# FINAL REPORT



JAN 05 2024

AIR QUALITY DIVISION

# FCA US LLC

DETROIT, MICHIGAN

#### STERLING HEIGHTS ASSEMBLY PLANT (SHAP): SOUTH PAINT SHOP (BOX) SOURCE TESTING PROGRAM RTO AND OBSERVATION ZONES

RWDI #2306854 January 5, 2024

#### SUBMITTED TO

#### Jeremy Howe

State of Michigan Department of Environment, Great Lakes and Energy (EGLE) Air Quality Division Technical Programs Unit (TPU) Constitution Hall 2<sup>nd</sup> Floor, South 525 West Allegan Street Lansing, Michigan 48909-7760

#### Joyce Zhu

State of Michigan Department of Environment, Great Lakes and Energy (EGLE) Southeast Michigan District

27700 Donald Court Warren, Michigan 48092-2793

FCA US LLC Sterling Heights Assembly Plant 38111 Van Dyke, Sterling Heights, Michigan 48312

#### SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Technical Director | Principal Brad.Bergeron@rwdi.com | ext. 2428

Steve Smith, QSTI Project Manager | Associate Steve.Smith@rwdi.com | ext. 3706

Benjamin Durham Senior Field Technician Ben.Durham@rwdi.com

#### RWDI USA LLC

Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316



©2023 RWDI USA LLC ("RWDI") ALL RIGHTS RESERVED.

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. RWDI name and logo are registered trademarks in Canada and the United States of America.

RWDI#2306854 January 5, 2024



# EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) was retained by FCA US LLC (FCA) to complete the emission sampling program at their Sterling Heights Assembly Plant (SHAP) located at 38111 Van Dyke, Sterling Heights, Michigan. SHAP operates an automobile assembly plant that produces Ram trucks and operates a North Paint Shop (NPS) and a South Paint Shop (SPS). SHAP operates under the State of Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit (ROP) MI-ROP-B7248-2020a, this Source Testing Report covers the required testing under the South Paint Shop Flexible Groups FG-TOPCOAT-SOUTH and FG-RTO-SOUTH&POWDER-OVEN-PM. The following outlines the sources and source groups as outlined in the ROP:

- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-BASE COAT OBSV 1
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-BASE COAT OBSV 2
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-CLEAR COAT OBSV 1
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-CLEAR COAT OBSV 2
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for the SV-RTO-SOUTH
- Destruction Efficiency for the SV-RTO-SOUTH
  - 3 RTO Inlets Topcoat Booth, Topcoat Ovens, and E-Coat Oven
  - o 1 RTO Outlet
- Verification of inward flow into enclosure for EU-E-COAT-SOUTH

The test program included measurements of Total Hydrocarbons (THC), Methane and Non-methane organic compounds (NMOC) for Destruction Efficiency (DE) verification, as well as Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) for several sources, and inward flow into enclosure for EU-E-COAT-SOUTH. RWDI also completed flue gas velocity measurements and moisture content measurements for each Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) tests completed. RWDI utilized the methods outlined by the United States Environmental Protection Agency (U.S. EPA) Methods 1, 2, 3, 4, 5, 25A, 201A and 202.

#### RTO

For RTO DE tests, three (3) 60-minute tests were completed on the RTO (SV-RTO).

For RTO Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>), three (3) 120-minute test runs were completed following USEPA Method 5/202 for the following source:

SV-RTO-SOUTH

RWDI#2306854 January 5, 2024

#### **Other Particulate Sources**

Three (3) 120-minute test runs were initially completed in November of 2023 following USEPA Method 5 for the remaining Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) sources in this test program:

ΚŅ

- SV-BASE COAT OBSV 1
- SV-BASE COAT OBSV 2
- SV-CLEAR COAT OBSV 1
- SV-CLEAR COAT OBSV 2

USEPA Method 5/202 was selected for Particulate (PM/PM<sub>10</sub>/PM<sub>2.5</sub>) testing in November 2023 testing. Method 5 conservatively assumed that the total particulate results (via USEPA Method 5) would be equivalent to PM<sub>10</sub> and PM<sub>2.5</sub> fractions of particulate. After review of the November 2023 PM<sub>10</sub> and PM<sub>2.5</sub> test results, re-testing of SV-BASE COAT OBSV 1 and SV-CLEAR COAT OBSV 2 using USEPA Method 201A was completed to accurately characterize PM10 and PM2.5 fractions. The re-testing was completed in December, 2023. Notification of retesting was provided to the Technical Program Unit (TPU) of EGLE, on December 14<sup>th</sup>, 2023 and an updated Source Testing Plan for the re-test was provided to TPU and Michigan EGLE District Office on December 15<sup>th</sup>, 2023. For the re-test, three (3) 240-minute PM<sub>10</sub> and PM<sub>2.5</sub> test runs were completed following USEPA Method 201A on December 21<sup>st</sup> and 22<sup>nd</sup> of 2023 for the following sources:

- SV-BASE COAT OBSV 1
- SV-CLEAR COAT OBSV 2

#### E-Coat Oven

For verification of inward flow, a single smoke test at each of the entrance and exit points for EU-ECOAT-SOUTH was conducted.

#### **Production Data**

SHAP recorded the production rate of vehicles processed for each particulate test from each applicable process. In addition, for the destruction efficiency testing, SHAP also recorded the RTO combustion chamber temperature



RWDI#2306854 January 5, 2024

Executive Table i: Average Emission Data – PM, PM<sub>2.5</sub>, and PM<sub>10</sub>

| Source                  | Parameter                                       | Emission Rate |        |        |         |
|-------------------------|-------------------------------------------------|---------------|--------|--------|---------|
|                         |                                                 | Run 1         | Run 2  | Run 3  | Average |
|                         | PM<br>(lb/1000 lb wet)                          | 0.0029        | 0.0016 | 0.0023 | 0.0022  |
| SV-RTO-SOUTH            | PM <sub>10</sub> & PM <sub>2.5</sub><br>(lb/hr) | 1.61          | 0.90   | 1.26   | 1.26    |
| OV DACE COAT            | PM (lb/1000 lb wet)                             | 0.0030        | 0.0011 | 0.0002 | 0.0014  |
| SV-BASE COAT<br>OBSV 1  | PM <sub>10</sub> (lb/hr)                        | 0.039         | 0,038  | 0.040  | 0.039   |
| OBSVI                   | PM <sub>2.5</sub> (lb/hr)                       | 0.027         | 0.026  | 0.027  | 0.027   |
| SV-BASE COAT<br>OBSV 2  | PM<br>(lb/1000 lb wet)                          | 0.0011        | 0.0014 | 0.0003 | 0.0010  |
|                         | PM10 & PM2.5<br>(lb/hr)                         | 0.11          | 0.15   | 0.03   | 0.10    |
| SV-CLEAR                | PM (lb/1000 lb wet)                             | 0.0008        | 0.0010 | 0.0007 | 0.0008  |
| COAT OBSV 1             | PM <sub>10</sub> & PM <sub>2.5</sub><br>(lb/hr) | 0.14          | 0.17   | 0.12   | 0.15    |
| CU CU FAR               | PM (lb/1000 lb wet)                             | 0.0011        | 0.0014 | 0.008  | 0.0011  |
| SV-CLEAR<br>COAT OBSV 2 | PM <sub>10</sub> (lb/hr)                        | 0.19          | 0.089  | 0.084  | 0.12    |
| COAT OBSV 2             | PM <sub>2.5</sub> (lb/hr)                       | 0.17          | 0.057  | 0.057  | 0.093   |

Executive Table ii: Average Emission Data - Destruction Efficiency

| Parameter                     | Emission Rate<br>(ppmvd/ lb/hr & % Destruction) |                          |                          |                          |
|-------------------------------|-------------------------------------------------|--------------------------|--------------------------|--------------------------|
|                               | Run 1                                           | Run 2                    | Run 3                    | Average                  |
| NMOC Inlet (Booth)            | 33.0 ppmvd<br>19.5 lb/hr                        | 42.9 ppmvd<br>25.6 lb/hr | 36.2 ppmvd<br>22.9 lb/hr | 37.4 ppmvd<br>22.7 lb/hr |
| NMOC Inlet (Ovens)            | 51.8 ppmvd<br>8.87 lb/hr                        | 79.7 ppmvd<br>14.7 lb/hr | 73.9 ppmvd<br>14.0 lb/hr | 68.4 ppmvd<br>12.5 lb/hr |
| NMOC Inlet (E-Coat Dip Tank)  | 3.95 ppmvd<br>0.14 lb/hr                        | 4.11 ppmvd<br>0.14 lb/hr | 2.06 ppmvd<br>0.07 lb/hr | 3.38 ppmvd<br>0.12 lb/hr |
| NMOC Inlets Combined          | 28.6 lb/hr                                      | 40.4 lb/hr               | 37.0 lb/hr               | 35.3 lb/hr               |
| NMOC RTO Outlet               | 0.68 ppmv<br>0.57 lb/hr                         | 0.58 ppmv<br>0.50 lb/hr  | 0.51 ppmv<br>0.44 lb/hr  | 0.59 ppmv<br>0.50 lb/hr  |
| Destruction Efficiency (NMOC) | 98.0 %                                          | 98.8 %                   | 98.8 %                   | 98.5 %                   |
| RTO Temperature (°F)          | 1498                                            | 1501                     | 1500                     | 1500                     |

AIR QUALITY DIVISION

RN

RWDI#2306854 January 5, 2024

# TABLE OF CONTENTS

| 1                                                                                     | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1.1                                                                                   | Location and Dates of Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                       |
| 1.2                                                                                   | Purpose of Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                       |
| 1.3                                                                                   | Description of Source                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                       |
| 1.4                                                                                   | Personnel Involved in Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                       |
| 2                                                                                     | SUMMARY OF RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                       |
| 2.1                                                                                   | Operating Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                       |
| 2.2                                                                                   | Applicable Permit Number                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                       |
| 3                                                                                     | SOURCE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                       |
| 3.1                                                                                   | Description of Process and Emission Control Equipment                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                       |
| 3.2                                                                                   | Process Flow Sheet or Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                       |
| 3.3                                                                                   | Type and Quantity of Raw and Finished Materials                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                       |
| 3.4                                                                                   | Normal Rated Capacity of Process                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| 3.5                                                                                   | Process Instrumentation Monitored During the Test                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |
| 4                                                                                     | SAMPLING AND ANALYTICAL PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |
| 4.1                                                                                   | Stack Velocity, Temperature, and Volumetric Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |
| 4.2                                                                                   | Total Hydrocarbon, Methane and Non-Methane Organic Compour                                                                                                                                                                                                                                                                                                                                                                                                                          | nds (NMOC)8                                                                                             |
| 4.2<br>4.3                                                                            | Total Hydrocarbon, Methane and Non-Methane Organic Compour<br>Gas Dilution System                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |
| 4.3                                                                                   | Gas Dilution System                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
| 4.3<br>4.4                                                                            | Gas Dilution System<br>Particulate Matter (PM, PM10 and PM2.5)                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |
| 4.3<br>4.4<br>4.5                                                                     | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |
| 4.3<br>4.4<br>4.5<br>4.6                                                              | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description                                                                                                                                                                                                                                  |                                                                                                         |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7                                                       | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures                                                                                                                                                                                                                                                               |                                                                                                         |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8                                                | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description                                                                                                                                                                                                                                  | 9<br>                                                                                                   |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5                                           | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br>TEST RESULTS AND DISCUSSION                                                                                                                                                                                                   | 9<br>                                                                                                   |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1                                    | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b><br>Detailed Results                                                                                                                                                                        | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11                                                 |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1<br>5.2                             | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>25</sub> )<br>PM <sub>10</sub> and PM <sub>25</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b><br>Detailed Results<br>Variations in Testing Procedures                                                                                                                                      | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>12<br>12                         |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1<br>5.2<br>5.3                      | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>25</sub> )<br>PM <sub>10</sub> and PM <sub>25</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b><br>Detailed Results<br>Variations in Testing Procedures<br>Process Upset Conditions During Testing                                                                                           | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>12<br>12<br>12                         |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1<br>5.2<br>5.3<br>5.4               | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>25</sub> )<br>PM <sub>10</sub> and PM <sub>25</sub><br>Verification of Inward Flow.<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b> .<br>Detailed Results.<br>Variations in Testing Procedures<br>Process Upset Conditions During Testing<br>Maintenance Performed in Last Three Months                                         | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>12<br>12<br>12<br>12                   |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5        | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>25</sub> )<br>PM <sub>10</sub> and PM <sub>25</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b><br>Detailed Results<br>Variations in Testing Procedures<br>Process Upset Conditions During Testing<br>Maintenance Performed in Last Three Months<br>Re-Test<br>Audit Samples<br>Process Data | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |
| 4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6 | Gas Dilution System<br>Particulate Matter (PM, PM <sub>10</sub> and PM <sub>2.5</sub> )<br>PM <sub>10</sub> and PM <sub>2.5</sub><br>Verification of Inward Flow<br>Description of Recovery and Analytical Procedures<br>Sampling Port Description<br><b>TEST RESULTS AND DISCUSSION</b><br>Detailed Results<br>Variations in Testing Procedures<br>Process Upset Conditions During Testing<br>Maintenance Performed in Last Three Months<br>Re-Test<br>Audit Samples               | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |

rwdi.com



| 5.9  | Flows and Moisture   | 13 |
|------|----------------------|----|
| 5.10 | Field Notes          |    |
| 5.11 | Calibration Data     |    |
| 5.12 | Example Calculations |    |
| 5.13 | Laboratory Data      |    |
| 6    | CONCLUSION           |    |

# LIST OF TABLES

January 5, 2024

(Found Within the Report Text)

| Table 1.3.1: | Summary of Sampling Program - SV-RTO-SOUTH                           |                          |
|--------------|----------------------------------------------------------------------|--------------------------|
| Table 1.3.2: | Summary of Sampling Program - Basecoat and Clea                      |                          |
| Table 1.4.1: | List of Testing Personnel                                            | 5                        |
| Table 5.1.1: | Average Emission Data – PM, PM <sub>10</sub> , and PM <sub>2.5</sub> | Executive Summary and 11 |
| Table 5.1.2: | Average Emission Data – Destruction Efficiency                       | Executive Summary and 11 |
| Table 5.1.3: | Verification of Inward Flow – EU-ECOAT-SOUTH                         | Executive Summary and 12 |

# LIST OF TABLES

(Found After the Report Text)

| Table 1:  | Summary of Sampling Parameters and Methodology                                    |
|-----------|-----------------------------------------------------------------------------------|
| Table 2:  | Sampling Summary and Sample Log                                                   |
| Table 3A: | Sampling Summary – Flow Characteristics – SV-RTO-SOUTH                            |
| Table 3B: | Sampling Summary – Flow Characteristics – SV-RTO Booth Inlet                      |
| Table 3C: | Sampling Summary – Flow Characteristics – SV-RTO Ovens Inlet                      |
| Table 3D: | Sampling Summary - Flow Characteristics - SV-RTO E-Coat Dip Tank Inlet            |
| Table 3E: | Sampling Summary – Flow Characteristics – SV-Base COAT OBSV 1                     |
| Table 3F: | Sampling Summary – Flow Characteristics – SV-BASE COAT OBSV 2                     |
| Table 3G: | Sampling Summary – Flow Characteristics – SV-CLEAR COAT OBSV 1                    |
| Table 3H: | Sampling Summary – Flow Characteristics – SV-CLEAR COAT OBSV 2                    |
| Table 4:  | Destruction Efficiency Emissions Table – THC / Methane / NMOC                     |
| Table 5:  | Total Particulate (PM), PM <sub>10</sub> and PM <sub>2.5</sub> – Averaged Results |

RWDI#2306854 January 5, 2024

# LIST OF FIGURES

| Figure 1:  | USEPA Method 2 Sampling Train                             |
|------------|-----------------------------------------------------------|
| Figure 2:  | USEPA Method 4 Sampling Train                             |
|            |                                                           |
| Figure 3:  | USEPA Method 25A Sampling Train                           |
| Figure 4:  | USEPA Method 3A Sampling Train (Bag Samples)              |
| Figure 5:  | USEPA Method 5 Sampling Train                             |
| Figure 6:  | USEPA Method 5/202 Sampling Train                         |
| Figure 7:  | USEPA Method 201A Sampling Train                          |
| Figure 8:  | Topcoat Oven (RTO Inlet) Traverse Points                  |
| Figure 9:  | Topcoat Booth (RTO Inlet) Traverse Points                 |
| Figure 10: | E-Coat Dip Tank (RTO Inlet) Traverse Points               |
| Figure 11: | SV-RTO-SOUTH Outlet Traverse Points                       |
| Figure 12: | SV-BASE COAT OBSV 1 Traverse Points – USEPA Method 5      |
| Figure 13: | SV-BASE COAT OBSV 1 Traverse Points – USEPA Method 201A   |
| Figure 14: | SV-BASE COAT OBSV 2 Traverse Points                       |
| Figure 15: | SV-CLEAR COAT OBSV 1 Traverse Points                      |
| Figure 16: | SV-CLEAR COAT OBSV 1 Traverse Points – US EPA Method 5    |
| Figure 17: | SV-CLEAR COAT OBSV 1 Traverse Points – US EPA Method 201A |
|            |                                                           |

# LIST OF GRAPHS

| Graph 1: | Destruction Efficiency Test 1 – SV-RTO South |
|----------|----------------------------------------------|
| Graph 2: | Destruction Efficiency Test 2 – SV-RTO South |
| Graph 3: | Destruction Efficiency Test 3 – SV-RTO South |



RWDI#2306854 January 5, 2024

# SN

# INTRODUCTION

RWDI USA LLC (RWDI) was retained by FCA US LLC (FCA) to complete the emission sampling program at their Sterling Heights Assembly Plant (SHAP) located at 38111 Van Dyke, Sterling Heights, Michigan. SHAP operates an automobile assembly plant that produces Ram trucks and operates a North Paint Shop (NPS) and a South Paint Shop (SPS). SHAP operates under the State of Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit (ROP) MI-ROP-B7248-2020a, this Source Testing Report covers the required testing under the South Paint Shop Flex ble Groups FG-TOPCOAT-SOUTH and FG-RTO-SOUTH&POWDER-OVEN-PM. The following outlines the sources and source groups as outlined in the ROP:

- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-BASE COAT OBSV 1
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-BASE COAT OBSV 2
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-CLEAR COAT OBSV 1
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for SV-CLEAR COAT OBSV 2
- PM, PM<sub>10</sub> and PM<sub>2.5</sub> testing for the SV-RTO-SOUTH
- Destruction Efficiency for the SV-RTO-SOUTH
  - 3 RTO Inlets Topcoat Booth, Topcoat Ovens, and E-Coat Oven
  - 1 RTO Outlet
- Verification of inward flow into enclosure for EU-E-COAT-SOUTH

The test program included measurements of Total Hydrocarbons (THC), Methane and Non-methane organic compounds (NMOC) for Destruction Efficiency (DE) verification, as well as Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) for several sources, and inward flow into enclosure for EU-E-COAT-SOUTH. RWDI also completed flue gas velocity measurements and moisture content measurements for each Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) tests completed. RWDI utilized the methods outlined by the United States Environmental Protection Agency (U.S. EPA) Methods 1, 2, 3, 4, 5, 25A, 201A and 202.

#### RTO

For RTO DE tests, three (3) 60-minute tests were completed on the RTO (SV-RTO).

For RTO Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>), three (3) 120-minute test runs were completed following USEPA Method 5/202 for the following source:

SV-RTO-SOUTH

#### STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024



# Other Particulate Sources

Three (3) 120-minute test runs were initially completed in November of 2023 following USEPA Method 5 for the remaining Particulate (PM, PM<sub>10</sub> and PM<sub>2.5</sub>) sources in this test program:

- SV-BASE COAT OBSV 1
- SV-BASE COAT OBSV 2
- SV-CLEAR COAT OBSV 1
- SV-CLEAR COAT OBSV 2

USEPA Method 5/202 was selected for Particulate (PM/PM<sub>10</sub>/PM<sub>2.5</sub>) testing in November 2023 testing. Method 5 conservatively assumed that the total particulate results (via USEPA Method 5) would be equivalent to PM<sub>10</sub> and PM<sub>2.5</sub> fractions of particulate. After review of the November 2023 PM<sub>10</sub> and PM<sub>2.5</sub> test results, re-testing of SV-BASE COAT OBSV 1 and SV-CLEAR COAT OBSV 2 using USEPA Method 201A was completed to accurately characterize PM10 and PM2.5 fractions. The re-testing was completed in December. Notification of re-testing was provided to the Technical Program Unit (TPU) of EGLE, on December 14<sup>th</sup>, 2023 and an updated Source Testing Plan for the re-test was provided to TPU and Michigan EGLE District Office on December 15<sup>th</sup>, 2023. For the retest, three (3) 240-minute PM<sub>10</sub> and PM<sub>2.5</sub> test runs were completed following USEPA Method 201A on December 21<sup>st</sup> and 22<sup>nd</sup> of 2023 for the following sources:

- SV-BASE COAT OBSV 1
- SV-CLEAR COAT OBSV 2

#### E-Coat Oven

For verification of inward flow, a single smoke test at each of the entrance and exit points for EU-ECOAT-SOUTH was conducted.

#### **Production Data**

This Source Testing Report provides the results of the tests that measured the exhaust VOC concentration and destruction efficiency (DE) of SV-RTO-SOUTH as well as the particulate matter emission rates of SV-BASE COAT 1, SV-BASE COAT 2, SV-CLEAR COAT 1, and SV-CLEAR COAT 2.

#### 1.1 Location and Dates of Testing

The test program was completed on November 7<sup>th</sup> and 8th of 2023 and December 21<sup>st</sup> and 22<sup>nd</sup>, 2023 at the FCA SHAP facility.

## **1.2 Purpose of Testing**

The source tests for FG-TOPCOAT-SOUTH and FG-RTO-SOUTH&POWDER-OVEN-PM, are required under MI-ROP-B7248-2020a. STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024



# **1.3 Description of Source**

SHAP operates an automobile assembly plant that produces Light Duty Trucks for FCA US LLC. Under Flexible Groups: FG-TOPCOAT SOUTH, FG-RTO-SOUTH&POWDER-OVEN-PM, these systems exhaust from the South Paint Shop (SPS). Truck boxes are produced in the SPS.

Table 1.3.1: Summary of Sampling Program - SV-RTO-SOUTH

|                                                                                   | SV-RTO-SOUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission Unit Description<br>[Including Process Equipment &<br>Control Device(s)] | FG-TOPCOAT-SOUTH (BOX): A color preparation sanding booth (topcoat sand),<br>followed by 2 parallel topcoat lines, each consisting of: a water-borne basecoat<br>application followed by a solvent born clearcoat. All paint applications are performed<br>by robotic and bell applicators (except in emergency back-up situations). A heated<br>flash zone separates the basecoat and clearcoat operations. Once the clearcoat<br>application is complete, the light duty truck box proceeds the main bake oven. VOCs<br>emissions from the water-borne basecoat booths, the heated flash zone, the<br>clearcoat spray booths and topcoat cure oven are controlled by the Regenerative<br>Thermal Oxidizer (RTO-SOUTH).<br>FG-RTO-SOUTH&POWDER-OVEN-PM (Box): Powdercoat oven emissions from EU-<br>POWDERCOAT-SOUTH are also routed to RTO-SOUTH.<br>EU-E-COAT-SOUTH (BOX.): SV-RTO-SOUTH RTO controls the E-Coat dip tank emissions<br>and E-Coat Cure Oven emissions. |
| Parameter Tested                                                                  | VOC Destruction Efficiency and particulate matter, in addition to Stack Gas Velocity,<br>Stack gas composition, and Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Testing Monitoring Methods                                                        | <ul> <li>USEPA Methods: 1, 2, 3, 4, 5, 25A, 201A and 202</li> <li>The outlet sampling location for the RTO met the USEPA Method 1 criteria.<br/>Therefore, the outlet sampling location was used for stack gas velocity, stack gas composition and moisture.</li> <li>For the VOC compliance testing, three (3) 1-hour tests were run concurrently at the three (3) inlets and outlet for the destruction efficiency testing. Stack gas velocity, gas composition and moisture were taken during each of the tests at the three inlets and the single outlet location.</li> <li>The sampling train for VOC and NMOC consisted of an analyzer as described in USEPA Method 25A continuously sampling via heated sample line from both the three inlets and outlet of the RTO simultaneously.</li> <li>Particulate testing consisted of three (3) 120-minute tests at the outlet only.</li> </ul>                                                                           |
| Modifications                                                                     | <ul> <li>Nitrogen purges were not completed post sample to remove sulphates for any of<br/>the sampling. Sulfur dioxide exposure was not expected to be an issue at this<br/>source location.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



RWDI#2306854 January 5, 2024

Table 1.3.2: Summary of Sampling Program – Basecoat and Clearcoat Observation Zones

|                                                                                   | SV-BASE COAT OBSV and SV-CLEAR COAT OBSV                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission Unit Description<br>[Including Process Equipment &<br>Control Device(s)] | FG-TOPCOAT-SOUTH (BOX): For each of the Color Booth lines, the booth systems are equipped with observation zones in the basecoat and clearcoat sections. There is no painting that occurs in these sections of the booth. The observation zones are exhausted separately from the remainder of the ventilation system through uncontrolled exhaust stacks.                       |
| Parameter Tested                                                                  | Particulate matter, in addition to Stack Gas Velocity, Stack gas composition, and Moisture                                                                                                                                                                                                                                                                                       |
| Testing Monitoring Methods                                                        | <ul> <li>USEPA Methods: 1, 2, 3, 4, and 5. Additionally, Method 201A was completed on SV BASE COAT OBSV 1 and SV-CLEAR COAT OBSV 2 in a separate sampling event in December.</li> <li>Total Particulate Testing consisted of three (3) 120-minute Method 5 tests.</li> <li>PM<sub>10</sub> and PM<sub>2.5</sub> Testing consisted of three (3) 240-minute 201A tests.</li> </ul> |
| Modifications                                                                     | <ul> <li>The stack gas and filtration temperature did not exceed 85°F, therefore, the<br/>impingers were only be used for moisture determination.</li> </ul>                                                                                                                                                                                                                     |

Table 1.3.3: Summary of Sampling Program – EU-E-COAT-SOUTH

|                                                                                   | EU-E-COAT SOUTH (BOX)                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission Unit Description<br>[Including Process Equipment &<br>Control Device(s)] | EU-E-COAT-SOUTH (BOX): An electrodeposition coating process (E-coat) consisting of a series of dip tanks, rinses, followed by a curing oven and a sanding booth. Small amounts of flash (spot) prime may be used to repair defects in the E-coat in the sand booth. Emissions from the E-coat tanks are directed to the oven. VOC emissions from the oven are controlled by a Regenerative Thermal Oxidizer (RTO-SOUTH or south RTO). |
| Parameter Tested                                                                  | Verification of positive inward flow of air into the enclosure(s),                                                                                                                                                                                                                                                                                                                                                                    |
| Testing Monitoring Methods                                                        | <ul> <li>Visualization test (smoke test) applied to the entrance and exit points of the E-Coat<br/>Dip Tank and Oven.</li> </ul>                                                                                                                                                                                                                                                                                                      |
| Modifications                                                                     | • None                                                                                                                                                                                                                                                                                                                                                                                                                                |

STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024



# 1.4 Personnel Involved in Testing

Details with respect to the key individuals involved with the stack sampling survey are provided below:

| able 1.4.1: Testing Personnel                                                           | FCALICILIC                                                                                         |                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|
| Thomas Caltrider<br>Corporate Environmental Programs<br>Thomas.Caltrider@stellantis.com | FCA US LLC<br>CIMS 450-09-00<br>38111 Van Dyke Ave.<br>Sterling Heights, 48312                     | (248) 882-7169 |
| Bradley Wargnier<br>Environmental Specialist<br>Bradley.Wargnier@stellantis.com         | FCA US LLC<br>Sterling Heights Assembly Plant<br>38111 Van Dyke Ave.<br>Sterling Heights, MI 48312 | (248) 791-6349 |
| Andrew Riley<br>Environmental Quality Analyst<br>Rileya8@michigan.gov                   | EGLE AQD<br>Technical Programs Unit                                                                | (586) 565-7379 |
| Iranna Konanahalli<br>Southeast District Office<br>konanahallii@michigan.gov            | EGLE AQD<br>Southeast District Office                                                              | (586) 596-7630 |
| Brad Bergeron<br>Technical Director<br>Brad.Bergeron@rwdi.com                           |                                                                                                    | (248) 234-3884 |
| <b>Steve Smith</b><br>Project Manager<br>Steve.Smith@rwdi.com                           |                                                                                                    | (734) 751-9701 |
| Mason Sakshaug<br>Supervisor<br>Mason.Sakshaug@rwdi.com                                 |                                                                                                    | (989) 323-0355 |
| Benjamin Durham<br>Senior Field Technician<br>Ben.Durham@rwdi.com                       | <b>RWDI USA LLC</b><br>2239 Star Court<br>Rochester Hills, Ml, 48309                               |                |
| Dave Trahan<br>Senior Field Technician<br>Dave.Trahan@rwdi.com                          |                                                                                                    |                |
| Hunter Griggs<br>Field Technician<br>Hunter.Griggs@rwdi.com                             |                                                                                                    | (248) 841-8442 |
| Kate Strang<br>Field Technician<br>Kate.Strang@rwdi.com                                 |                                                                                                    |                |

RWDI#2306854 January 5, 2024



# 2 SUMMARY OF RESULTS

## 2.1 Operating Data

Operational data collected during the testing includes the number of vehicles produced and the combustion chamber temperatures from SV-RTO-SOUTH during each test. For the Base Coat and Clear Coat sources, the number of vehicles produced were collected. This information can be found in **Appendix A**.

## 2.2 Applicable Permit Number

State of Michigan Renewable Operating Permit (ROP) MI-ROP-B7248-2020a

# **3 SOURCE DESCRIPTION**

# 3.1 Description of Process and Emission Control Equipment

A color preparation sanding booth (topcoat sand), followed by 2 parallel topcoat lines, each consisting of: a water-borne basecoat application followed by a solvent born clearcoat. All paint applications are performed by robotic and bell applicators (except in emergency back-up situations). A heated flash zone separates the basecoat and clearcoat operations. Once the clearcoat application is complete, the light duty truck box proceeds the main bake oven. VOCs emissions from the water-borne basecoat booths, the heated flash zone, the clearcoat spray booths and topcoat cure oven are controlled by the Regenerative Thermal Oxidizer (RTO).

SV-RTO-SOUTH also controls the E-Coat dip tank emissions and E-Coat Cure Oven. These units are permitted under (EU-E- COAT BOX). Additionally, Powdercoat Oven emissions (permitted in EU-POWDERCOAT-SOUTH (BOX) and addressed in FG-RTO-SOUTH&POWDER-OVEN-PM (BOX)) are routed to SV-RTO-SOUTH.

For each of the Color Booth lines, the booth systems are equipped with observation zones in both the basecoat and clearcoat sections. There is no painting that occurs in these sections of the booth. The observation zones are exhausted separately from the remainder of the ventilation system through uncontrolled exhaust stacks.

## 3.2 Process Flow Sheet or Diagram

SV-RTO-SOUTH has three inlets and one outlet. The base coat and clear coat zones have an outlet for each line. Figures can be found in the **Figure Section**.

# 3.3 Type and Quantity of Raw and Finished Materials

Various raw materials are used for the assembly of vehicles. For the clearcoat operations, the vehicles are sprayed (by robot) with a clear topcoat material to complete the coating process of the vehicles. A similar process occurs on the base coat operations.



RWDI#2306854 January 5, 2024

## **3.4 Normal Rated Capacity of Process**

SHAP was operating under normal representative production rates. Process data is provided in Appendix A.

## **3.5 Process Instrumentation Monitored During the Test**

Vehicle counts and RTO combustion chamber temperatures (during the applicable tests) were recorded and monitored during the testing event. Data is provided in **Appendix A**.

# **4 SAMPLING AND ANALYTICAL PROCEDURES**

The emission test program utilized the following test methods codified at Title 40, Part 60, Appendix A of the Code of Federal Regulations (40 CFR 60, Appendix A):

- Method 1 Sample and Velocity Traverses for Stationary Sources
- Method 2 Determination of Stack Gas Velocity and Volumetric Flowrate
- Method 3 Determination of Molecular Weight of Dry Stack Gases
- Method 4 Determination of Moisture Content
- Method 5 Determination of Particulate Matter
- Method 201A Determination of Particulate Matter
- Method 25A Determination of Total Gaseous Organic Concentrations using a Flame Ionization Analyzer
- Method 202 Determination of Condensable Particulate Matter

#### 4.1 Stack Velocity, Temperature, and Volumetric Flow Rate

The exhaust velocities and flow rates were determined following U.S. EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)". Velocity measurements were taken with a pre-calibrated S-Type pitot tube and incline manometer or digital manometer. Volumetric flow rates were determined following the equal area method as outlined in U.S. EPA Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a calibrated digital temperature indicator.

The dry molecular weight of the stack gas from SV-RTO-SOUTH inlets and outlet were determined following calculations outlined in U.S. EPA Method 3/3A, "Gas Analysis for the Determination of Dry Molecular Weight (Instrumental). RWDI collected integrated sample bags for each of SV-RTO-SOUTH inlet and outlet using the orsat pump from the sampling consoles or manual pump. The integrated bag samples were collected over the duration of each test period. The bag samples were delivered to a continuous monitoring system for CO<sub>2</sub> and O<sub>2</sub> measurements. The CO<sub>2</sub> and O<sub>2</sub> analyzers were operated according to USEPA Method 3A. Prior to testing, a 3-point analyzer calibration error check was conducted using USEPA protocol gases.

#### STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024



The calibration error check was performed by introducing zero, mid and high-level calibration gases directly into the analyzer. The calibration error check was performed to confirm that the analyzer response is within  $\pm 2\%$  of the certified calibration gas introduced. Prior to each test run, a system-bias test was performed where known concentrations of calibration gases were introduced at the probe tip to measure if the analyzers response was within ±5% of the introduced calibration gas concentrations. At the conclusion of each set of bag samples a system-bias check was performed to evaluate the percent drift from pre and post-test system bias checks. The system bias checks were used to confirm that the analyzer did not drift greater than ±3% throughout a test run.

Zero and upscale calibration checks were conducted both before and after each set of bag samples in order to quantify measurement system calibration drift and sampling system bias. Upscale is either the mid- or highrange gas, whichever most closely approximates the flue gas level. During these checks, the calibration gases were introduced into the sampling system at a conjunction where the sample bag would be introduced to ensure that system was working properly. The analyzers were calibrated on-site using EPA Protocol No. 1 certified calibration mixtures.

For the SV-RTO-SOUTH Booth Inlet and E-Coat Dip Tank Inlet, the dry molecular weight of the stack gas was determined following US EPA Method 2 + Section 8.6. "For processes emitting essentially air, an analysis need not be conducted, use a dry molecular weight of 29.0".

For the December Testing for SV-BASE COAT OBSV 1 and SV-CLEAR COAT OBSV 2, the dry molecular weight of the stack gas was determined following calculations outlined in U.S. EPA Method 3, "Gas Analysis for the Determination of Dry Molecular Weight" using a Fyrite.

Stack moisture content was determined through wet-bulb dry-bulb testing and according to U.S. EPA Method 4, "Determination of Moisture Content of Stack Gases". A schematic of the Method 2 and 4 sampling train are provided in Figure Section.

#### 4.2 Total Hydrocarbon, Methane and Non-Methane Organic Compounds (NMOC)

THC and CH<sub>4</sub> concentrations were recorded simultaneously at the three (3) inlets (Booths, Ovens and E-Coat Dip Tank) and outlet of SV-RTO-SOUTH during each test. The measurements were taken continuously following USEPA Method 25A on the inlets and outlet using a Flame Ionization Detector (FID) analyzer with a dual FID for concurrent measurements of THC and CH<sub>4</sub>. As outlined in Method 25A, the measurement location was taken at the centroid of each source.

Each test consisted of three (3) 60-minute tests. Regular performance checks on the CEMS were conducted by zero and span calibration checks using USEPA Protocol calibration gases. The response of the monitor to pollutant-free air and the corresponding sensitivity to the span gases was reviewed frequently as an ongoing RECEIVED indication of analyzer performance.

JAN 05 2024

AIR QUALITY DIVISION

RWDI#2306854 January 5, 2024 **S**Y

Prior to testing, a 4-point analyzer calibration error check was conducted using USEPA protocol gases. The calibration error check was performed by introducing zero, low, mid, and high-level calibration gases up the heated line to the probe tip. The calibration error check was performed to confirm that the analyzer response is within ±5% of the certified calibration gas introduced. At the conclusion of each test run a system-bias check was performed to evaluate the percent drift from pre- and post-test system bias checks. The system bias check was used to confirm that the analyzer did not drift greater than ±3% throughout a test run.

Zero and mid gas calibration checks were conducted both before and after each test run to quantify measurement system calibration drift and sampling system bias. During these checks, the calibration gases were introduced into the sampling system at the probe tip so that the calibration gases were analyzed in the same manner as the flue gas samples.

A gas sample was continuously extracted from the stack and delivered to the gas analyzer, which measures the pollutant or diluent concentrations in the gas. The probe tip was equipped with a sintered stainless-steel filter for particulate removal. The end of the probe was connected to a heated Teflon sample line, which delivered the sample gases from the stack to the CEM system. The heated sample line was designed to maintain the gas temperature above 250°F to prevent condensation of stack gas moisture within the line.

To determine the non-methane organic compound (NMOC) concentrations, the methane concentration was subtracted from THC. The methane was converted from methane as methane to methane as propane and then subtracted from the THC concentration. The methane response factor (RF) was determined each test by introducing a known methane concentration to the analyzer and dividing the methane channel response by the THC channel response. Dividing methane by the RF provides methane as propane and was then subtracted from the THC concentration. Results were reported as Non-Methane Organic Compounds (NMOC). A schematic of the USEPA Method 25A is provided in **Figures Section**.

## 4.3 Gas Dilution System

Calibration gases were mixed using an Environics 4040 Gas Dilution System. The mass flow controllers are factory calibrated using a primary flow standard traceable to the United States National Institute of Standards and Technology (NIST). Each flow controller utilizes an 11-point calibration table with linear interpolation, to increase accuracy and reduce flow controller nonlinearity. The calibration is done yearly, and the records are included in the Source Testing Report. A multi-point EPA Method 205 check was executed in the field prior to testing.

The gas dilution system consists of calibrated orifices or mass flow controllers and dilutes a high-level calibration gas to within  $\pm 2\%$  of predicted values. The gas divider is capable of diluting gases at set increments and were evaluated for accuracy in the field in accordance with US EPA Method 205 "*Verification of Gas Dilution Systems for Field Instrument Calibrations*". The gas divider dilutions were measured to evaluate that the responses are within  $\pm 2\%$  of predicted values. In addition, a certified mid-level calibration gas within  $\pm 10\%$  of one of the tested dilution gases was introduced into an analyzer to ensure the response of the gas calibration is within  $\pm 2\%$  of gas divider dilution concentration.

STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024



# 4.4 Particulate Matter (PM, PM10 and PM2.5)

Particulate matter (PM/PM<sub>10</sub>/PM<sub>2.5</sub>) was sampled following procedures outlined in U.S. EPA Method 5 and Method 202 (Condensable Particulate Matter) for all sources.

As stated in Method 202, the impinger portion would only be recovered and included as PM if the filtration temperature exceeds 85°F. For all sources except for SV-RTO-SOUTH, the stack gas and filtration temperature did not exceed 85°F, therefore, the impingers were only be used for moisture determination. For the RTO, Method 202 was followed for recovery of condensable. In addition, nitrogen purges were <u>not</u> conducted post sample to remove sulphates for any of the sampling. Sulfur dioxide exposure was not expected to be an issue at this source location.

#### 4.5 PM<sub>10</sub> and PM<sub>2.5</sub>

For USEPA Method 201A, to measure PM<sub>10</sub> and PM<sub>2.5</sub>, a sample of gas is collected at a predetermined constant flow rate through an in-stack sizing device. The particle-sizing device separates particles with nominal aerodynamic diameters of 10 micrometers and 2.5 micrometers. After a sample is obtained, uncombined water was removed from the particulate, then gravimetric analysis was used to determine the particulate mass for each size fraction.

## 4.6 Verification of Inward Flow

Sampling of inward flow is intrusive to the production as the testing obstructs the flow of vehicles into the E-Coat area. Therefore, for the verification of inward flow was completed when no vehicles were entering the system, however all ventilation systems and oven were operating normally (simulating normal, representative production conditions).

Verification of inward flow included a visualization test (smoke test). Smoke was applied to the entrance and exit points of the Dip Tank and Oven. Each location was tested separately under normal ventilation scenario. Given that the visualization testing demonstrated that the smoke (or air flow) was flowing into the Dip Tank/Oven and therefore into the control system (RTO), the capture efficiency is assumed to be 100%.

## 4.7 Description of Recovery and Analytical Procedures

US EPA Methods 5, 201A and 202 samples were recovered according to methods for each of the noted sources. VOC testing on SV-RTO-SOUTH was conducted using real time analyzers which requires no sample recovery.

## 4.8 Sampling Port Description

All sampling ports meet USEPA Method 1 locations and can be found in the Figure Section.

RWDI#2306854 January 5, 2024

# <u>K</u>

# **5 TEST RESULTS AND DISCUSSION**

# **5.1 Detailed Results**

Table 5.1.1: Average Emission Data - PM, PM10, and PM2.5

| Source                  | Parameter                                       | Emission Rate |        |        |         |  |
|-------------------------|-------------------------------------------------|---------------|--------|--------|---------|--|
|                         |                                                 | Run 1         | Run 2  | Run 3  | Average |  |
|                         | PM<br>(lb/1000 lb wet)                          | 0.0029        | 0.0016 | 0.0023 | 0.0022  |  |
| SV-RTO SOUTH            | PM <sub>10</sub> & PM <sub>2.5</sub><br>(lb/hr) | 1.61          | 0.90   | 1.26   | 1.26    |  |
| EN BASE COAT            | PM (lb/1000 lb wet)                             | 0.0030        | 0.0011 | 0.0002 | 0.0014  |  |
| SV-BASE COAT<br>OBSV 1  | PM <sub>10</sub> (lb/hr)                        | 0.039         | 0.038  | 0.040  | 0.039   |  |
| OB3V I                  | PM <sub>2.5</sub> (lb/hr)                       | 0.027         | 0.026  | 0.027  | 0.027   |  |
| SV-BASE COAT            | PM<br>(lb/1000 lb wet)                          | 0.0011        | 0.0014 | 0.0003 | 0.0010  |  |
| OBSV 2                  | PM <sub>10</sub> & PM <sub>2.5</sub><br>(lb/hr) | 0.11          | 0.15   | 0.03   | 0.10    |  |
| EV CLEAD                | PM (lb/1000 lb wet)                             | 0.0008        | 0.0010 | 0.0007 | 0.0008  |  |
| SV-CLEAR<br>COAT OBSV 1 | PM <sub>10</sub> & PM <sub>2.5</sub><br>(lb/hr) | 0.14          | 0.17   | 0.12   | 0.15    |  |
| SV CLEAD                | PM (lb/1000 lb wet)                             | 0.0011        | 0.0014 | 0.008  | 0.0011  |  |
| SV-CLEAR<br>COAT OBSV 2 | PM <sub>10</sub> (lb/hr)                        | 0.19          | 0.089  | 0.084  | 0.12    |  |
| COAT OBSV 2             | PM <sub>2.5</sub> (lb/hr)                       | 0.17          | 0.057  | 0.057  | 0.093   |  |

Table 5.1.2: Average Emission Data – Destruction Efficiency

| Parameter                     | Emission Rate<br>(ppmvd/ lb/hr & % Destruction) |                          |                          |                          |  |  |  |
|-------------------------------|-------------------------------------------------|--------------------------|--------------------------|--------------------------|--|--|--|
|                               | Run 1                                           | Run 2                    | Run 3                    | Average                  |  |  |  |
| NMOC Inlet (Booth)            | 33.0 ppmvd<br>19.5 lb/hr                        | 42.9 ppmvd<br>25.6 lb/hr | 36.2 ppmvd<br>22.9 lb/hr | 37.4 ppmvc<br>22.7 lb/hr |  |  |  |
| NMOC Inlet (Ovens)            | 51.8 ppmvd<br>8.87 lb/hr                        | 79.7 ppmvd<br>14.7 lb/hr | 73.9 ppmvd<br>14.0 lb/hr | 68.4 ppmvc<br>12.5 lb/hr |  |  |  |
| NMOC Inlet (E-Coat Dip Tank)  | 3.95 ppmvd<br>0.14 lb/hr                        | 4.11 ppmvd<br>0.14 lb/hr | 2.06 ppmvd<br>0.07 lb/hr | 3.38 ppmvo<br>0.12 lb/hr |  |  |  |
| NMOC Inlets Combined          | 28.6 lb/hr                                      | 40.4 lb/hr               | 37.0 lb/hr               | 35.3 lb/hr               |  |  |  |
| NMOC RTO Outlet               | 0.68 ppmv<br>0.57 lb/hr                         | 0.58 ppmv<br>0.50 lb/hr  | 0.51 ppmv<br>0.44 lb/hr  | 0.59 ppmv<br>0.50 lb/hr  |  |  |  |
| Destruction Efficiency (NMOC) | 98.0 %                                          | 98.8 %                   | 98.8 %                   | 98.5 %                   |  |  |  |
| RTO Temperature (°F)          | 1498                                            | 1501                     | 1500                     | 1500                     |  |  |  |



RWDI#2306854 January 5, 2024

Table 5.1.3: Verification of Inward Flow - EU-ECOAT-SOUTH

|                                           |                                | Sou                     | irce                    |                     |
|-------------------------------------------|--------------------------------|-------------------------|-------------------------|---------------------|
| Parameter                                 | E-Coat Dip<br>Tank<br>Entrance | E-Coat Dip<br>Tank Exit | E-Coat Oven<br>Entrance | E-Coat Oven<br>Exit |
| Direction of Smoke<br>(Inward or Outward) | Inward                         | Inward                  | Inward                  | Inward              |

Detailed testing results can be found in Appendices B through D.

## **5.2 Variations in Testing Procedures**

The clearcoat and basecoat sources utilized an unheated variation of Method 5 since their temperatures all remained below 85°F. This modification was noted in the Source Testing Plan prior to testing and the method did not deviate from the original proposal.

## **5.3 Process Upset Conditions During Testing**

There were normal process breaks during production.

# **5.4 Maintenance Performed in Last Three Months**

Cleaning and routine maintenance was performed on the machinery within the last three months.

#### 5.5 Re-Test

After review of the November 2023 PM<sub>10</sub> and PM<sub>2.5</sub> test results, re-testing of SV-BASE COAT OBSV 1 and SV-CLEAR COAT OBSV 2 using USEPA Method 201A was completed to accurately measure PM10 and PM2.5 fractions on December 21<sup>st</sup> and 22<sup>nd</sup>, 2023.

## **5.6 Audit Samples**

This test did not require any audit samples.

#### 5.7 Process Data

Process data can be found in Appendix A.

STERLING HEIGHTS ASSEMBY PLANT: FG-TOPCOAT SOUTH SOURCE TESTING PROGRAM FCA US LLC RWDI#2306854 January 5, 2024

## **5.8 Measurement Results**

Data from the testing can be in Appendices B, C, and D.

## 5.9 Flows and Moisture

Flow and moisture determination results can be found in Appendix C.

## **5.10 Field Notes**

Field notes can be found in Appendix E.

#### **5.11 Calibration Data**

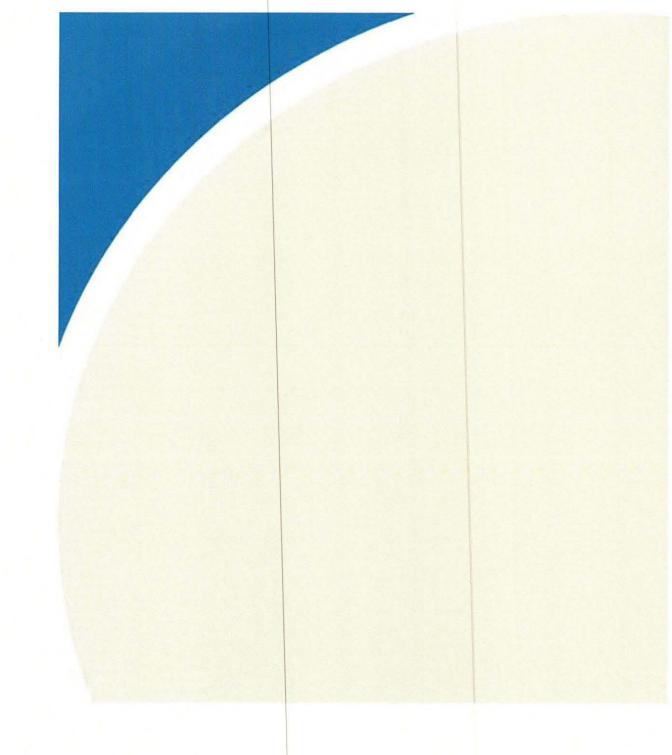
Calibration data can be found in Appendix F.

#### **5.12 Example Calculations**

Example calculations can be found in Appendix G.

## **5.13 Laboratory Data**

Laboratory Data can be found in Appendix H


# 6 CONCLUSION

The testing of all applicable sources included in Flexible Group FG-TOPCOAT-SOUTH and FG-RTO-SOUTH&POWDER-OVEN-PM was successfully completed between November 7<sup>th</sup> and 8<sup>th</sup> of 2023 and December 21<sup>st</sup> and 22<sup>nd</sup>, 2023. Testing followed the methodology outlined in the Source Testing Plan approved by EGLE.





# TABLES



# Table 1: Summary of Sampling Parameters and Methodology

| Source Location     | No. of Tests | Sampling Parameter                           | Sampling Method                    |
|---------------------|--------------|----------------------------------------------|------------------------------------|
|                     | 3            | Velocity, Temperature and Flow Rate (Outlet) | U.S. EPA <sup>[1]</sup> Method 1-4 |
|                     | 3            | Velocity, Temperature and Flow Rate (Inlet)  | U.S. EPA Method 1-4                |
| SV-RTO SOUTH        | 3            | Total Hydrocarbon (Inlet & Outlet)           | U.S. EPA Method 25A                |
|                     | 3            | Particulate Matter (Outlet)                  | U.S. EPA Method 5 and 202          |
|                     | N/A          | Gas Dilution (Inlet & Outlet)                | U.S. EPA Method 205                |
|                     | 3            | Velocity, Temperature and Flow Rate          | U.S. EPA Method 1-4                |
| SV-BASE COAT OBS-1  | 3            | Particulate Matter                           | U.S. EPA Method 5 <sup>[2]</sup>   |
|                     | 3            | PM10 & PM2.5                                 | U.S. EPA Method 201A               |
| SV-BASE COAT OBS-2  | 3            | Velocity, Temperature and Flow Rate          | U.S. EPA Method 1-4                |
| SV-BASE COAT OBS-2  | 3            | Particulate Matter                           | U.S. EPA Method 5 <sup>[2]</sup>   |
| SV-CLEAR COAT OBS-1 | 3            | Velocity, Temperature and Flow Rate          | U.S. EPA Method 1-4                |
| SV-CLEAR COAT OBS-T | 3            | Particulate Matter                           | U.S. EPA Method 5 <sup>[2]</sup>   |
|                     | 3            | Velocity, Temperature and Flow Rate          | U.S. EPA Method 1-4                |
| SV-CLEAR COAT OBS-2 | 3            | Particulate Matter                           | U.S. EPA Method 5 <sup>[2]</sup>   |
|                     | 3            | PM10 & PM2.5                                 | U.S. EPA Method 201A               |
| EU-ECOAT-SOUTH      | 1            | Smoke Test and Velocity Measurements         |                                    |

#### Notes:

[1] U.S. EPA - United States Environmental Protection Agency

[2] Modified Method 5 with unheated probe and filter

# Table 2: Sampling Summary and Sample Log

| Source and Test #                  | Sampling Date      | Start Time | End Time | Filter ID |
|------------------------------------|--------------------|------------|----------|-----------|
| SV-RTO SOUTH + Blank               |                    |            |          |           |
| Test #1                            | 7-Nov-23           | 8:37       | 10:56    | A-364     |
| Test #2                            | 7-Nov-23           | 11:42      | 13:57    | A-365     |
| Test #3                            | 7-Nov-23           | 14:34      | 6:50     | A-363     |
| Blank                              | 7-Nov-23           |            |          | A-386     |
| SV-BASE COAT OBSV 1                |                    |            |          |           |
| Test #1 - PM Test                  | 8-Nov-23           | 8:32       | 10:36    | A-369     |
| Test #2 - PM Test                  | 8-Nov-23           | 11:39      | 13:43    | A-356     |
| Test #3 - PM Test                  | 8-Nov-23           | 14:27      | 16:30    | A-368     |
| Test #1 - PM10 & PM2.5 Test        | 21-Dec-23          | 7:57       | 13:10    | 47.217    |
| Test #2 - PM10 & PM2.5 Test        | 21-Dec-23          | 13:24      | 17:37    | 47.215    |
| Test #3 - PM10 & PM2.5 Test        | 22-Dec-23          | 7:35       | 11:47    | 026034    |
| SV-BASE COAT OBSV 2                |                    |            |          |           |
| Test #1                            | 8-Nov-23           | 8:32       | 10:38    | A-362     |
| Test #2                            | 8-Nov-23           | 11:45      | 13:47    | A-357     |
| Test #3                            | 8-Nov-23           | 14:26      | 16:30    | A-370     |
| SV-CLEAR COAT OBSV 1               |                    |            |          |           |
| Test #1                            | 8-Nov-23           | 8:22       | 10:26    | A-361     |
| Test #2                            | 8-Nov-23           | 11:18      | 13:32    | A-359     |
| Test #3                            | 8-Nov-23           | 14:13      | 16:17    | A-355     |
| SV-CLEAR COAT OBSV 2               |                    | J.         |          |           |
| Test #1                            | 8-Nov-23           | 8:25       | 10:28    | A-349     |
| Test #2                            | 8-Nov-23           | 11:17      | 13:20    | A-358     |
| Test #3                            | 8-Nov-23           | 14:13      | 16:16    | A-335     |
| Test #1 - PM10 & PM2.5 Test        | 21-Dec-23          | 7:57       | 12:46    | 026037    |
| Test #2 - PM10 & PM2.5 Test        | 21-Dec-23          | 13:09      | 16:58    | 026041    |
| Test #3 - PM10 & PM2.5 Test        | 22-Dec-23          | 7:33       | 11:19    | 026246    |
| Clear Coat and Base Coat Observati | WEINS VISION WORKS | 0.777      |          |           |
| Blank - November                   | 8-Nov-23           |            |          | A-367     |
| Blank - December                   | 22-Dec-23          |            |          | 026038    |

# Table 3A: Sampling Summary - Flow Characteristics SV-RTO SOUTH

| Stack Gas Para                      | meter        | Test No. 1 | Test No. 2         | Test No. 3 |         | Test No. 1 | Test No. 2          | Test No. 3 |         |
|-------------------------------------|--------------|------------|--------------------|------------|---------|------------|---------------------|------------|---------|
| Stack Gas Para                      | meter        |            | TPM <sup>[1]</sup> |            | Average | D          | estruction Efficier | ncy        | Average |
|                                     | Testing Date | 7-Nov-23   | 7-Nov-23           | 7-Nov-23   |         | 7-Nov-23   | 7-Nov-23            | 7-Nov-23   |         |
| Stack Temperature                   | °F           | 252        | 252                | 256        | 253     | 252        | 251                 | 253        | 252     |
| stack remperature                   | °R           | 711        | 711                | 715        | 713     | 711        | 711                 | 713        | 712     |
| Moisture                            | %            | 2.3%       | 1.5%               | 2.0%       | 1.9%    | 2.3%       | 1.5%                | 2.0%       | 1.9%    |
| Velocity                            | ft/s         | 55.4       | 55.9               | 55.5       | 55.6    | 55.3       | 56.3                | 56.2       | 55.9    |
| Referenced Flow Rate <sup>[2]</sup> | dscfm        | 122,679    | 124,702            | 122,663    | 123,348 | 122,433    | 125,785             | 124,513    | 124,244 |
| Sampling Isokinetic Rate            | %            | 101.3      | 100.1              | 100.0      | 100.5   | -          |                     | -          |         |

#### Notes:

[1] TPM = Sampling for total particulate matter

[2] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

# Table 3B: Sampling Summary - Flow Characteristics SV-RTO Booth Inlet

| Stack Gas Parameter                 |              | Test No. 1 | Test No. 2                     | Test No. 3 |        |
|-------------------------------------|--------------|------------|--------------------------------|------------|--------|
|                                     |              | Destr      | Destruction Efficiency Testing |            |        |
|                                     | Testing Date | 7-Nov-23   | 7-Nov-23                       | 7-Nov-23   |        |
| Stack Tomporature                   | °F           | 89         | 89                             | 89         | 89     |
| Stack Temperature                   | °R           | 548        | 548                            | 548        | 548    |
| Moisture                            | %            | 2.0%       | 1.8%                           | 1.9%       | 1.9%   |
| Velocity                            | ft/s         | 55.9       | 56.3                           | 59.6       | 57.3   |
| Referenced Flow Rate <sup>[1]</sup> | dscfm        | 86,413     | 87,134                         | 92,312     | 88,620 |
| Notos                               |              |            |                                |            |        |

Notes:

[1] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

# Table 3C: Sampling Summary - Flow Characteristics

## **SV-RTO Ovens Inlet**

| Stack Gas Parameter                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test No. 1 | Test No. 2 | Test No. 3 |        |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|--------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Destr      | Average    |            |        |
|                                     | Testing Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-Nov-23   | 7-Nov-23   | 7-Nov-23   |        |
| Stack Temperature                   | °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 305        | 305        | 306        | 305    |
| Stack Temperature                   | °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 765        | 765        | 765        | 765    |
| Moisture                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5%       | 1.7%       | 2.0%       | 1.7%   |
| Velocity                            | ft/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.1       | 49.7       | 51.2       | 49.0   |
| Referenced Flow Rate <sup>[1]</sup> | dscfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24,975     | 26,844     | 27,610     | 26,476 |
| Notes:                              | and the second s |            | Annon many |            |        |

#### Notes:

[1] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

# Table 3D: Sampling Summary - Flow Characteristics SV-RTO E-Coat Dip Tank Inlet

| Stack Gas Parameter                 |              | Test No. 1 | Test No. 2                    | Test No. 3 |       |
|-------------------------------------|--------------|------------|-------------------------------|------------|-------|
|                                     |              | Destr      | Average                       |            |       |
|                                     | Testing Date | 7-Nov-23   | 7-Nov-23                      | 7-Nov-23   |       |
| Stack Temperature                   | °F           | 70         | 71                            | 70         | 70    |
| stack remperature                   | °R           | 530        | 530                           | 530        | 530   |
| Moisture                            | %            | 1.2%       | 1.2%                          | 1.2%       | 1.2%  |
| Velocity                            | ft/s         | 36.1       | 36.3                          | 35.5       | 36.0  |
| Referenced Flow Rate <sup>[1]</sup> | dscfm        | 5,015      | 5,034                         | 4,924      | 4,991 |
| Notes:                              |              |            | January and the second second |            |       |

Notes:

[1] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

#### Table 3E: Sampling Summary - Flow Characteristics SV-BASE COAT OBSV 1

| Stack Gas Paran                     | neter       | Test No. 1<br>TPM <sup>[1]</sup> | Test No. 2<br>TPM <sup>[1]</sup> | Test No. 3<br>TPM <sup>[1]</sup> | Average | Test No. 1<br>PM10 & PM2.5 | Test No. 2<br>PM10 & PM2.5 | Test No. 3<br>PM10 & PM2.5 | Average |
|-------------------------------------|-------------|----------------------------------|----------------------------------|----------------------------------|---------|----------------------------|----------------------------|----------------------------|---------|
| Т                                   | esting Date | 8-Nov-23                         | 8-Nov-23                         | 8-Nov-23                         |         | 21-Dec-23                  | 21-Dec-23                  | 22-Dec-23                  |         |
| Stack Tomporature                   | °F          | 80                               | 80                               | 80                               | 80      | 81                         | 80                         | 79                         | 80      |
| Stack Temperature                   | °R          | 540                              | 540                              | 540                              | 540     | 541                        | 540                        | 538                        | 540     |
| Moisture                            | %           | 1.4%                             | 0.9%                             | 0.8%                             | 1.0%    | 0.9%                       | 0.9%                       | 0.8%                       | 0.9%    |
| Velocity                            | ft/s        | 49.7                             | 51.1                             | 49.1                             | 50.0    | 44.4                       | 43.9                       | 43.5                       | 43.9    |
| Referenced Flow Rate <sup>[2]</sup> | dscfm       | 23,394                           | 24,176                           | 23,383                           | 23,651  | 21,758                     | 21,540                     | 21,353                     | 21,550  |
| Sampling Isokinetic Rate            | %           | 98.6                             | 100.4                            | 99.0                             | 99.3    | 88                         | 89                         | 89                         | 89      |

#### Notes:

[1] TPM = Sampling for total particulate matter

[2] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

## Table 3F: Sampling Summary - Flow Characteristics SV-BASE COAT OBSV 2

| Stack Gas Parameter                 |              | Test No. 1<br>TPM <sup>[1]</sup> | Test No. 2<br>TPM <sup>[1]</sup> | Test No. 3<br>TPM <sup>[1]</sup> | Average |  |
|-------------------------------------|--------------|----------------------------------|----------------------------------|----------------------------------|---------|--|
|                                     | Testing Date |                                  | 8-Nov-23                         | 8-Nov-23                         |         |  |
| Stack Temperature                   | °F           | 84                               | 84                               | 84                               | 84      |  |
| Stack Temperature                   | °R           | 544                              | 544                              | 544                              | 544     |  |
| Moisture                            | %            | 1.4%                             | 1.3%                             | 1.4%                             | 1.4%    |  |
| Velocity                            | ft/s         | 45.7                             | 48.5                             | 46.8                             | 47.0    |  |
| Referenced Flow Rate <sup>[2]</sup> | dscfm        | 21,371                           | 22,722                           | 21,891                           | 21,995  |  |
| Sampling Isokinetic Rate            | %            | 100.1                            | 100.6                            | 100.7                            | 100.5   |  |

#### Notes:

[1] TPM = Sampling for total particulate matter

[2] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

# Table 3G: Sampling Summary - Flow Characteristics SV-CLEAR COAT OBSV 1

| Stack Gas Parameter                 |              | Test No. 1<br>TPM <sup>[1]</sup> | Test No. 2<br>TPM <sup>[1]</sup> | Test No. 3<br>TPM <sup>[1]</sup> | Average |  |
|-------------------------------------|--------------|----------------------------------|----------------------------------|----------------------------------|---------|--|
|                                     | Testing Date |                                  | 8-Nov-23                         | 8-Nov-23                         |         |  |
| Stack Tomporature                   | °F           | 74                               | 74                               | 74                               | 74      |  |
| Stack Temperature                   | °R           | 533                              | 534                              | 533                              | 533     |  |
| Moisture                            | %            | 2.2%                             | 1.6%                             | 0.9%                             | 1.6%    |  |
| Velocity                            | ft/s         | 40.3                             | 40.2                             | 39.5                             | 40.0    |  |
| Referenced Flow Rate <sup>[2]</sup> | dscfm        | 38,802                           | 38,954                           | 38,579                           | 38,778  |  |
| Sampling Isokinetic Rate            | %            | 100.0                            | 99.9                             | 99.2                             | 99.7    |  |

#### Notes:

[1] TPM = Sampling for total particulate matter

[2] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

#### Table 3H: Sampling Summary - Flow Characteristics SV-CLEAR COAT OBSV 2

| Stack Gas Parameter<br>Testing Date |       | Test No. 1<br>TPM <sup>[1]</sup><br>8-Nov-23 | Test No. 2<br>TPM <sup>[1]</sup><br>8-Nov-23 | Test No. 3<br>TPM <sup>[1]</sup><br>8-Nov-23 | Average | Test No. 1<br>PM10 & PM2.5<br>21-Dec-23 | Test No. 2<br>PM10 & PM2.5<br>21-Dec-23 | Test No. 3<br>PM10 & PM2.5<br>22-Dec-23 | Average |
|-------------------------------------|-------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------|
|                                     |       |                                              |                                              |                                              |         |                                         |                                         |                                         |         |
| Stack Temperature                   | °F    | 75                                           | 77                                           | 75                                           | 76      | 78                                      | 79                                      | 79                                      | 78      |
|                                     | °R    | 535                                          | 536                                          | 535                                          | 535     | 537                                     | 538                                     | 538                                     | 538     |
| Moisture                            | %     | 2.6%                                         | 1.5%                                         | 0.9%                                         | 1.7%    | 1.7%                                    | 2.4%                                    | 1.8%                                    | 2.0%    |
| Velocity                            | ft/s  | 45.4                                         | 45.4                                         | 42.5                                         | 44.4    | 41.6                                    | 41.9                                    | 41.9                                    | 41.8    |
| Referenced Flow Rate <sup>[2]</sup> | dscfm | 42,409                                       | 42,846                                       | 40,437                                       | 41,897  | 40,497                                  | 40,386                                  | 40,522                                  | 40,468  |
| Sampling Isokinetic Rate            | %     | 102.5                                        | 102.6                                        | 102.8                                        | 102.6   | 105                                     | 106                                     | 104                                     | 105     |

#### Notes:

[1] TPM = Sampling for total particulate matter

[2] All Referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen **Detailed sampling results including individual test results can be found in Appendix D** 

AIR QUALITY DIVISION JAN 05 2024

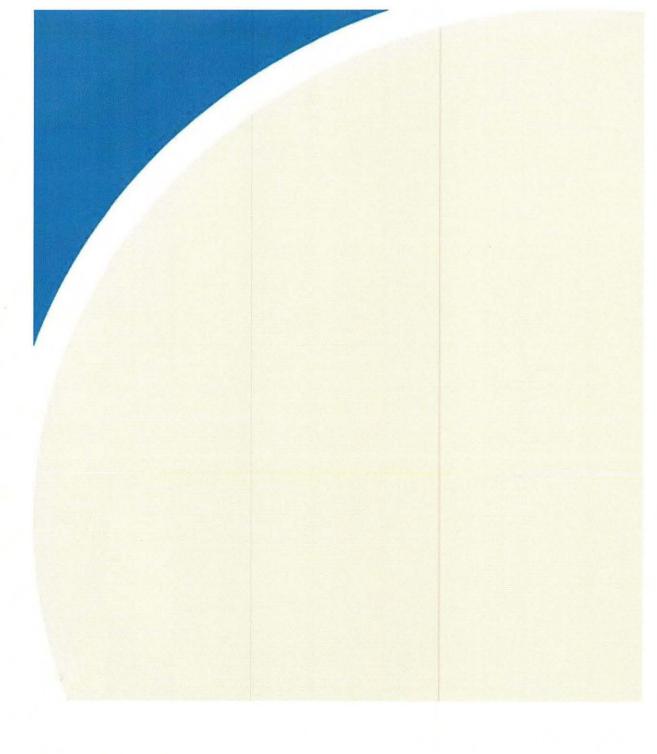
#### Table 4: DESTRUCTION EFFICIENCY EMISSIONS TABLE - THC / Methane / NMOC Source: SHAP South RTO RWDI Project # 2306854

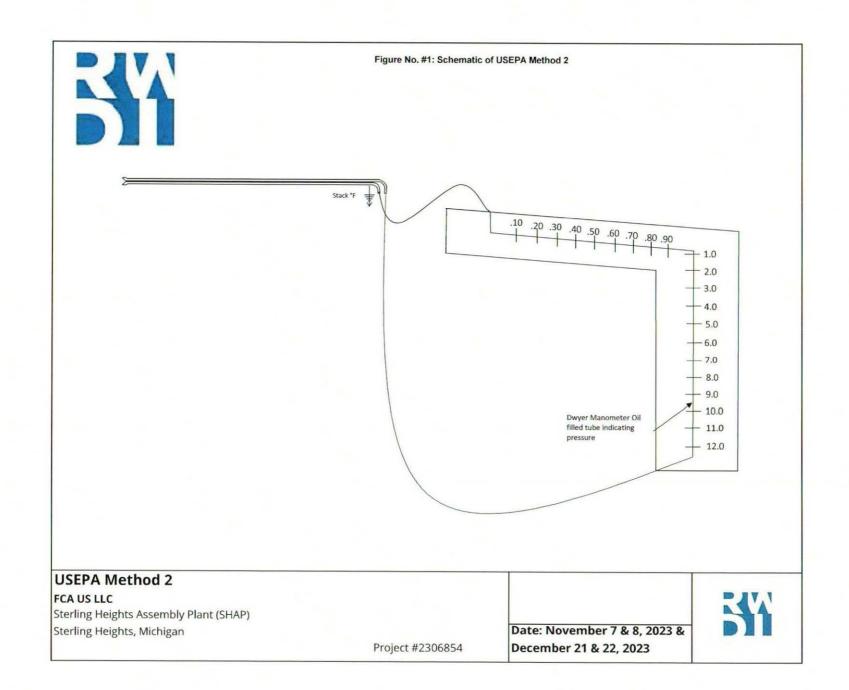
| Parameter                                                                                                                                                                      | Test 1<br>7-Nov-23    | Test 2<br>7-Nov-23           | Test 3<br>7-Nov-23    | Average               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|-----------------------|-----------------------|
| Start Time:                                                                                                                                                                    | 8:38<br>9:37          | 11:02<br>12:01               | 12:42<br>13:41        |                       |
| Stop Time:<br>Duration (mins):                                                                                                                                                 | 60                    | 60                           | 60                    |                       |
| Average Production Number (E-Oven):                                                                                                                                            | 39                    | 52                           | 40                    | 44                    |
| Average Production Number (Powder Oven):                                                                                                                                       | 47                    | 62                           | 49                    | 53                    |
| Average Production Number (Basecoat):<br>Average Production Number (Clearcoat):                                                                                                | 63<br>62              | 64<br>75                     | 75                    | 67<br>70              |
| Average Temperature for RTO (°F):                                                                                                                                              | 1498                  | 1501                         | 1500                  | 1500                  |
| Inlet TC Booth VOC Concentration (as propane) (ppm,):                                                                                                                          | 33.0                  | 43.2                         | 36.7                  | 37.6                  |
| Inlet TC Booth VOC Concentration (as propane) (ppmd):                                                                                                                          | 33.7                  | 44.0                         | 37.4                  | 38.4                  |
| Inlet TC Booth VOC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                               | 61.7                  | 80.7                         | 68.5                  | 70.3                  |
| Inlet TC Booth THC Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                           | 20.0                  | 26.3                         | 23.7                  | 23.3                  |
| Inlet TC Booth Methane Correction Factor                                                                                                                                       | 2.17                  | 2.17                         | 2.18                  | 2.17                  |
| Inlet TC Booth CH4 Concentration (as methane) (ppm <sub>w</sub> ):                                                                                                             | 1.80                  | 3.39                         | 2.48                  | 2.55                  |
| Inlet TC Booth CH4 Concentration (as Methane) (ppm <sub>d</sub> ):<br>Inlet TC Booth CH4 Concentration (as Propane) (ppm <sub>d</sub> ):                                       | 0.85                  | 3.45                         | 2.52                  | 2.60                  |
| Inlet TC Booth CH4 Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                               | 1,55                  | 2.91                         | 2.12                  | 2.20                  |
| Inlet TC Booth CH4 Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                           | 0.50                  | 0.95                         | 0.73                  | 0.73                  |
| Inlet TC Booth NMOC Concentration (as Propane) (ppmd):                                                                                                                         | 32.8                  | 42.4                         | 36.2                  | 37.2                  |
| Inlet TC Booth NMOC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                              | 60.2                  | 77.8                         | 66,4                  | 68.1                  |
| Inlet TC BoothNMOC Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                           | 19.5                  | 25.4                         | 22.9                  | 22.6                  |
| Inlet TC Booth Flow Rate (dscfm):                                                                                                                                              | 86,413                | 87,134                       | 92,312                | 88,620                |
| Inlet TC Booth Flow Rate (dm <sup>3</sup> /s):                                                                                                                                 | 40.77                 | 41.11                        | 43.55                 | 41.81                 |
| Inlet TC Booth Moisture:                                                                                                                                                       | 2.0%                  | 1.8%                         | 1.9%                  | 1,9%                  |
| Inlet TC Oven/E-Coat Oven VOC Concentration (as propane) (ppm <sub>w</sub> ):                                                                                                  | 52.3                  | 79.4                         | 73.7                  | 68.5                  |
| Inlet TC Oven/E-Coat Oven VOC Concentration (as propane) (ppmd):                                                                                                               | 53.0                  | 80.8                         | 75.2                  | 69.7                  |
| Inlet TC Oven/E-Coat Oven VOC Concentration (as propane) (mg/m <sup>2</sup> <sub>d</sub> ):<br>Inlet TC Oven/E-Coat Oven THC Concentration (as propane) (lb/hr <sub>d</sub> ): | 97.2                  | 148.1                        | 137.8                 | 127.7                 |
|                                                                                                                                                                                | and splitter all set  |                              |                       | 20021                 |
| Inlet TC Oven/E-Coat Oven Methane Correction Factor<br>Inlet TC Oven/E-Coat Oven CH4 Concentration (as methane) (ppm <sub>w</sub> ):                                           | 2.46                  | 2.43                         | 2.51 3.24             | 2.47                  |
| Inlet TC Oven/E-Coat Oven CH4 Concentration (as Methane) (ppmg):                                                                                                               | 3.07                  | 2.72                         | 3.30                  | 3.03                  |
| Inlet TC Oven/E-Coat Oven CH4 Concentration (as Propane) (ppm <sub>d</sub> ):                                                                                                  | 1.25                  | 1.12                         | 1.31                  | 1.23                  |
| Inlet TC Oven/E-Coat Oven CH4 Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                    | 2.29                  | 2.06                         | 2.41                  | 2.25                  |
| Inlet TC Oven/E-Coat Oven CH4 Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                | 0.21                  | 0.21                         | 0.25                  | 0.22                  |
| Inlet TC Oven/E-Coat Oven NMOC Concentration (as Propane) (ppmd):                                                                                                              | 51.8                  | 79.7                         | 73.9                  | 68.4                  |
| nlet TC Oven/E-Coat Oven NMOC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                    | 94.9                  | 146.1                        | 135.4                 | 125.5                 |
| Inlet TC Oven/E-Coat Oven NMOC Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                               | 8.87                  | 14.7                         | 14.0                  | 12.5                  |
| Inlet TC Oven/E-Coat Oven Flow Rate (dscfm):                                                                                                                                   | 24,975                | 26,844                       | 27,610                | 26,476                |
| Inlet TC Oven/E-Coat Oven Flow Rate (dm <sup>3</sup> /s):<br>Inlet TC Oven/E-Coat Oven Moisture:                                                                               | 11.78                 | 12.66                        | 13.03                 | 12.49<br>1.7%         |
|                                                                                                                                                                                |                       | a second a second            | and the second second |                       |
| Inlet E-Coat Dip Tank VOC Concentration (as propane) (ppm <sub>w</sub> ):<br>Inlet E-Coat Dip Tank VOC Concentration (as propane) (ppm <sub>g</sub> ):                         | 4.96                  | 5.22                         | 3.24                  | 4.47                  |
| Inlet E-Coat Dip Tank VOC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                        | 9.20                  | 9.68                         | 6.00                  | 8.29                  |
| Inlet E-Coat Dip Tank THC Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                    | 0.17                  | 0.18                         | 0.11                  | 0.16                  |
| Inlet E-Coat Dip Tank Methane Correction Factor                                                                                                                                | 2.38                  | 2.31                         | 2.26                  | 2.32                  |
| Inlet E-Coat Dp Tank CH4 Concentration (as methane) (ppm <sub>w</sub> ):                                                                                                       | 2.52                  | 2.66                         | 2.70                  | 2.63                  |
| Inlet E-Coat Dip Tank CH4 Concentration (as Methane) (ppmg):<br>Inlet E-Coat Dip Tank CH4 Concentration (as Propane) (ppmg):                                                   | 2.55                  | 2.70                         | 2.74                  | 2.66                  |
| Inlet E-Coat Dip Tank CH4 Concentration (as propane) (mg/m <sup>3</sup> <sub>g</sub> ):                                                                                        | 1.96                  | 2.14                         | 2.22                  | 2.11                  |
| Inlet E-Coat Dip Tank CH4 Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                    | 0.037                 | 0.040                        | 0.041                 | 0.039                 |
| Intel E Cost Dis Tank NMOC Concentration (or Propose) (opp.)                                                                                                                   | 3,95                  | 4.44                         | 2.06                  | 3.38                  |
| Inlet E-Coat Dip Tank NMOC Concentration (as Propane) (ppm <sub>c</sub> ):<br>Inlet E-Coat Dip Tank NMOC Concentration (as propane) (mg/m <sup>3</sup> <sub>c</sub> ):         | 7.24                  | 4.11 7.54                    | 3.78                  | 6.19                  |
| Inlet E-Coat Dip Tank NMOC Concentration (as propane) (lb/hrd):                                                                                                                | 0.14                  | 0.14                         | 0.07                  | 0.12                  |
| Inlet ECOAT Dip Tank Flow Rate (dscfm):                                                                                                                                        | 5,015                 | 5,034                        | 4,924                 | 4,991                 |
| Inlet ECOAT Dip Tank Flow Rate (dm <sup>3</sup> /s):                                                                                                                           | 2,37                  | 2.37                         | 2.32                  | 2.37                  |
| Inlet ECOAT Dip Tank Moisture:                                                                                                                                                 | 1.2%                  | 1.2%                         | 1.2%                  | 1.2%                  |
| Total NMOC Inlet (Ib/hr)<br>Total THC Inlet (Ib/hr)                                                                                                                            | 28.5<br>29.21         | 40.2<br>41.36                | 37.0<br>38.02         | 35.2<br>36.2          |
| Outlet Flow Rate (dsofm):                                                                                                                                                      | 122,433               | 125,785                      | 124,513               | 124,244               |
| Outlet Flow Rate (dm <sup>3</sup> /s):<br>Moisture:                                                                                                                            | 57.76<br>2.3%         | 59.34<br>1.5%                | 58.74<br>2.0%         | 58.61<br>1.9%         |
|                                                                                                                                                                                | and the second second | and the second second second | allow - same          |                       |
| Outlet THC Concentration (as propane) (ppm <sub>w</sub> ):<br>Outlet THC Concentration (as propane) (ppm <sub>d</sub> ):                                                       | 0.76                  | 0.61                         | 0.55                  | 0.64                  |
| Outlet THC Concentration (as propane) (ppm <sub>d</sub> ):<br>Outlet THC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                         | 1.43                  | 1.14                         | 1.04                  | 1.20                  |
| Outlet THC Concentration (as propane) (lb/hr <sub>d</sub> ):                                                                                                                   | 0.65                  | 0,53                         | 0.48                  | 0.56                  |
| Outlet Methane Correction Factor                                                                                                                                               | 2.52                  | 2.52                         | 2.40                  | 2.48                  |
| Outlet CH4 Concentration (as methane) (ppm <sub>w</sub> ):                                                                                                                     | 0.24                  | 0.11                         | 0.13                  | 0.16                  |
| Outlet CH4 Concentration (as Methane) (ppm <sub>d</sub> ):                                                                                                                     | 0.24                  | 0.11                         | 0.13                  | 0.16                  |
| Outlet CH4 Concentration (as Propane) (ppm <sub>d</sub> ):                                                                                                                     | 0.10                  | 0.04                         | 0.06                  | 0.06                  |
| Outlet CH4 Concentration (as propane) (mg/m <sup>3</sup> <sub>c</sub> ):<br>Outlet CH4 Concentration (as propane) (lb/hr <sub>c</sub> ):                                       | 0.18                  | 0.08                         | 0.10                  | 0.12                  |
| (                                                                                                                                                                              |                       | and the second state         | and the second        | and have              |
|                                                                                                                                                                                | 0.68                  | 0.58                         | 0.51                  | 0.59                  |
| Outlet NMOC Concentration (as Propane) (ppmg):                                                                                                                                 |                       | 1.00                         |                       |                       |
| Outlet NMOC Concentration (as propane) (mg/m <sup>3</sup> <sub>d</sub> ):                                                                                                      | 1.25                  | 1.06                         | 0.93                  | 1.08                  |
|                                                                                                                                                                                |                       | 1.06<br>0.50<br>98.7%        | 0.93<br>0.44<br>98.7% | 1.08<br>0.50<br>98.4% |

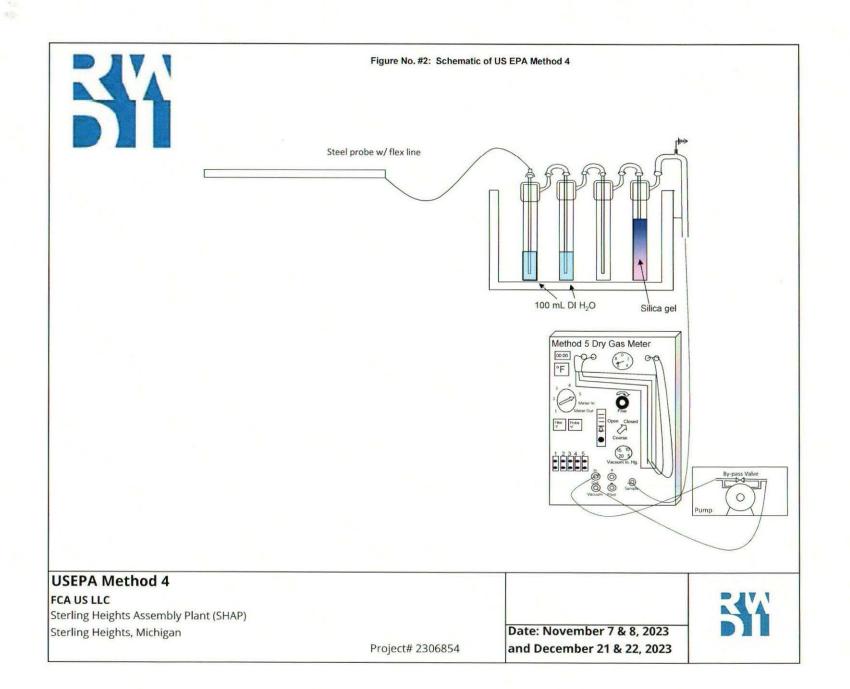
Note: "d" indicated based on dry conditions

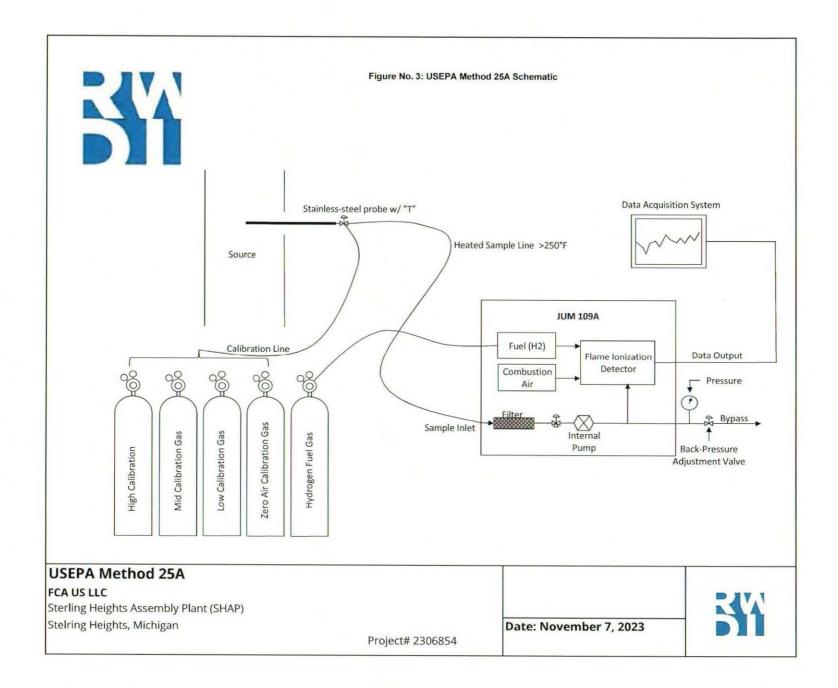
## Table 5: Total Particulate Matter (PM), PM10 and PM2.5 - Averaged Results

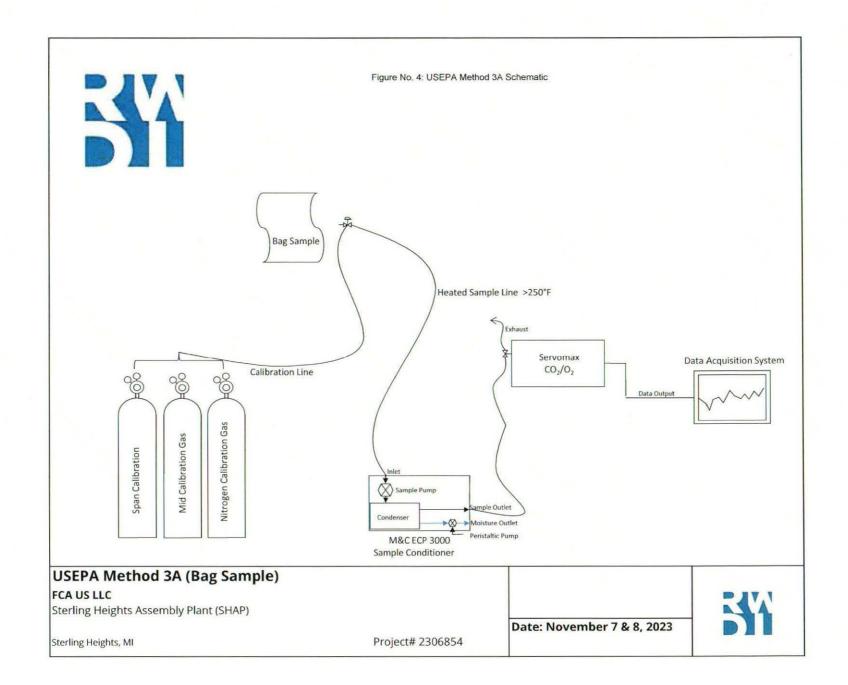
| Source               | Parameter                | Concentration | Emission Rate                                                                                                                                                                                                     | ROP Limit                           |  |
|----------------------|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| -                    | -                        | (gr/dscf)     |                                                                                                                                                                                                                   | -                                   |  |
| SV-RTO SOUTH         | PM                       |               | 0.0022 lb/1000 lb Exhaust Gas (wet)                                                                                                                                                                               | 0.0034 lb/1,000lb Exhaust Gas (wet) |  |
|                      | PM2.5                    | 0.0012        | 1.26 lb/hr                                                                                                                                                                                                        | 1.68 lb/hr                          |  |
|                      | PM10                     |               | 1.26 lb/hr           0.0014 lb/1000 lb Exhaust Gas (wet)           0.15 lb/hr           0.15 lb/hr           0.027 lb/hr           0.039 lb/hr           0.0010 lb/1000 lb Exhaust Gas (wet)           0.10 lb/hr | 1.68 lb/hr                          |  |
|                      | PM                       |               | 0.0014 lb/1000 lb Exhaust Gas (wet)                                                                                                                                                                               | 0.0031 lb/1,000lb Exhaust Gas (wet) |  |
| SV-BASE COAT OBSV 1  | PM2.5 - November         | 0.0007        | 0.15 lb/hr                                                                                                                                                                                                        | 0.11 lb/hr                          |  |
|                      | PM10 - November          |               | 0.15 lb/hr                                                                                                                                                                                                        | 0.11 lb/hr                          |  |
|                      | PM2.5 - December Re-Test | 0.0002        | 0.027 lb/hr                                                                                                                                                                                                       | 0.11 lb/hr                          |  |
|                      | PM10 - December Re-Test  | 0.0002        | 0.039 lb/hr                                                                                                                                                                                                       | 0.11 lb/hr                          |  |
| SV-BASE COAT OBSV 2  | PM                       |               | 0.0010 lb/1000 lb Exhaust Gas (wet)                                                                                                                                                                               | 0.0031 lb/1,000lb Exhaust Gas (wet) |  |
|                      | PM2.5                    | 0.0005        | 0.10 lb/hr                                                                                                                                                                                                        | 0.11 lb/hr                          |  |
|                      | PM10                     |               | 0.10 lb/hr                                                                                                                                                                                                        | 0.11 lb/hr                          |  |
|                      | PM                       |               | 0.0008 lb/1000 lb Exhaust Gas (wet)                                                                                                                                                                               | 0.0031 lb/1,000lb Exhaust Gas (wet) |  |
| SV-CLEAR COAT OBSV 1 | PM2.5                    | 0.0004        | 0.15 lb/hr                                                                                                                                                                                                        | 0.19 lb/hr                          |  |
|                      | PM10                     |               | 0.15 lb/hr                                                                                                                                                                                                        | 0.19 lb/hr                          |  |
| SV-CLEAR COAT OBSV 2 | PM                       |               | 0.0011 lb/1000 lb Exhaust Gas (wet)                                                                                                                                                                               | 0.0031 lb/1,000lb Exhaust Gas (wet) |  |
|                      | PM2.5 - November         | 0.0006        | 0.21 lb/hr                                                                                                                                                                                                        | 0.19 lb/hr                          |  |
|                      | PM10 - November          |               | 0.21 lb/hr                                                                                                                                                                                                        | 0.19 lb/hr                          |  |
|                      | PM2.5 - December Re-Test | 0.0003        | 0.093                                                                                                                                                                                                             | 0.19 lb/hr                          |  |
|                      | PM10 - December Re-Test  | 0.0004        | 0.12                                                                                                                                                                                                              | 0.19 lb/hr                          |  |

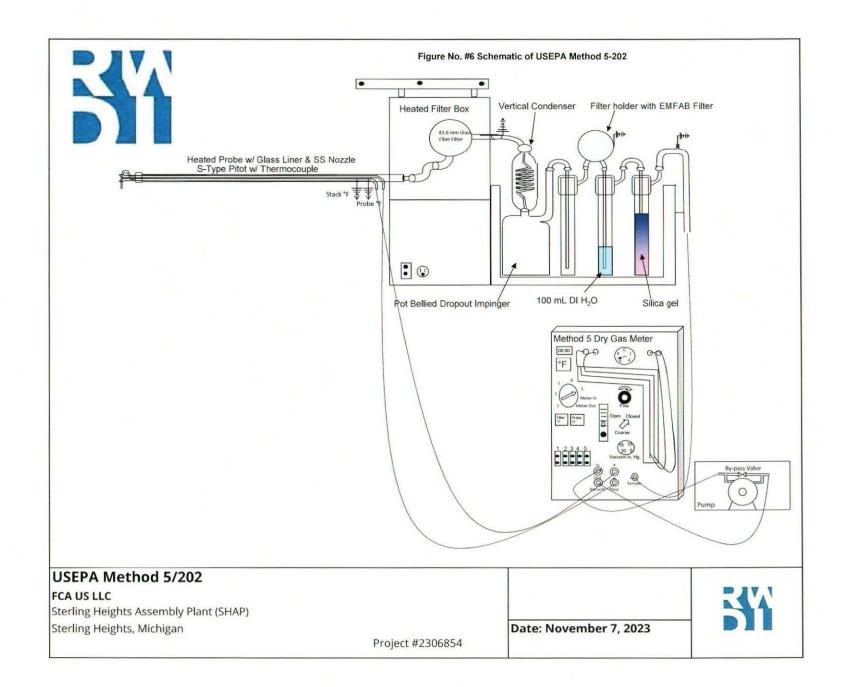

#### Notes:


-Sampling followed U.S. EPA Method 5 (TPM); average of three tests


- All referenced concentration values are expressed at 68°F, 29.92 in. Hg and Actual Oxygen

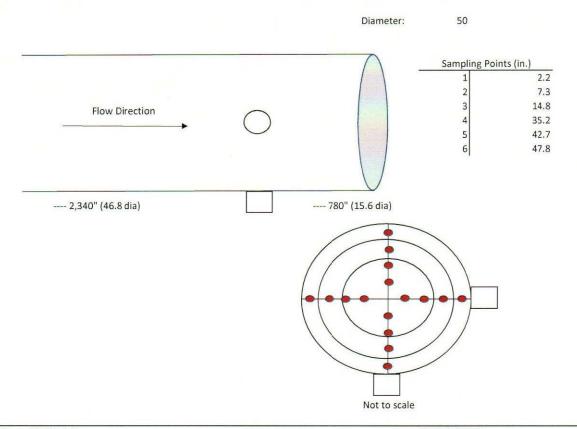




# FIGURES







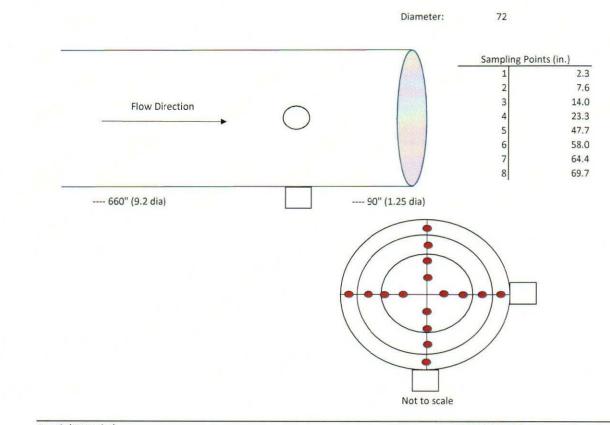








SA

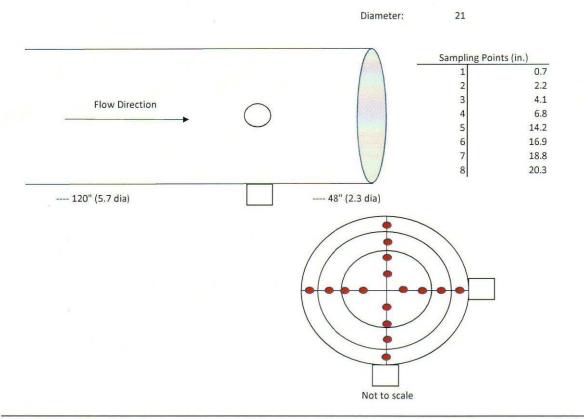
Figure 8: Ovens (RTO Inlet)




Ovens (RTO Inlet)

FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan

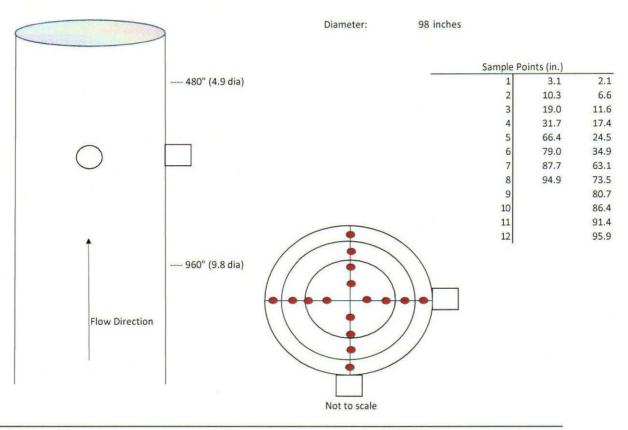
34


Figure 9: Booth (RTO Inlet)



Booth (RTO Inlet) FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan



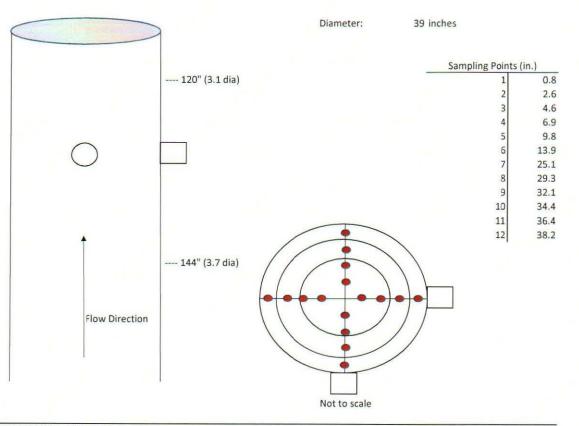

Figure 10: E-Coat Dip Tank (RTO Inlet)



E-Coat Dip Tank (RTO Inlet) FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan



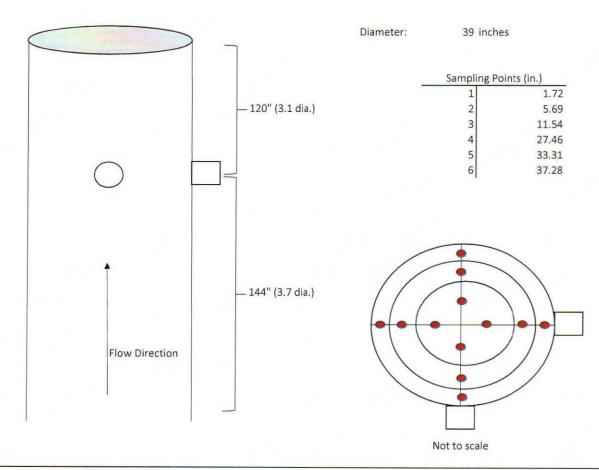
## Figure 11: SV-RTO SOUTH Outlet




## SV-RTO SOUTH

FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan

SA

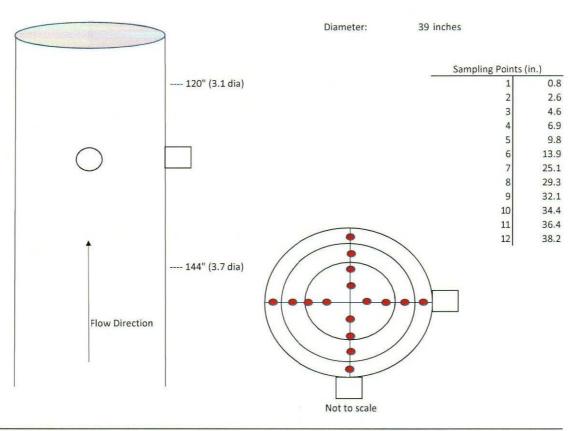

Figure 12: SV-BASE COAT OBSV 1 - USEPA Method 5



SV-BASE COAT OBSV 1 - US EPA Method 5 FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan



Figure No. 13: SV-BASE COAT OBSV 1 Sampling Location and Traverse Points - US EPA Method 201A




SV-BASE COAT OBSV 1 - USEPA Method 201A FCA US LLC Sterling Heights Assembly Plant (SHAP) Sterling Heights, MI

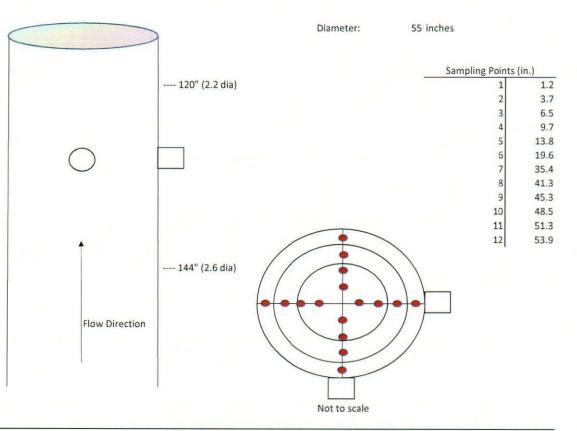
Date: December 21st and 22nd, 2023



Figure 14: SV-BASE COAT OBSV 2



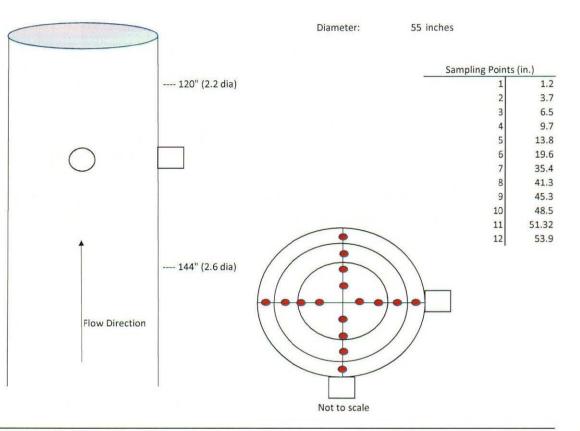
SV-BASE COAT OBSV 2 FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan RWDI USA LLC 2239 Star Court Rochester Hills, MI 48309




JAN 05 2024

AIR QUALITY DIVISION

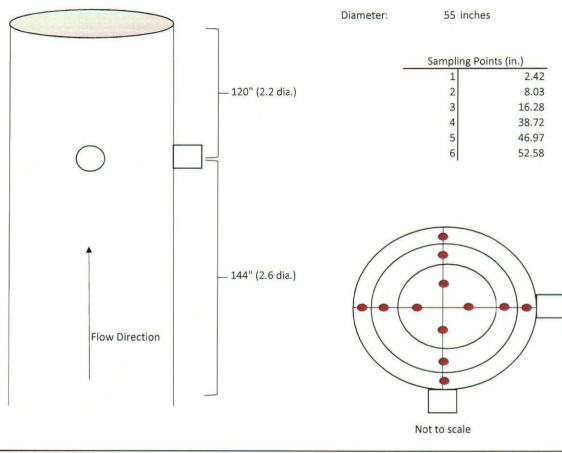



Figure 15: SV-CLEAR COAT OBSV 2



SV-CLEAR COAT OBSV 2 FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan




## Figure 16: SV-CLEAR COAT OBSV 2 - US EPA Method 5



SV-CLEAR COAT OBSV 2 - US EPA Method 5 FCA US LLC Sterling Heights Assemly Plant (SHAP) Sterling Heights, Michigan



Figure No. 17: SV-CLEAR COAT OBSV 2 Sampling Location and Traverse Points - US EPA Method 201A



SV-CLEAR COAT OBSV 2 - USEPA Method 201A FCA US LLC Sterling Heights Assembly Plant (SHAP) Sterling Heights, MI

Date: December 21st and 22nd, 2023