

5440 Alder Drive Houston, TX 77081

Phone: 800-836-7333 *Fax*: 713-664-6444 *E-mail:* emissions@ccconet.com

EMISSION TEST REPORT

<u>REGULATION(S):</u> 40 CFR 60 SUBPART JJJJ AND MDEQ PERMIT <u>POLLUTANT(S):</u> CO, NOX, AND VOCS

ANR TRANSCANADA PIPELINE COMPANY BLUE LAKE 18 KALKASKA COUNTY, MI

PERMIT NUMBER: MI-ROP-B7198_2014A FRS # / EPA REGISTRY ID: 110013860526 SOURCE CLASSIFICATION CODE (SCC): 20200254 RECEIVED

JAN 23 2018

AIR QUALITY DIVISION

Source ID:	BLGEN-B
EMISSION SOURCE:	Spark-Ignited Engine
4-stroke/2-stroke:	4-Stroke
RICH/LEAN BURN:	Lean Burn
MAKE & MODEL:	CATERPILLAR G3516
UNIT NUMBER:	В
SERIAL NUMBER:	3RC00642

TEST DATE: NOVEMBEI

NOVEMBER 28, 2017	
-------------------	--

	pounds / hour		g/BH		
Pollutant	Permitted	Emitted	Permitted	Emitted	PASS/FAIL
CO	1.6	< 0.1	1.4	< 0.1	PASS
NOx	5.7	1.1	2	1	PASS
VOCs	0.9	< 0.1	0.55	< 0.01	PASS

Limits obtained from Permit MI-ROP-B7198_2014a

The contents of this document relate only to the items tested. I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

CECO TEST LEADER:

HUY NGUYEN SENIOR EMISSIONS TEST SPECIALIST CECO TRAINING & TECHNICAL SERVICES 724-961-3584

This report may not be reproduced in full, or in part, without the written approval of ANR TransCanada Pipeline Company.

Revision History					
Version	Revision Date	Comments			
0	original	Original Version of Document.			

Project Information

CECO Project No: 20171128-052-2

Contact Information

Facility Information

Facility ANR TransCanada Pipeline Company Blue Lake 18 Kalkaska County, MI Roy Cannon 700 Louisiana Street Houston, TX 77028 832-320-5465 roy_cannon@transcanada.com

Testing Group Information

Contact Huy Nguyen CECO Training & Technical Services 5440 Alder Drive Houston, TX 77081 724-961-3584 huy.nguyen@ceconet.com

Introduction

CECO Training & Technical Services, a division of Compressor Engineering Corporation, conducted source emission testing at ANR TransCanada Pipeline Company, Blue Lake 18 to fulfill the requirements of 40 CFR 60 Subpart JJJJ and MDEQ Permit. This report details the test purpose, objectives, testing procedures, sampling and analysis methodology, and results of the source testing conducted on November 28, 2017.

Process Description

The following source was tested:

• Unit Number B (Source ID BLGEN-B) SN 3RC00642 – one (1) Caterpillar G3516 natural gas-fired, 4-Stroke, Lean Burn internal combustion engine, rated to 1125 brake horsepower (BHP) at 1200 revolutions per minute (RPM). This source is equipped with an oxidation catalyst with an air-fuel ratio controller for emission control and drives a generator.

Test Purpose and Objectives

The purpose of this test was to fulfill the requirements of 40 CFR 60 Subpart JJJJ and MDEQ Permit. The objective of this test was to conduct the required three (3) 60-minute test runs to measure the applicable emission species at the maximum achievable load.

Results

Resu	illar G3516		Test Run		
	ID:BLGEN-B Unit ID: B SN: 3RC00642	lst	2nd	3rd	Average
Fuel				<u> </u>	1
a sensitive to the sensitive.	BTU/SCF)	1020			
	BTU/SCF)	923	1		
· · · ·	pr (DSCF/MMBTU)	8616	1		
	ate & Time				
Date		11/28/2017	11/28/2017	11/28/2017	
Start T	îime	1:26 PM	2:35 PM	3:54 PM	1
End Ti	me	2:26 PM	3:35 PM	4:54 PM	1
Interva	al (minutes)	60	60	60	60
Measu	ired Concentrations (bias-corrected	where applica	ble)		1. (* 4 Carton 7 St
O ₂ (%v	/d)	9.22	9.25	8.96	9.14
CO (pp		2.1	2.5	3.2	2.6
	opmvd)	78.8	75.2	114.6	89.5
VOCs ((ppmvd)	-193.6	-215.1	-204.2	-204.3
THC (p	ppmvd)	480.9	473.7	468.5	474.4
Opera	ting Conditions				
Engine	e Horsepower (BHP)	655	688	688	677
Engine	e (Torque) Load (%)	58.1	61.0	61.0	60.0
	e Speed (RPM)	1203	1202	1203	1203
Fuel Fl	ow Rate (SCFH)	6470	6457	6153	6360
BSFC (BTU/BHP/hr), LHV	9116	8662	8255	8678
	TU Consumption (MMBTU/hr)	6.60	6.59	6.28	6.49
Exhaus	st Flow Rate (SCFH)	101756	101808	94669	99411
·	st Flow Rate (SCFM)	1695.9	1696.8	1577.8	1656.9
Calcula	ated Emissions				
	(lb/hr)	0.0155	0.0185	0.0220	0.0187
со	(ton/year)	0.0680	0.0810	0.0964	0.0818
CU	(g/BHP-hr)	0.0108	0.0122	0.0145	0.0125
-	(ppmvd at 15% O ₂)	1.0608	1.2661	1.5812	1.3027
	(lb/hr)	0.9569	0.9137	1.2947	1.0551
Nou	(ton/year)	4.1913	4.0018	5.6709	4.6213
NOx	(g/BHP-hr)	0.6626	0.6024	0.8537	0.7062
	(ppmvd at 15% O ₂)	39.8048	38.0841	56.6281	44.8390
	(lb/hr)	< 0.1000	< 0.1000	< 0.1000	< 0.1000
	(ton/year)	< 1.0000	< 1.0000	< 1.0000	< 1.0000
VOCs	(g/BHP-hr)	< 0.1000	< 0.1000	< 0.1000	< 0.1000
	(ppmvd at 15% O ₂)	< 1.0000	< 1.0000	< 1.0000	< 1.0000
	(lb/hr)	5.5976	5.5166	5.0734	5.3959
	(ton/year)	24.5175	24.1628	22.2217	23.6340
THC	(g/BHP-hr)	3.8759	3.6373	3.3451	3.6194
	$(ppmvd at 15\% O_2)$	242.9204	239.8996	231.5034	238.1078
				= •	

Methodology and Sampling Procedures

Methodology

Parameter	Sampling Method
Oxygen (O ₂)	40 CFR 60, Appendix A, Method 3A
Oxides of Nitrogen (NO _X)	40 CFR 60, Appendix A, Method 7E
Carbon Monoxide (CO)	40 CFR 60, Appendix A, Method 10
Volumetric Exhaust Flow Rate	40 CFR 60, Appendix A, Method 19
Gas Dilution System	40 CFR 60, Appendix A, Method 205
Methane (CH_4) & Ethane (C_2H_6)	ASTM D6348
Total Hydrocarbons (THC)	40 CFR 60, Appendix A, Method 25A
Volatile Organic Compounds (VOCs)	40 CFR 60, Appendix A, Method 25A & ASTM F6348 Subtraction

VOCs via Method 25A

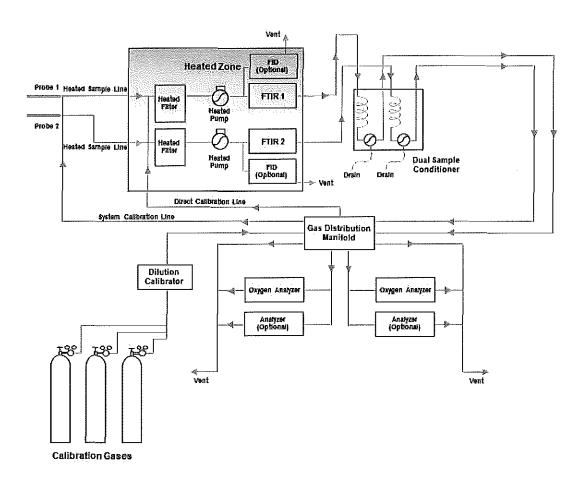
The following gasses were individually quantified on the Fourier Transfer Infrared Spectroscopy (FTIR) analyzer and summed on a propane basis to calculate total hydrocarbons (THC). Methane response factors (based on carbon number) are listed after each compound. Methane and Ethane were subtracted from the total hydrocarbons to calculate Nonmethane/Non-ethane (NM/NE) VOCs, reported as propane. Formaldehyde was specifically excluded per 60.4244 (f).

Methane (RF 1)	Ethylene (RF 2)	Propane (RF 3)	Butane (RF 4)	Acetaldehyde (RF 2)
Ethane (RF 2)	Acetylene (RF 2)	Propylene (RF 3)	Methanol (RF 1)	Formic Acid (RF 1)

Horsepower and Fuel Flow Determination

For this test, horsepower was calculated from the load percentage displayed on the engine panel and fuel flow was obtained from a fuel flow meter. The Engine Torque Load averaged 60.0% for the test. This was the highest achievable load based on the operating parameters during the test, which are included in Appendix A.

Sampling System


Compressor Engineering Corporation designed and assembled a versatile, emission testing unit (ETU), which houses all analyzers, computers and auxiliary equipment. Effluent stack gas enters the ETU through a heated Teflon sample line. A heated head pump with a Teflon diaphragm pulls the sample into the trailer, through a heated filter, and sends the wet gas directly to the inlet of the FTIR. The heated pump, sample lines, and filter have their temperatures maintained at approximately 191 °C. The FTIR analyzer gas cell and gas inlet temperatures are also maintained at approximately 191 °C. The sample is routed from the exit of the FTIR through a heated Teflon line to a gas conditioner for moisture removal. The dry gas exiting the gas conditioner is routed to a gas distribution panel which sends a portion of the gas to the paramagnetic oxygen analyzer.

The MKS Instruments MultiGas 2030 FTIR analyzer is used to determine the CO, NOx, and VOCs emission concentrations. The FTIR serves as the instrument for Methods 7E and 10, and meets the requirements of Section 13 of Method 7E. All measured concentrations are corrected to a dry basis via the MKS MG2000 operating software. The FTIR analyzer is configured with

a fixed optical pathlength of 5.11 meters. The measured concentrations are collected at a 0.5 cm⁻¹ resolution. Each spectrum is derived from the co-addition of 60 scans. Data is collected continuously during each test run. A new data point is generated every 60 seconds.

A software package (CECOTest) is used to collect and processes data. CECOTest continually logs data every 15 seconds from the oxygen analyzer and the FTIR during the 60 minute runs.

Refer to FIGURE 1 for a schematic of the sampling system.

Instrument Specifications

Description:	Oxygen Analyzer
Manufacturer:	Servomex
Model:	1440C
Serial Number:	01440C1STO-2594
Technology Type:	Paramagnetic
Range:	0-25%
Repeatability:	+/- 0.1% O2
Response Time (90%):	Typically less than 10 sec
Linearity:	+/- 0.1% O2
Description:	FTIR Analyzer
Manufacturer:	MKS Instruments
Model:	2030
Serial Number:	017979534
Technology Type:	FTIR Spectrometry
Range:	between 10ppb and 100% fullscale
Spectral Resolution:	0.5-128 1/cm
Scan Speed:	1/sec @ 0.5 1/cm
Detector Type:	LN2-cooled MCT
Manufacturer:	Teledyne
Model:	T700
Serial Number:	70
Technology Type:	Mass Flow Controller
MFC's:	0LPM, 2LPM, and 200ccm
Flow Measurement Accuracy	+/-1.0% of Full Scale
Repeatability of Flow Control	+/-0.2% of full Scale
Linearity of Flow Measurement	+/-0.5% of Full Scale
Flow Range of Diluent Air	0 to 10 SLPM
Optional Ranges:	0 to 5 SLPM; 0 to 20 SLPM
Flow Range of Cylinder Gasses	0 to 5 SLPM; 0 to 20 SLPM
Optional Ranges:	0 to 50 cc/min; 0 to 200 cc/min
Zero Air Required:	10 SLPM @ 30 PSIG
Optional	20 SLPM @ 30 PSIG
CAL Gas Input Ports	4 (configurable)
Diluent Gas Input Ports	1
Response Time	60 Seconds (98%)
Description:	Flame Ionization Analyzer
Manufacturer:	J.U.M. Engineering
Model:	1440C
Serial Number:	serial number 8
Outputs:	0-10V, 4 - 20mA.
Detection Method:	Flame Ionization Detector.

.

Detection Limit: Ranges: Response Time: Sample Flow Rate: Drift: Linearity: 1ppm CH4 at full scale. 0-10, 0-100, 0-1,000, 0-10,000, 0-100,000ppm. 0.2 sec. 2.5 L/min. Span (24 hours): <1%. Zero (24 hours): <1%. within 1% of full scale

Description of Sampling Location

Calibrator Validation

Make:	Telydyne	Date:	11/28/17
Model:	T700		
Serial No.:	70	-	

Diluent High Calibration	Gas	Oxygen	
	Target	12.60	
	Reading	Check	Check
Check 1	12.65	PASS	PASS
Check 2	12.65	PASS	PASS
Check 3	12.67	PASS	PASS
Average	12.66		
Deviation	0.4%	PASS	

Diluent Mid Calibration (Gas	Oxygen	
······································	Target	6.30	1
	Reading	Check	Check
Check 1	6.41	PASS	PASS
Check 2	6.31	PASS	PASS
Check 3	6.33	PASS	PASS
Average	6.35		
Deviation	0.8%	PASS	

Validation Calibration Gas		Oxygen	
С	oncentration	12.47	
	Reading	Check	
Check 1	12.54		
Check 2	12.56		
Check 3	12.52		
Average	12.54		
Deviation	0.6%	PASS	