

Title V Compliance Test Program Test Report

Verso Corporation Quinnesec Mill Recovery Furnace Outlet, Smelt Dissolving Tank Outlet, and Lime Kiln Stack Quinnesec, Michigan August 22 through 31, 2017

> Report Submittal Date September 25, 2017

> > © Copyright 2017 All rights reserved in Mostardi Platt

Project No. M173402A

888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

RECEIVED

OCT 02 2017

1.0 EXECUTIVE SUMMARY AIR QUALITY DIVISION

MOSTARDI PLATT conducted a Title V compliance test program for Verso Corporation at the Quinnesec Mill on the Recovery Furnace Outlet, Smelt Dissolving Tank Outlet, and Lime Kiln Stack on August 22 through 31, 2017. This report summarizes the results of the test program and test methods used.

Test locations, test dates, and test parameters are summarized below.

TEST INFORMATION								
Test Locations	Test Dates	Test Parameters						
Recovery Furnace Outlet	August 22 through 24, 2017	Filterable Particulate Matter (FPM), Condensable Particulate Matter (CPM), Total Particulate Matter (TPM), Hydrogen Chloride (HCI), Dioxin/Furan (D/F), Sulfuric Acid Mist (SO ₃ as H ₂ SO ₄), and Volatile Organic Compounds (VOC)						
Smelt Dissolving Tank Stack	August 29 and 30, 2017	FPM, CPM, TPM, VOC, and Total Reduced Sulfur (TRS)						
Lime Kiln Stack	August 31, 2017	FPM, Methanol, Nitrogen Oxides (NOx), Sulfur Dioxide (SO ₂), Carbon Monoxide (CO), TRS, and VOC						

The purpose of the test program was to demonstrate compliance of the above emissions with the permitted limits. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS										
Test Location	Test Date	Test Parameter	Emission Limit	Emission Rate						
	_	FPM	0.044 grs/DSCF @ 8% O2	0.0097 grs/DSCF @ 8% O2						
	8/24/17	трм	0.027 grs/DSCF @ 8% O2	0.0116 grs/DSCF @ 8% O ₂						
		I F'IVI	51.1 lb/hr	25.996 lb/hr						
	9/22/17	HCI	2.8 lb/hr	≤ 0.1546 lb/hr						
Recovery	0/22/17	псі	3.4 mg/dscm @ 8% O ₂	≤ 0.17 mg/dscm @ 8% O₂						
Furnace Outlet	8/22 & 23/17	D/F	1.0 ng/DSCM @ 8% O ₂ (TEQ)	≤ 0.0009 ng/DSCM @ 8% O₂ (TEQ)						
J	0/02/17	SO₃ as	2.5 mg/DSCM @ 8% O2	0.00038 mg/DSCM @ 8% O ₂						
	0/23/17	H ₂ SO ₄	2.07 lb/hr	0.47 lb/hr						
	9/24/17	VOC (as	50 ppmvd @ 8% O ₂	2.1 ppmvd @ 8% O ₂						
	0/24/17	CH4)	27.4 lb/hr	1.38 lb/hr						
	8/29/17	FPM	0.20 lb/TBLS	0.072 lb/TBLS						
	9/20/17		0.107 lb/TBLS	0.080 lb/TBLS						
Smelt	0/28/17	I FIVI	8.5 lb/hr	6.76 lb/hr						
Dissolving	8/30/17	VOC (as	200 ppmvd	21.0 ppmvd						
Tank Stack	0/30/17	CH₄)	6.5 lb/hr	0.76 lb/hr						
1	8/29 &	TRS (as	0.015 lb/ton TBLS	0.0036 lb/ton TBLS						
	30/17	H₂S)	1.19 lb/hr	0.31 lb/hr						

			TEST RESULTS		
Test Location	Test Date	Test Parameter	Emission Limit	Emission Rate	
			0.064 grs/DSCF @ 10% O2	0.0158 grs/DSCF @ 10% O2	
	8/31/17	FFM	16.9 lb/hr	5.045 lb/hr	
		TPM	16.9 lb/hr	5.184 lb/hr	
-	9/24/47	Mathanal	8.0 mg/DSCM	≤ 2.60 mg/DSCM	
	0/31/17	Methanol	0.89 lb/hr	≤ 0.22 lb/hr	
	8/31/17	NO	0.3 lb/MMBtu	0.11 lb/MMBtu	
Lime Kiln		NOX	29 lb/hr	10.81 lb/hr	
Stack	0/24/47	<u> </u>	1.7 lb/MMBtu	0.0004 lb/MMBtu	
	0/31/17	502	120 lb/hr	0.04 lb/hr	
	8/31/17	СО	0.36 lb/MMBtu	0.029 lb/MMBtu	
	0/21/17	TRS (as	10.0 ppmvd @10% O ₂ (12-hr)	0.88 ppmvd @10% O ₂ (12-hr)	
	0/31/17	H₂S)	1.56 lb/hr (12-hr)	0.18 lb/hr (12-hr)	
	9/24/17	VOC (as	68 ppmvd @10% O2	28.2 ppmvd @10% O2	
	0/31/17	CH ₄)	5 lb/hr	2.61 lb/hr	

Run 1 at the Recovery Furnace Outlet was not included in the average since the samples were recovered with incorrect chemicals. The average emissions consist of Runs 2, 3, and 4. Emissions on Ib/mmBtu or Ib/Btu basis were calculated heat input supplied by Verso Corporation. Plant operating data as provided by Verso Corporation is included in Appendix A.

The identifications of individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION								
Location Address Contact								
Test Facility	Verso Corporation U.S. Highway 2 Quinnesec, Michigan 49876	Ms. Paula Lafleur Environmental Engineer (906) 779-3494 (phone) Paula.lafleur@versoco.com						
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Tim Mei Project Manager (630) 993-2100 (phone) tmei@mp-mail.com						

The test crew consisted of Messrs. D. Jacobsen, L. Mazza, J. Kukla, S. McGough, C. Eldridge, and T. Mei of Mostardi Platt. Mr. Mark Dziadosz of the Michigan Department of Quality (MDEQ) observed portions of the test program.

2.0 TEST METHODOLOGY

Emissions testing were conducted following the methods specified in 40 CFR, Part 60, Appendix A. Schematics of the test section diagrams and sampling trains used are found in Appendix B and C, respectively. Calculation nomenclature and sample calculations are found in Appendix D. Sample analysis data are found in Appendix E. Copies of reference method data and field data sheets for each test run are included in Appendix F and G, respectively.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

	TEST POINT INFORMATION											
Stack DimensionsStack Area (SquareDownstreamTestLocation(Feet)Feet)DiametersDiameters												
Recovery Furnace Outlet	8 x 12.25	98.00	>0.5	>2.0	FPM, CPM, TPM, HCI, D/F	27						
Smelt Dissolving Tank Stack	4.0 (Diameter)	12.566	>0.5	>2.0	FPM, CPM, TPM	24						
Lime Kiln Stack	8.0 (Diameter)	50.27	>0.5	2.0	FPM, CPM, TPM	24						

Gaseous Sampling Plan

Three test points spanning 17%, 50%, and 83% of the diameter were used to sample NO_x, SO₂, CO, and VOC at the Lime Kiln Stack. A single test point was used to sample SO₃ as H_2SO_4 and VOC at the Recovery Furnace Outlet, TRS at the Smelt Dissolving Tank Stack and Lime Kiln Stack, and methanol at the Lime Kiln Stack.

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate at all test locations. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H. All locations have passed the null point pitot check and the results are on file.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A, 40 CFR, Part 60, Appendix A at all test locations. Servomex analyzers were used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and gas cylinder certifications are presented in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A at all test locations. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method utilizing Pallflex TX40HI45 filters. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 6C Sulfur Dioxide (SO₂) Determination

Stack gas sulfur dioxide concentrations and emission rates were determined in accordance with Method 6C at the Lime Kiln Stack. A Thermo Scientific sulfur dioxide analyzer was used to determine sulfur dioxide concentrations, in the manner specified in the Method.

Stack gas was delivered to the analyzer via a Teflon[®] sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks can be found in Appendix G. Copies of calibration gas certifications can be found in Appendix H.

Method 7E Nitrogen Oxides (NO_x) Determination

Stack gas nitrogen oxides concentrations and emission rates were determined in accordance with Method 7E at the Lime Kiln Stack. A Thermo Scientific nitrogen oxides analyzer was used to determine nitrogen oxides concentrations, in the manner specified in the Method.

Stack gas was delivered to the analyzer via a Teflon[®] sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks can be found in Appendix G. Copies of calibration gas certifications can be found in Appendix H.

Method 10 Carbon Monoxide (CO) Determination

Stack gas carbon monoxide concentrations and emission rates were determined in accordance with Method 10 at the Lime Kiln Stack. A Thermo Scientific carbon monoxide analyzer was used to determine carbon monoxide concentrations, in the manner specified in the Method.

Stack gas was delivered to the analyzer via a Teflon[®] sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks can be found in Appendix G. Copies of calibration gas certifications can be found in Appendix H.

Method 16A Total Reduced Sulfur (TRS) Determination

Integrated gas samples were extracted in accordance with Method 16A (impinger technique), 40CFR60, Appendix A, for the determination of total reduced sulfur (TRS) emissions from stationary sources at the Smelt Dissolving Tank Stack. This method selectively removed sulfur dioxide (SO₂) by bubbling the gas sample through a citrate buffer solution, then thermally oxidizing TRS compounds present to SO₂. The SO₂ was then collected in hydrogen peroxide as sulfate and analyzed by the Method 6 barium-thorin titration procedure, 40CFR60.

Interferences caused by particulate matter entering the sampling train were eliminated by the use of a heated filter medium placed at the end of the heated Teflon®-lined (or glass-lined) probe.

System validations were performed following each set of one-hour tests in the manner described as follows.

A 30-minute system validation test was performed to validate the sampling train components and procedure. The checks involved sampling a known concentration of hydrogen sulfide (H_2S) and comparing the analyzed concentration with the known concentration. The H_2S recovery gas was mixed with combustion gas in a dilution system. The samples were collected and analyzed in the same manner as a normal stack test. The sample was collected through the end of the probe to ensure extraction of a representative sample.

Sampling included a three one-hour test followed by a 30-minute system validation to be completed as one test run. Sampling train preparation was in accordance with Method 16A, 40CFR60, and included the following:

- 1. All probes, filter holders, and sampling lines were cleaned prior to each test.
- 2. The SO₂ scrubber was charged with 100 mls of citrate buffer solution into each of the first two impingers prior to each test. Citrate buffer solution was prepared by dissolving 300 g of potassium citrate (or 284 g of sodium citrate) and 41 g of anhydrous citric acid in one liter of water. The pH of the solution was then adjusted to between 5.4 and 5.6 with potassium citrate or citric acid, as required.
- 3. The probe and heated filter media were maintained at approximately 250°F to prevent moisture condensation.
- 4. The thermal oxidation furnace was maintained at 800°C±100°C during the test time.
- 5. The SO₂ portion of the train was prepared and analyzed in accordance with the methods described for sulfur dioxide testing listed previously.

Laboratory analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Lime Kiln Stack TRS was determined using Verso's certified TRS/O₂ Continuous Emissions Monitoring System (CEMS) and Method 2 flow measurements. This was approved in advance by Mr. Tom Gasloli of the MDEQ.

Method 23 Dioxin/Furan Determination

Stack gas dioxin/furan (D/F) concentrations and emission rates were determined in accordance with Method 23, 40 CFR, Part 60, Appendix A, with a spiked trap at the Recovery Furnace Outlet. An Environmental Supply Company sampling train was used to sample for concentrations of each of the constituents in the manner specified in the Method.

After recovery, samples are analyzed by an approved laboratory following the procedures specified in the Method. Analyses of the samples collected were conducted by SGS of Wilmington, North Carolina. Sample analysis data are found in Appendix F. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix I.

Method 25A Volatile Organic Concentration Determination

The Method 25A sampling and measurement system meets the requirements for sampling of VOCs set forth by the United States Environmental Protection Agency (USEPA). In particular, it meets the requirements of USEPA Reference Method 25A, "Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer," 40CFR60, Appendix A. This method applies to the measurement of total gaseous organic concentration of hydrocarbons. With this method, gas samples are extracted from the sample locations through heated Teflon sample lines to the analyzers. A Thermo Scientific 51i analyzer was used to perform sampling.

The flame ionization detector (FID) used during this program was a Thermo Scientific 51i High-Temperature Total Hydrocarbon Analyzer. It is a highly sensitive FID that provides a direct reading of total organic vapor concentrations with linear ranges of 0-10, 100, 1000, and 10,000 ppm by volume. The instrument was calibrated using ultra-zero air and propane in air EPA Protocol standards. The calibrations were performed before and after sampling with calibration checks performed between each test run. Sampling was conducted continuously for three onehour periods. Sample times and locations are logged simultaneously on data loggers.

All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H. The gas cylinder certifications are found in Appendix I.

Method 26A Hydrogen Chloride (HCI) Determination

Stack gas hydrogen chloride concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A at the Recovery Furnace Outlet. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method utilizing Pallflex TX40HI45 filters. Analyses of the samples collected were conducted by Mostardi Platt in Elmhurst, Illinois. Sample analysis data are found in Appendix F. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix I.

Method 202 Condensable Particulate Determination

Stack gas condensable particulate concentrations and emission rates were determined in accordance with the Method 202, in conjunction with Method 5 filterable particulate sampling.

Condensable particulate matter was collected in the impinger portion of the Method 5 sampling trains.

The condensable particulate matter (CPM) was collected in impingers, after filterable particulate material was collected, using Method 5. The organic and aqueous fractions were then taken to dryness and weighed. The total of all fractions represents the CPM. Compared to the December 17, 1991 promulgated Method 202, this Method includes the addition of a condenser, followed by a water dropout impinger immediately after the final heated filter. One modified Greenburg Smith impinger and an ambient temperature filter follow the water dropout impinger.

CPM was collected in the water dropout, modified Greenburg Smith impinger and ambient filter portion of the sampling train as described in this Method. The impinger contents were purged with nitrogen (N_2) immediately after sample collection to remove dissolved sulfur dioxide (SO₂) gases from the impingers. The impinger solution was then extracted with DI water, acetone, and hexane. The organic and aqueous fractions were dried and the residues weighed. The total of the aqueous, organic, and ambient filter fractions represents the CPM. Laboratory analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Conditional Test Method 013 Sulfuric Acid Mist Determination

Stack gas sulfuric acid mist (SO₃ as H_2SO_4) concentrations and emission rates were determined in accordance with USEPA Conditional Test Method 013 (CTM-013) at the Recovery Furnace Outlet. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at a constant rate of approximately 0.3 cubic feet per minute.

The flue gas was extracted through a heated quartz-lined probe with a heated quartz thimble for removal of particulate matter. Probe and thimble housing temperatures were maintained at approximately 500°F. SO₃ was then collected as the sample gas passed through a hot water condenser that was loosely packed with quartz wool. The condenser water was maintained at a temperature range of 167°F-185°F. The sample was then passed through impingers to remove any excess moisture. The impingers were placed in an ice bath to maintain the exit gas from the last impinger containing silica gel below 68°F. Maintaining the temperature increases the efficiency of the silica gel in drying the metered gas. A leak check of the entire sample train was performed at a vacuum greater than the sampling vacuum after each sampling run in order to determine if any leakage had occurred during the test run. A leakage rate not in excess of 2% of the average sampling rate is considered acceptable.

Laboratory analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

NCASI Method CI/SG/Pulp-94.02 (Method 308 Methanol)

Stack gas methanol concentrations and emission rates were determined in accordance with NCASI Method CI/SG/Pulp-94.02 at the Lime Kiln Stack. An air sample was collected by drawing it through a midget impinger which was filled with water, and then through two 2-section silica gel absorbent tubes. The impinger was kept in an ice water bath during sampling to enhance collection efficiency. The impinger catch was analyzed for methanol by direct injection into a gas chromatograph equipped with a flame ionization detector (GC/FID). The silica gel sorbent was desorbed with a 3% (v/v) solution of n-propanol. The desorbent is injected directly into the GC/FID for analysis of methanol. Analyses of the samples collected were conducted by Maxxam Analytics, Inc. of Novi, Michigan. Sample analysis data are found in Appendix F. All of

the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix I.

3.0 TEST RESULTS SUMMARIES

Client:	Verso Corporation
Facility:	Quinnesec Mill
Test Location:	Recovery Furnace Outlet
Test Method:	5/202

Source Condition	Normal	Normal	Normal	Normal	
Date Start Time	8/24/17	8/24/17	8/24/17	8/24/17	
Start Time	0:10	10:33	12:49	14:52	
End lime	9:23 Dun 4	11:47 Dun 9	13:37 Bun 2	10:00	Aug 10.00
Staal	Conditio	Kull 2	Kuli 3	Kun 4	Average
Average Gas Temperature °F	380.2	301.1	306.5	305.3	304.3
Flue Gas Moisture percent by volume	27 3%	27.0%	28.4%	27.6%	27 7%
Average Flue Pressure in Hg	28.98	28.98	28.98	28.0%	28.98
Gas Sample Volume, dscf	40 757	40 330	39 675	39 864	39 956
Average Gas Velocity, ff/sec	80 746	79 932	79 207	79 269	79 469
Gas Volumetric Flow Rate, acfm	474 786	469,998	465 738	466 103	467 280
Gas Volumetric Flow Rate, dscfm	207 782	206,162	199 200	201 681	202 348
Gas Volumetric Flow Rate, scfm	285,940	282,414	278.089	278,719	279 741
Average %CO ₂ by volume, dry basis	15.0	15.1	15.1	15.1	15.1
Average %O ₂ by volume, dry basis	4.4	4.3	4.3	4.3	4.3
Isokinetic Variance	102.9	102.6	104.5	103.7	103.6
Filterable Partic	ulate Matt	er (Method 5))	<u> </u>	
grams collected	0.03702	0.03361	0.03298	0.03078	0.03246
mg/dscm	32.077	29.430	29.355	27.267	28.6843
grains/acf	0.0061	0.0056	0.0055	0.0052	0.0054
grains/dscf	0.0140	0.0129	0.0128	0.0119	0.0125
grains/dscf @ 8% O ₂	0.0109	0.0100	0.0099	0.0092	0.0097
lb/hr	24.961	22.723	21.900	20.595	21.739
Condensable Partic	ulate Mat	ter (Method 2	:02)		
grams collected	0.00431	0.01306	0.00289	0.00302	0.00632
grains/acf	0.0007	0.0022	0.0005	0.0005	0.0011
grains/dscf	0.0016	0.0050	0.0011	0.0012	0.0024
grains/dscf @ 8% O ₂	0.0013	0.0039	0.0009	0.0009	0.0019
lb/hr	2.906	<u>8.8</u> 30	1.919	2.020	4.256
Total Particu	late Matte	er (5/202)			
grams collected	0.04133	0.04667	0.03587	0.03380	0.03878
grains/acf	0.0068	0.0078	0.0060	0.0057	0.0065
grains/dscf	0.0156	0.0179	0.0139	0.0131	0.0150
grains/dscf @ 8% O ₂ *	0.0122	0.0139	0.0108	0.0102	0.0116
lb/hr	27.867	31.553	23.819	22.615	25.996

* Run 1 from 8:15-9:23 is not included in the average

Client: Facility:	Verso Corporation							
Test Location: Test Method:	Recovery Furnace Outlet 26A							
	Source Condition	Normal		Normal		Normal		
	Date	8/22/17		8/22/17		8/22/17		
	Start Time	7:55		9:52		11:26		
	End Time	9:26		11:00		12:34		
		Run 1		Run 2		Run 3		Average
	<u></u>	ack Conditio	ns					
Av	erage Gas Temperature, °F	400.7		400.4		399.7		400.3
Flue Gas N	loisture, percent by volume	25.8%		25.4%		27.3%		26.2%
Av	erage Flue Pressure, in. Hg	28.61		28.61		28.61		28.61
	Gas Sample Volume, dscf	51.594		51.956		52.731		52.094
1	Average Gas Velocity, ft/sec	73.889		74.367		75.726		74.661
Gas	Volumetric Flow Rate, acfm	434,468		437,275		445,271		439,005
Gas V	olumetric Flow Rate, dscfm	189,046		191,497		190,169		190,237
Gas	Volumetric Flow Rate, scfm	254,833		256,579		261,494		257,635
Average	%CO ₂ by volume, dry basis	15.2		15.1		15.2		15.2
Averag	e %O ₂ by volume, dry basis	4.1		4.2		4.1		4.1
_	Isokinetic Variance	101.4		100.8		103.0		101.7
	Hydrogen	Chloride (HCl) Em	issions				
	ug of sample collected	658.48	2	150.00	5	150.00	≤	319.49
	ppm	0.30	≤	0.07	≤	0.07	≤	0.14
	mg/dscm	0.45	≤	0.10	≤	0.10	≤	0.22
	mg/dscm @ 8% O2	0.35	≤	0.08	≤	0.08	≤	0.17
	lb/hr	0.3192	≤	0.0731	≤	0.0716	≤	0.1546

Company:Verso CorporationPlant:Quinnesec MillTest Location:Recovery Furnace OutletTest Method:M173402

Source Condition	Normal		Normal		Normal						
Date Start Time	0/22/17		0/22/17		7.30						
End Time	13.28		18.25		11.40						
	Run 1		Run 2		Run 3		Average				
Stack Conditions											
Average Gas Temperature, °F	388.0		388.7		388.3		388.3				
Flue Gas Moisture, percent by volume	22.4%		24.9%		25.9%		24.4%				
Average Flue Pressure, in. Hg	28.60		28.60		28.79		28.66				
Gas Sample Volume, dscf	218.412		219.529		212.795		216.912				
Average Gas Velocity, ft/sec	80.566		81.489		77.832		79.962				
Gas Volumetric Flow Rate, acfm	473,731		479,158		457,650		470,180				
Gas Volumetric Flow Rate, dscfm	218,731		214,111		203,229		212,024				
Gas Volumetric Flow Rate, scfm	281,956		284,951		274,103		280,337				
Average %CO ₂ by volume, dry basis	15.2		15.2		15.2		15.2				
Average %O ₂ by volume, dry basis	4.1		4.1		4.2		4.1				
Isokinetic Variance	96.8		99.4		101.5		99.2				
PCDD/PCDF Emissions											
ng/dscm <	0.06	<	0.10	<	0.03	<	0.06				
Total ng/dscm (TEQ) <	0.0017	<	0.0017	<	0.0002	<	0.0012				
Total ng/dscm @ 8% O_2 Dry (TEQ) <	0.0013	<	0.0013	<	0.0001	<	0.0009				

Verso Corporation Quinnesec Mill Recovery Furnace Outlet Normal August 23, 2017

L	Gaseous Phase SO ₃ as H ₂ SO ₄ , 80% IPA Condenser Coil (analyzed by titration)													
										Volumetric			mg/dscm @	
í	Start	End	1			ĺ		CO2 %	O2 %	Flow Rate,	lb/dscf SO3	ppm SO ₃	8% O2 SO₃	lb/hr SO3
Test	Time	Time	Vt-Vtb	N	Vsoln	Va	Vm(std) ft ³	dry	dry	dscfm	as H₂SO₄	as H₂SO₄	as H₂SO₄	as H ₂ SO ₄
1	7:45	8:45	0.10	0.00959	100	10	43.480	15.1	4.2	203,229	2.38E-08	0.09	2.36E-04	0.29
2	9:55	10:55	0.10	0.00959	100	10	19.818	15.2	4.2	203,229	5.23E-08	0.21	5.19E-04	0.64
3	11:45	12:45	0.08	0.00959	100	10	19.720	15.2	4.0	203,229	3.94E-08	0.15	3.86E-04	0.48
	Averag	e	0.09	0.00959	100	10	27.673	15.2	4.1	203,229	3.85E-08	0.15	3.80E-04	0.47

	Verso Corporation Quinnesec Mill Recovery Furnace Outlet Gaseous Summary											
Test No.	Gase dus Summary Gase dus Summary Test THC VOC as CH4 Fest Start End CO2 % O2 % Moisture Flow rate, THC ppm as VOC as ppmvd at 8% VOC as No. Date Time Time (dry) (dry) (Bws) SCFM C3Ha (wet) CH4 lbs/hr 8% O2 O2 CH4 lbs/hr											
1	08/24/17	08:15	09:14	15.0	4.4	0.273	285,940	1.6	3.4	1.7	5.2	3.42
2	08/24/17	10:33	11:32	15.1	4.3	0.270	282,414	0.3	0.6	0.3	1.0	0.63
3	08/24/17	12:49	13:48	15.1	4.3	0,284	278,089	0.4	0.8	0.4	1.3	0.83
4	08/24/17	14:52	15:51	15.1	4.3	0.276	278,719	0.3	0.6	0.3	1.0	0.62
	Average 15.1 4.3 0,276 281,291 0.7 1.4 0.7 2.1 1.38								1.38			

Client:	Verso Corporation				
Facility:	Quinnesec Mill				
Test Location:	Smelt Dissolving Tank Stack				
lest Method:	5/202	No. www.ml	M	Manua - I	
	Source Condition	Normai	Normal	Normai 9/20/47	
	Date Start Time	0/29/17	8/29/17	8/29/17	
	Start Time	11:00	12:50	14:40	
	End lime	12:05 Dun 4	13:55	15:45 Dun 2	A
		Kuil I	Run 2	Kun 3	Average
L	Average Gas Temperature °E	172.8	172.5	174 0	173 1
FI	Average das remperature, i	172.0	112.5	46.3%	175.1
	Averade Flue Pressure in Ho	28.85	28.85	28.85	28.85
	Gas Sample Volume dscf	38 980	39.809	37 840	38 876
	Average Gas Velocity ft/sec	46 156	46 985	45 413	46 185
	Gas Volumetric Flow Rate acfm	34 801	35 426	34 241	34 823
	Gas Volumetric Flow Rate, dscfm	15,370	15 737	14 764	15 290
	Gas Volumetric Flow Rate, scfm	27.997	28,509	27,493	28.000
	Average %CO ₂ by volume, dry basis	0.1	0.1	0.2	0.1
	Average $\%O_2$ by volume, dry basis	19.8	19.7	20.2	19.9
	Isokinetic Variance	101.4	101.1	102.5	101.7
	BLS tons/hr	84.972	85.039	85.032	85.014
	Filterable Particulate N	latter (Met	hod 5)		
	grams collected	0.09792	0.13450	0.12261	0.11834
	mg/dscm	88.713	119.317	114.429	107.4861
	grains/acf	0.0171	0.0232	0.0216	0.0206
	grains/dscf	0.0388	0.0521	0.0500	0.0470
	lb/hr	5.107	7.032	6.327	6.155
-	Ib/TBLS	0.060	0.083	0.074	0.072
	Condensable Particulate	Matter (Mei	thod 202)		
	grams collected	0.00950	0.01900	0.00630	0.01160
	grains/acf	0.0017	0.0033	0.0011	0.0020
	grains/dscf	0.0038	0.0074	0.0026	0.0046
	lb/hr	0.495	0.993	0.325	0.604
	Ib/TBLS	0.006	0.012	0.004	0.007
L	Total Particulate N	latter (5/20	2)		
	grams collected	0.10740	0.15350	0.12890	0.12993
	grains/acf	0.0188	0.0265	0.0227	0.0227
	grains/dscf	0.0426	0.0595	0.0526	0.0516
	Ib/hr	5.602	8.025	6.652	6.760
	Ib/ TBLS	0.066	0.095	0.078	0.080

	Verso Corporation Quinnesec Mill Smelt Dissolving Tank Stack Gaseous Summary											
Test No.	Test Start End Flowrate, THC ppm as THC ppm as VOC ppm as No. Date Time Time Moisture, % SCFM C ₃ H ₈ (wet) C ₃ H ₈ (dry) CH4 (dry)											
1	08/30/17	08:55	09:54	49.3	26,833	4.6	9.1	27.2				
2	08/30/17	10:30	11:29	50.0	26,870	1.5	3.0	9.0				
3	3 08/30/17 11:55 12:54 45.4 28,000 4.9 9.0 26.9											
	Average 48.2 27,234 3.7 7.0 21.0											

Emission Rate Summary

Test No.	Date	Start Time	End Time	VOC as CH4 lb/hr
1	08/30/17	08:55	09:54	0.92
_ 2	08/30/17	10:30	11:29	0.32
3	08/30/17	11:55	12:54	1.03
	Ave	age		0.76

Verso Corporation Quinnesec Mill August 29 and 30, 2017 Smelt Dissolving Tank Stack

	TRS Data Summary											
Run No.	Time	TRS PPM	Oxygen %	TRS ppm Corrected	Flowrate, dscfm	BLS tons/hr	TRS as SO ₂ lbs/hr	TRS as SO ₂ lbs/TBLS				
1	11:00-14:00	3.97	19.70	36.06	15,730	85.0	0.33	0.0039				
2	15:15-18:15	3.84	19.80	38.05	15,737	85.0	0.32	0.0038				
3	8:55-13:40	3.62	20.20	56.37	14,764	85.0	0.28	0.0033				
	Average	3.81	19.90	43.49	15,410	85.0	0.31	0.0036				

Client:	Verso Corporation				
Facility:	Quinnesec Mill				
Test Location:	Lime Kiln Stack				
Test Method:	5/202				
	Source Condition	Normal	Normal	Normal	
	Date	8/31/17	8/31/17	8/31/17	
	Start Time	8:55	10:30	11:55	
	End Time	9:58	11:33	12:58	_
r		Run 1	Run 2	Run 3	Average
	Stack Conc	litions	(00.4		
	Average Gas Temperature, °F	160.3	160.1	160.1	160.2
FI	ue Gas Moisture, percent by volume	33.5%	33.4%	33.4%	33.4%
	Average Flue Pressure, in. Hg	28.98	28.98	28.98	28.98
	Gas Sample Volume, dscf	35.338	35.737	39.090	36.722
	Average Gas Velocity, ft/sec	13.530	13.664	13.649	13.614
	Gas Volumetric Flow Rate, acfm	40,806	41,209	41,165	41,060
	Gas Volumetric Flow Rate, dscfm	22,370	22,630	22,608	22,536
	Gas Volumetric Flow Rate, scfm	33,639	33,980	33,946	33,855
	Average %CO ₂ by volume, dry basis	22.4	22.4	22.3	22.4
	Average %O ₂ by volume, dry basis	2.8	3.0	3.0	2.9
	Isokinetic Variance	94.8	94.8	103.8	97.8
	Filterable Particulate	Matter (Met	hod 5)		
	grams collected	0.0555	0.0583	0.0733	0.0624
	mg/dscm	55.474	57.572	66.239	59.7619
	grains/acf	0.0133	0.0138	0.0159	0.0143
	grains/dscf	0.0242	0.0252	0.0289	0.0261
	grains/dscf @ 10% O2	0.0146	0.0153	0.0176	0.0158
	lb/hr	4.647	4.879	5.608	5.045
	Condensable Particulate	Matter (Met	thod 202)		
	grams collected	0.0013	0.0017	0.0022	0.0017
	grains/acf	0.0003	0.0004	0.0005	0.0004
	grains/dscf	0.0006	0.0007	0.0009	0.0007
	lb/hr	0.109	0.142	0.168	0.140
	Total Particulate I	<u>Aatter (5/20)</u>	2)		
	grams collected	0.0568	0.0600	0.0755	0.0641
	grains/acf	0.0136	0.0142	0.0164	0.0147
	grains/dscf	0.0248	0.0259	0.0298	0.0268
	lb/hr	4.756	5.021	5.776	5.184

.

USEPA METHOD 308 RESULTS SUMMARY Verso Corporation Quinnesec Mill Lime Kiln Stack

Run No.	Date	Time	Meter Volume, standard líters	DSCFM	Metha	nol detected, ug	Co	Methanol Incentration, ppmvd		Methanol, mg/dscm	Met	hanol, Ib/hr
1A	8/31/2017	8: <u>5</u> 5-9:55	23.355	22370	≤	60.0	≤	1.93	≤	2.57	≤	0.22
2A	8/31/2017	10: <u>3</u> 0-11:30	22.940	22630	s	60.0	VI	1.96	≤	2.62	N	0.22
3A	8/31/2017	11:55-12:55	22.933	22608	5	60.0	٧î	1.96	≤	2.62	5	0.22
	Overall Avera	ge	23.076	22536	≤	60.0	≤	1.95	ž	2.60	≤	0.22

[Verso Corporation Quinnesec Mill Lime Kiln Stack Gaseous Summary														
Test No.	Test Start End NO _x CO SO ₂ CO ₂ % Fiowrate, Flowrate, Flowrate, THC ppm VOC										VOC ppm as CH4 (dry)@ 10% O2				
1	08/31/17	08:55	09:54	66.0	27.8	0.2	22.4	2.8	33.5	22,370	33,639	10.7.	16.1	48.3	29.1
2	08/31/17	10:30	11:29	66.4	27.9	0.1	22.2	3.0	33.4	22,630	33,980	10.0	15.0	45.0	27.4
3	08/31/17	11:55	12:54	68.4	27.7	0.2	22.3	3.0	33.4	22,608	33,946	10.2	15.3	45.9	28.0
	Aver	age		66.9	27.8	0.2	22.3	2.9	33.4	22,536	33,855	10.3	15.5	46.4	28.2

_					Er	nission Ra	te Summar	y .			
Test No.	Date	Starl Time	End Time	NO _x lb/hr	SO₂ Ib/hr	CO Ib/hr	VOC as CH4 Ib/hr (wet)	NO _x ib/MMBtu (Heat Input)	SO ₂ Ib/MMBtu (Heat Input)	CO Ib/MMB(u (Heat Input)	Heat Input, MMBtu/hr
L 1	08/31/17	08:55	09:54	10.58	0.04	2.71	2.69	0.11	0.0004	0.029	94.2
2	08/31/17	10:30	11:29	10.76	0.02	2.75	2.54	0.11	0.0002	0.029	94.0
3	08/31/17	11:55	12:54	11.08	0.05	2.73	2.59	0.12	0.0005	0.029	94.0
	Ave	age		10.81	0.04	2.73	2.61	0.11	0.0004	0.029	94.1

Verso Corporation Quinnesec, MI August 31, 2017 Lime Kiln Stack

	TRS Data Summary											
Run No.	Time	TRS PPM	Oxygen %	TRS ppm Corrected	Flowrate, dscfm	TRS as H2S lbs/hr						
1	8:55-9:55	1.57	2.78	0.95	22370	0.20						
2	10:30-11:30	1.39	2.81	0.84	22630	0.18						
3	11:55-12:55	1.39	2.80	0.84	22608	0.18						
	Average	1.45	2.80	0.88	22536	0.18						

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Verso Corporation. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

Timoting A. Mis

Program Manager

Tim Mei

HuyM. Critice

Quality Assurance

Jeffrey M. Crivlare