

5440 Alder Drive Houston, TX 77081

Phone: 800-836-7333 Fax: 713-664-6444 E-mail: emissions@ceconet.com

EMISSION TEST REPORT

<u>REGULATION(S):</u> MDEQ PERMIT POLLUTANT(S): CO, NOX, AND VOCS

ANR TRANSCANADA PIPELINE COMPANY **BLUE LAKE STORAGE COMPANY** KALKASKA COUNTY, MI

PERMIT NUMBER: MI-ROP-B7198-2014A

FRS # / EPA REGISTRY ID: 110013860526 SOURCE CLASSIFICATION CODE (SCC): 20200254

RECEIVED

JUN 15 2018

AIR QUALITY DIVISION

SOURCE ID:	BLBGEN-A
EMISSION SOURCE:	Spark-Ignited Engine
4-stroke/2 - stroke:	4-Stroke
RICH/LEAN BURN:	LEAN BURN
MAKE & MODEL:	CATERPILLAR G3516
UNIT NUMBER:	GENERATOR A-3
SERIAL NUMBER:	3RC00642 (10073095)

TEST DATE: MARCH 22, 2018

	Permitted Limits				
	pounds / hour		g/BHP-hr		
Pollutant	Permitted	Emitted	Permitted	Emitted	PASS/FAIL
CO .	1.6	0.01	1.4	0.00	PASS
NOx	5.7	1.61	2	1.2	PASS
VOCs	0.9	-0.54	0.55	-0.396	PASS

Limits obtained from Permit MI-ROP-B7198-2014A.

The contents of this document relate only to the items tested. I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

CECO TEST LEADER:

BART DELATTE MANAGER OF EMISSIONS TESTING **CECO TRAINING & TECHNICAL SERVICES** 713-663-1894

This report may not be reproduced in fall, or in part, without the written approval of ANR TransCanada Pipeline Company.

Revision History				
Version	Revision Date	Comments		
0	original	Original Version of Document.		

Project Information

CECO Project No: 20180322-052-1

Contact Information

Facility Information

Facility ANR TransCanada Pipeline Company Blue Lake Storage Company Kalkaska County, MI

<u>Contact</u>

Roy Cannon 700 Louisiana Street Houston, TX 77002 832-320-5465 roy_cannon@transcanada.com

Testing Group Information

<u>Contact</u> Bart Delatte CECO Training & Technical Services 5440 Alder Drive Houston, TX 77081 713-663-1894 bart.delatte@ceconet.com

Introduction

CECO Training & Technical Services, a division of Compressor Engineering Corporation, conducted source emission testing at ANR TransCanada Pipeline Company, Blue Lake Storage Company to fulfill the requirements of MDEQ Permit. This report details the test purpose, objectives, testing procedures, sampling and analysis methodology, and results of the source testing conducted on March 22, 2018.

Process Description

The following source was tested:

 Unit Number Generator A-3 (Source ID BLBGEN-A) SN 3RC00642 (10073095) – one (1) Caterpillar G3516 natural gas-fired, 4-Stroke, Lean Burn internal combustion engine, rated to 1125 brake horsepower (BHP) at 1200 revolutions per minute (RPM). This source is equipped with an oxidation catalyst with an air-fuel ratio controller for emission control and drives an electric generator.

Test Purpose and Objectives

The purpose of this test was to fulfill the requirements of MDEQ Permit. The objective of this test was to conduct the required three (3) 60-minute test runs to measure the applicable emission species at the maximum achievable load.

Results

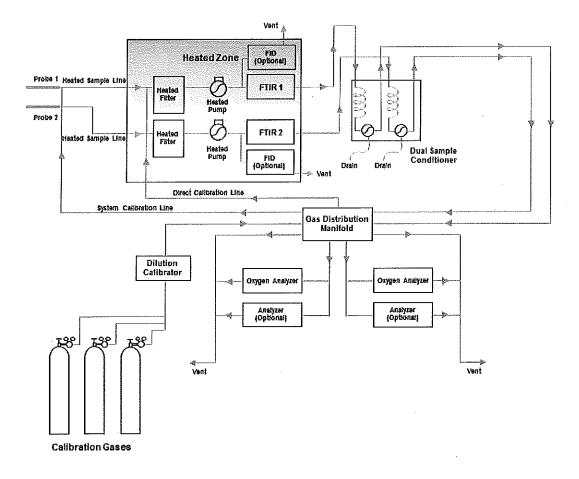
Cotorn	illar G3516 SN: 3RC00642		Test Run		
(10073		1st	2nd	3rd	Average
Fuel				1	<u> </u>
	3TU/SCF)	1026			
•	TU/SCF)	928			
	r (DSCF/MMBTU)	8619			
20.000000000000000000000000000000000000	ate & Time				
Date		3/22/2018	3/22/2018	3/22/2018	
Start T	ime	2:43 PM	4:09 PM	5:38 PM	
End Tir	ne	3:43 PM	5:10 PM	6:39 PM	
Interva	l (minutes)	60	61	61	61
Measu	red Concentrations (bias-correct	ted where applic	able)		
0 ₂ (%v	d)	8.76	8.63	8.69	8.69
<u>CO (pp</u>		0.5	0.8	1.2	0.8
NOx (p		145.7	156.4	144.4	148.8
	ppmvd)	-48.2	-56.3	-50.7	-51.7
THC (p	pmvd)	742.7	725.0	740.4	736.0
Operat	ting Conditions				
Engine	Horsepower (BHP)	611	613	620	615
	Load (%)	54.3	54.4	55.0	54.6
Engine	Speed (RPM)	1202	1201	1201	1201
Fuel Flo	ow Rate (SCFH)	6403	5743	5887	6011
BSFC (I	BTU/BHP/hr), LHV	9720	8695	8813	9076
Fuel B1	TU Consumption (MMBTU/hr)	6.57	5.89	6.04	6.16
Exhaus	t Flow Rate (SCFH)	97445	86476	89069	90997
Exhaus	t Flow Rate (SCFM)	1624.1	1441.3	1484.5	1516.6
Calcula	ited Emissions				
	(lb/hr)	0.0035	0.0050	0.0078	0.0054
со	(ton/year)	0.0155	0.0220	0.0340	0.0238
CU	(g/BHP-hr)	0.0026	0.0037	0.0057	0.0040
	(ppmvd at 15% O ₂)	0.2430	0.3847	0.5799	0.4025
	(lb/hr)	1.6944	1.6140	1.5349	1.6144
	(ton/year)	7.4213	7.0695	6.7229	7.0712
NOx	(g/BHP-hr)	1.2571	1.1943	1.1231	1.1915
	(ppmvd at $15\% O_2$)	70.8097	75.2046	69.7756	71.9300
VOCs	(lb/hr)	-0.5373	-0.5569	-0.5166	-0.5369
	(ton/year)	-2.3533	-2.4393	-2.2625	-2.3517
	(g/BHP-hr)	-0.3986	-0.4121	-0.3780	-0.3962
	(ppmvd at 15% O ₂)	-23.4250	-27.0717	-24.4988	-24.9985
	(lb/hr)	8.2787	7.1716	7.5436	7.6647
	(ton/year)	36.2606	31.4118	33.0411	33.5712
тнс	(g/BHP-hr)	6.1420	5.3068	5.5199	5.6562
	(ppmvd at $15\% O_2$)	360.9498	348.6145	357.7690	355.7778

Methodology and Sampling Procedures

Methodology		
Parameter	Sampling Method	
Oxygen (O ₂)	40 CFR 60, Appendix A, Method 3A	
Oxides of Nitrogen (NO _X)	40 CFR 60, Appendix A, Method 7E	
Carbon Monoxide (CO)	40 CFR 60, Appendix A, Method 10	
Volumetric Exhaust Flow Rate	40 CFR 60, Appendix A, Method 19	
Gas Dilution System	40 CFR 60, Appendix A, Method 205	
Methane (CH_4) & Ethane (C_2H_6)	ASTM D6348	
Total Hydrocarbons (THC)	40 CFR 60, Appendix A, Method 25A	
Volatile Organic Compounds (VOCs)	40 CFR 60, Appendix A, Method 25A & ASTM D6348 Subtraction	

Horsepower and Fuel Flow Determination

For this test, horsepower was calculated from generator parameters and fuel flow was obtained from the engine panel. The Engine Torque Load averaged 54.6% for the test. This was the highest achievable load based on the operating parameters during the test, which are included in Appendix A.


Sampling System

Compressor Engineering Corporation designed and assembled a versatile, emission testing unit (ETU), which houses all analyzers, computers and auxiliary equipment. Effluent stack gas enters the ETU through a heated Teflon sample line. A heated head pump with a Teflon diaphragm pulls the sample into the trailer, through a heated filter, and sends the wet gas directly to the inlet of the FTIR. The heated pump, sample lines, and filter have their temperatures maintained at approximately 191 °C. The FTIR analyzer gas cell and gas inlet temperatures are also maintained at approximately 191 °C. The sample is routed from the exit of the FTIR through a heated Teflon line to a gas conditioner for moisture removal. The dry gas exiting the gas conditioner is routed to a gas distribution panel which sends a portion of the gas to the paramagnetic oxygen analyzer.

The MKS Instruments MultiGas 2030 FTIR analyzer is used to determine the CO, NOx, and VOCs emission concentrations. The FTIR serves as the instrument for Methods 7E and 10, and meets the requirements of Section 13 of Method 7E. All measured concentrations are corrected to a dry basis via the MKS MG2000 operating software. The FTIR analyzer is configured with a fixed optical pathlength of 5.11 meters. The measured concentrations are collected at a 0.5 cm⁻¹ resolution. Each spectrum is derived from the co-addition of 60 scans. Data is collected continuously during each test run. A new data point is generated every 60 seconds.

A software package (CECOTest) is used to collect and processes data. CECOTest continually logs data every 15 seconds from the oxygen analyzer and the FTIR during the 60 minute runs.

Refer to FIGURE 1 for a schematic of the sampling system.

Figure 1: Sampling System Schematic

Instrument Specifications

Description:	Oxygen Analyzer
Manufacturer:	Servomex
Model:	1440C
Serial Number:	2594
Technology Type:	Paramagnetic
Range:	0-25%
Repeatability:	+/- 0.1% O2
Response Time (90%):	Typically less than 10 sec
Linearity:	+/- 0.1% O2
Description:	FTIR Analyzer
Manufacturer:	MKS Instruments
Model:	2030
Serial Number:	017979534
Technology Type:	FTIR Spectrometry
Range:	between 10ppb and 100% fullscale
Spectral Resolution:	0.5-128 1/cm
Scan Speed:	1/sec @ 0.5 1/cm
Detector Type:	LN2-cooled MCT
Manufacturer:	Teledyne
Model:	T700
Serial Number:	577
Technology Type:	Mass Flow Controller
MFC's:	0LPM, 2LPM, and 200ccm
Flow Measurement Accuracy	+/-1.0% of Full Scale
Repeatability of Flow Control	+/-0.2% of full Scale
Linearity of Flow Measurement	+/-0.5% of Full Scale
Flow Range of Diluent Air	0 to 10 SLPM
Optional Ranges:	0 to 5 SLPM; 0 to 20 SLPM
Flow Range of Cylinder Gasses	0 to 5 SLPM; 0 to 20 SLPM
Optional Ranges:	0 to 50 cc/min; 0 to 200 cc/min
Zero Air Required:	10 SLPM @ 30 PSIG
Optional	20 SLPM @ 30 PSIG
CAL Gas Input Ports	4 (configurable)
Diluent Gas Input Ports	1
Response Time	60 Seconds (98%)
Description:	Flame Ionization Analyzer
Manufacturer:	J.U.M. Engineering
Model:	1440C
Serial Number:	208483
Outputs:	0-10V, 4 - 20mA.
Detection Method:	Flame Ionization Detector.

4

Detection Limit: Ranges: Response Time: Sample Flow Rate: Drift: Linearity:

•

1ppm CH4 at full scale. 0-10, 0-100, 0-1,000, 0-10,000, 0-100,000ppm. 0.2 sec. 2.5 L/min. Span (24 hours): <1%. Zero (24 hours): <1%. within 1% of full scale

Description of Sampling Location

Description of Sampling	Location		
Physical Duct Parameters	D = 40	In	Dust Diameter
·····	D= 12	in	Duct Diameter
A	L= 4	in	Port Length
	A = 144	in	Distance to Downstream Disturbance
Sangting Ports	B = 132	in	Distance to Upstream Disturbance
• <u>⊅</u> B	H = 30	ft	Approximate Height Above Grade
H I I I I I I I I I I I I I I I I I I I	12.0	D	Distance to Downstream Disturbance (A)
	0.5	D	EPA M1 Requirement
	TRUE		EPA M1 Requirement Met?
·	44.0	D	Distance to Unstrange Disturbance (D)
	11.0	D	Distance to Upstream Disturbance (B)
	2.0	D	EPA M1 Requirement
	TRUE		EPA M1 Requirement Met?
	TRUE		EPA M1 Requirements Met for
Gourd Level			Distances to Up/Downstream Disturbances
EPA JJJJ/ZZZZ Sampling Point Req			
Duct Diameter	Ports		Sampling Strategy
D ≤ 6 inches	N/A		Single Point Located at Duct Centroid
$6 < D \le 12$ inches	N/A		3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
D > 12 inches	M1 Ports		3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
D > 12 inches no M1 Ports		Stratification Check Required	
DECHIDED SAMELING STRATECY			3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
REQUIRED SAMPLING STRATEGY:	10.0	in	Point 1
	6.0		Point 2
2.0 in		Point 3 Deint 1 Drahe Mark (Includes nort length)	
14.0 in			Point 1 Probe Mark (Includes port length)
	10.0		Point 2 Probe Mark (Includes port length)
	6.0	in	Point 3 Probe Mark (Includes port length)
STRATIFICATION CHECK REQUIRED For every point (where Da=Deviation from Av		(noint)	
Da < 5 %	erage (70) for a given	ponte j	Single Point Located at Duct Centroid
5% ≤ Da < 10 %			3 Traverse Points (16.7, 50.0, and 83.3%) across the duct
Otherwise			Full M1 Points Required
STRATIFICATION CHECK RESULTS			
STRAIL IOATION ONEOK RESSETS	Point 1	Point 2	Point 3
	8.65	8.58	8.51
	8.57	8.50	8.49
	8.53	8.67	8.43
	8.52	8.52	8.39
	8.50	8.62	8.39
	8.74	8.62	8.36
	9.05	8.60	8.32
	9.04	8.56	8.49
	9.01	8.61	8.96
	8.79	9.04	8.98
	9.01	9.09	8.77
	9.03	9.06	8.82
Point Average (% O2)	8.79	8.71	8.58
	1.12	0.19	- 1.31
Point Deviation from Average (%)	0.10	0.19	- 0.11
Point Deviation from Average (% O2) Average of Point Averages (% O2)	8.69	0.02	- 0.11
,	0,00		

Average of Point Averages (% O2) 8.69 STRATIFICATION CHECK RESULTANT STRATEGY

Single Point Located at Duct Centroid