

5440 Alder Drive Houston, TX 77081

Phone: 800-836-7333 Fax: 713-664-6444 E-mail: emissions@ceconet.com

EMISSION TEST REPORT

REGULATION(S):MDEQ PERMITPOLLUTANT(S):NOX

TRANSCANADA USA PIPELINES COLD SPRINGS 12 COMPRESSOR STATION KALKASKA COUNTY, MI

Permit Number:	MI-ROP-B7198-2014A
STATE REGISTRATION NUMBER:	B7198
FRS # / EPA REGISTRY ID:	110013860526
SOURCE CLASSIFICATION CODE (SCC):	202000254
SOURCE ID:	EU CS12CMPR-B
EMISSION SOURCE:	SPARK-IGNITED ENGINE
4-stroke/2-stroke:	4-stroke
RICH/LEAN BURN:	LEAN BURN
MAKE & MODEL:	INGERSOLL RAND 410 KVR
Unit Number:	CS12CMPR-B
SERIAL NUMBER:	410KVR-155A
Test Date:	JUNE 6, 2017

NOx	99.2	68.3	12	10	PASS
Dollutant	pounds	; / hour	g/BH	IP-hr	Passing
	Permitted Limits				

Limits obtained from Permit MI-ROP-B7198-2014a and 40 CFR 60, Subpart JJJJ

The contents of this document relate only to the items tested. I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

CECO TEST LEADER:

HUY NGUYEN SENIOR EMISSIONS TEST SPECIALIST CECO TRAINING & TECHNICAL SERVICES 724-961-3584

This report may not be reproduced in full, or in part, without the written approval of TransCanada USA Pipelines.

RECEIVED

AUG 01 2017

AIR QUALITY DIVISION

Revision HistoryVersionRevision DateComments0originalOriginal Version of Document.

Project Information

CECO Project No: 20170606-052-1

Contact Information

Facility Information

<u>Facility</u>

TransCanada USA Pipelines Cold Springs 12 Compressor Station Kalkaska County, MI

<u>Contact</u>

Roy Cannon 700 Louisiana Street Houston, TX 77002 832-320-5465 roy_cannon@transcanada.com

Testing Group Information

Contact: CECO Training & Technical Services 5440 Alder Drive Houston, TX 77081 724-961-3584 huy.nguyen@ceconet.com

Introduction

CECO Training & Technical Services, a division of Compressor Engineering Corporation, conducted source emission testing at TransCanada USA Pipelines, Cold Springs 12 Compressor Station to fulfill the requirements of Michigan Department of Environmental Quality (MDEQ) Permit. This report details the test purpose, objectives, testing procedures, sampling and analysis methodology, and results of the source testing conducted on June 6, 2017.

Process Description

The following sources were tested:

• Unit CS12CMPR-B (CS12CMPR-B) SN 410KVR-155A – one (1) Ingersoll Rand 410 KVR natural gas-fired, 4-stroke, lean burn internal combustion engine, rated to 3750 brake horsepower (BHP) at 350 revolutions per minute (RPM). This source is equipped with an AFR for emission control and drive natural gas compressor.

Test Purpose and Objectives

The purpose of this test was to fulfill the requirements of MDEQ Permit. The objective of this test was to conduct the required three (3) 60-minute test runs to measure the applicable emission species at the maximum achievable load.

Results	
ingersoll Rand 410 KVR	
ID: CS12CMPR-B SN: 410KVR-155A	1st
Fuel	
HHV (BTU/SCF)	1026
LHV (BTU/SCF)	928
F-factor (DSCF/MMBTU)	8619
Test Date & Time	
Date	6/6/20:

Test Da	ate & Time				
Date		6/6/2017	6/6/2017	6/6/2017	
Start Ti	me	10:59 AM	12:05 PM	1:11 PM	
End Tir	ne	11:59 AM	1:05 PM	2:11 PM	
Interva	l (minutes)	60	60	60	60
Measu	red Concentrations				
0 ₂ (%v	d)	15.46	15.39	15.43	15.43
NOx (p	pmvd)	759.2	747.2	747.1	751.2
Operat	ing Conditions (Rated BHP: 3750 (@ 350 RPM)			
Engine	Horsepower (BHP)	3155	3143	3158	3152
Engine	(Torque) Load (%)	90.7	90.4	90.8	90.6
Engine	Speed (RPM)	325	324	325	325
Fuel Flo	ow Rate (SCFH)	23000	22333	22333	22556
BSFC (E	BTU/BHP/hr), LHV	6766	6596	6565	6642
Fuel BT	U Consumption (MMBTU/hr)	23.59	22.91	22.91	23.14
Exhaus	t Flow Rate (SCFH)	781156	748878	754354	761462
Exhaus	t Flow Rate (SCFM)	13019.3	12481.3	12572.6	12691.0
Calcula	ted Emissions				
	(lb/hr)	70.7751	<u>66</u> .7781	67.2574	68.2702
	(ton/year)	309.9948	292.4880	294.5874	299.0234
NOX	(g/BHP-hr)	10.1742	9.6383	9.6614	9.8246
1	(ppmvd at $15\% O_2$)	823.3971	800.0871	805.8300	809.7714

Test Run 2nd

3rd

Average

Page 5 of 75

Methodology and Sampling Procedures

Methodology

Parameter	Sampling Method
Oxygen (O ₂)	40 CFR 60, Appendix A, Method 3A
Oxides of Nitrogen (NO _X)	40 CFR 60, Appendix A, Method 7E
Volumetric Exhaust Flow Rate	40 CFR 60, Appendix A, Method 19
Gas Dilution System	40 CFR 60, Appendix A, Method 205

Horsepower and Fuel Flow Determination

For this test, horsepower was obtained from engine panel and fuel flow was obtained from the engine panel. The Engine Torque Load averaged 90.6% for the test. This was the highest achievable load based on the operating parameters during the test, which are included in Appendix A.

Sampling System

an gertad

Compressor Engineering Corporation designed and assembled a versatile, emission testing unit (ETU), which houses all analyzers, computers and auxiliary equipment. Effluent stack gas enters the ETU through a heated Teflon sample line. A heated head pump with a Teflon diaphragm pulls the sample into the trailer, through a heated filter, and sends the wet gas directly to the inlet of the FTIR. The heated pump, sample lines, and filter have their temperatures maintained at approximately 191 °C. The FTIR analyzer gas cell and gas inlet temperatures are also maintained at approximately 191 °C. The sample is routed from the exit of the FTIR through a heated Teflon line to a gas conditioner for moisture removal. The dry gas exiting the gas conditioner is routed to a gas distribution panel which sends a portion of the gas to the paramagnetic oxygen analyzer.

The MKS Instruments MultiGas 2030 FTIR analyzer is used to determine the NOx emission concentrations. The FTIR serves as the instrument for Methods 7E and 10, and meets the requirements of Section 13 of Method 7E. All measured concentrations are corrected to a dry basis via the MKS MG2000 operating software. The FTIR analyzer is configured with a fixed optical pathlength of 5.11 meters. The measured concentrations are collected at a 0.5 cm⁻¹ resolution. Each spectrum is derived from the co-addition of 60 scans. Data is collected continuously during each test run. A new data point is generated every 60 seconds.

A software package (CECOTest) is used to collect and processes data. CECOTest continually logs data every 15 seconds from the oxygen analyzer and the FTIR during the 60 minute runs.

Refer to **FIGURE 1** for a schematic of the sampling system.

Figure 1: Sampling System Schematic

Instrument Specifications

Description: Oxygen Analyzer Manufacturer: Servomex Model: 1440C Serial Number: 2594 Technology Type: Paramagnetic Range: 0-25% Repeatability: +/- 0.1% O2 Response Time (90%): Typically less than 10 sec Linearity: +/- 0.1% O2

Manufacturer: MKS Instruments Model: 2030 Serial Number: 017979534 Technology Type: FTIR Spectrometry Range: between 10ppb and 100% fullscale Spectral Resolution: 0.5-128 1/cm Scan Speed: 1/sec @ 0.5 1/cm Detector Type: LN2-cooled MCT

Manufacturer: Teledyne Model: T700 Serial Number: 70 Technology Type: Mass Flow Controller "MFC's: 20LPM, 2LPM, and 200ccm" Flow Measurement Accuracy +/-1.0% of Full Scale Repeatability of Flow Control +/-0.2% of full Scale Linearity of Flow Measurement +/-0.5% of Full Scale Flow Range of Diluent Air 0 to 10 SLPM **Optional Ranges:** 0 to 5 SLPM; 0 to 20 SLPM Flow Range of Cylinder Gasses 0 to 100 cc/min **Optional Ranges:** 0 to 50 cc/min; 0 to 200 cc/min Zero Air Required: 10 SLPM @ 30 PSIG Optional 20 SLPM @ 30 PSIG CAL Gas Input Ports 4 (configurable) Diluent Gas Input Ports 1 Response Time 60 Seconds (98%)

Description of Sampling Location

Page 9 of 75