

1. INTRODUCTION

This report presents the results of the source emissions testing conducted by Environmental Quality Management, Inc. (EQM) for TC Energy's ANR Pipeline (ANR) Woolfolk Compressor, near Big Rapids, MI, which is located in Mecosta County. The primary purpose of this testing program was to conduct emissions testing to determine compliance with with flexible groups FG-RICE-818-WLENGINES and RICE MACT in the permit and are subject to 40 CFR Part 63, Subpart ZZZZ requirement specified in Permit MI-ROP-B7220-2017a for the Units EUWL001(Unit 1), EUWL002 (Unit 2), EUWL003 (Unit 3), EUWL004 (Unit 4), EUWL005 (Unit 5), EUWL007(Unit 7), EUWL008 (Unit 8), and EUWL009 (Unit 9) Engines at ANR 's gas compressor facility.

To ensure that compliance with the emission limits is maintained, the Air Compliance Team of TC Energy's ANR contracted Environmental Quality Management, Inc. (EQM) to perform source emissions testing on the eight units. The primary purpose of this testing program was to conduct emissions testing to determine compliance with the permit at ANR's gas compressor facility.

EQM's responsibility was to conduct and oversee the compliance testing for the NO_x and Formaldehyde (H₂CO) emission rates and perform data reduction for conformance evaluation. ANR's responsibility was to maintain process operating parameters and to assist in providing process operating data per compliance test requirements. EQM contracted the services of Prism Analytical Technologies out of Mount Pleasant, MI for the Method 320.

The following report provides information pertaining to TC Energy's process operations, and Compliance testing. The Compliance testing conducted on Unit 1 and Unit 2 was performed on July 20, 2021 from 10:40 A.M.-5:17 P.M. The Compliance testing conducted on Unit 3 and Unit 4 was performed on July 21, 2021 from 9:02 A.M.-5:16 P.M. The Compliance testing conducted on Unit 5 and Unit 7 was performed on July 22, 2021 from 10:42 A.M.-5:57 P.M. The Compliance testing conducted on Unit 5 and Unit 7 was performed on July 22, 2021 from 10:42 A.M.-5:57 P.M. The Compliance testing conducted on Unit 8 and Unit 9 was performed on July 23, 2021 from 8:27 A.M.-4:08 P.M.

The following requirements were specific for the testing program:

- 1. Equipment calibrations performed and calibration data provided.
- Three (3) sixty (60) –minute NO_x, H₂CO and O₂, test runs performed at the eight Units pursuant to EPA, Title 40, Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A.
- 3. Process operations conditions maintained within 10% rated load during the emissions testing periods.
- 4. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for H_2CO and O_2 emissions

September 2021

1

determinations via Extractive Fourier transform infarared (FTIR) spectrometry.

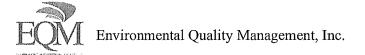
- 5. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for O_2 to quantify the concentration levels from each source to correct formaldehyde concentrations for oxygen content.
- 6. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for NOx, and O₂ test runs performed at the eight engines pursuant to EPA Reference methods as described in 40 CFR, Part 60, Appendix A
- 6. Stratification was found to be less than 3% in the turbine exhaust.

The testing program was approved by and/or coordinated with Tyrah Lydia, TC Energy's ANR Pipeline. The emission testing was performed by Karl Mast, Project Manager, EQM and Cody Shifflett, Prism Analytical Technologies. The emission testing was observed by Lindsey Wells, Michigan EGLE.

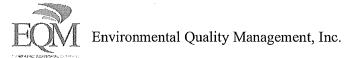
2. TEST RESULTS SUMMARY

The compliance testing was performed on Units 1, 2, 3, 4, 5, 7, 8, and 9 systems in accordance with the requirements of the Code of Federal Regulations, Title 40, Part 60, Appendix A, and the Permit MI-ROP-B7220-2017a requirements. A summary of the test results is given below:

Table 1. H2CO % Destruction Effeciency								
Unit	Run 1	Run 2	Run 3	Average	Limit			
EUWL001	89.98	87.60	86.74	88.11	76%			
EUWL002	86.49	86.59	87.10	86.73	76%			
EUWL003	89.58	89.29	89.84	89.57	76%			
EUWL004	91.08	90.63	90.63	90.78	76%			
EUWL005	93.58	93.19	92.71	93.16	76%			
EUWL007	91.08	90.22	90.88	90.73	76%			
EUWL008	92.72	91.73	91.43	91.96	76%			
EUWL009	91.27	91.46	91.29	91.34	76%			

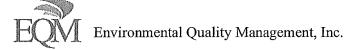


	<u>1</u>	able 2. NO _x	Emission Resu	lts Lb/Hr	
Unit	Run 1	Run 2	Run 3	Average	Limit
EUWL001	9.05	9.70	9.50	9.41	45.19
EUWL002	18.44	20.88	18.87	19.40	45.19
EUWL003	15.86	18.17	17.75	17.26	45.19
EUWL004	34.58	35.26	33.67	34.51	45.19
EUWL005	18.01	18.77	20.15	18.98	45.19
EUWL007	13.09	13.55	12.02	12.89	59.66
EUWL008	10.73	11.78	12.07	11.53	59.66
EUWL009	32.11	34.54	33.59	33.42	59.66

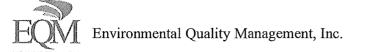

	Ta	ble 3. NO _x E	mission Result	s gr/bhp/hr	
Unit	Run 1	Run 2	Run 3	Average	Limit
EUWL001	4.23	4.53	4.52	4.42	20.5
EUWL002	9.11	9.69	8.91	9.23	20.5
EUWL003	7.52	8.55	8.46	8.18	20.5
EUWL004	16.06	16.82	16.11	16.33	20.5
EUWL005	9.02	9.12	9.80	9.32	20.5
EUWL007	4.67	4.95	4.29	4.63	20.5
EUWL008	3.87	4.21	4.29	4.12	20.5
EUWL009	11.93	12.76	12.21	12.32	20.5

Based on the information provided above, all eight units met the acceptance criteria during the course of the testing. A complete list of performance parameters for each test run that was performed at the stack sampling locations can be found in Tables 4-19.

Run	1	2	3	
Date	07/20/21	07/20/21	07/20/21	
Time	9:40	11:08	12:21	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages :
Unit Horsepower from Control Panel	971.0	972.0	954.0	965.7
Unit Speed (rpm)	331.0	329.0	328.0	329.3
Compressor Suction Pressure (PSIG)	503.0	508.0	518.0	509.7
Compressor Suction Temperature (°F)	66.2	67.1	68.3	67.2
Compressor Discharge Pressure (PSIG)	781.0	785.0	787.0	784.3
Compressor Flow (MMSCF/D)	42.2	42.7	43.5	42.8
% Load	97.1	97.2	95.4	96.6
% Torque	96.8	97.5	96.0	96.8
Heat Rate (BTU/HP-hr)	8,323.5	8,305.0	8,411.2	8,346.6
Ambient Conditions				
Ambient Temperature (°F)	72.00	75.00	79.00	75.33
Barometric Pressure (psi)	14.23	14.22	14.22	14.22
Ambient Relative Humidity (%)	76.00	68.00	63.00	69.00
Absolute Humidity (grains/LB)	192.44	190.42	201.90	194.92


Table 4. Engine Operating and Ambient Conditions - Unit EUWL001

TC Energy ANR Woolfolk CS Project Number: 050614.0099.020


Table 5. Emissions Concentrations, Calculated
Mass Emissions, Concentrations & Flows -Unit EUWL001

Run	1	2	3	
Date	07/20/21	07/20/21	07/20/21	
Time	9:40	11:08	12:21	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	667.92	717.15	703.98	696.35
NO _X g/BHP-HR	4.23	4.53	4.52	4.42
NO _X LB/HR	9.05	9.70	9.50	9.41
NO _X (ppm @ 15% O ₂)	274.89	295.05	290.69	286.88
NOx LB/MMBTU	1.01	1.09	1.07	1.06
NO _X Tons/Year	39.62	42.48	41.60	41.23
H ₂ CO Inlet ppmw	12.41	12.05	12.34	12.27
H2CO Inlet (ppmw @ 15% 02	4.67	4.53	4.65	4.62
H ₂ CO Outlet ppmw	1.1700	1.41	1.47	1.35
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.47	0.56	0.62	0.55
H ₂ CO % Removal Limit is 76%	89.98	87.60	86.73	88.10
H ₂ O ppm (% FTIR)	13.36	14.42	14.31	14.03
% O2 Inlet (raw measured wet)	5.23	5.20	5.23	5.22
% O2 Outlet (raw measured wet)	6.16	6.09	6.83	6.36
% O2 (BIAS Corrected Dry)	6.56	6.56	6.61	6.58
Calculated Flows	·			
Fuel Flow - (SCFM)	139.67	139.50	138.67	139.28
Fuel Flow - (SCFH)	8,380	8,370	8,320	8,357
Exhaust Flow (LB/HR)	7,981.2	7,956.4	7,932.5	7,957
Exhaust Flow (WSCFM)	2,073.0	2,063.3	2,130.7	2,089
Air Flow (WSCFM)	1,829	1,826	1,822	1,825
Exhaust Flow Method 19 (scfm)	1,887	1,884	1,879	1,883
Exhaust Flow Method 19 (lbm/min)	88	88	88	88
Exhaust Flow Carbon Balance (Ibm/min)	152.34	152.11	151.72	152
Air flow Beshouri (scfin)	1,982.08	1,979.09	1,973.89	1,978
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	8.38	8.37	8.32	8.36
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	······		· · · · · · · · · · · · · · · · · · ·	

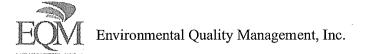

Run	1	2	3	
Date	07/20/21	07/20/21	07/20/21	
Time	14:26	15:44	16:57	
Engine Operating Conditions	нз-нт	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	918.0	978.0	961.0	952.3
Unit Speed (rpm)	329.0	331.0	333.0	331.0
Compressor Suction Pressure (PSIG)	540.0	513.0	522.0	525.0
Compressor Suction Temperature (°F)	70.1	68.7	68.5	69.1
Compressor Discharge Pressure (PSIG)	788.0	788.0	787.0	787.7
Compressor Flow (MMSCF/D)	45.4	43.1	44.3	44.3
% Load	91.8	97.8	96.1	95.2
% Forque	92.1	97.5	95.2	94.9
Heat Rate (BTU/HP-hr)	8,615.0	8,441.5	8,450.3	8,502.2
Ambient Conditions				
Ambient Temperature (°F)	81.00	79.00	77.00	79.00
Barometric Pressure (psi)	14.21	14.21	14.22	14.21
Ambient Relative Humidity (%)	59.00	59.00	62.00	60.00
Absolute Humidity (grains/LB)	201.97	188.68	185.43	192.03

Table 6. Engine Operating and Ambient Conditions -Unit EUWL002

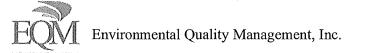
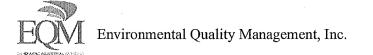

Run	1	2	3	
Date	07/20/21	07/20/21	07/20/21	
Time	14:26	15:44	16:57	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	1460.12	1589.85	1456.72	1502.23
NO _x g/BHP-HR	9.11	9.69	8.91	9.23
NO _X LB/HR	18.44	20.88	18.87	19.40
NO _X (ppm @ 15% O ₂)	572.55	621.21	570.60	588.12
NOx LB/MMBTU	2.11	2,29	2.10	2.17
NO _X Tons/Year	80.76	91.47	82.64	84.96
H ₂ CO Inlet ppmw	11.83	12.00	11.70	11.84
H ₂ CO Inlet (ppnw @ 15% 0 ₂	4.20	4.28	4.18	4.22
H ₂ CO Outlet ppmw	1.48	1.58	1.43	1.50
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.57	0.57	0.54	0.56
H ₂ CO % Removal Limit is 76%	86.49	86.59	87.10	86.73
H ₂ O ppm (% FTIR)	15.56	16.28	15.59	15.81
% O ₂ Inlet (raw measured wet)	4.30	4,36	4.40	4.35
% O2 Outlet (raw measured wet)	5.53	4.66	5.27	5.15
% O ₂ (BIAS Corrected Dry)	5.85	5.80	5.84	5.83
Calculated Flows				
Fuel Flow - (SCFM)	136.67	142.67	140.33	139.89
Fuel Flow - (SCFH)	8,200	8,560	8,420	8,393
Exhaust Flow (LB/HR)	7,471.1	7,769.2	7,670.7	7,637
Exhaust Flow (WSCFM)	1,957.2	1,962.6	1,985.1	1,968
Air Flow (WSCFM)	1,705	1,774	1,749	1,743
Exhaust Flow Method 19 (scfm)	1,759	1,830 ·	1,804	1,798
Exhaust Flow Method 19 (lbn/min)	82	85	84	84
Exhaust Flow Carbon Balance (lbm/min)	142.57	148.34	146.25	146
Air flow Beshouri (scfm)	1,854.85	1,929.97	1,902.74	1,896
Fuel Flow Measurements	u			
Fuel Flow From Screen(MSCFH)	8.20	8.56	8.42	8.39
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •

Table 7. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL002

Run	1	2	3	
Date	07/21/21	07/21/21	07/21/21	
Time	9:02	10:18	11:30	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	957.0	964.0	952.0	957.7
Unit Speed (rpm)	333.0	334.0	329.0	332.0
Compressor Suction Pressure (PSIG)	531.0	527.0	525.0	527.7
Compressor Suction Temperature (°F)	56.1	56.1	56.1	56.1
Compressor Discharge Pressure (PSIG)	793.0	788.0	790.0	790.3
Compressor Flow (MMSCF/D)	46.6	46.4	45.7	46.2
% Load	95.7	96.4	95.2	95.8
% Torque	94.8	95.2	95.5	95.2
Heat Rate (BTU/HP-hr)	8,738.6	8,775.4	8,794.7	8,769.6
Ambient Conditions		ta a star kina di k		
Ambient Temperature (°F)	64.00	67.00	68.00	66.33
Barometric Pressure (psi)	14.29	14.30	14.30	14.30
Ambient Relative Humidity (%)	76.00	59.00	56.00	63.67
Absolute Humidity (grains/LB)	144.00	123.42	121.19	129.54


Table 8 . Engine Operating and Ambient Conditions -Unit EUWL003

TC Energy ANR Woolfolk CS Project Number: 050614.0099.020

Run	1	2	3	
Date	07/21/21	07/21/21	07/21/21	
Time	9:02	10:18	11:30	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	1151.74	1306.51	1290.00	1249.42
NO _X g/BHP-HR	7.52	8.55	8.46	8.18
NO _X LB/HR	15.86	18.17	17.75	17.26
NO _X (ppm @ 15% O ₂)	465.91	527.55	520.79	504.75
NOx LB/MMBTU	1.72	1.94	1.92	1.86
NO _X Tons/Year	69.49	79.59	77.76	75.61
H ₂ CO Inlet ppmw	10.02	9.87	9.90	9.93
H2CO Inlet (ppmw @ 15% 02	3.60	3.59	3.61	3.60
H ₂ CO Outlet ppmw	0.9520	1.00	0.96	0.97
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.38	0.38	0.37	0.38
H ₂ CO % Removal Limit is 76%	89.58	89.29	89.84	89.57
H ₂ O ppm (% FTIR)	14.40	14.90	14.25	14.52
% O ₂ Inlet (raw measured wet)	4.50	4.66	4.70	4.62
% O2 Outlet (raw measured wet)	5.94	5.54	5.50	5.66
% O2 (BIAS Corrected Dry)	6.32	6.29	6.29	6.30
Calculated Flows				
Fuel Flow - (SCFM)	144.33	146.00	144.50	144.94
Fuel Flow - (SCFH)	8,660	8,760	8,670	8,697
Exhaust Flow (LB/HR)	8,159.6	8,215.2	8,125.0	8,167
Exhaust Flow (WSCFM)	2,117.8	2,101.2	2,075.7	2,098
Air Flow (WSCFM)	1,860	1,878	1,859	1,866
Exhaust Flow Method 19 (scfm)	1,919	1,937	1,917	1,925
Exhaust Flow Method 19 (lbm/min)	89	90	89	89
Exhaust Flow Carbon Balance (lbm/min)	155.13	156.66	155.02	156
Air flow Beshouri (scfm)	2,018.32	2,038.18	2,016.90	2,024
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	8.66	8.76	8.67	8.70
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································

Table 9. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL003

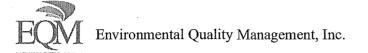

Run	1	2	3	
Date	07/21/21	07/21/21	07/21/21	
Time	14:20	15:33	16:56	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	977.0	951.0	948.0	958.7
Unit Speed (rpm)	330.0	330.0	328.0	329.3
Compressor Suction Pressure (PSIG)	518.0	532.0	536.0	528.7
Compressor Suction Temperature (°F)	58.2	59.3	59.5	59.0
Compressor Discharge Pressure (PSIG)	791.0	794.0	797.0	794.0
Compressor Flow (MMSCF/D)	44.8	46.0	46.2	45.7
% Load	97.7	95.1	94.8	95.9
% Torque	97.7	95.1	95.4	96.1
Heat Rate (BTU/HP-hr)	9,192.3	9,321.8	9,330.9	9,281.7
Ambient Conditions				
Ambient Temperature (°F)	72.00	73.00	73.00	72.67
Barometric Pressure (psi)	14.29	14.29	14.29	14.29
Ambient Relative Humidity (%)	42.00	41.00	40.00	41.00
Absolute Humidity (grains/LB)	103.80	104.86	102.27	103.65

Table 10. Engine Operating and Ambient Conditions - Unit EUWL004

Run	1	2	3	
Date	07/21/21	07/21/21	07/21/21	
Time	14:20	15:33	16:56	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	2722.07	2818.50	2692.03	2744.20
NO _X g/BHP-HR	16.06	16.82	16.11	16.33
NO _X LB/HR	34.58	35,26	33.67	34.51
NO _X (ppm @ 15% O ₂)	945.70	976.86	934.95	952.51
NOx LB/MMBTU	3.48	3.60	3.44	3.51
NO _X Tons/Year	151.47	154.44	147.49	151.13
H ₂ CO Inlet ppmw	10.62	10.08	10.41	10.37
H2CO Inlet (ppmw @ 15% 02	3.29	3.10	3.23	3.21
H ₂ CO Outlet ppmw	0.85	0.89	. 0.89	0.88
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.29	0.29	0.30	0.30
H ₂ CO % Removal Limit is 76%	91.08	90.63	90.63	90.78
H ₂ O ppm (% FTIR)	16.41	17.17	16.41	16.66
% O2 Inlet (raw measured wet)	1.86	1.75	1.87	1.83
% O2 Outlet (raw measured wet)	3.77	2.76	3.63	3.39
% O2 (BIAS Corrected Dry)	3.92	3.88	3.91	3.90
Calculated Flows				
Fuel Flow - (SCFM)	155.00	153.00	152.67	153.56
Fuel Flow - (SCFH)	9,300	9,180	9,160	9,213
Exhaust Flow (LB/HR)	7,665.5	7,542.4	7,544.6	7,584
Exhaust Flow (WSCFM)	2,027.6	1,920.9	1,985.4	1,978
Air Flow (WSCFM)	1,717	1,691	1,691	1,700
Exhaust Flow Method 19 (scfm)	1,770	1,743	1,743	1,752
Exhaust Flow Method 19 (lbm/min)	82	81	81	81
Exhaust Flow Carbon Balance (lbm/min)	144.88	142.70	142.65	143
Air flow Beshouri (scfm)	1,884.95	1,856.57	1,856.01	1,866
Fuel Flow Measurements	r			l l l l l l l l l l l l l l l l l l l
Fuel Flow From Screen(MSCFH)	9.30	9.18	9.16	9.21
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION * BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	Run 1	Run 2	Run 3	· · · · · · · · · · · · · · · · · · · ·

Table 11. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL004

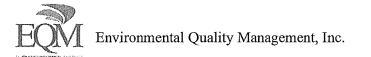

Run	1	2	3	
Date	07/22/21	07/22/21	07/22/21	
Time	10:42	11:55	13:07	
Engine Operating Conditions	HS-HT	HS-HT	НS-НГ	Averages
Unit Horsepower from Control Panel	905.0	933.0	933.0	923.7
Unit Speed (rpm)	318.0	323.0	323.0	321.3
Compressor Suction Pressure (PSIG)	498.0	471.0	471.0	480.0
Compressor Suction Temperature (°F)	57.9	58.6	58.6	58.4
Compressor Discharge Pressure (PSIG)	767.0	749.0	749.0	755.0
Compressor Flow (MMSCF/D)	40.9	39.3	39.3	39.8
% Load	90.5	93.3	93.3	92.4
% Torque	93.9	95.3	95.3	94.9
Heat Rate (BTU/HP-hr)	8,677.4	8,623.3	8,623.3	8,641.3
Ambient Conditions				
Ambient Temperature (°F)	68.00	73.00	73.00	71.33
Barometric Pressure (psi)	14.32	14.31	14.31	14.32
Ambient Relative Humidity (%)	57.00	51.00	51.00	53.00
Absolute Humidity (grains/LB)	123.22	130.99	130.99	128.40

Table 12. Engine Operating and Ambient Conditions Flows - Unit EUWL005

Run	1	2	3	
Date	07/22/21	07/22/21	07/22/21	
Time	10:42	11:55	13:07	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	1412.28	1435.51	1547.05	1464.95
NO _X g/BHP-HR	9.02	9.12	9.80	9,32
NO _X LB/HR	18.01	18.77	20.15	18.98
NO _X (ppm @ 15% O ₂)	563.03	572.80	615.16	583.66
NOx LB/MMBTU	2.07	2.11	2.27	2.15
NO _X Tons/Year	78.86	82.20	88.28	83.11
H ₂ CO Inlet ppmw	11.20	11.11	11.10	11.14
H ₂ CO Inlet (ppmw @ 15% 0 ₂	4.05	4.02	4.02	4.03
H ₂ CO Outlet ppmw	0.67	0.69	0.78	0.71
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.26	0.27	0.29	0.28
H ₂ CO % Removal Limit is 76%	93.58	93.19	92.71	93.16
H ₂ O ppm (% FTIR)	14.56	14.38	15.23	14.72
% O ₂ Inlet (raw measured wet)	4.60	4.60	4.60	4.60
% O ₂ Outlet (raw measured wet)	5.75	5.95	5.15	5.62
% O2 (BIAS Corrected Dry)	6.10	6.11	6.06	6.09
Calculated Flows				
Fuel Flow - (SCFM)	136.00	139.33	139,33	138.22
Fuel Flow - (SCFH)	8,160	8,360	8,360	8,293
Exhaust Flow (LB/HR)	7,548.7	7,730.7	7,697.0	7,659
Exhaust Flow (WSCFM)	1,967.7	2,035.8	1,959.1	1,988
Air Flow (WSCFM)	1,722	1,765	1,759	1,749
Exhaust Flow Method 19 (scfm)	1,776	1,821	1,815	1,804
Exhaust Flow Method 19 (lbm/min)	82	84	84	84
Exhaust Flow Carbon Balance (lbm/min)	143.76	147.41	146.94	146
Air flow Beshouri (scfin)	1,870.47	1,917.86	1,911.72	1,900
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	8.16	8.36	8.36	8.29
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	······	· · · · · · · · · · · · · · · · · · ·		

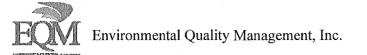
Table 13. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL005

Run	1	2	3	· · · · · · · · · · · · · · · · · · ·
Date	07/22/21	07/22/21	07/22/21	
Time	15:00	16:24	17:37	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	1,272.0	1,243.0	1,271.0	1,262.0
Unit Speed (rpm)	332.0	331.0	327.0	330.0
Compressor Suction Pressure (PSIG)	480.0	477.0	468.0	475.0
Compressor Suction Temperature (°F)	55.5	54.3	54.3	54.7
Compressor Discharge Pressure (PSIG)	738.0	736.0	733.0	735.7
Compressor Flow (MMSCF/D)	57.0	56.2	55.4	56.2
% Load	96.4	94.2	96.3	95.6
% Torque	95.8	93,9	97.2	95.6
Heat Rate (BTU/HP-hr)	8,761.3	8,911.5	8,881.8	8,851.6
Ambient Conditions				
Ambient Temperature (°F)	76.00	75.00	77.00	76.00
Barometric Pressure (psi)	14.30	14.30	14.30	14.30
Ambient Relative Humidity (%)	51.00	52.00	49.00	50.67
Absolute Humidity (grains/LB)	145.36	143.31	144.35	144.34

Table 14 . Engine Operating and Ambient Conditions -Unit EUWL007

Run	1	2	3	
Date	07/22/21	07/22/21	07/22/21	
Time	15:00	16:24	17:37	
Emissions Concentrations & Calculated Mass Em	issions			
NOx ppm (BIAS Corrected)	717.80	749.80	649.99	705.86
NO _X g/BHP-HR	4.67	4.95	4.29	4.63
NO _X LB/HR	13.09	13.55	12.02	12.89
NO _X (ppm @ 15% O ₂)	288.55	300.46	261.39	283.47
NOx LB/MMBTU	1.06	1.11	0.96	1.04
NO _X Tons/Year	57.35	59.36	52.63	56.45
H ₂ CO Inlet ppmw	7.51	7.34	7.25	7.37
H ₂ CO Inlet (ppmw @ 15% 0 ₂	2.69	2.63	2.61	2.65
H ₂ CO Outlet ppmw	0.61	0.69	0.60	0.63
H ₂ CO Outlet (ppmw @ 15% 0 ₂	0.24	0.26	0.24	0.25
H ₂ CO % Removal Limit is 76%	91.08	90.22	90.88	90.73
H ₂ O ppm (% FTIR)	14.72	15.43	14.70	14.95
% O ₂ Inlet (raw measured wet)	4.42	• 4.44	4.53	4.46
% O2 Outlet (raw measured wet)	5.86	5.15	5.95	5.65
% O2 (BIAS Corrected Dry)	6.22	6.18	6.23	6.21
Calculated Flows		•		
Fuel Flow - (SCFM)	193.00	191.83	195.50	193.44
Fuel Flow - (SCFH)	11,580	11,510	11,730	11,607
Exhaust Flow (LB/HR)	10,763.3	10,659.2	10,904.3	10,776
Exhaust Flow (WSCFM)	2,809.5	2,699.6	2,858.1	2,789
Air Flow (WSCFM)	2,463	2,441	2,496	2,467
Exhaust Flow Method 19 (scfm)	2,541	2,518	2,575	2,545
Exhaust Flow Method 19 (lbm/min)	118	117	120	118
Exhaust Flow Carbon Balance (lbm/min)	205.58	203.75	208.32	206
Air flow Beshouri (scfm)	2,674.79	2,650.88	2,710.41	2,679
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	11.58	11.51	11.73	11.61
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································	

Table 15. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL007



Run	1	2	3	
Date	07/23/21	07/23/21	07/23/21	
Time	8:27	9:40	10:53	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	1,259.0	1,268.0	1,276.0	1,267.7
Unit Speed (rpm)	328.0	332.0	328.0	329.3
Compressor Suction Pressure (PSIG)	530.0	531.0	532.0	531.0
Compressor Suction Temperature (°F)	54.1	54.3	54.6	54.3
Compressor Discharge Pressure (PSIG)	785.0	786.0	790.0	787.0
Compressor Flow (MMSCF/D)	63.2	63.9	63.9	63.7
% Load	95.4	96.1	96.7	96.0
% Torque	96.0	95.5	97.3	96.2
Heat Rate (BTU/HP-hr)	8,852.2	8,819.7	8,749.4	8,807.1
Ambient Conditions				
Ambient Temperature (°F)	65.00	65.00	67.00	65.67
Barometric Pressure (psi)	14.28	14.28	14.29	14.28
Ambient Relative Humidity (%)	98.00	98.00	98.00	98.00
Absolute Humidity (grains/LB)	194.56	194.55	209.14	199.42

Table 16. Engine Operating and Ambient Conditions -Unit EUWL008

Run	1	2	3	
Date	07/23/21	07/23/21	07/23/21	
Time	8:27	9:40	10:53	
Emissions Concentrations & Calculated Mass Em	issions			
NO _x ppm (BIAS Corrected)	590.95	647.90	663.20	634.02
NO _X g/BHP-HR	3.87	4.21	4.29	4.12
NO _X LB/HR	10.73	11.78	12.07	11.53
NO _X (ppm @ 15% O ₂)	236.50	258.60	265.53	253.54
NOx LB/MMBTU	0.87	0.95	0.98	0.93
NO _X Tons/Year	47.00	51.57	52.87	50.48
H ₂ CO Inlet ppmw	14.20	11.27	10.84	12.10
H ₂ CO Inlet (ppmw @ 15% 0 ₂	5.24	4.19	4.03	4.49
H ₂ CO Outlet ppmw	0.98	0.92	0.88	0.93
H ₂ CO Outlet (ppmw@ 15% 0 ₂	0.38	0.35	0.34	0.36
H ₂ CO % Removal Limit is 76%	92.72	91.73	91.43	91.96
H ₂ O ppm (% FTIR)	15.04	15.84	15.12	15.34
% O ₂ Inlet (raw measured wet)	4.92	5.02	5.02	4.99
% O ₂ Outlet (raw measured wet)	5.80	5.20	5.91	5.64
% O2 (BIAS Corrected Dry)	6.16	6.12	6.16	6.15
Calculated Flows				
Fuel Flow - (SCFM)	193.17	193.83	193.50	193.50
Fuel Flow - (SCFH)	11,590	11,630	11,610	11,610
Exhaust Flow (LB/HR)	10,792.9	10,794.8	10,811.3	10,800
Exhaust Flow (WSCFM)	2,800.7	2,730.5	2,820.4	2,784
Air Flow (WSCFM)	2,452	2,454	2,457	2,454
Exhaust Flow Method 19 (scfm)	2,530	2,532	2,535	2,532
Exhaust Flow Method 19 (lbm/min)	117	118	118	118
Exhaust Flow Carbon Balance (Ibm/min)	204.72	204.93	205.17	205
Air flow Beshouri (scfm)	2,663.54	2,666.24	2,669.31	2,666
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	11.59	11.63	11.61	11.61
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2) - A/F IS TOTAL MASS RATIO	· · · ·		······································	·······

Table 17. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL008

Run	1	2	3 ·	
Date	07/23/21	07/23/21	07/23/21	
Time	13:23	14:35	15:48	
Engine Operating Conditions	НЅ-НГ	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	1,221.0	1,228.0	1,248.0	1,232.3
Unit Speed (rpm)	321.0	314.0	323.0	319.3
Compressor Suction Pressure (PSIG)	443.0	436.0	436.0	438.3
Compressor Suction Temperature (⁰ F)	57.3	57.9	59.5	58.2
Compressor Discharge Pressure (PSIG)	714.0	714.0	718.0	715.3
Compressor Flow (MMSCF/D)	50.1	48.7	49.0	49.3
% Load	92.5	93.0	94.5	93.4
% Torque	95.1	97.8	96.6	96.5
Heat Rate (BTU/HP-hr)	8,348.1	8,394.4	8,360.1	8,367.5
Ambient Conditions				
Ambient Temperature (°F)	68.00	72.00	75.00	71.67
Barometric Pressure (psi)	14.29	14.27	14.26	14.27
Ambient Relative Humidity (%)	90.00	84.00	79.00	84.33
Absolute Humidity (grains/LB)	198.33	213.03	. 222.16 ,	211.17

Table 18. Engine Operating and Ambient Conditions - Unit EUWL009

Run	1	2	3	
Date	07/23/21	07/23/21	07/23/21	
Time	13:23	14:35	15:48	
Emissions Concentrations & Calculated Mass Em	issions			
NOx ppm (BIAS Corrected)	2065.14	2202.81	2110.80	2126.25
NO _X g/BHP-HR	11.93	12.76	12.21	12.30
NO _X LB/HR	32.11	34.54	33.59	33.42
NO _X (ppm @ 15% O ₂)	773.73	823.06	790.83	795.88
NOx LB/MMBTU	2.85	3.03	2.91	2.93
NO _X Tons/Year	140.64	151.31	147.14	146.37
H ₂ CO Inlet ppmw	41.64	41.45	40.12	41.07
H ₂ CO Inlet (ppmw @ 15% 0 ₂	13.89	13.89	13.34	13.71
H ₂ CO Outlet ppmw	3.29	3.38	3.15	3.27
H2CO Outlet (ppmw @ 15% 02	1.21	1.19	1.16	1.19
H2CO % Removal Limit is 76%	91.27	91.46	91.29	91.34
H ₂ O ppm (% FTIR)	16.18	16.89	16.23	16.43
% O2 Inlet (raw measured wet)	3.22	3.30	3.15	3.22
% O2 Outlet (raw measured wet)	4.90	4.10	4.90	4.63
% O2 (BIAS Corrected Dry)	5.15	5.11	5.15	5.14
Calculated Flows				
Fuel Flow - (SCFM)	176.67	178.67	180.83	178.72
Fuel Flow - (SCFH)	10,600	10,720	10,850	10,723
Exhaust Flow (LB/HR)	9,322.1	9,381.3	9,515.4	9,406
Exhaust Flow (WSCFM)	2,438.3	2,379.3	2,495.8	2,438
Air Flow (WSCFM)	2,100	2,118	2,150	2,123
Exhaust Flow Method 19 (scfm)	2,166	2,185	2,217	2,189
Exhaust Flow Method 19 (lbm/min)	101	102	103	102
Exhaust Flow Carbon Balance (lbm/min)	176.22	177.77	180.38	178
Air flow Beshouri (scfm)	2,292.70	2,312.86	2,346.77	2,317
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	10.60	10.72	10.85	10.72
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + 02)				
- A/FIS TOTAL MASS RATIO				

Table 19. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EUWL009

3. FACILITY AND PROCESS DESCRIPTION

TC Energy's ANR Woolfolk Compressor Station is located in Big Rapids, MI. The facility operates five Ingersoll-Rand Compressor Engine labeled EUWL001, EUWL002, EUWL003 EUWL004, and EUWL005. The engines are a four stroke, rich burn, natural gas fired reciprocating compressor engine, Model KVG-103, 1000 horsepower, and used to compress natural gas for transport via natural gas pipeline. The units is subject to the RICE MACT and Rule 818 and are subject to 40 CFR Part 63, Subpart ZZZZ requirements.

Units EUWL007-EUWL009 are Ingersoll-Rand Compressor Engine Model KVG-123, 1320hp; used to compress natural gas for transport via natural gas pipeline. The units are a four stroke, rich burn, natural gas fired reciprocating compressor engines. The units is subject to the RICE MACT and Rule 818 and are subject to 40 CFR Part 63, Subpart ZZZZ requirements.

Table 20. Process Data (Horsepower)					
Unit	Run 1	Run 2	Run 3	Average	Rated
EUWL001	971.0	972.0	954.0	965.7	. 1,000
EUWL002	918.0	978.0	961.0	952.3	1,000
EUWL003	957.0	964.0	952.0	957.7	1,000
EUWL004	977.0	951.0	948.0	958.7	1,000
EUWL005	905.0	933.0	933.0	923.7	1,000
EUWL007	1,272.0	1,243.0	1,271.0	1,262.0	1,320
EUWL008	1,259.0	1,268.0	1,276.0	1,267.7	1,320
EUWL009	1,221.0	1,228.0	1,248.0	1,232.3	1,320

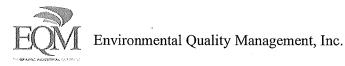
Process data is specified in Table 3. General engine information is located in Table 4.

September 2021

	Table 21. U	nit EUWL001 General Information	
Genera	l Information		
Date:	20-Jul-21	Permit Limits	
Company:	TC Energy	ppm@15% g/Bhp-Hr	lb/hr TPY
		NOx: 20.5	45.19
Station:	Woolfolk	CO:	
Unit:	1	VOC:	
e		Limits are actually listed as	average values
Engine Type:	IR KVG 103	Linnis are usedanly noted us	average values
Rated RPM:	330 RPM		
Rated BHP:	1000 BHP		
Nated Bill .			
Fuel G	as Analysis	Fuel Meter Type	
Constituent			
	Mole Percent	Enter Type from List Below	2
Nitrogen	Mole Percent	Enter Type from List Below	2
			2 2
	0.654	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM):	2 1 2 3
Carbon Dioxide Methane Ethane	0.654 0.312 91.027 7.680	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter:	2 1 2 3 4
Carbon Dioxide Methane Ethane Propane	0.654 0.312 91.027 7.680 0.288	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM):	2 1 2 3 4 5
Carbon Dioxide Methane Ethane Propane I-Butane	0.654 0.312 91.027 7.680 0.288 0.016	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter w/ Accumulator:	1 2 3 4
Carbon Dioxide Methane Ethane Propane I-Butane N-Butane	0.654 0.312 91.027 7.680 0.288 0.016 0.019	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter:	2 1 2 3 4 5
Carbon Dioxide Methane Ethane Propane I-Butane N-Butane I-Pentane	0.654 0.312 91.027 7.680 0.288 0.016 0.019 0.001	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Dectronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter w/ Accumulator: Pipe I.D.: 3.068	2 1 2 3 4 5
Carbon Dioxide Methane Ethane Propane I-Butane N-Butane I-Pentane N-Pentane	0.654 0.312 91.027 7.680 0.288 0.016 0.019 0.001 0.000	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter w/ Accumulator:	2 1 2 3 4 5
Carbon Dioxide Methane Ethane Propane I-Butane N-Butane I-Pentane	0.654 0.312 91.027 7.680 0.288 0.016 0.019 0.001	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Dectronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter w/ Accumulator: Pipe I.D.: 3.068	2 1 2 3 4 5
Carbon Dioxide Methane Ethane Propane I-Butane N-Butane I-Pentane N-Pentane	0.654 0.312 91.027 7.680 0.288 0.016 0.019 0.001 0.000	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Dectronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter w/ Accumulator: Pipe I.D.: 3.068	2 1 2 3 4 5

	Table 22. Ur	nit EUWL002 General Information	
General	Information		
Date:	20-Jul-21	Permit Limits	
	and the second		
Company:	TC Energy	ppm@15%/Bhp-Hr	ib/hr TPY
Station:	Woolfolk	NOX: 20.5	45.19
Stauon	WOOIIOIK	VOC:	
Unit:	2	H2CO: >76 DE	
		Limits are actually listed as	s average values
Engine Type:	IR KVG 103		
Rated RPM:	330 RPM		
Kated KI M.	KIM		
Rated BHP:	1000 BHP	▲ 定当為C→2001	
Fuel G	as Analysis	Fuel Meter Typ	e
<u> </u>	<u></u>	<u></u>	<u> </u>
Constituent	Mole Percent	Enter Type from List Below	2
	0.00		
Nitrogen Carbon Dioxide	0.654	Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap):	2
Methane	91.027	Electronic Flow Meter (EFM):	3
Ethane	7.680	Venturi (Nozzle) Meter:	4
Propane	0.288	Roots Meter w/ Accumulator:	5
I-Butane	0.016		
N-Butane	0.019	Pipe I.D.: 3.068	
I-Pentane	0.001		
N-Pentane	0.000	Orifice I.D.: 1.5	
Hexane +	0.002		
	The second second		
Total	100.000		

	Table 23. U	Jnit EUWL003 General Information
General	Information	
Date:	21-Jul-21	Permit Limits
Company:	TC Energy	ppm@15% g/Bhg-Hr ib/hr TPY NO:: 28.5 45.19
Station:	Woolfolk	CO: VOC:
Unit:	3	H2CO: >76 DE Sector Sec
Engine Type:	IR KVG 103	Linnis are actually instead as average values
Rated RPM:	330 RPM	ENTE AND CONTRACT OF AN AND AND AND AND AND AND AND AND AND
Rated BHP:	1000 BHP	
Fuel C	as Analysis	Fuel Meter Type
<u> </u>		Fuel Meter Type Enter Type from List Below 2
Constituent	Mole Percent	Enter Type from List Below 2
Nitrogen	0.638	Orifice Meter (upstream pressure tap):
Carbon Dioxide	0.298	Orifice Meter (downstream pressure tap): 2 Electronic Flow Meter (EFM): 3 Venturi (Nozzle) Meter: 4 Roots Meter w/ Accumulator: 5
Methane	90.880	Electronic Flow Meter (EFM): 3
Ethane	7.887	Venturi (Nozzle) Meter: 4
Propane	0.272	Roots Meter w/ Accumulator: 5
I-Butane	0.012	
N-Butane I-Pentane	0.011	Pipe I.D.: 3.068
N-Pentane	0.000	Orifice LD.: 1.5
Hexane +	0.002	Pipe I.D.: 3.068 Orifice I.D.: 1.5
	0.002	
Total	100.000	


Table 24. Unit EUWL004 General Information			
General	General Information		
General	Internation		Carlos anti-
Date:	21-Jul-21	Permit Limits	
Company:	TC Energy	ppm@15% g/Bhp-Hr	1b/hr TPY 45.19
Station:	Woolfolk	NOx: 20.5 CO: VOC:	40.15
Unit:	4	H2CO: >76 DE	
and the second sec		Limits are actually listed as	average values
Engine Type:	IR KVG 103		
Rated RPM:	330 RPM		
Rated BHP:	1000 BHP		
	1000 1011		
Fuel G	as Analysis	Fuel Meter Type	e
Constituent	Mole Percent	Enter Type from List Below	2
Nitrogen	0.638	Orifice Meter (upstream pressure tap):	1
Carbon Dioxide	0.298	Orifice Meter (downstream pressure tap):	2
Methane	90.880	Electronic Flow Meter (EFM):	3
Ethane	7.887	Venturi (Nozzle) Meter:	4
Propane	0.272	Roots Meter w/ Accumulator:	5
I-Butane	0.012		
N-Butane	0.011	Pipe I.D.: 3.068	
I-Pentane	0.000		
N-Pentane	0.000	Orifice LD.: 1.5	
Hexane +	0.002		
Total	100.000		

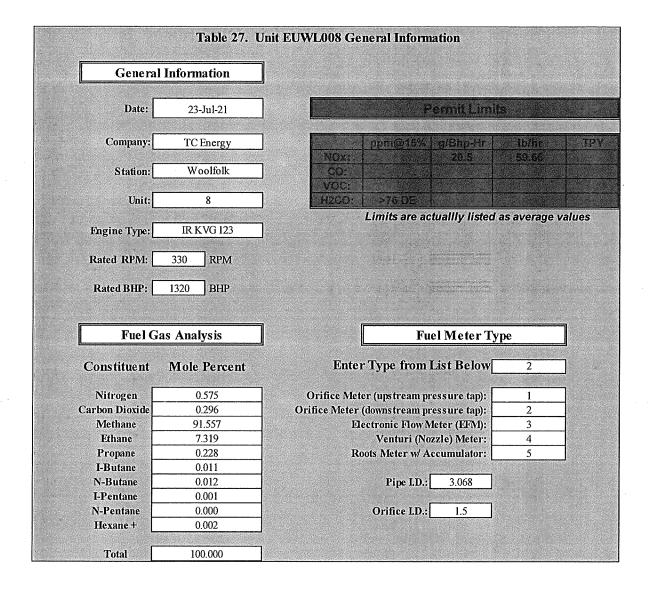


Table 25. Unit EUWL005 General Information			
Genera	I Information		
<u> </u>			
Date:	22-Jul-21	Permit Limits	
Company:	TC Energy	ppm@15% g/Bhp-Hr	Ib/hr TPY
Station:	Woolfolk	NOX: 20.5	45.19
		VOC:	
Unit:	5	H2CO: ->76 DE	
n d m [IR KVG 103	Limits are actually listed as	average values
Engine Type:			
Rated RPM:	330 RPM		
Rated BHP:	1000 BHP		
Fuel Gas Analysis		Fuel Meter Type	
Constituent	Mole Percent	Enter Type from List Below	2
Nitrogen	0.689	Orifice Meter (upstream pressure tap):	1
Carbon Dioxide	0.338	Orifice Meter (downstream pressure tap):	2
Methane	91.108	Electronic Flow Meter (EFM);	3
Ethane	7.590	Venturi (Nozzle) Meter:	4
Propane	0.254	Roots Meter w/ Accumulator:	5
I-Butane	0.009		
N-Butane	0.010	Pipe I.D.: 3.068	
I-Pentane			
N-Pentane	0.000		
N-remane	0.000	Orifice LD.: 1.5	
Hexane +		Orifice LD.: 1.5	
- A second s	0.000	Orifice LD.: 1.5	

Table 26. Unit EUWL007 General Information		
General	Information	
Date:	22-Jul-21	Permit Limits
Company:	TC Energy	ppm@15% g/Bhp-Hr ib/hr TPY NOx: 20.5 \$9.66
Station:	Woolfolk	100x 20.0 05.00 CO: VOC:
Unit:	7	H2CO: >76 DE
Engine Type:	IR KVG 123	Limits are actually listed as average values
Rated RPM:	330 RPM	
Rated BHP:	1320 BHP	$\lambda_{i}: \tau \to \tau = \tau = \mathbf{f}_{i} + \mathbf{f}_{i} + \mathbf{f}_{i} = \mathbf{f}_{i}$
Fuel Gas Analysis		Fuel Meter Type
Constituent	Mole Percent	Enter Type from List Below 2
Nitrogen	0.689	Orifice Meter (upstream pressure tap): 1
Carbon Dioxide	0.338	Orifice Meter (downstream pressure tap): 2
Methane	91.108	Dectronic Flow Meter (EFM): 3
Ethane	7.590	Venturi (Nozzle) Meter: 4
Propane	0.254	Roots Meter w/ Accumulator: 5
I-Butane	0.009	
N-Butane	0.010	Pipe I.D.: 3.068
I-Pentane	0.000	
N-Pentane	0.000	Orifice LD.: 1.5
Hexane +		
	0.002	

. .

	Table 28. Ur	nit EUWL009 General Information
General	Information	
Date:	23-Jul-21	Permit Limits
Date.	23-341-21	i Grade Chinto
Company:	TC Energy	ppm@15% g/Bhp-Hr lb/hr T
	······	NOX: 20.5 59.66
Station:	Woolfolk	CO:
Unit:	9	VOC:
ent.	<u> </u>	Limits are actually listed as average values
Engine Type:	IR KVG 123	
Rated RPM:	330 RPM	rive Langth
Rated BHP:	1320 BHP	
Fuel G	as Analysis	Fuel Meter Type
Constituent	Mole Percent	Enter Type from List Below 2
Nitrogen	0.575	Orifice Meter (upstream pressure tap):
Carbon Dioxide	0.296	Orifice Meter (downstream pressure tap): 2
Methane	91.557	Electronic Flow Meter (EFM): 3
Ethane	7.319	Venturi (Nozzle) Meter: 4
Propane	0.228	Roots Meter w/ Accumulator: 5
I-Butane	0.011	
N-Butane	0.012	Pipe I.D.: 3.068
I-Pentane	0.001	
N-Pentane	0.000	Orifice I.D.: 1.5
Hexane +	0.002	
Total	100.000	

4. TEST PROCEDURES

EQM and EQM's affiliates and subcontractors use current U.S. EPA accepted testing methodologies in their Air Quality Programs as listed in the U.S. Code of Federal Regulations, Title 40, Part 60, Appendix A. For this testing program, the following specific methodologies were utilized:

- U.S. EPA Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 7E– Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 19– Determination of Volumetric Flow Rate From Stationary Sources
- U.S. EPA Method 320– Determination of Formaldehyde From Stationary Sources (Extractive Fourier Transform infareed (FTIR) Spectrometry)

USEPA Methods 3A, 7E, and 19 were performed at the Exhaust Stack sampling location by continuously extracting a gas sample from the stack through a single point stainless steel sample probe. The extracted sample was pulled through a series of filters to remove any particulate matter. Directly after the probe, the sample was conditioned by a series of refrigeration dryers to remove moisture from the gas stream. After the refrigeration dryers, the sample was transported through a Teflon® line to the analyzers. The flow of the stack gas sample was regulated at a constant rate to minimize drift.

At the start of the day, each monitor was checked for calibration error by introducing zero, midrange and high-range EPA Protocol 1 gases to the measurement system at a point upstream of the analyzers. In this report, the calibration error test is referred to as instrument calibration. The gas was injected into the sampling valve located at the outlet of the sampling probe. The bias test was conducted before and after each consecutive test run by introducing zero and upscale calibration gases for each monitor. The upscale calibration gases used for each monitor were the high calibration gases.

Measurement System Performance Specifications were as follows:

- Analyzer Calibration Error Less than +/- 2% of the span of the zero, mid-range and high-range calibration gases.
- Sampling System Bias Less than +/-5% of the span for the zero, mid-range and high-range calibration gases.
- Zero Drift Less than +/-3% of the span over the period of each test run.
- Calibration Drift Less than +/-3% of the span over the period of each set of runs.

USEPA Method 320 was performed at the Exhaust Stack sampling locations by using MKS MultiGas 2030 FTIR spectrometers. The FTIRs were equipped with temperature-controlled, 5.11 meter multipass gas cells maintained at 191 °C. Gas flows and sampling system pressures were monitored using rotameters and pressure transducers. All data were collected at 0.5 cm-1 resolution. Each spectrum was derived from the coaddition of 64 scans, with a new data point generated approximately every one minute. Additional information may be found in Appendix A.

Calculations that were used in this testing event for the Unit 11 and Unit 12 are as follows:

Calibration Correction

$$C_{GAS} = \left(C_R - C_O\right) \frac{C_{MA}}{C_M - C_O}$$

Where:

C _{GAS} :	Corrected flue gas concentration (ppmvd)
C _R :	Flue gas concentration (ppmvd)
Co:	Average of initial and final zero checks (ppmvd)
C _M :	Average of initial and final span checks (ppmvd)
C _{MA} :	Actual concentration of span gas (ppmvd)

EPA F-Factor

$$F_{d} = \frac{\left[(3.64 \cdot H_{W1\%} \cdot 100) + (1.53 \cdot C_{W1\%} \cdot 100) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6} + \frac{\left[(0.14 \cdot N_{2W1\%} \cdot 100) - (0.46 \cdot O_{2W1\%} \cdot 100) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6}$$

Where:

F_d :	Fuel specific F-factor, dscf/MMBtu
$H_{Wt\%}$:	Hydrogen weight percent
$C_{Wt\%}$:	Carbon weight percent
$N_{2Wt\%}$:	Nitrogen weight percent
$O_{2Wt\%}$:	Oxygen weight percent
GCV:	Heating value of the fuel, BTU/dscf

September 2021

 $\rho_{Fuel Gas}$: Density of the fuel gas, lb/scf

Formaldehyde Removal Efficiency, RE (%)

$$RE = \left| \left(\frac{Inlet Formaldehyde - Outlet Formaldehyde}{Inlet Formaldehyde} \right) \times 100$$

Where:

Inlet Formaldehyde = Inlet formaldehyde concentration at 15% O2

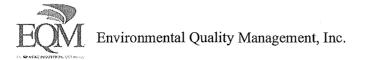
Outlet Formaldehyde = Inlet formaldehyde concentration at 15% O2

Inlet Analyzer Drift Correction

$$Cgas = (CAve - CO)(\frac{Cma}{Cm - Co})$$

Where:

C _{GAS} :	Average effluent gas concentration adjusted for bias
CAve:	Average unadjusted gas concentration indicated by data recorder for the
	test run
Co:	Average of initial and final zero checks
C _M :	Actual concentration of the upscale calibration gas
C _{MA} :	Average of initial and final system calibration bias check responses for the
	upscale calibration gas

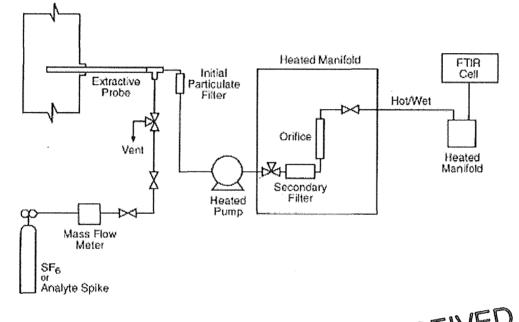

Outlet Analyzer Drift Correction

$$Cgas = (CAve - CO)(\frac{Cma}{Cm - Co})$$

Where:

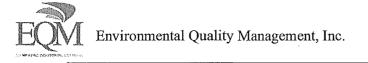
C _{GAS} :	Average effluent gas concentration adjusted for bias
CAve:	Average unadjusted gas concentration indicated by data recorder for the
	test run
Co:	Average of initial and final zero checks (ppmvd)
C _M :	Actual concentration of the upscale calibration gas
C _{MA} :	Average of initial and final system calibration bian check responses for the upscale calibration gas

September 2021


Inlet Concentration, C1 (corrected to 15%O2)

$$\text{Conc.i}_{(\text{Std.O}_2)} = \text{Conc.i}_{(\text{MeasuredO}_2)} \left(\frac{20.9\% - \text{Std.O}_2\%}{20.9\% - \text{MeasuredO}_2\%} \right)$$

Where:


Conc.i_(Std.O2)=Concentration at standard O₂ level Conc.i_(MeasuredO2)=Concentration measured at O₂ level Std.O₂%=Oxygen concentration at standard level Measured O₂%=Oxygen concentration at measured level

September 2021

5. QUALITY ASSURANCE PROCEDURES

Each reference method presented in the U.S. Code of Federal Regulations details the instrument calibration requirements, sample recovery and analysis, data reduction and verification, types of equipment required, and the appropriate sampling and analytical procedures to ensure maximum performance and accuracy. EQM and EQM's affiliates and subcontractors adhere to the guidelines for quality control set forth by the United States Environmental Protection Agency. These procedures are outlined in the following documents:

- Code of Federal Regulations, Title 40, Part 51
- Code of Federal Regulations, Title 40, Part 60
- Quality Assurance Handbook, Volume 1, EPA 600/9-76-005
- Quality Assurance Handbook, Volume 2, EPA 600/4-77-027a
- Quality Assurance Handbook, Volume 3, EPA 600/4-77-027b

6. CONCLUSIONS

An Emissions Test was conducted on the internal combustion compressor engines labeled Unit EUWL001, Unit EUWL002, Unit EUWL003, Unit EUWL004, Unit EUWL005, Unit EUWL007, Unit EUWL008, and Unit EUWL009 at TC Energy's ANR Pipeline Company's Woolfolk Compressor Station located in Big Rapids, Michigan. The testing was conducted on July 20-23, 2021.

During the course of the testing, the eight engines conformed to the requirements of flexible groups FG-RICE-818-WLENGINES and RICE MACT in the permit and are subject to 40 CFR Part 63, Subpart ZZZZ requirement.

The usefulness and/or significance of the emissions values presented in this document as they relate to the compliance status of the emissions shall be determined by others.

For additional information pertaining to the testing program see Appendix D of this report

A. FIELD DATA