

5440 Alder Drive Houston, TX 77081

Phone: 800-836-7333 Fax: 713-664-6444

E-mail: emissions@ceconet.com

EMISSION TEST REPORT

REGULATION(S): 40 CFR 60 SUBPART JJJJ AND MDEQ PERMIT

POLLUTANT(S): CO, NOX, AND VOCS

ANR TRANSCANADA PIPELINE COMPANY BLUE LAKE STORAGE COMPANY KALKASKA COUNTY, MI

PERMIT NUMBER: MI-ROP-B7198-2014A

FRS#/EPA REGISTRY ID: 110013860526

SOURCE CLASSIFICATION CODE (SCC): 20200254

EMISSION SOURCE:

SPARK-IGNITED ENGINE

RECEIVED

4-STROKE/2-STROKE: 4-STROKE

RICH/LEAN BURN: LEAN BURN

MAKE & MODEL: CATERPILLAR G3516

UNIT NUMBER: BLGEN-A

DEC 04 2017

SERIAL NUMBER: 3RC00646

AIR QUALITY DIVISION

TEST DATE: OCTOBER 4, 2017

	pounds	/hour	g/BF		
Pollutant	Permitted	Emitted	Permitted	Emitted	PASS/FAIL
СО	1.6	0.01	1.4	0.01	PASS
NOx	5.7	1.94	2	1.4	PASS
VOCs	0.9	< 0.10	0.55	<0.100	PASS

Limits obtained from Permit MI-ROP-B7198-2014a.

The contents of this document relate only to the items tested. I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

CECO TEST LEADER:

Huy Nguyen

SENIOR EMISSIONS TEST SPECIALIST CECO TRAINING & TECHNICAL SERVICES

724-961-3583

This report may not be reproduced in full, or in part, without the written approval of ANR TransCanada Pipeline Company.

Revision History

Version

Revision Date

Comments

original

Original Version of Document.

Project Information

CECO Project No: 20171004-051-1

Contact Information

Facility Information

Facility ANR TransCanada Pipeline Company Blue Lake Storage Company

Kalkaska County, MI

Contact

Roy Cannon 700 Louisiana Street Houston, TX 7702 832-320-5465 roy cannon@transcanada.com

Testing Group Information

Contact

Huy Nguyen CECO Training & Technical Services 5440 Alder Drive Houston, TX 77081 724-961-3583 huy.nguyen@ceconet.com

Introduction

CECO Training & Technical Services, a division of Compressor Engineering Corporation, conducted source emission testing at ANR TransCanada Pipeline Company, Blue Lake Storage Company to fulfill the requirements of 40 CFR 60 Subpart JJJJ and MDEQ Permit No. MI-ROP-B7198-2014A. This report details the test purpose, objectives, testing procedures, sampling and analysis methodology, and results of the source testing conducted on October 4, 2017.

Process Description

The following source was tested:

Unit Number (BLGEN-A) SN 3RC00646 – one (1) Caterpillar G3516 natural gasfired, 4-Stroke, Lean Burn internal combustion engine, rated to 1125 brake horsepower (BHP) at 1200 revolutions per minute (RPM). This source is equipped with Oxidation Catalyst w/AFR for emission control and drive a generator.

Test Purpose and Objectives

The purpose of this test was to fulfill the requirements of 40 CFR 60 Subpart JJJJ and MDEQ Permit No. The objective of this test was to conduct the required three (3) 60minute test runs to measure the applicable emission species at the maximum achievable load.

Results

Resu	ITS				A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,			Test Run	1	
		l 1st	2nd	3rd	Average
Fuel	PTI (CCE)	1040	T		
	BTU/SCF)	1012	-		
	BTU/SCF)	915	4		
	or (DSCF/MMBTU)	8613			
AND THE RESERVE THE PARTY OF TH	Pate & Time	T	10/1/02/20	T	
Date		10/4/2017	10/4/2017	10/4/2017	
Start 1		2:51 PM	4:13 PM	5:26 PM	_
End Ti		3:51 PM	5:13 PM	6:26 PM	
	al (minutes)	60	60	60	60
***************************************	ared Concentrations (blas-correcte	nication and interest control of the section of the		T	
O ₂ (%v		8.27	8.02	8.27	8.19
CO (pp		2.9	0.1	0.8	1.3
	opmvd)	214.7	212.6	159.0	195.4
VOCs ((ppmvd)	-37.6	-49.1	-43.9	-43.5
THC (p	ppmvd)	412.8	403.0	419.4	411.7
Opera	ting Conditions				
Engine	e Horsepower (BHP)	656	621	666	647
Torque Load (%)		58.3	55.2	59.2	57.6
Engine	e Speed (RPM)	1200	1200	1200	1200
Fuel Fl	ow Rate (SCFH)	5610	5593	6373	5859
BSFC (BTU/BHP/hr), LHV	7835	8244	8763	8281
Fuel BTU Consumption (MMBTU/hr)		5.68	5.66	6.45	5.93
Exhaus	st Flow Rate (SCFH)	80930	79123	91942	83998
Exhaus	st Flow Rate (SCFM)	1348.8	1318.7	1532.4	1400.0
Calcula	ated Emissions				
	(lb/hr)	0.0171	0.0006	0.0053	0.0077
	(ton/year)	0.0747	0.0025	0.0234	0.0335
со	(g/BHP-hr)	0.0118	0.0004	0.0036	0.0053
•	(ppmvd at 15% O ₂)	1.3547	0.0458	0.3737	0.5914
	(lb/hr)	2.0736	2.0075	1.7446	1.9419
	(ton/year)	9.0824	8.7928	7.6414	8.5055
NOx	(g/BHP-hr)	1.4348	1.4661	1.1885	1.3631
	(ppmvd at 15% O ₂)	100.2953	97.3866	74.2755	90.6525
	(lb/hr)	< 0.1000	< 0.1000	< 0.1000	< 0.1000
VOCs	(ton/year)	< 1.0000	< 1.0000	< 1.0000	< 1.0000
	(g/BHP-hr)	< 0.1000	< 0.1000	< 0.1000	< 0.1000
	(ppmvd at 15% O ₂)	< 1.0000	< 1.0000	< 1.0000	< 1.0000
	(lb/hr)	3.8215	3.6475	4.4109	3.9600
THC	(ton/year)	16.7382	15.9761	19.3198	17.3447
	(g/BHP-hr)	2.6442	2.6638	3.0050	2.7710
	(ppmvd at 15% O ₂)	192.8361	184.6040	195.9192	191.1198

Methodology and Sampling Procedures

Methodology

Parameter	Sampling Method
Oxygen (O ₂)	40 CFR 60, Appendix A, Method 3A
Oxides of Nitrogen (NO _X)	40 CFR 60, Appendix A, Method 7E
Carbon Monoxide (CO)	40 CFR 60, Appendix A, Method 10
Volumetric Exhaust Flow Rate	40 CFR 60, Appendix A, Method 19
Gas Dilution System	40 CFR 60, Appendix A, Method 205
Methane (CH ₄) & Ethane (C ₂ H ₆)	ASTM D6348
Total Hydrocarbons (THC)	40 CFR 60, Appendix A, Method 25A
Volatile Organic Compounds (VOCs)	40 CFR 60, Appendix A, Method 25A & ASTM F6348 Subtraction

VOCs via Method 25A

The following gasses were individually quantified on the Fourier Transfer Infrared Spectroscopy (FTIR) analyzer and summed on a propane basis to calculate total hydrocarbons (THC). Methane response factors (based on carbon number) are listed after each compound. Methane and Ethane were subtracted from the total hydrocarbons to calculate Nonmethane/Non-ethane (NM/NE) VOCs, reported as propane. Formaldehyde was specifically excluded per 60.4244 (f).

Methane (RF 1)	Ethylene (RF 2)	Propane (RF 3)	Butane (RF 4)	Acetaldehyde (RF 2)
Ethane (RF 2)	Acetylene (RF 2)	Propylene (RF 3)	Methanol (RF 1)	Formic Acid (RF 1)

Horsepower and Fuel Flow Determination

For this test, horsepower was obtained from automation display and fuel flow was obtained from automation display. The Engine Torque Load averaged 57.6% for the test. This was the highest achievable load based on the operating parameters during the test, which are included in Appendix A.

Sampling System

Compressor Engineering Corporation designed and assembled a versatile, emission testing unit (ETU), which houses all analyzers, computers and auxiliary equipment. Effluent stack gas enters the ETU through a heated Teflon sample line. A heated head pump with a Teflon diaphragm pulls the sample into the trailer, through a heated filter, and sends the wet gas directly to the inlet of the FTIR. The heated pump, sample lines, and filter have their temperatures maintained at approximately 191 °C. The FTIR analyzer gas cell and gas inlet temperatures are also maintained at approximately 191 °C. The sample is routed from the exit of the FTIR through a heated Teflon line to a gas conditioner for moisture removal. The dry gas exiting the gas conditioner is routed to a gas distribution panel which sends a portion of the gas to the paramagnetic oxygen analyzer.

The MKS Instruments MultiGas 2030 FTIR analyzer is used to determine the CO, NOx, and VOCs emission concentrations. The FTIR serves as the instrument for Methods 7E and 10, and meets the requirements of Section 13 of Method 7E. All measured concentrations are corrected to a dry basis via the MKS MG2000 operating software. The FTIR analyzer is configured with

v 12.4 Page 6 of 102

a fixed optical pathlength of 5.11 meters. The measured concentrations are collected at a 0.5 cm⁻¹ resolution. Each spectrum is derived from the co-addition of 60 scans. Data is collected continuously during each test run. A new data point is generated every 60 seconds.

A software package (CECOTest) is used to collect and processes data. CECOTest continually logs data every 10 seconds from the oxygen analyzer and the FTIR during the 60 minute runs.

Refer to FIGURE 1 for a schematic of the sampling system.

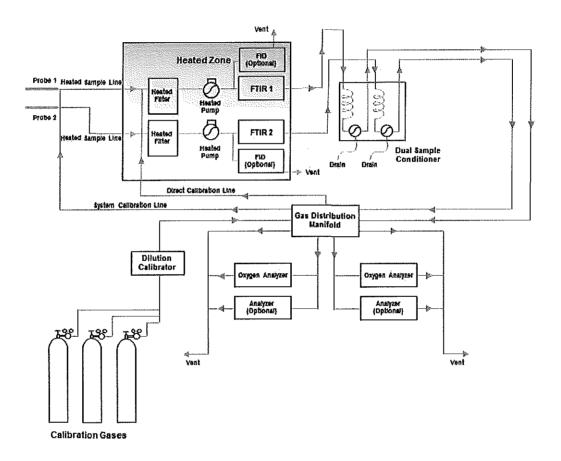


Figure 1: Sampling System Schematic

Instrument Specifications

Description:

Oxygen Analyzer

Manufacturer:

Servomex

Model:

1440C

Serial Number:

2593

Technology Type:

Paramagnetic

Range:

0-25%

Repeatability:

+/- 0.1% O2

Response Time (90%):

Typically less than 10 sec

Linearity:

+/- 0.1% O2

Description:

FTIR Analyzer

Manufacturer:

MKS Instruments

Model:

2030

Serial Number:

017978321

Technology Type:

FTIR Spectrometry

Range:

between 10ppb and 100% full scale

Spectral Resolution:

0.5-128 1/cm 1/sec @ 0.5 1/cm

Scan Speed: Detector Type:

LN2-cooled MCT

Manufacturer:

Teledyne

Model:

T700

Serial Number:

I364

Technology Type:

Mass Flow Controller 0LPM, 2LPM, and 200ccm

MFC's:

+/-1.0% of Full Scale

Flow Measurement Accuracy Repeatability of Flow Control

+/-0.2% of full Scale

Linearity of Flow Measurement

+/-0.5% of Full Scale

Flow Range of Diluent Air

0 to 10 SLPM

Optional Ranges:

0 to 5 SLPM; 0 to 20 SLPM

Flow Range of Cylinder Gasses

0 to 100 cc/min

Optional Ranges:

0 to 50 cc/min; 0 to 200 cc/min

Zero Air Required:

10 SLPM @ 30 PSIG

Optional

20 SLPM @ 30 PSIG

CAL Gas Input Ports

4 (configurable)

Diluent Gas Input Ports

Response Time

60 Seconds (98%)

Description:

Flame Ionization Analyzer J.U.M. Engineering

Manufacturer:

Model:

1440C

Serial Number:

6NB05009

Outputs:

0-10V, 4 - 20mA.

Detection Method:

Flame Ionization Detector.

Compressor Engineering Corporation

Detection Limit:

Ranges:

Response Time:

Sample Flow Rate:

Drift:

Linearity:

1ppm CH4 at full scale.

0-10, 0-100, 0-1,000, 0-10,000, 0-100,000ppm.

0.2 sec.

2.5 L/min.

Span (24 hours): <1%. Zero (24 hours): <1%.

within 1% of full scale

Description of Sampling Location

Physical Duct Pa	rameters				
	,	D =	10	in	Duct Diameter
	A	L=	4	in	Port Length
見	 	A =	144	in	Distance to Downstream Disturbance
Sampling Ports		B =	132	in	Distance to Upstream Disturbance
D	в	H =	30	fl	Approximate Height Above Grade
	Н		14.4	D	Distance to Downstream Disturbance (A)
			0.5	D	EPA M1 Requirement
			TRUE		EPA M1 Requirement Met?
			13.2	D	Distance to Upstream Disturbance (B)
			2.0	D	EPA M1 Requirement
			TRUE		EPA M1 Requirement Met?
			TRUE		EPA M1 Requirements Met for
Ground Lavel					Distances to Up/Downstream Disturbance

EPA JJJJ/ZZZZ Sampling Point Requirements

<u>Duct Diameter</u>	<u>Ports</u>	Sampling Strategy
D ≤ 6 inches	N/A	Single Point Located at Duct Centroid
6 < D ≤ 12 inches	N/A	3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
D > 12 inches	M1 Ports	3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
D > 12 inches	no M1 Ports	Stratification Check Required

REQUIRED SAMPLING STRATEGY:

	3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
8.3 in	Point 1
5.0 in	Point 2
1.7 in	Point 3
12.3 in	Point 1 Probe Mark (Includes port length)
9.0 in	Point 2 Probe Mark (Includes port length)
5.7 in	Point 3 Probe Mark (Includes port length)

STRATIFICATION CHECK REQUIREMENTS

For every point (where Da=Deviation from Average (%) for a given point.)

Da < 5 % 5% ≤ Da < 10 % Otherwise

Single Point Located at Duct Centroid 3 Traverse Points (16.7, 50.0, and 83.3%) across the duct Full M1 Points Required

STRATIFICATION CHECK RESULTS

	Point 1	<u>Point 2</u>	Point 3
	8.69	8.21	8.5 8
	8.56	8.21	8.50
	8.63	8.17	8.59
	8.50	8.18	8.56
	8.63	8.20	8.60
	8.57	8.17	8.57
	8.60	8.17	8.62
	8.51	8.11	8.43
	8.12	8.15	8.10
	8.24	8.29	8.22
	8.25	8.74	8.16
	8.25	8.57	8.17
Point Average (% O2)	8.46	8.26	8.43
Point Deviation from Average (%)	0.94	- 1.43	0.49
Point Deviation from Average (% O2)	0.08	- 0.12	0.04
Average of Point Averages (% O2)	8.38		
STRATIFICATION CHECK RESULTANT	Single Poi		

Single Point Located at Duct Centroid