

Relative Accuracy Test Audit Test Report

Michigan State University
T.B. Simon Power Plant
Unit 4 Outlet Duct
East Lansing, Michigan
February 27 through March 1, 2017

Report Submittal Date April 26, 2017

© Copyright 2017 All rights reserved in Mostardi Platt

Project No. M170605D

RECEIVED

MAY 0 2 2017

AIR QUALITY DIV.

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a Continuous Emissions Monitoring System (CEMS) Relative Accuracy Test Audit (RATA) test program for Michigan State University at the T.B. Simon Power Plant in East Lansing, Michigan, on the Unit 4 Outlet Duct on February 27 through March 1, 2017. This report summarizes the results of the test program and test methods used in accordance with the Mostardi Platt Protocol M170605D Rev. 1 dated February 2, 2017. Mostardi Platt is a self-certified air emissions testing body (AETB). A copy of Mostardi Platt's self-certification can be found in Appendix A.

The test location, test dates, and test parameters are summarized below.

TEST INFORMATION							
Test Location	Test Dates	Test Parameters					
Unit 4 Outlet Duct	February 27 through March 1, 2017	Carbon Monoxide (CO), Carbon Dioxide (CO ₂), Nitrogen Oxides (NO _x), and Volumetric Flow					

The purpose of the test program was to demonstrate the relative accuracies of the Unit 4 Outlet Duct CO, CO₂, NO_x, and volumetric flow analyzers during the specified operating conditions. The test results from this test program indicate that each CEMS component meets the United States Environmental Protection Agency (USEPA) annual performance specification for relative accuracy as published in 40 Code of Federal Regulations Part 75 (40CFR75) and 40 Code of Federal Regulations (40CFR60).

	RATA RESULTS									
Test Location	Date	Parameter	Units	Relative Accuracy Acceptance Criteria	Relative Accuracy (RA)	Bias Adjustment Factor (BAF)				
		NOx	lb/mmBtu	± 0.015 lb/mmBtu mean difference	0.004 lb/mmBtu mean difference	1.111*				
		CO ₂	% wet	≤ 7.5 % of the mean reference value	1.38%	N/A				
Unit 4	2/27/17	2/27/17	2/27/17	2/27/17	со	ppmv	± 5 ppm mean difference + confidence coefficient	0.98 mean difference + confidence coefficient	N/A	
Outlet Duct		со	lb/mmBtu	≤ 10.0% of mean reference method value	4.99%	N/A				
	Volumetric 2/28/17 Flow - Low scfh (Normal) Load		scfh	≤ 7.5 % of the mean reference value	0.40%	1.000				
	3/1/17	Volumetric Flow – Mid Load	scfh	≤ 7.5 % of the mean reference value	1.16%	1.007				

^{*}Maximum Bias Adjustment Factor

The gas cylinders used to perform the RATA are summarized below.

	GAS CYLINDER INFORMATION									
Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date						
NOx	Airgas	CC135830	0.0 ppm	9/21/2024						
NOx	Airgas	CC216539	47.06 ppm	11/7/2019						
NO _x	Airgas	CC301314	90.12 ppm	8/29/2024						
CO ₂	Airgas	CC216539	0.0 %	11/7/2019						
CO ₂	Airgas	CC135830	10.2 %	9/21/2024						
CO ₂	Airgas	EB0075821	19.7 %	2/1/2024						
СО	Airgas	CC216539	0.0 ppm	11/7/2019						
CO	Airgas	CC486880	88.98 ppm	7/7/2024						
CO	Airgas	CC233856	181.5 ppm	7/5/2024						

No deviations, additions, or exclusions from the test protocol, test methods, the Mostardi Platt Quality Manual, or the ASTM D7036-12 occurred. The specific test conditions encountered did not interfere with the collection of the data.

The identifications of the individuals associated with the test program are summarized below.

	TEST PERSON	NEL INFORMATION
Location	Address	Contact
Test Facility	Michigan State University	Mr. Rick Johnson
	354 Service Rd	Electrical Engineer
	East Lansing, MI 48824	(517) 884-7108 (phone)
		rjohnson@ipf.msu.edu
Testing	Mostardi Platt	Mr. Stuart L. Burton
Company	888 Industrial Drive	Senior Project Manager
Supervisor	Elmhurst, Illinois 60126	630-993-2100 (phone)
		sburton@mp-mail.com
		QI Group V (certified on 2/1/13)
Testing		Mr. Benjamin Garcia
Company		Test Engineer
Personnel		QI Group V (certified on 3/4/16)
		Mr. David Dixon
		Test Technician
		Mr. Eric Karberg
		Test Technician

Copies of the QI certifications for test personnel are included in Appendix B.

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR75, and 40CFR60 Appendix A in addition to the Mostardi

Platt Quality Manual and the Mostardi Platt test protocol. Schematics of the test section diagrams and sampling trains used are included in Appendix C and D respectively. Calculation and nomenclature are included in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F. CEM data and process data as provided by Michigan State University are included in Appendix G.

The following methodologies were used during the test program:

Method 1 Sample and Velocity Traverse Determination

Test measurement points were selected in accordance with USEPA Method 1, 40CFR60, Appendix A. The characteristics of the measurement location are summarized below.

	TEST POINT INFORMATION AT Unit 4 Outlet Duct									
Stack Dimensions (Feet)	Equivalent Diameter (Feet)	Stack Area (Square Feet)	No. of Ports	Port Length (Inches)	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points		
5.17 by 10.33	6.891	53.41	6	21.0	1.210	1.550	Volumetric Flow	24		

Method 2 Volumetric Flow Rate Determination

Gas velocity was measured following USEPA Method 2, 40CFR60, Appendix A, for purposes of calculating stack gas volumetric flow rate. A 9.0 foot long S-type pitot tube, 0-10 inch differential pressure gauge, and K-type thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Copies of field data sheets are included in Appendix H. Calibration data are presented in Appendix I. This testing met the performance specifications as outlined in the Method.

Method 3A Oxygen (O2)/Carbon Dioxide (CO2) Determination

Stack gas molecular weight was determined in accordance with USEPA Method 3, 40CFR60, Appendix A, during each volumetric flow rate determination. An ECOM analyzer was used to determine stack gas O₂ and CO₂ content and, by difference, nitrogen content. Calibration data are presented in Appendix I. Gas cylinder certifications are included in Appendix J. This testing met the performance specifications as outlined in the Method.

Method 3A Carbon Dioxide (CO₂) Determination

Stack gas CO₂ concentrations were determined in accordance with USEPA Method 3A, 40CFR60, Appendix A. A Thermo Scientific Model 410i Optical Filter Carbon Dioxide Analyzer was used to determine carbon dioxide concentrations in the manner specified in the Method. The instrument has a nondispersive infrared-based detector and operated in the nominal range of 0% to 20% with the specific range determined by the high-level span calibration gas of 19.70%.

The Model 410i operates on the principle that CO₂ absorbs infrared radiation at a wavelength of 4.26 microns. The sample is drawn into the Model 410i through the sample bulkhead. The sample flows through the optical bench. Radiation from an infrared source is chopped and then passed through a rotating optical wheel alternating between sample and reference filters. The radiation then enters the optical bench where absorption by the sample gas occurs. The infrared radiation then exits the optical bench and falls on an infrared detector. The chopped detector

signal is modulated by the alternation between the filters with an amplitude related to the concentration of CO_2 in the sample cell. Because infrared absorption is a non-linear measurement, it is necessary to transform the basic analyzer signal into a linear output. The Model 410i uses an internally stored calibration curve to accurately linearize the instrument output over any range up to a concentration of 10,000 ppm. The Model 410i outputs the CO_2 concentration to the front panel display, the analog outputs, and also makes the data available over the serial or ethernet connection.

Stack gas was delivered to the analyzer through an EPM in-situ dilution sampling system. Stack gas concentrations were diluted at a nominal 100:1 ratio utilizing purified dilution air. The entire system was calibrated in accordance with the Method, using USEPA Protocol gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix I. Copies of the gas cylinder certifications are found in Appendix J. This testing met the performance specifications as outlined in the Method.

Method 4 Moisture Determination

USEPA Method 4, 40CFR60, Appendix A, was utilized to determine water (H_2O) content of the exhaust gas. 100 milliliters (ml) of water were added to each of the first two impingers, the third impinger was left empty, and the fourth impinger was charged with approximately 200 grams of silica gel. The impingers were placed in an ice bath to maintain the sampled gas passed through the silica gel impinger outlet below 68°F in order to increase the accuracy of the sampled dry gas volume measurement. The water volumes of the impinger train were measured and the silica gel was weighed before and after each test run to determine the mass of moisture condensed.

Each sample was extracted through a heated stainless-steel probe and filter assembly at a constant sample rate of approximately 0.75 cubic feet per minute, which was maintained throughout the course of the test run. Approximately, 21 dry standard cubic feet (dscf) were sampled for each, moisture run. After each run, a leak check of the sampling train was performed at a vacuum greater than the sampling vacuum to determine if any leakage had occurred during sampling. Following the leak check, the impingers were removed from the ice bath, water levels were measured, and the silica gel weight was recorded.

All of the equipment used was calibrated in accordance with the specifications of the Method. Copies of field data sheets are included in Appendix H. Calibration data is presented in Appendix I. This testing met the performance specifications as outlined in the Method.

Method 7E Nitrogen Oxides (NO_x) Determination

Stack gas NO_x concentrations and emission rates were determined in accordance with USEPA Method 7E, 40CFR60, Appendix A. A Thermo Scientific Model 42i Chemiluminescence Nitrogen Oxides Analyzer was used to determine nitrogen oxides concentrations, in the manner specified in the Method. The instrument operated in the nominal range of 0 ppm to 200 ppm with the specific range determined by the high-level span calibration gas of 90.12 ppm.

The Model 42i operates on the principle that nitric oxide (NO) and ozone (O₃) react to produce a characteristic luminescence with an intensity linearly proportional to the NO concentration. Infrared light emission results when electronically excited NO₂ molecules decay to lower energy states. Specifically,

$NO+O_3\rightarrow NO_2+O_2+hv$

Nitrogen dioxide (NO₂) must first be transformed into NO before it can be measured using the chemiluminescent reaction. NO₂ is converted to NO by a molybdenum NO₂-to-NO converter heated to about 340 °C. The flue gas sample is drawn into the Model 42*i* through the sample bulkhead. The sample flows through a capillary, and then to the mode solenoid valve. The solenoid valve routes the sample either straight to the reaction chamber (NO mode) or through the NO₂-to-NO converter and then to the reaction chamber (NO_x mode). A flow sensor prior to the reaction chamber measures the sample flow. Dry air enters the Model 42*i* through the dry air bulkhead, passes through a flow switch, and then through a silent discharge ozonator. The ozonator generates the ozone needed for the chemiluminescent reaction. At the reaction chamber, the ozone reacts with the NO in the sample to produce excited NO₂ molecules. A photomultiplier tube (PMT) housed in a thermoelectric cooler detects the luminescence generated during this reaction. From the reaction chamber, the exhaust travels through the ozone (O₃) converter to the pump, and is released through the vent.

The NO and NO_x concentrations calculated in the NO and NO_x modes are stored in memory. The difference between the concentrations is used to calculate the NO_2 concentration. The Model 42i outputs NO, NO_2 , and NO_x concentrations to the front panel display, the analog outputs, and also makes the data available over the serial or ethernet connection.

Stack gas was delivered to the analyzer through an EPM in-situ dilution sampling system. Stack gas concentrations were diluted at a nominal 100:1 ratio utilizing purified dilution air. The entire system was calibrated in accordance with the Method, using USEPA Protocol gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix I. Copies of the gas cylinder certifications are found in Appendix J. The NO₂ to NO converter test can be found in Appendix K. This testing met the performance specifications as outlined in the Method.

Method 10 Carbon Monoxide (CO) Determination

Stack gas CO concentrations and emission rates were determined in accordance with USEPA Method 10, 40CFR60, Appendix A. A Thermo Scientific Model 48i Gas Filter Correlation Carbon Monoxide was used to determine carbon monoxide concentrations, in the manner specified in the Method. The instrument operated in the nominal range of 0 ppm to 200 ppm with the specific range determined by the high-level span calibration gas of 181.50 ppm.

The Model 48i operates on the principle that CO absorbs infrared radiation at a wavelength of 4.6 microns. Because infrared absorption is a non-linear measurement technique, it is necessary to transform the basic analyzer signal into a linear output. The Model 48i uses an internally stored calibration curve to accurately linearize the instrument output over any range up to a concentration of 10,000 ppm. The sample is drawn into the Model 48i through the sample bulkhead. The sample flows through the optical bench. Radiation from an infrared source is chopped and then passed through a gas filter alternating between CO and N₂. The radiation then passes through a narrow bandpass interference filter and enters the optical bench where absorption by the sample gas occurs. The infrared radiation then exits the optical bench and falls on an infrared detector. The CO gas filter acts to produce a reference beam which cannot be further attenuated by CO in the sample cell. The N₂ side of the filter wheel is

transparent to the infrared radiation and therefore produces a measurement beam which can be absorbed by CO in the cell. The chopped detector signal is modulated by the alternation between the two gas filters with an amplitude related to the concentration of CO in the sample cell. Other gases do not cause modulation of the detector signal since they absorb the reference and measure beams equally. Thus, the GFC system responds specifically to CO. The Model 48i outputs the CO concentration to the front panel display, the analog outputs, and also makes the data available over the serial or Ethernet connection.

Stack gas was delivered to the analyzer through an EPM in-situ dilution sampling system. Stack gas concentrations were diluted at a nominal 100:1 ratio utilizing purified dilution air. The entire system was calibrated in accordance with the Method, using USEPA Protocol gases introduced at the probe, before and after each test run.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix I. Copies of the gas cylinder certifications are found in Appendix J. This testing met the performance specifications as outlined in the Method.

3.0 TEST RESULT SUMMARIES

Client: Michigan State University

Location: Unit 4 Outlet Duct Low Load

Facility: T.B. Simon Power Plant

Date: 2/27/17 and 2/28/17

Project #: M170605 Fuel Type: Natural Gas Test Method: 7E, 3A Fuel Factor: 1040

NO_x lb/mmBtu RATA

<u></u>	CEM Monitor Information									
	NC) _x Moni	tor/Model:	TEI	42C		NO _x Serial #:	42C-6421383		
	CC	₂ Moni	tor/Model:	TEI 41CHL		CO ₂ Serial #		41CHL-75680-380		
1=accept 0=reject	Test Run	КРРН	Test Date	Start Time	End Time	RM NO _x lb/mmBtu	CEM NO _x lb/mmBtu	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)	
1	1	163.3	02/27/17	17:15	17:35	0.012	0.009	0.003	0.000	
1	2	164.0	02/27/17	18:00	18:20	0.013	0.009	0.004	0.000	
1	3	163.9	02/27/17	18:40	19:00	0.013	0.009	0.004	0.000	
1	4	164.6	02/27/17	19:16	19:36	0.013	0.009	0.004	0.000	
0	5	166.0	02/27/17	19:51	20:11	0.014	0.009	0.005	0.000	
1	6	163.4	02/27/17	20:28	20:48	0.013	0.009	0.004	0.000	
1	7	163.2	02/27/17	21:06	21:26	0.013	0.009	0.004	0.000	
1	8	163.3	02/27/17	21:43	22:03	0.013	0.009	0.004	0.000	
1	9	163.1	02/27/17	22:20	22:40	0.013	0.009	0.004	0.000	
1	10	164.0	02/27/17	22:58	23:18	0.013	0.009	0.004	0.000	
0	11	163.9	02/27/17	23:34	23:54	0.013	0.009	0.004	0.000	
0	12	163.4	02/28/17	00:10	00:30	0.013	0.008	0.005	0.000	
				-	n		9			
					t(0.025)	2.3				
			Mean Re	ference Me	thod Value	0.0)13	RM avg		
				Mean	CEM Value	0.0	009	CEM avg		
				Sum of	Differences	0.0)35	di		
				Mean	Difference	0.0	004	d		
			Sum	of Difference	es Squared	0.0	000	di ²	•	
				Standar	d Deviation	0.0	000	sd		
	(Confide	nce Coeffi	cient 2.5% E	rror (1-tail)	0.0	000	cc		
				elative Accu				/mmBtu difference ^A		
				3ias Adjustn	nent Factor	1.4	111	BAF ^B	:	

^A Relative accuracy for low emission sources with NO_x emissions of \leq 0.200 lbs/mmBtu based on a mean difference of

^{+/- 0.015} lbs/mmBtu for annual RATA testing, or +/- 0.020 lbs/mmBtu for semi-annual RATA testing.

^B Maximum Bias Adjustment Factor

Client: Michigan State University

Location: Unit 4 Outlet Duct Low Load

Facility: T.B. Simon Power Plant

Date: 2/27/17 and 2/28/17

Project #: M170605

Test Method: 3A

CO₂ % (wet) RATA

CO ₂ % (wet) RATA									
1=accept 0=reject	Test Run	КРРН	Test Date	Start Time	End Time	RM CO ₂ % (wet)	PEM CO ₂ % (wet)	(RM-PEM) Difference (di)	(RM-PEM) Difference ² (di ²)
0	1	163.3	02/27/17	17:15	17:35	6.4		6.4	40.96
0	2	164	02/27/17	18:00	18:20	6.2	5.9	0.3	0.09
0	3	163.9	02/27/17	18:40	19:00	6.3	5.9	0.4	0.16
1	4	164.6	02/27/17	19:16	19:36	6.3	6.0	0.3	0.09
1	5	166.0	02/27/17	19:51	20:11	6.2	6.0	0.2	0.04
1	6	163.4	02/27/17	20:28	20:48	6.2	6.0	0.2	0.04
1	7	163.2	02/27/17	21:06	21:26	6.2	6.0	0.2	0.04
1	8	163.3	02/27/17	21:43	22:03	6.1	6.0	0.1	0.01
1	9	163.1	02/27/17	22:20	22:40	6.1	6.0	0.1	0.01
1	10	164.0	02/27/17	22:58	23:18	6.1	6.0	0.1	0.01
1	11	163.9	02/27/17	23:34	23:54	6.1	6.1	0.0	0.00
1	12	163.4	02/28/17	00:10	00:30	6.1	6.1	0.0	0.00
					n	Ş)		-
					t(0.975)	2.306			
			Mean Re	ference Me	thod Value	6.′	156	RM avg	
				Mean	CEM Value	6.0)22	CEM avg	
				Sum of	Differences	1.3	200	di	
				Mean	Difference	0.	133	d	
			Sum d	of Difference	s Squared	0.2	240	di ²	
				Standard	Deviation	0.100		sd	
Confidence Coefficient 2.5% Error (1-tail)						0.077		CC	
				Relativ	e Accuracy	3.	41	RA	

Client: Michigan State University

Facility: T.B. Simon Power Plant

Project #: M170605

Location: Unit 4 Outlet Duct Low Load

Date: 2/27/17 and 2/28/17

Test Method: 10

CO ppmv RATA

	CEM Monitor Information									
		O Mon	itor/Model:	TEI	48C		CO Serial #:	48C-75478-380		
1=accept 0=reject	Test Run	КРРН	Test Date	Start Time	End Time	RM CO ppmv	CEM CO ppmv	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)	
1	1	163.3	02/27/17	17:15	17:35	9.3	10.2	-0.9	0.81	
1	2	164.0	02/27/17	18:00	18:20	9.4	10.4	-1.0	1.00	
1	3	163.9	02/27/17	18:40	19:00	10.5	11.3	-0.8	0.64	
0	4	164.6	02/27/17	19:16	19:36	8.6	11.4	-2.8	7.84	
1	5	166.0	02/27/17	19:51	20:11	12.2	11.5	0.7	0.49	
1	6	163.4	02/27/17	20:28	20:48	11.1	11.8	-0.7	0.49	
1	7	163.2	02/27/17	21:06	21:26	11.9	11.9	0.0	0.00	
1	8	163.3	02/27/17	21:43	22:03	11.0	11.9	-0.9	0.81	
0	9	163.1	02/27/17	22:20	22:40	10.3	12.1	-1.8	3.24	
0	10	164.0	02/27/17	22:58	23:18	10.4	12.7	-2.3	5.29	
1	11	163.9	02/27/17	23:34	23:54	11.8	12.4	-0.6	0.36	
¨ 1	12	163.4	02/28/17	00:10	00:30	12.1	12.9	-0.8	0.64	
					n t(0.975)	2.3				
			Mean I	Reference M	ethod Value	11.0	033	RM avg		
				Mean	CEM Value	11.	589	CEM avg		
Ĭ				Sum of	Differences	-5.0	000	dí		
				Mear	n Difference	-0.5	556	d		
			Sum	of Difference	5.2	40	di ²			
:	Standard Deviation						0.555		sd	
	Confidence Coefficient 2.5% Error (1-tail)						0.426		cc	
			I	Relative Acc	0.98 ppm + cc differen		fference ^A			

[^] Relative accuracy based upon alternate performance standard of +/- 5 ppm CO plus the confidence coefficient.

Client: Michigan State University Facility: T.B. Simon Power Plant Project #: M170605

Fuel Type: Natural Gas

Location: Unit 4 Outlet Duct Low Load

Date: 2/27/17 and 2/28/17

Test Method: 10, 3A Fuel Factor: 1040

CO lb/mmBtu RATA **CEM Monitor Information**

		O 86	(Anules nala)		48C	ormation	CO Serial # :	1 400 76	470 200	
			itor/Model:	1						
	<u> </u>	J2 Mon	itor/Model:	IEI4	1CHL		CO2 Serial # :			
1=accept 0=reject	Test Run	КРРН	Test Date	Start Time	End Time	RM CO lb/mmBtu	CEM CO lb/mmBtu	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)	
1	1	163.3	02/27/17	17:15	17:35	0.011	0.010	0.001	0.000	
1	2	164.0	02/27/17	18:00	18:20	0.011	0.010	0.001	0.000	
0	3	163.9	02/27/17	18:40	19:00	0.013	0.010	0.003	0.000	
1	4	164.6	02/27/17	19:16	19:36	0.010	0.010	0.000	0.000	
1	5	166.0	02/27/17	19:51	20:11	0.015	0.014	0.001	0.000	
1	6	163.4	02/27/17	20:28	20:48	0.014	0.015	-0.001	0.000	
1	7	163.2	02/27/17	21:06	21:26	0.015	0.015	0.000	0.000	
1	8	163.3	02/27/17	21:43	22:03	0.014	0.015	-0.001	0.000	
0	9	163.1	02/27/17	22:20	22:40	0.013	0.015	-0.002	0.000	
0	10	164.0	02/27/17	22:58	23:18	0.013	0.016	-0.003	0.000	
1	11	163.9	02/27/17	23:34	23:54	0.015	0.015	0.000	0.000	
1	12	163.4	02/28/17	00:10	00:30	0.015	0.016	-0.001	0.000	
					n t(0.975)	9 2.306				
			Mean F	Reference Me	ethod Value		013	RM avg	- Leavening	
				Mean	CEM Value	0.0)13	CEM avg		
				Sum of	Differences	0.0	000	di		
				Mea	n Difference	0.0	000	d di ²		
			Sum	of Difference	es Squared	0.0	0.000			
	Standard Deviation						0.001		sd	
		Confid	lence Coef	ficient 2.5% l	Error (1-tail)	0.0	0.001		CC	
				Relativ	4.99 RA		RA			

Client: Michigan State University Facility: T.B. Simon Power Plant

Project #: M170605

Test Location: Unit 4 Outlet Duct Test Date: 2/28/2017

Test Method: 2
CEM Monitor Information

Volumetric Flow RATA - Low (Normal) Load

Volumetric Flow RATA – Low (Normal) Load									
Flow	Monit	or/Model:	OFS	2000		Flow Serial # :	02	070060	
1=accept 0=reject	Test Run	Test Date	Start Time	End Time	Reference Method Flow SCFH	CEM Flow SCFH	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)	
0	1	02/28/17	15:03	15:13	4,275,000	4,371,000	-96,000	9,216,000,000	
1	2	02/28/17	15:14	15:21	4,353,000	4,354,000	-1,000	1,000,000	
1	3	02/28/17	15:22	15:30	4,358,000	4,348,000	10,000	100,000,000	
1	4	02/28/17	15:56	16:03	4,361,000	4,352,000	9,000	81,000,000	
1	5	02/28/17	16:04	16:12	4,364,000	4,355,000	9,000	81,000,000	
1	6	02/28/17	16:14	16:22	4,333,000	4,317,000	16,000	256,000,000	
1	7	02/28/17	16:40	16:50	4,352,000	4,352,000	0	0	
1	8	02/28/17	16:55	17:02	4,314,000	4,343,000	-29,000	841,000,000	
1	9	02/28/17	17:03	17:10	4,312,000	4,341,000	-29,000	841,000,000	
1	10	02/28/17	17:12	17:20	4,319,000	4,339,000	-20,000	400,000,000	
				n t(0.025)	9 2.30				
	Mean	Reference	Metho	d Value	434066		RM avg		
				VI Value	434455		CEM avg		
				erences	35000		di		
				ference	-3888.		d		
	Sui	n of Differ	ences S	quared	26010000		di ²		
		Stan	idard De	viation	17553		sd		
Confiden	ce Coe	fficient 2.5	% Erro	r (1-tail)	13492	.478	CC		
	Relative Accuracy			curacy		-	RA		
		Bias Adjı	ustmen	t Factor	1.00	0	BAF		

Client: Michigan State University Facility: T.B. Simon Power Plant

Test Location: Unit 4 Outlet Duct

Test Date: 3/1/2017 Test Method: 2

Project #: M170605

CEM Monitor Information

Volumetric Flow RATA - Mid Load

Volumetric Flow RATA - Find Load										
Flow	Monit	or/Model:	OFS	2000		Flow Serial #:	02	2070060		
1=accept 0=reject	Test Run	Test Date	Start Time	End Time	Reference Method Flow SCFH	CEM Flow SCFH	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)		
1	1	03/01/17	04:45	04:58	5,192,000	5,144,000	48,000	2,304,000,000		
1	2	03/01/17	04:59	05:06	5,212,000	5,128,000	84,000	7,056,000,000		
0	3	03/01/17	05:07	05:14	5,169,000	5,065,000	104,000	10,816,000,000		
1	4	03/01/17	05:34	05:41	5,153,000	5,161,000	-8,000	64,000,000		
1	5	03/01/17	05:42	05:49	5,148,000	5,144,000	4,000	16,000,000		
1	6	03/01/17	05:55	06:05	5,185,000	5,147,000	38,000	1,444,000,000		
1	7	03/01/17	06:14	06:21	5,153,000	5,153,000	0	0		
1	8	03/01/17	06:23	06:30	5,172,000	5,139,000	33,000	1,089,000,000		
1	9	03/01/17	06:31	06:41	5,186,000	5,114,000	72,000	5,184,000,000		
1	10	03/01/17	06:42	06:50	5,173,000	5,126,000	47,000	2,209,000,000		
	Mean	Reference		n t(0.025) d Value	9 2,30 517488	6	RM avg			
				VI Value erences	513955 318000		CEM avg			
		M	lean Dif	ference	35333	.333	d			
	Sui	n of Differ	ences S	quared	19366000	000.000	di ²			
		Stan	dard De	viation	31878	.676	sd			
Confiden	ce Coe	fficient 2.5	% Erro	r (1-tail)	24504	.076	CC			
	Relative Accuracy			curacy	1.1	6	RA			
	Bias Adjustment Factor				1.00)7	BAF			

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Michigan State University. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As the program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results. The test program was performed in accordance with the test protocol, test methods, the Mostardi Platt Quality Manual, and the ASTM D7036-12, as applicable.

MOSTARDI PLATT

SABUL	Program Manager
Stuart L. Burton	
JuffryM. Cinhue	Quality Assurance
Jeffrey M. Crivlare	