FINAL REPORT

SA

RECEIVED

DEC 05 2018

AIR QUALITY DIVISION

FCA US LLC

STERLING HEIGHTS, MICHIGAN

STERLING HEIGHTS ASSEMBLY PLANT – SOUTH PAINT SHOP TRANSFER EFFICIENCY AND CAPTURE EFFICIENCY TESTING

RWDI #1803870 December 4, 2018

SUBMITTED TO

Joyce Zhu

Michigan Department of Environmental Quality District Supervisor, Air Quality Division 2700 Donald Court Warren, Michigan 48092-2793

Karen Kajiya-Mills Michigan Department of Environmental Quality Air Quality Division Technical Programs Unit (TPU) Constitution Hall 2nd Floor, South 525 West Allegan Street Lansing, Michigan 48909-7760

FCA US LLC Sterling Heights Assembly Plant 38111 Van Dyke Sterling Heights, Michigan, 48312

Adekunle Sanni Environmental Specialist Adekunle.Sanni@fcagroup.com

Rohitkumar Patel Environmental Health & Safety | Air Compliance Manager Rohitkumar.Patel@fcagroup.com

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.bergeron@rwdi.com

RWDI AIR Inc. Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michlgan, 48309

Jim Belanger Manager jim@jlbindustries.com

JLB Industries, LLC 2181 Avon Industrial Drive Rochester Hills, Michigan 48309

T: 519.974.7384 | ext. 2428 F: 519.823.1316

EXECUTIVE SUMMARY

RWDI AIR Inc. (RWDI) and JLB Industries, LLC were retained by Fiat Chrysler Automobiles (FCA) US LLC to complete compliance testing of the Topcoat operations at their Sterling Heights Assembly Plant (SHAP) South Paint Shop located at 38111 Van Dyke, Sterling Heights, Michigan. The scope of the test program was to complete paint solids transfer efficiency (TE) and Capture Efficiency (CE) testing of the Topcoat operations (FG-TOPCOAT BOX), for one (1) representative Topcoat Booth (EU-TOPCOAT 1 BOX or EU-TOPCOAT 2 BOX), on the following coatings:

- Metallic Basecoat (Granite);
- Solid Basecoat (White); and
- Clearcoat.

SHAP South Paint Shop currently operates under Permit to Install (PTI) Permit # 27-17B dated April 6, 2018. The results will be used to support on-going VOC monthly emission calculations. The testing program consisted of Transfer Efficiency (TE) testing and Capture Efficiency (CE) testing. Determination of TE and CE were conducted in accordance with all applicable procedures contained in USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations". The testing was completed during the week of October 15, 2018. The testing consisted of the following:

- Paint solids transfer efficiency (TE) the percent of paint solids sprayed that deposit on the painted part.
 was measured when applying White solid basecoat, Granite metallic basecoat and standard clearcoat in the "EU-TOPCOAT 2 BOX" line and are considered to be representative for all Topcoat Operations.
- Volatile Organic Compound (VOC) capture efficiency (CE) was completed on the booth, flash zone and bake oven for the "EU-TOPCOAT 2 BOX" line since all aspects of the booth are controlled. This includes the percent of VOC captured from the curing of the coating in the flash zone and bake oven. The flash and bake oven VOC CE is used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs) and is also referred to as oven solvent loading. Flash and Oven VOC CE was measured at "EU-TOPCOAT 2 BOX" Spraybooth when applying solid White basecoat, Granite metallic basecoat and standard clearcoat and are considered to be representative for all Topcoat Operations.

RWDI/JLB Industries used highly accurate weighing systems to determine the vehicle and panel weights before and after coating application. Calibrated volumetric flow meters, located on each applicator, were used to measure paint usage.

Material samples were collected from the paint circulation tanks directly after vehicle spray out. Determination of percent solids by weight and density was performed by Advanced Technologies of Materials laboratories, located in Waverly, Ohio.

Transfer Efficiency (TE) Results Summary

Tested Coating	Solids Transfer Efficiency (%)
Basecoat (White Solid Basecoat)	77.8%
Basecoat (Granite Metallic)	71.6%
Clearcoat	69.1%

Capture Efficiency (CE) Results Summary

		Loading (Lb/GACS)	Capture Efficiency
		EU-TOPCOAT 2 BOX	EU-TOPCOAT 2 BOX
	Booth/Flash	3.96	
Solid Basecoat (White)	Oven	1.95	
	Total	5,91	83.4%
	Booth/Flash	6.40	~~
Metallic Basecoat (Granite)	Oven	1.74	
	Total	8.15	84.2%
	Booth	4.87	47,3%
Clearcoat	Oven	3.34	32,4%
	Total	8.21	79.6%

1 INTRODUCTION

RWDI AIR Inc. (RWDI) and JLB Industries, LLC were retained by Fiat Chrysler Automobiles (FCA) US LLC to complete compliance testing of the Topcoat operations at their Sterling Heights Assembly Plant (SHAP) South Paint Shop located at 38111 Van Dyke, Sterling Heights, Michigan. The scope of the test program was to complete paint solids transfer efficiency (TE) and Capture Efficiency (CE) testing of the Topcoat operations (FG-TOPCOAT BOX), for one (1) representative Topcoat Booth (EU-TOPCOAT 1 BOX or EU-TOPCOAT 2 BOX), on the following coatings:

- Metallic Basecoat (Granite);
- Solid Basecoat (White); and
- Clearcoat.

SHAP South Paint Shop currently operates under Permit to Install (PTI) Permit # 27-17B dated April 6, 2018. The results will be used to support on-going VOC monthly emission calculations. The testing program consisted of Transfer Efficiency (TE) testing and Capture Efficiency (CE) testing. Determination of TE and CE were conducted in accordance with all applicable procedures contained in USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations". The testing was completed during the week of October 15, 2018. The testing consisted of the following:

- Paint solids transfer efficiency (TE) the percent of paint solids sprayed that deposit on the painted part. was measured when applying White solid basecoat, Granite metallic basecoat and standard clearcoat in the "EU-TOPCOAT 2 BOX" line and are considered to be representative for all Topcoat Operations.
- Volatile Organic Compound (VOC) capture efficiency (CE) was completed on the booths, flash zone and bake oven for the "EU-TOPCOAT 2 BOX" line. This includes the percent of VOC captured from the curing of the coating in the flash zone and bake oven. The flash and bake oven VOC CE is used to calculate the mass of VOC captured per gallon of applied coating solids (lb VOC/gacs) and is also referred to as oven solvent loading. Flash and Oven VOC CE was measured at "EU-TOPCOAT 2 BOX" Spraybooth when applying solid White basecoat, Granite metallic basecoat and standard clearcoat and are considered to be representative for all Topcoat Operations.

A Source Testing Plan, for the testing, was submitted to the Michigan Department of Environmental Quality (MDEQ) on August 22, 2018. Testing was successfully completed while all process equipment was operating under normal maximum operating conditions during the week of October 15th, 2018. A copy of the Source Testing Plan is provided in **Appendix A**.

Testing of emissions was conducted by Mr. Jim Belanger and Mr. Jeff Monache of JLB, and Mr. Brad Bergeron and Mr. Alec Smith of RWDI. Mr. Adekunle Sanni and Mr. Rohit Patel were on-site to monitor the process operation and witness the testing on behalf of FCA US LLC.

<u>S</u>

2 SOURCE AND SAMPLING LOCATIONS

2.1 Process Description

SHAP is located at 38111 Van Dyke in Sterling Heights, Michigan. The facility completes assembly and paint operations for FCA US LLC. Vehicle body panels are stamped and assembled on site from sheet metal components. The bodies are cleaned, treated, and prepared for painting in the phosphate system. Drawing compounds, mill oils, and dirt are removed from the vehicle bodies utilizing both high pressure spray and immersion cleaning/rinsing techniques. Vehicle bodies then are dip coated in electro deposition corrosion primer paint for protection. The electro primer (E-coat) is heat-cured to the vehicle body in a high-temperature bake oven. After completing the E-coat operation, vehicle bodies are conveyed to the sealer area for application of various sealants to body seams and joints. Vehicle bodies are then conveyed to an oven to cure the sealers.

After the sealer oven, the vehicles are routed to the powder prime system and then topcoat operations. In the topcoat system, the bodies receive a combination of waterborne and solvent borne coatings: basecoat and clearcoat coatings. After topcoat is applied, the vehicle is baked in the topcoat oven. After exiting the topcoat oven, the vehicles are routed to inspection.

An overview of the process to be sampled and associated sampling sites is provided below.

Figure 1: Process and Sampling Location Overview

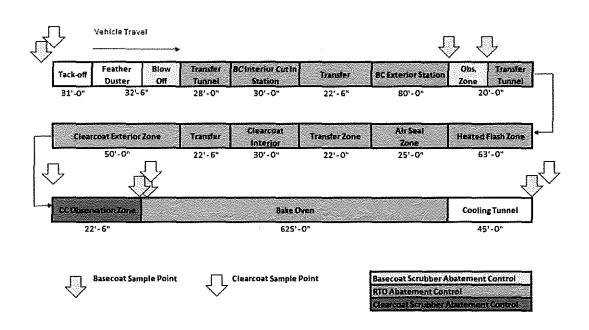


Table 2.1-1: Summary of "EU-TOPCOAT 2 BOX" Applicator Parameters

Operation	Manufacturer	Applicator	Fluid Tip/ Bell Size	Air Cap	Gun Voitage (kV)	RPM	Gun-to- Target Distance (inch)	Remarks
Basecoat	Fanuc	Cartridge Fanuc Versa Beil II+	0.9mm 65 mm	N/A	40-80 kV	40 - 50,000	10 inch	Waterborne
Clearcoat	Fanuc	Gear Pump Fanuc Versa Bell II+	1.2mm 65mm	N/A	40-80 kV	35-75,000	10 inch	Solvent

Notes: mm - millimetres

kV – kilovolts RPM – revolutions per minute

13.1 ft/min line speed

2.2 Control Equipment

Topcoat Spray Booths are controlled using a downdraft ventilation system and water wash system below the booth grate to control paint overspray. Captured basecoat and clearcoat booth, flash zone and bake oven VOC emission are directed to regenerative thermal oxidizer for VOC abatement. All controls were functioning during the testing period.

2.3 Operating Parameters

The following process control measures were recorded during the testing:

- Coating usage;
- Application information;
- Bake Oven Temperature;
- Spray booth relative humidity; and
- Spray booth temperature.

The following summarizes the Spray booth and Bake Oven process conditions.

Table 2.3-1: Summary of Operating Conditions

Source	Spray Booth Temperature			Spray Booth Relative Humidity			Bake Oven Temperature		
Source	Unit	10/16/18	10/17/18	Unit	10/16/18	10/17/18	Unit	10/16/18	10/17/18
	ARU 1	80°F	80°F	ARU 1	57%	63%	Sill Heater	265°F	271°F
	ARU 2	75°F	72ºF	ARU 2	60%	65%	Zone 1	378°F	380°F
	ASU 1	75⁰F	71°F	ASU 1	61%	65%	Zone 2	390°F	388°F
EU-TOPCOAT 2 BOX	ARU 3	82°F	80°F	ARU 3	65%	55%	Zone 3	264ºF	258°F
Spray Booth	ARU 4	81°F	82°F	ARU 4	63%	62%	Zone 4	265°F	264°F
	ASU 2	85°F	74°F	ASU 2	54%	77%	Zone 5	275°F	265°F
			Zone 6	259°F	265°F				
		Cooling	65°F	78°F					

RECEIVED

DEC 05 2018

AIR QUALITY DIVISION

2.4 Process Sampling Locations

A process sample of each coating applied during the testing was collected for analysis. The coatings were collected following procedures in USEPA's "Standard Procedure for Collection of Coating and Ink Samples for Analysis by Method 24 and 24A".

Coating samples were collected at the application point into four (4) ounce glass sampling jars with minimal headspace. The coating-as-applied samples were analyzed using USEPA Method 24 to measure percent VOC, percent water and density. The results are summarized below in **Table 2.4-1** and in **Appendix C**.

Table 2.4-1: Summary of Method 24 Coating Analysis

	Parameter									
Sample	Date	% Non-	%	Dei	nsity		Voc		VOC-Water	
	Date	Volatile	Volatile	g/ml	lb/gal	- % Water	g/L	lb/gal	g/L	lb/gal
Granite Metallic Basecoat	10/16/18	32.67	67.33	1,049	8,753	43.85	246.26	2.055	457.12	3.815
White Basecoat	10/16/18	47.47	52.53	1.255	10.476	34.29	228.99	1.911	402.93	3.362
Clearcoat Part A	10/16/18	57.43	42.57	1.055	8.804	0	449,14	3,748	N/A	N/A
Clearcoat Part B	10/16/18	56.76	43.24	1.009	8.421	0	436.38	3.642	N/A	N/A

In addition, thirteen (13) samples were collected by RWDI/JLB (12 samples + 1 blank) of waterborne coatings to analyze for percent moisture. The samples were collected at the point of application on foil panels attached to the test vehicles. The coated foils were then transferred into a four (4) ounce glass sampling jar and anhydrous methanol was added to the sampling jar to allow the coating to disperse. The sample was then allowed to separate and analyzed for percent water using ASTM E203-08 "Standard Test Method for Water Using Volumetric Karl Fischer Titration". The ASTM E203 -08 coating analysis is summarized in **Table 2.4-2** and **Appendix C**.

Sample	Date	Parameter Percent Water	
Blank	10/17/2018	0.14	
Sample B1 White Solid	10/17/2018	0.47	
Sample B2 White Solid	10/17/2018	0.34	
Sample B3 White Solid	10/17/2018	0.44	
Sample B4 White Solid	10/17/2018	0.17	
Sample B5 White Solid	10/17/2018	0.18	
Sample B6 White Solid	10/17/2018	0.16	
Sample M1 Granite Metallic	10/17/2018	0.37	
Sample M2 Granite Metallic	10/17/2018	0.34	
Sample M3 Granite Metallic	10/17/2018	0.40	
Sample M4 Granite Metallic	10/17/2018	0.15	
Sample M5 Granite Metallic	10/17/2018	0.13	
Sample M6 Granite Metallic	10/17/2018	0.12	

Table 2.4-2: Summary of Volumetric Karl Fischer Titration Coating Analytical

SN SN

3 SAMPLING AND ANALYTICAL PROCEDURES

3.1 Summary of Test Program

The topcoat process at SHAP South is comprised of two (2) topcoat paint lines consisting of the "EU-TOPCOAT 1 BOX" and "EU-TOPCOAT 2 BOX". The topcoat system consists of several spray sections followed by an associated curing oven. The spray booth operations are defined as follows:

- Basecoat Robots Basecoat was applied to the exterior and interior surfaces; and
- Clearcoat Robots Clearcoat was applied to the exterior and interior surfaces.

Skidded vehicles are conveyed through the booth and coated with topcoat materials (basecoat and clearcoat). The vehicles are processed through a bake oven where the coating is cured.

Currently, coatings are applied to the new RAM 1500 Box production models. Production units on which an electrocoat corrosion inhibiting primer had been applied were used in the test program for the transfer efficiency testing. For the CE testing, scrap vehicles were used for the testing program. The test program is summarized below.

3.2 Transfer Efficiency Test

Transfer Efficiency testing was conducted in the Topcoat Spray Booth where White solid basecoat, Granite metallic basecoat and clearcoat were applied. Applicator and environmental conditions were monitored to ensure that the testing accurately reflected production conditions. Measured parameters included: Vehicle weight gain, material usage, material analysis (percent solids by weight and density), applicator settings, film build and oven heat settings.

A total of four (4) vehicle bodies were used in calculating test results. Three (3) vehicles were processed as normal production vehicles, and one vehicle were dedicated as no-paint, control vehicles in conjunction with the testing. All units were production vehicles with sealer.

An off-line vehicle weigh station (VWS) was constructed to measure the weight of the test units before and after each painting process. Test vehicles were routed to a dedicated conveyor spur. A fixed stop was secured to assure repeatable positioning of the vehicles. Test vehicles were lifted free from their carriers by two lift-table mounted scale bases. Ultra-high molecular weight (UHMW) plastic blocks were strategically placed on the scale bases to lift the vehicle at the center of gravity locations. The UHMW blocks minimized friction loading on vehicles and scale bases.

Vehicle weights were measured several times and recorded. All test vehicles were weighed with production fixtures (door hooks and hood props) installed. The vehicle weigh station scales were calibrated using Class-F calibration weights conforming to the National Bureau of Standards handbook 105-1. A one or two-pound avoirdupois, Class F stainless steel weight was added periodically during pre- and post-process weighing to verify scale linearity.

Coating thickness was measured on a representative test vehicle to verify paint film-build was within the production specification. The data was taken with a handheld Elcometer gauge.

Coating material usage was monitored via volumetric flow measurement devices located on each applicator. A verification of each applicator was performed by FCA personnel to ensure accurate usage measurement. Material samples of applied coatings were collected from the respective systems directly after testing. Samples were sent to Advanced Technologies of Materials for analysis to determine density by ASTM D1475 and weight solids content by ASTM D2369 (referenced in EPA Method 24). The laboratory results were used in calculating the Transfer Efficiency and Capture Efficiency values.

Production vehicles with paint shop sealer were prepared with prime and processed through the Topcoat Spray Booth. The test sequence for the Transfer Efficiency test was:

White Solid Basecoat:

- 1. Test Unit ID TE1 Carrier 455
- 2. Test Unit ID TE2 Carrier 490
- 3. Test Unit ID TE3 Carrier 401
- 4. Test Unit ID TE4 Carrier 262 (no-paint control)
- 5. Test Unit ID TE5 Carrier 124 (no-paint control)

Granite Metallic Basecoat:

- 1. Test Unit ID TE1 Carrier 455
- 2. Test Unit ID TE2 Carrier 490
- 3. Test Unit ID TE3 Carrier 401
- 4. Test Unit ID TE5 Carrier 124
- 5. Test Unit ID TE4 Carrier 262 (no-paint control)
- 6. Test Unit ID TE5 Carrier 124 (no-paint control) *sent back through prior to coating for blank

<u>Clearcoat:</u>

- 1. Test Unit ID TE1 Carrier 455
- 2. Test Unit ID TE2 Carrier 490
- 3. Test Unit ID TE3 Carrier 401
- 4. Test Unit ID TE4 Carrier 262
- 5. Test Unit ID TE5 Carrier 124 (no-paint control)
- 6. Test Unit ID TE4 Carrier 262(no-paint control) *sent back through prior to coating for blank

Test Vehicles were routed through the bake oven and back to the vehicle weigh station. After cooling, the test vehicles were weighed and released to production.

3.3 Capture Efficiency Tests

A panel weigh station (PWS) was assembled at the Topcoat Spray Booth. A precision balance with measurement capability to 0.001 gram was placed on an isolation platform inside an enclosure to minimize vibration and air movement.

The testing conformed to the methods described in ASTM 5087-02 for solvent borne coatings and ASTM 6266-00a (Reapproved 2005) for waterborne coatings.

Test panels were placed on a test vehicle and processed with normal production spray programming.

Four (4) electrocoated panels were used for each test. Each group of test panels was weighed in four locations (see panel test diagram) to determine the relative distribution of VOC that is released in the controlled booth zone and bake oven. The panels were attached to test vehicles by magnet, which allowed for removal of the wet panels with minimal disturbance to the coating during handling. Panel mounting locations were chosen to achieve a representative coating film based on the observation of normal vehicle production.

Before the panels were coated, they were marked (1, 2, 3, 4, blank) and weighed to establish the initial unpainted panel weights (P0). The panels were then attached to a test vehicle and routed through the Spray Booth. After coating, the panels were carefully removed from the test vehicle and brought to the balance for weighing immediately upon exit from the controlled booth zone (P1). Panels were weighed again before entering the controlled bake oven (P2). The panels were then placed on the test vehicle for travel through the curing oven. Upon exiting the oven, the panels were allowed to cool and then weighed a final time (P3).

Figure 2: Panel Testing Diagram

	<u>L</u>							
	,	Basecoat	Controlled Flash	Clearcoat		Cleacoat Observation	Coniroled Oven	
	1	B	B			(BXB	B5
	@				C)	0	3
I								2

4 TEST EQUIPMENT AND QA/QC PROCEDURES

Equipment used in this program passed the Quality Assurance /Quality Control (QA/QC) procedures. **Appendix D** contains the calibration records of the equipment and inspection sheets.

4.1 Pretest QA/QC Activities and Audits

Before testing, the equipment was inspected and calibrated according to the procedures outlined in the applicable procedures outlined in the USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobiles and Light Duty Truck Topcoat Operations", as referenced in 40 CFR 63, Subpart IIII. Refer to **Appendix D** for inspection and calibration sheets.

The results of select sampling and equipment QA/QC audits are presented in the following sections. Refer to **Appendix D** for inspection and calibration sheets. Test Equipment and QA/QC Procedures

4.1.1 Vehicle Weigh Station (VWS)

A dedicated vehicle weigh station (VWS) equipped with two 1,000 lb. capacity scale bases was used to obtain preand post-process vehicle weights. The VWS is accurate to better than 0.05 pounds.

The scales were calibrated as directed by the operating instruction manual. Scales were powered up and exercised by placing 250 pounds of Class F calibration weights on each scale platform. Then, the VWS was calibrated with 500 pounds of Class F calibration weights. VWS linearity was checked using a one-pound, Class F stainless steel calibration weight. The one-pound weight was also added to each test vehicle during pre- and post-process weighing to verify scale linearity.

4.1.2 Material Usage

Coating material usage was monitored via volumetric flow measurement devices located on each applicator. A verification of the applicators was performed by FCA personnel before testing to ensure accurate usage data. Paint usage was measured at each applicator in a graduated cylinder and compared to the expected volume.

A sample of each material was taken after each test and analyzed by Advanced Technologies of Materials, located in Waverly, Ohio. These values were used in calculating the paint solids sprayed and the transfer efficiency. ASTM Method D-2369 was used to determine paint solids. ASTM Method D-1475 was used to determine paint density.

4.1.3 Panel Weigh Station

A panel weigh station (PWS) with measurement capability to 0.001 gram was used to measure panel weights. The balance was warmed up and then calibrated with a 300 gram test weight. The balance was tested with 100, 50, 10 and 1 gram weights before commencing weighing operations. A blank panel weight was measured at the beginning of the testing program and again at the time of each subsequent panel weight measurement. The balance was placed on an isolation platform and inside an enclosure to minimize vibration and airflow at the measurement point.

5 RESULTS

The testing program consisted of Transfer Efficiency (TE) testing and Capture Efficiency (CE) testing. Determination of TE and CE were conducted in accordance with all applicable procedures contained in USEPA document "Protocol for Determining the Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations".

The test results will be used to demonstrate compliance with Auto MACT requirements and for use in monthly emissions compliance calculations for the CAAP Permit and 40CFR 63 Subpart IIII – National Emissions Standards or Hazardous Pollutants: Surface Coating of Automobiles and Light Duty Trucks, emission limits.

5.1 Results

Results are summarized in Tables 5.2-1 and 5.2-2 for TE and CE. Detailed VOC CE and paint solids TE results are presented in Table Section. All sampling field notes are provided in **Appendix F**. Sample Calculations are provided in **Appendix G**. All laboratory results are included in **Appendix C**. Process Data is provided in **Appendix B**.

Table 5.1-1: Transfer Efficiency Results Summary

Tested Coating	Transfer Efficiency (%)
Basecoat (White Solid Basecoat)	77,8%
Basecoat (Granite Metallic)	71.6%
Clearcoat	69.1%

Table 5.1-2 Capture Efficiency (CE) Results Summary

		Loading (Lb/GACS)	Capture Efficiency
		EU-TOPCOAT 2 BOX	EU-TOPCOAT 2 BOX
	Booth/Flash	3.96	an ann ann ann ann ann ann ann ann ann
Solid Basecoat (White)	Oven	1.95	
	Total	5.91	83.4%
	Booth/Flash	6.40	
Metallic Basecoat (Granite)	Oven	1.74	····
	Total	8,15	84.2%
	Booth	4.87	47.3%
Clearcoat	Oven	3.34	32.4%
	Total	8.21	79.6%

5.2 Discussion of Results

There were no significant disruptions to the testing program.

6 PROCESS CONDITIONS

Operating conditions during the sampling were monitored by FCA personnel. All equipment was operated under normal maximum operating conditions. Process Data is provided in **Appendix B**.

Contact was maintained between the operator and the sampling team. A member of the RWDI/JLB sampling team was in contact with FCA staff during the entire sampling program.

7 CONCLUSIONS

Testing was successfully completed during the week of October 15, 2018. All parameters were tested in accordance with referenced methodologies.

FCA SHAP South October 2018 Summary

Table 1a: VOC Loading and Capture Efficiency

Process	Loading (Lb VOC/GACS)	Capture Efficiency (%)
Clearcoat Booth	4.87	47.3%
Clearcoat Oven	3.34	32.4%
Total Clearcoat	8.21	79.6%
Metallic Basecoat Booth	2.33	24.1%
Metallic Basecoat Flash	4.07	
Metallic Basecoat Oven	1.74	
Total Metallic Basecoat Flash and Oven	5.81	60.1%
Total Metallic Basecoat	8.14	84.2%
Solid Basecoat Booth	0.71	10.0%
Solid Basecoat Flash	3.25	
Solid Basecoat Oven	1.95	
Total Solid Basecoat Flash and Oven	5.20	73.4%
Total Solid Basecoat	5.91	83.4%

Process	Loading (Lb VOC/GACS)	Capture Efficiency (%)
Clearcoat Booth	4.87	47.3%
Clearcoat Oven	3.34	32.4%
Total Clearcoat	8.21	79.6%
Metallic Basecoat Booth/Flash	6.40	
Metallic Basecoat Oven	1.74	NAME OF BRIDE OF BRIDE
Total Metallic Basecoat	8.14	84.2%
Solid Basecoat Booth/Flash	3.96	
Solid Basecoat Oven	1.95	A CONTRACTOR OF THE OWNER OF THE
Total Solid Basecoat	5.91	83.4%

Table 1b: VOC Loading and Capture Efficiency

Table 2: Transfer Efficiency

Process	Transfer Efficiency (%)
Metallic Basecoat	71.7%
Solid Basecoat	77.8%
Clearcoat	69.1%

JLB Industries, LLC

Table 3 -- Granite Metallic Basecoat Transfer Efficiency SummarySHAP South, October 2018

	Vehicle	Average Vehicle		Coating	Weight		
	Weight Gain	Weight Gain	Average Paint	Density	Solids	Average Solids	Transfer
Vehicle ID	(lb.)	(lb.)	Sprayed (gal)	(lb/gal)	Fraction	Sprayed	Efficiency (%)
Variable:	VWG	AVWG	APS	CD	WSF	SS	TE
Calculation:	(W2-W1)	(sumVWG-SWL)	(PS)	(Method 24)	(Method 24)	(APS*CD*WSF)	(AVWG/SS)
TE 3	0.59	0.59	0.287	8.753	0.3267	0.82	71.6%
TE 5	0.58						

*Vehicle TE 1 and TE 2 weight gains not withing 10% of average. Not included in test calculations per Protocol.

RECEIVED DEC 05 2010 AIR QUALITY DIVISION

JLB Industries, LLC

Table 4 -- White Solid Basecoat Transfer Efficiency SummarySHAP South, October 2018

	Vehicle	Average Vehicle		Coating	Weight		
	Weight Gain	Weight Gain	Average Paint	Density	Solids	Average Solids	Transfer
Vehicle ID	(lb.)	(lb.)	Sprayed (gal)	(lb/gal)	Fraction	Sprayed	Efficiency (%)
Variable:	VWG	AVWG	APS	CD	WSF	SS	TE
Calculation:	(W2-W1)	(sumVWG-SWL)	(PS)	(Method 24)	(Method 24)	(APS*CD*WSF)	(AVWG/SS)
TE 1	1.16	1.27	0.328	10.476	0.4747	1.63	77.8%
TE 2	1.27						
TE 3	1.37						

<u>JLB Industries, LLC</u>

Table 5 -- Clearcoat Transfer Efficiency SummarySHAP South, October 2018

	Vehicle	Average Vehicle	Average	Coating	Weight		
	Weight Gain	Weight Gain	Paint	Density	Solids	Average Solids	Transfer
Vehicle 1D	(Ib .)	(Њ.)	Sprayed (gal)	(lb/gal)	Fraction	Sprayed	Efficiency (%)
Variable:	VWG	AVWG	APS	CD	WSF.	SS	TE
Calculation:	(W2-W1)	(sumVWG-SWL)	(PS)	(Method 24)	(Method 24)	(APS*CD*WSF)	(AVWG/SS)
TE 1	1.27	1.34	0.394	8.613	0.5710 .	1.94	69.1%
TE 3	1.31						
TE 4	1.43						

Note: Clearcoat is applied at a 1A:1B Ratio. Coating solids and density reflect

an average of Clearcoat Part A and Part B.

*Vehicle TE 2 weight gain not withing 10% of average. Not included in test calculations per Protocol.

JLB Industries, LLC

Table 6 -- Clearcoat Booth VOC Capture EfficiencySHAP South, October 2018

Sample Variable Formula	Blank Panel Weights (g) P0	Wet Panel Weights - Control Zone Exit (g) P1	Panel Weights - after bake (g) P2	Coating	Weight of VOC remaining after zone (g) W _{rem} P1-P2	Weight of VOC remaining per	Mass Fraction Solids Ws	Mass Fraction VOC in Coating W _{VOC}	VOC fraction remaining on Panel after Zone P _{VOC} (P _m)(W _s)/(W _{VOC})	Section Capture Efficiency (%) CE 1-Pyoc
C1	187.979	190.305	189.637	1.658	0.668	0.403				VOC
C2	187.987	190.824	190.000	2.013	0.824	0.409				
C3	187.416	190.032	189.304	1.888	0.728	0.386				
C4	188.819	191.467	190.728	1.909	0.739	0.387				
Average		·····				0.396	0.5710	0.4291	0.527	47.3%

Booth Loading Calculation

	VOC Content (lb VOC/gal)	Volume Solids Fraction	Transfer Efficiency	Weight of VOC generated per volume of solids deposited (lb/GACS)	Capture Efficiency	Weight of VOC captured per volume of applied solids deposited (lb/GACS)
Variable	VOC	Vs	TE	VOC _G	CE	VOCA
Formula				VOC/(V _s * TE)		CE*VOC _G
	3.695	0.519	0.691	10.31	0.473	4.87

FCA SHAP South

October 2018

JLB Industries, LLC

Table 7 -- Clearcoat Oven Capture EfficiencySHAP South, October 2018Solvent Loading

	Blank Panel Weights	Wet Panel Weights - Before Bake	Panel Weights - After Bake	Weight of Coating Solids Deposited	Weight of VOC available for abatement	Weight of VOC available per volume of coating solids
Sample	(g)	(g)	(g)	(g)	(g)	(lb/GACS)
Variable	PO	P2	P3	Wcos	Wa	CL
Formula	A CONTRACTOR			P3-P0	P2-P3	$(W_a/W_{cos})^*D_{cos}$
C1	187.979	190.221	189.637	1.658	0.584	3.34
C2	187.987	190.740	190.000	2.013	0.740	3.48
C3	187.416	189.953	189.304	1.888	0.649	3.26
C4	188.819	191.388	190.728	1.909	0.660	3.27
Average	188.050	190.576	189.917	1.867	0.658	3.34

Material Properties

	Coating	Mass	Volume	Film Build		And the second
	Density	Fraction	Fraction	Thickness	VOC mass	Solids Density
Sample	(lb/gal)	Solids	Solids	(mil)	fraction	(lb/gal)
Variable	Wc	Ws	Vs	mil	W _{voc}	D _{cos}
Formula						(Ws*Wc)/Vs
Clearcoat	8.61	0.5710	0.5193	2.18	0.4291	9.47

Capture Efficiency

					Volume Solids		
Mass		Mass VOC			Deposited		
Fraction	Coating	per Volume	Transfer	Volume	per Volume	Panel Test Result	
VOC in	Density	Coating	Efficiency	Fraction	Coating	(lb VOC/ gal	Oven VOC Capture
Coating	(lb/gal)	(lb/gal)	(%)	Solids	Sprayed	Solids)	Efficiency (%)
W _{voc}	Dc	VOC	TE	Vs	V _{sdep}	Р	CE
		(Dc)(Wvoc)			(V _s)(TE)		(P)(V _{sdep})(100)/(VOC)
0.4291	8.61	3.695	69.1%	0.5193	0.359	3.34	32.4%

Table 8 -- Granite Metallic Basecoat Oven Capture Efficiency SHAP South, October 2018

SHAF South, October 2018								
	Unit	Variable	Formula	Panel 1	Panel 2	Panel 3	Panel 4	
Blank Panel Weight	g	PO		185.089	185.014	185.243	185.568	
Panel at Flash Entrance	g	P2		186.108	186.366	186.198	186.442	
Panel at Flash Exit/Oven Entrance	g	P3		185.747	185.832	185.841	186.152	
Baked Panel Weight	g	P5		185.644	185.696	185.754	186.071	
At Entrance to Flash								
% Nonvolatile	%	%NV	(P5-P0)/(P2-P0)	54,5%	50.4%	53.5%	57.6%	
% Volatile	%	%V	100-%NV	45.5%	49.6%	46.5%	42.4%	
% Water	%	%H ₂ O	Average KF	14.08%	14.08%	14.08%	14.08%	
% VOC	%	%VOC	% V-% H2O	31.5%	35.5%	32,4%	28.4%	Average W _{VOCI}
Weight of VOC Available for Control	g	Wvoc	(P2-P0)*%VOC	0.321	0.480	0.310	0.248	0.339
At Flash Exit/Oven Entrance	Note: Flas	h exit and ov	en entrance weight are i	he same to	allow for pe	nel to cool l	before weigl	nt.
% Nonvolatile	%	%NV	(P3-P0)/(P2-P0)	84.3%	83.4%	85.5%	86.1%	
% Volatile	%	%V	100-%NV	15.7%	16.6%	14.5%	13.9%	
% Water	%	%H ₂ O	Average KF	0.00%	0.00%	0.00%	0.00%	
% VOC	%	%VOC	%V-%H2O	15.7%	16.6%	14.5%	13.9%	Average W _{VOC2}
Weight of VOC Available for Control	g	Wvoc	(P3-P0)*%VOC	0.103	0.136	0.087	0.081	0.102
At Oven Exit								
% Nonvolatile	%	%NV	(P3-P0)/(P3-P0)	100.0%	100.0%	100.0%	100.0%	
% Volatile	%	%V	100-%NV	0.0%	0.0%	0.0%	0.0%	
% Water	%	%H ₂ O	Average KF	0.0%	0.0%	0.0%	0.0%	
% VOC	%	%VOC	%V-%H2O	0.0%	0.0%	0.0%	0.0%	Average WVOC3
Weight of VOC Available for Control	g	Wvoc	(P5-P0)*%VOC	0.000	0.000	0.000	0.000	0.000
Solids Coating Density	-							
Coating Density	lb/gal	Wc	Material Property					8.75
Mass Fraction Solids		Ws	Material Property					0.3267
Volume Fraction Solids		vs	Material Property					0.2967
Solids Density	lb/gal	D _{cos}	(W _s *W _c)/V _s					9.64
Coating Solids Deposited		- 003	(**a **C)/**a					Average W _{COS}
Weight of Coating Solids Deposited	g	W _{cos}	(P3-P0)	0.555	0,682	0.511	0.503	0.563
Loading in Flash	5	" COS	(1.5-1.0)	0.035	0.002	0,511	0.000	0.505
Weight VOC Available in Flash	g	W _{VOC Flash}	Wvoci-Wvoca					0.238
Weight of VOC available per GACS	в lb/gal	Ci.flash	(W _{VOC Flash} /W _{COS})*D _{COS}					4.07
Loading in Oven	10/gai	⊂ Lflash	(W VOC Flash/ WCOS) DCOS					4.07
Weight VOC Available in Oven	æ	W	Wyoc2-Wyoc3					0.102
•	g Na (aol	W _{VOC Oven}						
Weight of VOC available per GACS	lb/gal	CLoven	(W _{VOC Oven} /W _{COS})*D _{COS}	<u></u>	·			1.74
Weight VOC Available Total	lb/gal	C	C _{Lflash} +C _{Loven}					5.81
Capture Efficiency Calculation		117	Maria					0.0010
Mass Fraction VOC		W _{voc}	Material Property					0.2348
Mass VOC per Volume Coating	lb/gal	VOC	W _c *W _{voc}					2.055
Transfer Efficiency	%	TE						71.6%
Volume Solids Deposited per		17	(31 ¢mm)					0.010
Volume Coating Sprayed		V _{sdep}	(V _S *TE)	···· ···				0.212
VOC Capture Efficiency	%	CE	C _L *V _{sdep} *100/VOC					60.1%

Table 9 -- Granite Metallic Basecoat Karl Fisher SHAP South, October 2018

oil Data	Flash Entrance	e						
	Foil Weights	Jar & Lid Weights	Association and a second second second	Jar, Lid, Coated Foil, & Methanol Weights	KF % Water in Sample	Weight of Paint Sample on Foil	Weight of Methanol Used	Water in Paint Sample
Sample	(g)	(g)	(g)	(g)	(% wt)	(g)	(g)	(wt/wt)
Variable	F	J	K	L	KF	Р	M	H2O Fract
Formula						K-(F+J)	L-K	(KF*(M+P)-KFb*M
M1	3.967	126.139	131.088	183.444	0.370%	0.982	52.356	12.63%
M2	3.755	125.982	130.724	186.258	0.340%	0.987	55.534	11.59%
M3	4.215	126,305	131.584	203.665	0.400%	1.064	72.081	18.01%
Average				ĺ				14.08%

KFb 0.140% = % H2O in field blank

=

Foil Data	Oven Entrance	8	-					
Sample	Foll Weights (g)	Jar & Lid Weights (g)		Jar, Lid, Coated Foil, & Methanol Weights (g)	KF % Water in Sample (% wt)	Weight of Paint Sample on Foil (g)	Weight of Methanol Used (g)	
Variable	F	J	K	L	KF	Р	M	H2O Fract
Formula						K-(F+J)	L-K	(KF*(M+P)-KFb*M)/I
M4	3.911	124.869	129.568	185.522	0.150%	0.788	55.954	0.86%
M5	4.024	124,973	129.802	183.964	0.130%	0.805	54.162	-0.54%
M6	3.850	124,762	129.310	194.377	0.120%	0.698	65,067	-1.74%
Average							and a second	0.00%

*Water in paint shown as 0%

KFb

0.140%

% H2O in field blank

JLB Industries, LLC

Table 10 -- Granite Metallic Basecoat Booth Capture Efficiency SHAP South, October 2018

Unit	Variable	Formula	Panel 1	Panel 2	Panel 3	Panel 4	
g	PŌ		185.089	185.014	185.243	185.568	
g							
g							
g	P5		185.644	185.696	185.754	186.071	
	-	-					
%							Average W _{VOC1}
-							0.429
				-	nel to cool i		nt.
					85.5%		
%	%V	100 -% NV	15.7%	16.6%	14.5%		
%	%H2O	Average KF	0.00%	0,00%	0.00%	0.00%	
%	%VOC	%V-%H2O	15.7%	16.6%	14.5%	13.9%	Average W _{VOC2}
g	Wvoc	(P3-P0)*%VOC	0.103	0.136	0.087	0.081	0.102
%	%NV	(P3-P0)/(P3-P0)	100.0%	100.0%	100.0%	100.0%	
%	%V	100-%NV	0.0%	0.0%	0.0%	0.0%	
%	%H ₂ O	Average KF	0.0%	0.0%	0.0%	0.0%	
%	%VOC	%V-%H2O	0.0%	0.0%	0.0%	0.0%	Average W _{VOC3}
g	Wyor	(P5-P0)*%VOC	0.000	0.000	0.000	0.000	0.000
U	100	· · /					
lb/gal	Wc	Material Property					8.75
8							0.3267
							0.2967
lh/aat							9.64
io/gai	DCOS	(WS, WCh VS					
			0.000	0.000	0 511	0.500	Average W _{COS}
g	W _{COS}	(P3-P0)	0.555	0.682	0.511	0.503	0.563
							0.00-
							0.327
lb/gal	C _{Lflash}	(W _{VCC Flash} /W _{COS})*D _{COS}					5.60
g		WVOC2-WVOC3					0.102
lb/gal	CLoven	(W _{VOC Oven} /W _{COS})*D _{COS}					1.74
lb/gal	CL	CLflash+CLoven					7.34
	Wvoc	Material Property					0.2348
lb/gal	VOC	Wc*Wvoc					2.055
%	TE						71.6%
	V _{sden}	(Vs*TE)					0.212
%		CL*Vsden*100/VOC					75.9%
			<u> </u>		····		24.1%
			· · · · · · · · · · · · · · · · · · ·	·······.		- ···	<u>──</u> ─ <u>─</u> ── <u>─</u> ─
							2.055
							0.2967
							71.6%
	d	00 1460 1001 1000	//\///				
me of solids	ueposited (V	UCGJ,(ID/GAUS), VUC	(vərie)				9.68
							24.1%
ic of applied	solids depos	ited (Ib/GACS), CE*VC	C _G			\/F° f	2.33
				RF	-CEI	VEL	J
				6 V Bar			
	g g g % % % % % % % % % % % % % % % g ib/gal ib/gal g ib/gal ib/gal ib/gal % %			g P2 186.226 g P3 185.747 g P5 185.644 % % % V 100-%NV 51.2% % % % VOC % V-9/4H2O 37.1% g Wvoc (P2-P0)*% VOC 0.422 Note: Flash exit and oven entrance weight are the same to % % % % WV (P3-P0)/(P2-P0) 84.3% % % WVC % V-8/412O 15.7% g Wvoc % V-9/412O 15.7% g Wvoc (P3-P0)/(P3-P0) 100.0% % % WVOC % V-9/412O 0.0% % Material Property Ns Material Property % Material Property Vs	g P2 186.226 186.485 g P3 185.747 185.832 g P5 185.644 185.696 % %6WV (P5-P0)/(P2-P0) 48.8% 46.4% % %6V 100-%NV 51.2% 53.6% % %6V 00-%NV 51.2% 53.6% % %6V 00-%NV 51.2% 53.6% % %4VOC %V-%H2O 37.1% 39.6% g Wvoc (P2-P0)*%VOC 0.422 0.582 Note: Flash exit and oven entrance weight are the same to allow for pc % %NV (P3-P0)/(P2-P0) 84.3% 83.4% % %NV (P3-P0)/(P3-P0) 100.0% 0.00% 0.0% % %NV (P3-P0)/(P3-P0) 100.0% 100.0% 0.0% % %NV (P3-P0)/(P3-P0) 0.000 0.000 0.0% % %NV (P3-P0)*%VOC 0.000 0.000 0.000 0.000 b/gal Wcc Material Property Ws Material Property Ws	g P2 186.226 186.485 186.291 g P3 185.747 185.832 185.841 g P5 185.644 185.696 185.754 % %NV (P5-P0)/(P2-P0) 48.8% 46.4% 48.8% % %V 100-%NV 51.2% 53.6% 51.2% % %VOC %V-%V-%H2O 37.1% 39.6% 37.2% g Wvoc (P2-P0)%VOC 0.422 0.582 0.389 Note: Flash exit and oven entrance weight are the same to allow for panel to cool 1 % %NV (P3-P0)(P2-P0) 84.3% 85.5% % %NV (P3-P0)(P2-P0) 100.9% 0.00% 0.00% 0.00% % %NV (P3-P0)(P2-P0) 100.0% 0.00% 0.00% 0.00% % %NV (P3-P0)(P3-P0) 100.0% 0.00% 0.00% 0.00% % %NV (P3-P0)(P3-P0) 100.0% 0.00% 0.0% 0.0% % %NV (P3-P0)(P3-P0) 0.00% 0.00% 0.0% 0.0% 0.0%	g P2 186.226 186.485 186.291 186.528 g P3 185.747 185.832 185.841 186.152 g P5 185.644 185.696 185.754 186.071 % %4NV (P5-P0)(P2-P0) 48.8% 46.4% 48.8% 52.4% % %6V 100.5%(NV 51.2% 47.6% 14.08%

DEC 05 2018

AIR QUALITY DIVISION

Table 11 -- White Solid Basecoat Oven Capture Efficiency SHAP South, October 2018

SHAP South, October 2018								
	Unit	Variable	Formula	Panel 1	Panel 2	Panel 3	Panel 4	
Blank Panel Weight	g	P0		185.030	184.576	184.672	184.777	
Panel at Flash Entrance	g	P2		186.801	186.165	186.514	186.474	
Panel at Flash Exit/Oven Entrance	g	P3		186.323	185.756	186.020	186.036	
Baked Panel Weight	g	P5		186.147	185.609	185.825	185.878	
At Entrance to Flash								
% Nonvolatile	%	%NV	(P5-P0)/(P2-P0)	63.1%	65.0%	62.6%	64.9%	
% Volatile	%	%V	100-%NV	36.9%	35.0%	37.4%	35.1%	
% Water	%	%H ₂ O	Average KF	13.03%	13.03%	13.03%	13.03%	
% VOC	%	%VOC	% V-% H₂O	23.9%	22.0%	24.4%	22.1%	Average W _{VOC1}
Weight of VOC Available for Control	g	W _{VOC}	(P2-P0)*%VOC	0.423	0.349	0.449	0.375	0.399
At Flash Exit/Oven Entrance	Note: Flas	h exit and ov	en entrance weight are i	the same to	allow for pe	nnel to cool l	before weigl	nt.
% Nonvolatile	%	%NV	(P3-P0)/(P2-P0)	86.4%	87.5%	85.5%	87.5%	
% Volatile	%	%V	100-%NV	13,6%	12.5%	14.5%	12.5%	
% Water	%	%H ₂ O	Average KF	1.53%	1.53%	1.53%	1.53%	
% VOC	%	%VOC	%V-%H ₂ O	12.1%	10.9%	12.9%	11.0%	Average W _{VOC2}
Weight of VOC Available for Control	g	Wvoc	(P3-P0)*%VOC	0.156	0.129	0.174	0.139	0.150
At Oven Exit	-		. ,					
% Nonvolatile	%	%NV	(P3-P0)/(P3-P0)	100.0%	100.0%	100.0%	100.0%	
% Volatile	%	%V	100-%NV	0.0%	0.0%	0.0%	0.0%	
% Water	%	%H ₂ O	Average KF	0.0%	0.0%	0.0%	0.0%	
% VOC	%	%VOC	%V-%H2O	0.0%	0.0%	0.0%	0.0%	Average W _{VOC3}
Weight of VOC Available for Control	g	W _{VOC}	(P5-P0)*%VOC	0.000	0.000	0.000	0.000	0.000
Solids Coating Density	Ų	100	. ,					
Coating Density	lb/gal	Wc	Material Property					10.48
Mass Fraction Solids		ws	Material Property					0.4747
Volume Fraction Solids		Vs	Material Property					0.3467
Solids Density	lb/gal	D _{COS}	$(W_s * W_c) / V_s$					14.34
Coating Solids Deposited	10, But	DCOS	(115 110//15					Average W _{COS}
Weight of Coating Solids Deposited	~	W _{cos}	(P3-P0)	1,117	1.033	1,153	1.101	1.101
Loading in Flash	g	W COS	(ГЗ-ГО)	1,117	1,055	1.133	1.101	1.101
Weight VOC Available in Flash	~	M /	W W					0.249
6	g 11./mal	W _{VOC Flash}	W _{VOC1} -W _{VOC2}					
Weight of VOC available per GACS	lb/gal	C_{Lflash}	$(W_{VOC Flash}/W_{COS})^*D_{COS}$					3.25
Loading in Oven		377	11 <i>1</i> 117					0.150
Weight VOC Available in Oven	g	W _{VOC Oven}	WVOC2-WVOC3					0.150
Weight of VOC available per GACS	lb/gal	CLoven	(W _{VOC Oven} /W _{COS})*D _{COS}					1.95
Weight VOC Available Total	lb/gal	C _L	CLflash+CLoven				······	5,20
Capture Efficiency Calculation								
Mass Fraction VOC		W _{voc}	Material Property					0.1824
Mass VOC per Volume Coating	lb/gal	VOC	W _c *W _{VOC}					1.911
Transfer Efficiency	%	TE						77.8%
Volume Solids Deposited per								
Volume Coating Sprayed		V _{sdep}	(V _s *TE)					0.270
VOC Capture Efficiency	%	CE	CL*Vsdep*100/VOC					73.4%

Table 12 -- White Solid Basecoat Karl Fisher SHAP South, October 2018

Foil Data	Flash Entrance	2						
Sample	Foil Weights (g)	Jar & Lid Weights (g)		Jar, Lid, Coated Foil, & Methanol Weights (g)	KF % Water in Sample (% wt)	Weight of Paint Sample on Foil (g)	Weight of Methanol Used (g)	Water in Paint Sample (wt/wt)
Variable	F	J	K	L	KF	P	M	H2O Fract
Formula						K-(F+J)	L-K	(KF*(M+P)-KFb*M)/I
B1	3.678	124.749	129.895	189.784	0.470%	1.468	59.889	13.93%
B2	3.406	124.586	129.254	198,713	0.340%	1.262	69.459	11.35%
B3	3.408	124.803	129.693	195.737	0.440%	1.482	66.044	13.81%
Average								13.03%

KFb

0.140%

0.140%

=

% H2O in field blank

Foil Data	Oven Entrance	2	and the second					
Sample	Foil Weights (g)	Jar & Lid Weights (g)	Jar, Lid & Coated Foil Weights (g)	Jar, Lid, Coated Foil, & Methanol Weights (g)	KF % Water in Sample (% wt)	Weight of Paint Sample on Foil (g)	Weight of Methanol Used (g)	Water in Paint Sample (wt/wt)
Variable	F	1	K	L	KF	P	M	H2O Fract
Formula						K-(F+J)	L-K	(KF*(M+P)-KFb*M)/P
B4	3.378	124.652	129.281	195,766	0.170%	1.251	66,485	1.76%
B5	3.753	124.801	129.872	185,124	0.180%	1.318	55.252	1.86%
B6	3.614	124.918	129.985	188.605	0.160%	1,453	58.620	0.97%
Average								1.53%

KFb

=____% H2O in field blank

FCA SHAP South

Table 13 -- White Solid Basecoat Booth Capture Efficiency SHAP South, October 2018

SHAP South, October 2018								
	Unit	Variable	Formula	Panel 1	Panel 2	Panel 3	Panel 4	
Blank Panel Weight	g	P0		185.030	184.576	184.672	184.777	
Panel at Booth Ctl Exit	g	P2		186.900	186.261	186.619	186.588	
Panel at Flash Exit/Oven Entrance	g	P3		186.323	185.756	186.020	186.036	
Baked Panel Weight	g	P5		186.147	185.609	185.825	185.878	
At Entrance to Flash		A /3		-0 -0/	((0.00)	
% Nonvolatile	%	%NV	(P5-P0)/(P2-P0)	59.7%	61.3%	59.2%	60.8%	
% Volatile	%	%V	100-%NV	40.3%	38.7%	40.8%	39.2%	
% Water	%	%H₂O	Average KF	13.03%	13.03%	13.03%	13.03%	
% VOC	%	%VOC	%V-%H ₂ O	27.2%	25.7%	27.8%	26.2%	Average W _{VOC1}
Weight of VOC Available for Control	g	W _{voc}	(P2-P0)*%VOC	0.509	0.432	0.540	0.474	0.489
At Flash Exit/Oven Entrance			en entrance weight are t		• =		before weigh	nt.
% Nonvolatile	%	%NV	(P3-P0)/(P2-P0)	86.4%	87.5%	85.5%	87.5%	
% Volatile	%	%V	100 -% NV	13.6%	12.5%	14.5%	12,5%	
% Water	%	$\%H_2O$	Average KF	1.53%	1.53%	1.53%	1.53%	
% VOC	%	%VOC	%V-%H ₂ O	12.1%	10.9%	12.9%	11.0%	Average W _{VOC2}
Weight of VOC Available for Control	g	Wvoc	(P3-P0)*%VOC	0.156	0.129	0.174	0.139	0.150
At Oven Exit								
% Nonvolatile	%	%NV	(P3-P0)/(P3-P0)	100.0%	100.0%	100.0%	100.0%	
% Volatile	%	%V	100-%NV	0.0%	0.0%	0.0%	0.0%	
% Water	%	%H ₂ O	Average KF	0.0%	0.0%	0.0%	0.0%	
% VOC	%	%VOC	%V-%H2O	0.0%	0.0%	0.0%	0.0%	Average W _{VOC3}
Weight of VOC Available for Control	g	Wvoc	(P5-P0)*%VOC	0.000	0.000	0.000	0.000	0.000
Solids Coating Density	0	· · · · · ·						
Coating Density	lb/gal	Wc	Material Property					10.48
Mass Fraction Solids	10/Bui	Ws	Material Property					0.4747
Volume Fraction Solids		V _s	Material Property					0.3467
	16/001							14.34
Solids Density	lb/gal	D _{COS}	$(W_s * W_c) / V_s$					
Coating Solids Deposited								Average W _{COS}
Weight of Coating Solids Deposited	g	W _{cos}	(P3-P0)	1.117	1.033	1.153	1.101	1.101
Loading in Flash								
Weight VOC Available in Flash	g	W _{VOC Flash}	WVOCI-WVOC2					0.339
Weight of VOC available per GACS	lb/gal	C _{LBash}	(Wvoc Flash/Wcos)*Dcos	,				4.42
Loading in Oven								
Weight VOC Available in Oven	g	W _{VOC Oven}	WVOC2-WVOC3					0.150
Weight of VOC available per GACS	lb/gal	CLoven	(W _{VOC Oven} /W _{COS})*D _{COS}					1.95
Weight VOC Available Total	lb/gal	CL	Cifiash+CLoven					6.37
Capture Efficiency Calculation								
Mass Fraction VOC		Wvoc	Material Property					0.1824
Mass VOC per Volume Coating	lb/gal	VOC	Wc*Wvoc					1.911
Transfer Efficiency	%	TE						77.8%
Volume Solids Deposited per								
Volume Coating Sprayed		V _{sdep}	(Vs*TE)					0.270
VOC Not Captured in Booth	%	VOC _{NOT}	CL*Vsdep*100/VOC					90.0%
Booth VOC Capture Efficiency	%	CE	1-VOC _{NOT}			1.000 - 1.000		10.0%
	/4		NOT					
Loading in Booth								
Loading in Booth VOC Content (Ib VOC/gal)								1.911
VOC Content (lb VOC/gal)								1.911 0.3467
VOC Content (lb VOC/gal) Volume Solids Fraction								0.3467
VOC Content (lb VOC/gal) Volume Solids Fraction Transfer Efficiency	ne of solids	denosited (V	ወር-አብክዓልሮያን የሰር	/(VS*TF)				0.3467 77.8%
VOC Content (lb VOC/gal) Volume Solids Fraction	ne of solids	deposited (V	OC _G),(lb/GACS), VOC,	/(VS*TE)				0.3467