rates.

- Cast Rate (tons/hr)
- Tap Amounts (tons)

4 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Description of Sampling Train and Field Procedures

The emission test program will utilize the following test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 Sample and Velocity Traverses for Stationary Sources
- Method 2 Determination of Stack Gas Velocity and Volumetric Flowrate
- Method 3 Determination of Molecular Weight of Dry Stack Gases (by Fyrite)
- Method 4 Determination of Moisture Content in Stack Gases
- Method 201A Determination of PM/PM2.5/PM10 from Stationary Sources
- Method 202 Determination of Condensable Particulate Matter from Stationary Sources
- Method 9 Visual Emissions from Stationary Sources

4.1.1 Stack Velocity, Temperature, and Volumetric Flow Rate Determination (USEPA Method 1-4)

Traverse points and determination of upstream and downstream distances from flow disturbance were determined using U.S. EPA Method 1.

The exhaust velocities and flow rates were determined following U.S. EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)". Velocity measurements were taken with a pre-calibrated S-Type pitot tube and incline manometer or digital manometer. Volumetric flow rates were determined following the equal area method as outlined in U.S. EPA Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a calibrated digital temperature indicator.

The dry molecular weight of the stack gas was determined following calculations outlined in U.S. EPA Method 3, using a fyrite.

Stack moisture content was determined through direct condensation and according to U.S. EPA Method 4, "Determination of Moisture Content of Stack Gases". Method 4 was conducted through the 201A/202 train.

4.1.2 Sampling for PM/PM₁₀/PM_{2.5}/CPM (USEPA Method 201A/202)

Three (3) 240-minute tests were performed on SVBH-01-Stack-01 (EAF West (Red)), SVBH-01-Stack-02 (EAF East (White)) and SVBHLMF-Stack (LMF). All tests were completed simultaneously. RWDI's USEPA Method 201A/202 sampling train consists of (1) a stainless steel nozzle, (2) a stainless steel PM₁₀ cyclone head, (3) a stainless steel PM_{2.5} cyclone head, (4) an in stack filter housing, (5) a borosilicate glass probe or liner, (6) a vertical condenser, (7) an empty pot-bellied impinger, (8) an empty modified Greenburg-Smith (GS) impinger, (9) Teflon filter, (10) a second modified GS impinger with 100 ml of water and a third impinger containing silica gel, (11) a sample line and meter box. USEPA Method 201A collects the filterable fractions of PM/PM₁₀/PM_{2.5} and USEPA Method 202 collects the condensable fraction of PM₁₀ and PM_{2.5}.

A sampling train leak check was conducted before and after each test. After completion of each test, the filter was recovered, the nozzle, PM₁₀, and PM_{2.5} head were recovered into clean sample jars following USEPA Method 201A. The impinger train was purged with nitrogen for one hour at a flowrate of 14 liters per minute. After the purge, all the glassware was recovered per USEPA Method 202.

4.2 Description of Recovery and Analytical Procedures

The samples were all recovered following USEPA Method 201A and 202.

4.3 Sampling Port Description

The sampling locations are all outside.

Tune 4.3. Summary of Exhaust Fundations						
Source	Diameter (in.)	Approximate Duct Diameters from Flow Disturbance	Number of Ports	Points per Traverse	Total Points per Test	
SVBH-01-Stack-01 EUEAF Baghouse Stack 1 (EAF West (Red))	135	~2.6 downstream and 2.7 upstream	4	12	24	
SVBH-01-Stack-02 EUEAF Baghouse Stack 2 (EAF East (White))	135.5	~2.6 downstream and ~2.7 upstream	4	12	24	
SVBHLMF-Stack LMF Baghouse (LMF)	110	>8 downstream and >2 upstream	4	6	12	

Table 4.3: Summary of Exhaust Parameters

RWDI#2300259 January 27, 2023

5 TEST RESULTS AND DISCUSSION

5.1 **Detailed Results**

 Table 5.1: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Conce	tration
Parameter	Test Average	Permit Limit
PM2.5	5.06 lb/hr	10.9 lb/hr
PM2.5	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel
PM10	7.29 lb/hr	10.9 lb/hr
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr

Table 5.2: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM2.5	2.45 lb/hr	12.91 lb/hr		
PM10	2.60 lb/hr	12.91 lb/hr		
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf		
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr		
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity		
Visual Emissions from vents/openings	0% Opacity	6% Opacity		

MONROE MILL LMF AND EAF GERDAU MACSTEEL

RWDI#2300259 January 27, 2023

Table 5.3: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM2.5	2.61 lb/hr	8.95 lb/hr		
PM10	4.69 lb/hr	8.95 lb/hr		
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf		
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr		

Table 5.4: Average - ROP Limits for - EUEAF - EAF Baghouse

	Concentration	
Parameter	Test Average	Permit Limit
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity

Table 5.5: Average – ROP Limits for – EULMF – LMF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity	

5.2 Discussion of Results

The detailed results can be found in **Appendices B, C, D,** and **E**. Note, the laboratory detected visible solid residue in LMF T1 <10 to >2.5 fraction of the acetone rinse from USEPA Method 201A. The data was used as is for the report. We believe this was an unrelated to the process emissions.

5.3 Variations in Testing Procedures

There were not testing variations.

5.4 Process Upset Conditions During Testing

There were no process upsets.

5.5 Maintenance Performed in Last Three Months

There has been no significant maintenance on the EAF or LMF in the last three months. Normal routine maintenance is completed as scheduled.

5.6 Re-Test

This was not a retest.

5.7 Audit Samples

This test did not require any audit samples.

5.8 Field Data Sheets

Field data sheets can be found in Appendices B, C, D, and E.

5.9 Calibration Sheets

Calibration sheets can be found in Appendix F.

5.10 Sample Calculations

Sample calculations can be found in **Appendix G**.

5.11 Laboratory Data

Laboratory data can be found in Appendix H.

SN

TABLES

Π

Π

N

-

 $\left[\right]$

Table 1: Summary of Sampling Parameters and Methodology

Source Location	No. of Tests per Stack	Sampling Parameter	Sampling Method
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
SVBH-01-Stack 2	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
EAF - East (White)	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
SVBH-01-Stack 1	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
EAF - West (Red)	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
CVDUI ME Stook	3	Total Particulate Matter	U.S. EPA [1] Method 201A (Filterable Only)
	3	PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 201A/202
	3	Oxygen, Carbon Dioxide	U.S. EPA [1] Method 3
	3	Visible Emissions	U.S. EPA [1] Method 9

Notes: [1] U.S. EPA - United States Environmental Protection Agency

Table 2A: Sampling Summary and	I Sample Log	(PM/PM10/PM2.5)

Source and Test #	Sampling Date	Start Time	End Time	Filter ID / Trap ID
SVBH-01-Stack 2 (EAF - East (White)) - Velo	city / Total Particu	late / PM10 /	PM2.5	
Blank	2-Dec-22	-	-	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:25 PM	QZ 47-18
Test #2	1-Dec-22	8:21 AM	12:41 PM	QZ 47-36
Test #3	2-Dec-22	9:15 AM	2:12 PM	QZ 47-33
SVBH-01-Stack 1 (EAF - West (Red)) - Veloc	ity / Total Particul	ate / PM10 /	PM2.5	
Blank	2-Dec-22	-	-	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:31 PM	QZ 47-40
Test #2	1-Dec-22	8:21 AM	12:42 PM	QZ 47-39
Test #3	2-Dec-22	9:15 AM	2:05 PM	QZ 47-34
SVBHLMF-Stack (LMF) - Velocity / Total Par	ticulate / PM10 / P	M2.5		
Blank	2-Dec-22	-	-	QZ 47-35
Test #1	29-Nov-22	9:15 AM	1:47 PM	QZ 47-9
Test #2	1-Dec-22	8:21 AM	1:12 PM	QZ 47-38
Test #3	2-Dec-22	9:15 AM	2:42 PM	QZ 47-32

*

Table 2B: Sampling Summary and Sample Log (Visible Emissions)

Source and Test #	Sampling Date	Start Time	End Time
SVBH-01-Stack 2 (EAF - East (White)) - Vis	sible Emissions		
Test #1	1-Dec-22	8:57 AM	9:56 AM
Test #2	1-Dec-22	9:59 AM	10:59 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM
SVBH-01-Stack 1 (EAF - West (Red)) - Visi	ble Emissions		
Test #1	1-Dec-22	8:58 AM	9:57 AM
Test #2	1-Dec-22	10:00 AM	11:00 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM
SVBHLMF-Stack (LMF) - Visible Emission	S		
Test #1	1-Dec-22	8:57 AM	9:56 AM
Test #2	1-Dec-22	9:59 AM	10:59 AM
Test #3	2-Dec-22	9:20 AM	10:20 AM

Table 3A: Sampling Summary - Flow Characteristics SVBH-01-Stack 2 (EAF - EAST (White))

Stack Gas Parameter		Test No. 1 PM/PM10/PM2.5	Test No. 2 PM/PM10/PM2.5	Test No. 3 PM/PM10/PM2.5	TOTAL AVERAGE	
	Testing Date	29-Nov-22	1-Dec-22	2-Dec-22		
Stack Temperature	°F	185	172	176	178	
Moisture	%	2.3%	1.5%	1.4%	1.7%	
Velocity	ft/s	41.47	40.80	42.87	41.71	
Referenced Flow Rate ^[3] Sampling Isokinetic Rate	CFM %	195,425 103	205,455 103	208,171 99	203,017 102	

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 3B: Sampling Summary - Flow Characteristics SVBH-01-Stack 1 (EAF - West (Red))

Stack Gas Parameter		Test No. 1	Test No. 2	Test No. 3	TOTAL
		PM/PM10/PM2.5	PM/PM10/PM2.5	PM/PM10/PM2.5	AVERAGE
Te	esting Date	29-Nov-22	1-Dec-22	2-Dec-22	-
Stack Temperature	°F	189	174	180	181
Moisture	%	2.6%	1.3%	1.9%	1.9%
Velocity	ft/s	37.76	36.43	37.14	37.11
Referenced Flow Rate ^[3] Sampling Isokinetic Rate	CFM %	175,372 99	178,302 98	177,236 97	176,970 98

Notes:

[3] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 3C: Sampling Summary - Flow Characteristics SVBHLMF-Stack (LMF)

Stack Gas Parameter		Test No. 1	Test No. 2	Test No. 3	TOTAL
		PM/PM10/PM2.5	PM/PM10/PM2.5	PM/PM10/PM2.5	AVERAGE
	Testing Date	29-Nov-22	1-Dec-22	2-Dec-22	
Stack Temperature	°F	115	104	121	113
Moisture	%	1.2%	0.7%	0.9%	0.9%
Velocity	ft/s	84.83	83.56	86.53	84.97
Referenced Flow Rate ^[1] Sampling Isokinetic Rate	CFM %	304,684 96	312,731 93	310,005 94	309,140 94

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 4A: Average – ROP Limits for FGMELTSHOP - EAF, LMF, and VTD

	Concentration				
Parameter	Test Average	Permit Limit			
PM _{2.5}	5.06 lb/hr	10.9 lb/hr			
PM _{2.5}	0.037 lb/ton of liquid steel	0.1 lb/ton of liquid steel			
PM ₁₀	7.29 lb/hr	10.9 lb/hr			
PM (Filterable Only)	0.0014 Grains/dscf	0.0018 Grains/dscf			
PM (Filterable Only)	3.24 lb/hr	7.2 lb/hr			

Table 4B: Average – PTI Limits for – EUEAF - EAF Baghouse

	Concentration		
Parameter	Test Average	Permit Limit	
PM _{2.5}	2.45 lb/hr	12.91 lb/hr	
PM10	2.60 lb/hr	12.91 lb/hr	
PM (Filterable Only)	0.0004 Grains/dscf	0.0018 Grains/dscf	
PM (Filterable Only)	0.63 lb/hr	7.84 lb/hr	
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity	
Visual Emissions from vents/openings	0% Opacity	6% Opacity	

Table 4C: Average – PTI Limits for – FGLMFVTD – LMF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM _{2.5}	2.61 lb/hr	8.95 lb/hr		
PM10	4.69 lb/hr	8.95 lb/hr		
PM (Filterable Only)	0.0010 Grains/dscf	0.0018 Grains/dscf		
PM (Filterable Only)	2.61 lb/hr	3.88 lb/hr		

RECEIVED FEB 07 2023 AIR QUALITY DIVISION

Table 4D: Average - ROP Limits for - EUEAF - EAF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
PM (Filterable Only)	0.0004 Grains/dscf	0.0052 Grains/dscf		
Visual Emissions from Baghouse Stack	0% Opacity	3% Opacity		
Visual Emissions from Vents and Openings	0% Opacity	0% Opacity		
Visible Emissions from EUEAF Shop Building	0% Opacity	6% Opacity		

Table 4E: Average – ROP Limits for – EULMF – LMF Baghouse

	Concentration			
Parameter	Test Average	Permit Limit		
Visual Emissions from Baghouse Stack	0% Opacity	5% Opacity		

Table 5: Opacity- Averaged Results

		Opacity			
	1-Dec-22	1-Dec-22	1-Dec-22	Average Opacity	
Parameter	(%)	(%)	(%)	(%)	
SVBH-01-Stack-02	(EAF East (White))				
Opacity	0	0	0	0	
SVBH-01-Stack-01	(EAF West (Red))	An an air an tha an tha an an tha			
Opacity	0	0	0	0	
SVBHLMF-Stack (L	.MF)			MDRD COLLEGE COM	
Opacity	• 0	0	0	0	

FIGURES

1

I

Π

1

