

Thermal Oxidizer VOC Destruction Efficiency Test Summary Report

RECEIVED

FEB 1 0 2014 AIR QUALITY DIV.

M4199

Prepared for:

General Motors Company

Detroit, Michigan

Detroit Hamtramck Assembly Center 2500 East General Motors Boulevard Detroit, Michigan 48211

> Project No. 13-4466.00 January 29, 2014

BT Environmental Consulting, Inc. 4949 Fernlee Avenue Royal Oak, Michigan 48073 (248) 548-8070

Environmental Consulting

4949 Fernlee Royal Oak, Michigan 48073 (248) 548-8070 Fax (248) 548-8073

EXECUTIVE SUMMARY

BT Environmental Consulting, Inc. (BTEC) was retained by General Motors Company Detroit Hamtramck Assembly Center (GM) to conduct a Volatile Organic Compound (VOC) Destruction Efficiency (DE) compliance emissions test program on nine Thermal Oxidizers (TO) at the GM facility located at 2500 E. GM Blvd., Detroit, MI 48211.

Three of the nine TOs (MOD 1, MOD 3, and North Prime) were chosen by Michigan Department of Environmental Quality (MDEQ) personnel for triplicate 60-minute test runs to demonstrate compliance for the entire system. In addition a single 60-minute test run was performed at six of the TOs.

Testing was conducted December 10 through 13, 2013. Mr. Tom Maza, of MDEQ was onsite December 10th, to witness a portion of the testing program and Mr. Jeff Korniski of MDEQ was onsite December 11th to witness a portion of the testing program.

Table I Test Program VOC DE Summary		
Source	VOC DE	
Mod 1 TO	96.9 %	
Mod 3 TO	98.5 %	
North Prime TO	95.1 %	

The results of the VOC DE test program are summarized by Table I.

Detailed results for each test run can be found in Tables 4-12.

TABLE OF CONTENTS

1. IN	TRODUCTION1
1.A 1.B 1.C 1.D 1.E	Identification, Location, and Dates of Test 1 Purpose of Testing 1 Source Description 1 Test Program Contact 2 Testing Personnel 3
2. SU	JMMARY OF RESULTS
2.a 2.b 2.c 2.d	OPERATING DATA
3. SC	OURCE DESCRIPTION4
3.A 3.B 3.C 3.D	PROCESS DESCRIPTION
4. SA	MPLING AND ANALYTICAL PROCEDURES5
4.a 4.b 4.c 4.d	SAMPLING TRAIN AND FIELD PROCEDURES
5. TE	ST RESULTS AND DISCUSSION
5.A 5.B 5.C 5.D 5.E 5.F	RESULTS TABULATION 6 DISCUSSION OF RESULTS 7 SAMPLING PROCEDURE VARIATIONS 7 PROCESS OR CONTROL DEVICE UPSETS 7 CONTROL DEVICE MAINTENANCE 7 AUDIT SAMPLE ANALYSES 7
5.G 5.Н	CALIBRATION SHEETS
5.1 5.j	FIELD DATA SHEETS

RECEIVED

FEB 1 0 2014

AIR QUALITY DIV.

TABLE OF CONTENTS (continued)

SUMMARY TABLES

Table 1	Emission Limits Summary
Table 2	Testing Personnel Summary
Table 3	Test Program VOC DE Summary
Table 4	Mod 1 TO VOC DE Results Summary
Table 5	Mod 2 TO VOC DE Results Summary
Table 6	Mod 3 TO VOC DE Results Summary
Table 7	Mod 4 TO VOC DE Results Summary
Table 8	Mod 5 TO VOC DE Results Summary
Table 9	Mod 6 TO VOC DE Results Summary
Table 10	Mod 7 TO VOC DE Results Summary
Table 11	North Prime RTO VOC DE Results Summary
Table 12	South Prime RTO VOC DE Results Summary
Table 13	TO Operating Temperatures

FIGURES

Figure 1	USEPA Method 25A (VOC) Sampling Train Drawing
Figure 2	Mod Thermal Oxidizer Exhaust Stack Diagram
Figure 3	North/South Primer Thermal Oxidizer Exhaust Stack Diagram

<u>APPENDIX</u>

Appendix A	Equipment Calibration and Span Gas Documents
Appendix B	Field and Computer Generated Raw Data and Field Notes
Appendix C	Example Calculations
Appendix D	Production Data
Appendix E	Compact Disc with all BTEC's CEMS data files
	-

1. Introduction

BT Environmental Consulting, Inc. (BTEC) was retained by General Motors Corporation Detroit Hamtramck Assembly Center (GM) to conduct a Volatile Organic Compound (VOC) Destruction Efficiency (DE) compliance emissions test program on nine Thermal Oxidizers (TO) at the GM facility located at 2500 E. GM Blvd., Detroit, MI 48211. The DE test program was conducted on December 10th through the 13th, 2013. The purpose of this report is to document the results of the test program.

AQD has published a guidance document entitled "Format for Submittal of Source Emission Test Plans and Reports" (December 2013). The following is a summary of the emissions test program and results in the format suggested by the aforementioned document.

1.a Identification, Location, and Dates of Test

Sampling and analysis for the DE test program was conducted on December 10th through the 13th, 2013 at the GM facility in Detroit, Michigan. The test program included evaluation of VOC DE from nine TO's.

1.b Purpose of Testing

AQD issued Permit No. MI-ROP-M4199-2010 to GM on February 17, 2010. Table 1 summarizes the limitations included in this permit.

Т	Table 1		
AQD Permit No. MI-ROP-M	14199-2010 Emission Limitations		
Operating Parameter	Limitation		
Minimum VOC DE	90 %		

The purpose of the testing was to determine the VOC DE on six units with a single 60-minute test run. The VOC DE, specified in Permit No. MI-ROP-M4199-2010, must not be less than 90% for the topcoat oven incinerators. Three of the nine units were chosen by MDEQ personnel (two topcoat units and one primer surfacer unit) for testing (totaling three 60-minute test runs) to demonstrate compliance for the entire system.

1.c Source Description

EUTOPCOATSYSTEM - A topcoat spray booth followed by a curing oven. There is a heated flash-off area located between the basecoat portion of the booth and the clear coat portion of the booth. The waterborne basecoat is applied automatically with air atomized or electrostatic spray guns. The solvent borne clear coat is applied automatically with air atomized or electrostatic spray guns. The topcoat booth is equipped with a downdraft water

wash system to control particulate emissions from paint overspray. VOC emissions from the curing ovens are controlled by a thermal oxidizer.

EUPRIMERSURFACER - A guidecoat (primer surfacer) spray booth followed by a curing oven. The solvent borne primer surfacer is applied automatically with air atomized or electrostatic spray guns. The topcoat booth is equipped with a downdraft water wash system to control particulate emissions from paint overspray. VOC emissions from the curing ovens are controlled by a thermal oxidizer.

1.d Test Program Contact

The contacts for the source and test report is:

Jennifer Tegen GECS - Facility Air Compliance & Permit GM Warren Technical Center 30200 Mound Road - Bldg 1-11, Warren, MI 48090-9010 (810)706-1319

Ms. Jessica Jeffery Environmental Engineer General Motors Company Detroit/Hamtramck Assembly 2500 East General Motors Boulevard Detroit, MI 48211 (313) 215-8203

Mr. Barry Boulianne Senior Project Manager BTEC 4949 Fernlee Ave. Royal Oak, Michigan 48073 (248) 548-8072

1.e Testing Personnel

Names and affiliations for personnel who were present during the testing program are summarized by Table 2.

Test Personnel			
Name and Title	Affiliation	Telephone (810) 706-1319	
Ms. Jennifer Tegen Environmental Engineer	GECS - Facility Air Compliance & Permit		
Ms. Jessica Jeffery Environmental Engineer	General Motors Detroit/ Hamtramck Assembly Plant	(313) 215-8203	
Mr. Matthew Young Project Manager	BTEC 4949 Fernlee Ave. Royal Oak, MI 48073	(586) 744-9133	
Mr. Andrew Lusk Environmental Technician	BTEC 4949 Ferniee Ave. Royal Oak, MI 48073	(248) 548-8070	
Mr. Tom Maza MDEQ	Air Quality Division Cadillac Place 3058 West Grand Blvd. Suite 2-300 Detroit, MI 48202	(313) 456-4709	
Mr. Jeff Korniski MDEQ	Air Quality Division Cadillac Place 3058 West Grand Blvd. Suite 2-300 Detroit, MI 48202	(313) 456-4681	

Table 2
Test Personne

2. Summary of Results

Sections 2.a through 2.d summarize the results of the emissions compliance test program.

2.a Operating Data

Process data monitored during the emissions test program included vehicle count and TO operating temperature.

2.b Applicable Permit

The applicable permit for this emissions test program is Permit No. MI-ROP-M4199-2010.

2.c Results

The overall results of the emission test program are summarized by Table 3 (see Section 5.a). Detailed results for each source can be found in tables 4-12.

2.d Emission Regulation Comparison

The results summarized by table 3 (section 5.a) shows that the VOC DE for the entire system is well above the minimum requirement of 90%.

3. Source Description

Sections 3.a through 3.e provide a detailed description of the process.

3.a Process Description

EUTOPCOATSYSTEM - A topcoat spray booth followed by a curing oven. There is a heated flash-off area located between the basecoat portion of the booth and the clear coat portion of the booth. The waterborne basecoat is applied automatically with air atomized or electrostatic spray guns. The solvent borne clear coat is applied automatically with air atomized or electrostatic spray guns. The topcoat booth is equipped with a downdraft water wash system to control particulate emissions from paint overspray. VOC emissions from the curing ovens are controlled by a thermal oxidizer.

EUPRIMERSURFACER - A guidecoat (primer surfacer) spray booth followed by a curing oven. The solvent borne primer surfacer is applied automatically with air atomized or electrostatic spray guns. The topcoat booth is equipped with a downdraft water wash system to control particulate emissions from paint overspray. VOC emissions from the curing ovens are controlled by a thermal oxidizer.

3.b Raw and Finished Materials

The GM facility is an automotive assembly center. The facility utilizes numerous materials in the process of automotive assembly, varying from parts and products to preassembled automotive supplies. The materials utilized that are influential for the emissions test program are paints that are cured in curing ovens. The facility is restricted in the number of finished products produced as being 78.5 fully assembled vehicles per hour and not more than 337,500 assemblies per year.

3.c Process Capacity

The facility is restricted in the number of finished products produced as being 78.5 fully assembled vehicles per hour and not more than 337,500 assemblies per year.

3.d Process Instrumentation

The only process operating parameters relevant to the emissions test program are TO operating temperature, retention time, and vehicle production counts.

4. Sampling and Analytical Procedures

Sections 4.a through 4.d provide a summary of the sampling and analytical procedures used to verify VOC DE.

4.a Sampling Train and Field Procedures

Volatile Organic compound (VOC) concentrations were measured according to 40 CFR 60, Appendix A, Method 25A. A sample of the gas stream was drawn through a stainless steel probe, and a heated Teflon[®] sample line to prevent the condensation of any moisture from the sample before it enters the analyzer. Data was recorded at 4-second intervals on a PC equipped with IOtech[®] data acquisition software. BTEC used a VIG Model 20 THC hydrocarbon analyzer and a JUM 109A methane/non methane hydrocarbon analyzer to determine the VOC concentration.

The VIG THC hydrocarbon analyzer channels a fraction of the gas sample through a capillary tube that directs the sample to the flame ionization detector (FID), where the hydrocarbons present in the sample are ionized into carbon. The carbon concentration is then determined by the detector in parts per million (ppm). This concentration is transmitted to the data acquisition system (DAS) at 4-second intervals in the form of an analog signal, specifically voltage, to produce data that can be averaged over the duration of the testing program. This data is then used to determine the average ppm for total hydrocarbons (THC) using the equivalent units of propane (calibration gas).

The JUM Model 109A analyzer utilizes two flame ionization detectors (FIDs) in order to report the average ppm for total hydrocarbons (THC), as propane, as well as the average ppm for methane (as methane). Upon entry, the analyzer splits the gas stream. One FID ionizes all of the hydrocarbons in the gas stream sample into carbon, which is then detected as a concentration of total hydrocarbons. Using an analog signal, specifically voltage, the concentration of THC is then sent to the data acquisition system (DAS), where recordings are taken at 4-second intervals to produce an average based on the overall duration of the test. This average is then used to determine the average ppm for THC reported as the calibration gas, propane, in equivalent units.

The second FID reports methane only. The sample enters a chamber containing a catalyst that destroys all of the hydrocarbons present in the gas stream other than methane. As with

the THC sample, the methane gas concentration is sent to the DAS and recorded. The methane concentration, reported as methane, can then be converted to methane, reported as propane, by dividing the measured methane concentration by the analyzer's response factor.

The analyzer's response factor is obtained by introducing a methane calibration gas to the calibrated J.U.M. 109A. The response of the analyzer's THC FID to the methane calibration gas, in ppm as propane, is divided by the Methane analyzer's response to the methane calibration gas, in ppm as methane. The response factor determined during testing was 2.42 and 2.15.

In accordance with Method 25A, a 4-point (zero, low, mid, and high) calibration check was performed on the THC analyzer. Calibration drift checks were performed at the completion of each run.

4.b Recovery and Analytical Procedures

Recovery and analytical procedures were described in Section 4.a.

4.c Sampling Ports

Sampling ports are located at the inlet and outlet of each thermal oxidizer (inside the building).

4.d Traverse Points

The stack was not traversed. The sample was drawn through a stainless steel probe at single fixed point.

5. Test Results and Discussion

Sections 5.a through 5.k provide a summary of the test results.

5.a Results Tabulation

The results of the emissions test program are summarized by Table 3.

Test Program VOC DE Summary		
Source	VOC DE	
Mod 1 TO	96.9 %	
Mod 3 TO	98.5 %	
North Prime TO	95.1 %	

Table 3

Detailed data for each test run can be found in Tables 4-12.

5.b Discussion of Results

The purpose of the testing was to determine the VOC DE on all nine units with a single 60minute test run. The VOC DE, specified in Permit No. MI-ROP-M4199-2010 must not be less than 90% for the topcoat oven incinerators. Three of the nine TOs were chosen by Michigan Department of Environmental Quality (MDEQ) personnel for three test runs of sixty minutes each. MOD 1, MOD 3, and North Prime TOs were chosen for three 60-minute test runs to demonstrate compliance for the entire system. All TO's sampled in this test program achieved a destruction efficiency of 95.1% or greater, this value is well above the required minimum destruction efficiency listed in the applicable permit.

The results of the DE test program are summarized by Tables 4-12.

5.c Sampling Procedure Variations

The TO inlet sampling locations did not meet requirements listed in USEPA Method 1. Preliminary discussion with MDEQ resulted in the approval of a concentration based VOC destruction efficiency program. Per the requirement listed in the MDEQ test plan approval letter dated November 19, 2013 the VOC DE was calculated on a concentration basis (ppm) and the inlet concentration was reduced 5% to compensate for possible dilution in the process.

5.d Process or Control Device Upsets

No upset conditions occurred during testing.

5.e Control Device Maintenance

No maintenance was performed during the test program.

5.f Audit Sample Analyses

No audit samples were collected as part of the test program.

5.g Calibration Sheets

Relevant equipment calibration documents are provided as Appendix B.

5.h Sample Calculations

Sample calculations are provided in Appendix D.

5.i Field Data Sheets

Field documents relevant to the emissions test program are presented in Appendix C.

5.j Laboratory Data

There are no laboratory results for this test program.

GM Detroit Hamtramck Assembly Center TO VOC DE Emissions Test Report

BTEC Project No. 13-4466.00 January 29, 2014

Tables

.

Table 4 Mod 1 General Motors Hamtramek, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/11/13

Parameter	Run 1	Run 2	Run 3	Average
Test Run Date	12/11/2013	12/11/2013	12/11/2013	
Test Run Time	6:30	7:59	9:48	
Inlet VOC Concentration (ppmv as propane)	73.6	71.6	64,1	69.8
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	72.9	70.4	62.9	68.7
Inlet VOC Concentration (Adjusted -5%)	69.3	66.9	59.8	65.3
Outlet VOC Concentration (ppmv as propane)	2.1	1.2	2.3	1.9
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	2.2	1,4	2.4	2.0
Total Concentration DE (ppmv Corrected as per USEPA 7E)	96.9%	98.0%	96.2%	97.0%
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	96.8%	97.9%	96.0%	96.9%

Inlet VOC Correction			
Co	1,41	2.57	2.61
Cma	89.5	89.5	89.5
Cm	90.05	90.37	90.15

Outlet VOC Correction			
Co	-0.11	-0.24	-0.15
Cma	9.9	9.9	9.9
Cm	9.65	9.76	9.84

 $\begin{array}{l} ppmv = parts \ per \ million \ on \ a \ volume-to-volume \ basis \\ lb/hr = pounds \ per \ hour \\ MW = molecular \ weight (CO = 28.01, \ NOx = 46.01, \ SO_2 = 64.05, \ C_3H_8 = 44.10, \ carbon = 12.01) \\ 24.14 = molar \ volume \ of \ air \ at \ standard \ conditions \ (70 \ ^{\circ}F, 29.92^{\prime\prime\prime} \ Hg) \\ 35.31 = \ \hbar^3 \ per \ m^3 \\ 453600 = mg \ per \ lb \end{array}$

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 5 Mod 2 General Motors Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/12/13

Parameter	Mod 2
Test Run Date	12/12/2013
Test Run Time	12:25
Inlet VOC Concentration (ppmv as propane)	59.6
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	61.0
Inlet VOC Concentration (Adjusted -5%)	58.0
Outlet VOC Concentration (ppmv as propane)	2,0
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	1.6
Total Concentration DE (ppmv Corrected as per USEPA 7E)	97.5%
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	97.3%

Inlet VOC Correction		
Co	0.33	
Cma	49.9	
Cm	48.79	

Outlet VOC Correction	
Co	0.52
Cma	9.9
Cm	10.22

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C_3H_8 = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

FEB 1 0 2014

RECEIVED

AIR QUALITY DIV.

Table 6 Mod 3 General Motors Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/12/13

Parameter	Run 1	Run 2	Run 3	Average
Test Run Date	12/12/2013	12/12/2013	12/12/2013	
Test Run Time	6:38	8:00	11:00	
Inlet VOC Concentration (ppmv as propane)	48.0	64.5	66,5	59.7
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	48.3	65.7	68.6	60.9
Inlet VOC Concentration (Adjusted -5%)	45.9	62.4	65.1	57.8
Outlet VOC Concentration (ppmv as propane)	2.1	2.7	2.8	2.5
Outlet Methane Concentration (ppmv as methane)	4.1	3,8	4.1	4.0
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	2.2	2.9	3.2	2.7
Outlet Methane Concentration (ppmv, corrected as per USEPA 7E)	4.4	4.4	4.7	4.5
Outlet VOC Concentration (ppmv propane, -Methane)	0,4	1.1	1,1	0.9
Outlet VOC Concentration (ppmv propane, -Methane, corrected as per USEPA 7E)	0.4	1.1	1.2	0.9
Total Concentration DE (ppmv Corrected as per USEPA 7E)	99,3%	98.3%	98,2%	98.6%
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	99.2%	98.2%	98.1%	98.5%

Inlet VOC Correction			
Co	1,11	1.37	0,24
Cma	49.7	49.7	49.7
Cm	49.38	49.13	48.24

Outlet V	OC Corre	ection	
Co	-0.09	-0.42	-0.58
Cma	9.9	9.9	9.9
Cm	9.88	10.04	9,89

Outlet Methane Correction			
Co	-0.33	-0.78	-0.73
Cma	29.9	29.9	
Cm	29.86	30.17	30.10

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C_3H_8 = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70 °F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 - mg per lb

Response factor obtained from introducing propane into methane analyzer:

2.42

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 7 Mod 4 General Motors Hamtramek, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/11/13

Parameter	Mod 4	
Test Run Date	12/11/2013	
Test Run Time	12:20	
Inlet VOC Concentration (ppmv as propane)	56,9	
Inlet VOC Concentration (ppmv as propane)	57.9	
Inlet VOC Concentration (Adjusted -5%)	55.0	
Outlet VOC Concentration (ppmv as propane)	1.6	
Outlet VOC Concentration (ppmv. corrected as per USEPA 7E)	1.4	
Total Concentration DE (ppmv Corrected as per USEPA 7E)	97.6%	
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	97.5%	

Inlet VOC	Correction
Со	0.84
Cma	49.9
Cm	49.08

Outlet VOC Correction	
C .	0.29
Co Cma	0.29
Cm	9.96

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C_3H_8 = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 8 Mod 5 General Motors Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/13/13

Parameter	Mod 5	Inlet VOC Correction	
Test Run Date Test Run Time	12/13/2013 9:39	Co Cma	0.28 49.7
	,,	Cm	48.48
Inlet VOC Concentration (ppmv as propane)	50.7		
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	52.0	Outlet VOC (Correction
Inlet VOC Concentration (Adjusted -5%)	49.4		
		Co	0.50
		Cma	9.9
Outlet VOC Concentration (ppmv as propane)	0.9	Cm	10.02
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	0.4	C	<u>, , , , , , , , , , , , , , , , , , , </u>
Total Concentration DE (ppmv Corrected as per USEPA 7E)	99.2%		
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	99.1%		

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C₃H₈ = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 \simeq ft^3 per m^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 9 Mod 6 General Motors Hamtramck, MI BTEC Project No. 13–4466.00 Sampling Dates: 12/13/13

Parameter	Mod 6	
Test Run Date	12/13/2013	
Fest Run Time	13:35	
Inlet VOC Concentration (ppmv as propane)	44.4	
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	45.0	
Inlet VOC Concentration (Adjusted -5%)	42.7	
Outlet VOC Concentration (ppmv as propane)	1.0	
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	1.0	
Total Concentration DE (ppmv Corrected as per USEPA 7E)	97.7%	
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	97.6%	

Inlet VOC Correction				
Co	0.07			
Cma	49.7			
Cm	49.08			

Outlet VOC Correction				
Co	-0.08			
Cma	9.9			
Cm	9.81			

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C_3H_8 = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 10 Mod 7 General Motors Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/13/13

Parameter	Mod 7
Test Run Date	12/13/2013
Test Run Time	7;21
Inlet VOC Concentration (ppmv as propane)	89.0
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	89.2
Inlet VOC Concentration (Adjusted -5%)	84.7
Outlet VOC Concentration (ppmv as propane)	1.0
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	1.0
Total Concentration DE (ppmv Corrected as per USEPA 7E)	98.9%
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	98.8%

Inlet VOC Correction				
Co	0.89			
Cma	89.5			
Cm	89.36			

Outlet VOC Correction			
Co	0.03		
Cma	9.9		
Cm	9.85		

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, $C_3H_8 = 44.10$, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 11 North Prime VOC DE General Motors Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/10/13

Parameter	Run 1	Run 2	Run 3	Average
Test Run Date	12/10/2013	12/10/2013	12/10/2013	
Test Run Time	6:56	8:15	10:19	
Inlet VOC Concentration (ppmv as propane)	41.2	37.1	32.3	36,8
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	41.2	37,7	33.3	37.4
Inlet VOC Concentration (Adjusted -5%)	39.2	35.8	31.6	35.5
Outlet VOC Concentration (ppmv as propane)	2,0	1.2	1.0	1.4
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	1.9	1.4	1.9	1.7
Total Concentration DE (ppmv Corrected as per USEPA 7E)	95.3%	96.2%	94.4%	95.3%
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	95.1%	96.0%	94.1%	95.1%

Inlet VO	C Correcti	on	
Co	-0.04	-0.13	-0,13
Cma	49,5	49.5	49.5
Сш	49,41	48.75	48.10

Outlet V	OC Correc	tion	
Co	0.05	-0.24	-0.79
Cma	29.9	29.9	29.9
Cm	29.70	28.90	28.05

ppmv = parts per million on a volume-to-volume basis

lb/hr = pounds per hour

MW = molecular weight (CO = 28.01, NOx = 46.01, SO₂ = 64.05, C_3H_8 = 44.10, carbon = 12.01)

24.14 = molar volume of air at standard conditions (70 °F, 29.92" Hg)

 $35.31 = ft^3 \text{ per m}^3$

453600 = mg per lb

Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas Cm= Average of initial and final calibration gases

Table 12 South Prime **General Motors** Hamtramck, MI BTEC Project No. 13-4466.00 Sampling Dates: 12/10/13

Parameter	South Prime	Inlet VOC Cor	rection
Test Run Date	12/10/2013	Co	-0.
Test Run Time	13:25	Cma	
		Cm	89.
Inlet VOC Concentration (ppmv as propane)	83.3		
Inlet VOC Concentration (ppmv, corrected as per USEPA 7E)	82.5	Outlet VOC Co	orrection
Inlet VOC Concentration (Adjusted -5%)	78.3		
		Co	-0.1
		Cma	29
Outlet VOC Concentration (ppmv as propane)	1.4	Cm	29.
Outlet Methane Concentration (ppmv as methane)	1.1		
Outlet VOC Concentration (ppmv, corrected as per USEPA 7E)	1.6		
Outlet Methane Concentration (ppmv, corrected as per USEPA 7E)	1,7		
Outlet VOC Concentration (ppmv propane, -Methane)	0.9		
Outlet VOC Concentration (ppmv propane, -Methane, corrected as per USEPA 7E)	0.9	Outlet Methan	e Correction
		Co	-0.
Total Concentration DE (ppmv Corrected as per USEPA 7E)	98.9%	Cma	29
Total Concentration DE (ppmv Corrected as per USEPA 7E) (Inlet Adjusted -5%)	98.9%	Cm	29.

24.14 = molar volume of air at standard conditions (70°F, 29.92" Hg)

 $35.31 = ft^3 per m^3$

453600 = mg per lb

Response factor obtained from introducing propane into methane analyzer:

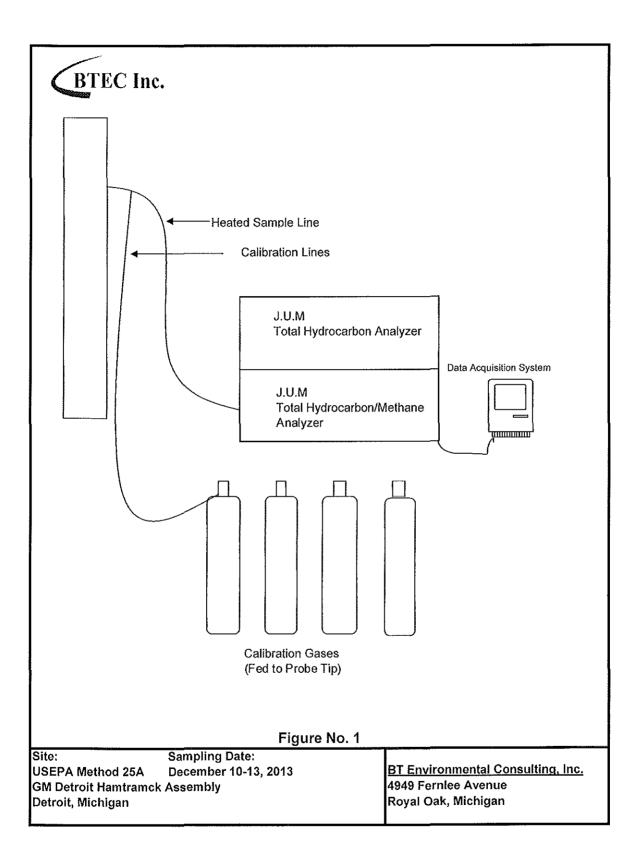
Co= Average of initial and final zero gases Cma=Actual concentration of the calibration gas

Cm= Average of initial and final calibration gases

2.15

Rev. 2.0 5/8/2012 BC

-0.26 89 89.96


-0.23 29.9 29.32

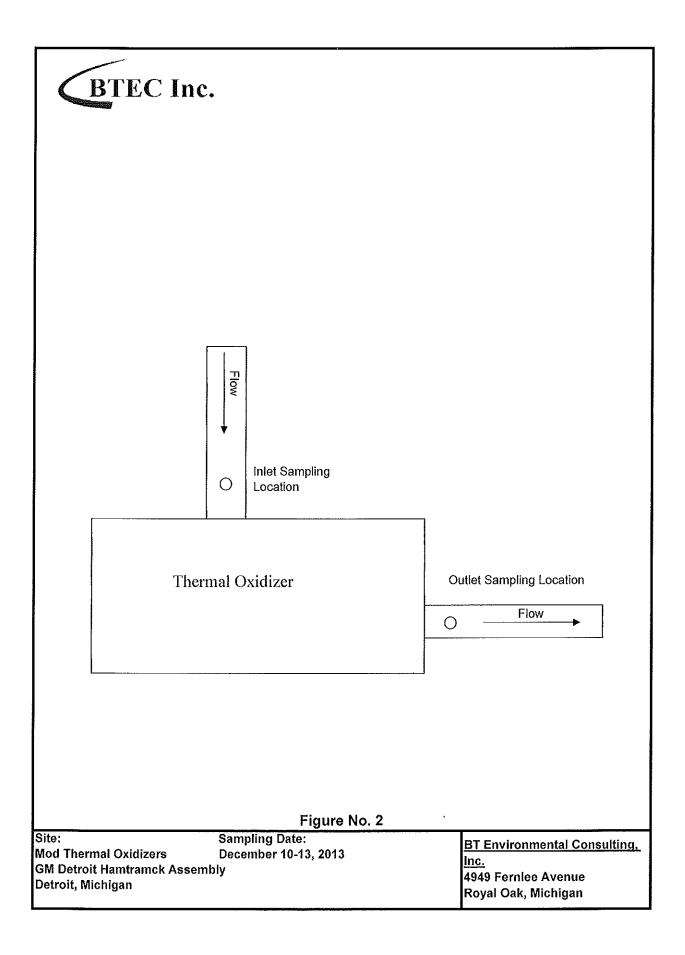

-0.58 29.9 29.35

Table 13 Thermal Oxidizer Operating Temperatures General Motors - Hamtramek Facility Detroit, MI

	MOD & THERNAL OVIDIZED				MOD 1 THERMAL OXIDIZER				
[MOD 1 THERMAL OXIDIZER		TEMPERATURE °F			
TEMPERATURE °F RUN 1			1	TEMPERATURE °F RUN 2			RUN 3		
Date	Time	Temp.	Date	Time	Temp.	Date	Time	Temp.	
12/11/2013	6:30	1309	12/11/2013	8:00	1311	12/11/2013	9:50	1310	
12/11/2013	6:40	1311	12/11/2013	8:10	1310	12/11/2013	10:00	1309	
12/11/2013	6:50	1311	12/11/2013	8;20	1315	12/11/2013	10:10	1311	
12/11/2013	7:00	1311	12/11/2013	8:30	1308	12/11/2013	10:20	1309	
12/11/2013	7:10	1310	12/11/2013	8:40	1309	12/11/2013	10:30	1311	
12/11/2013	7:20	1309	12/11/2013	9:30	1314	12/11/2013	10:40	1310 1308	
12/11/2013	7:30	1310	12/11/2013	9:40	1310	12/11/2013	10:50	1508	
MOD 3 THE	RMAL O	KIDIZER	MOD 3 THE	RMAL O	XIDIZER	MOD 3 THE	RMAL O	XIDIZER	
TEMP	ERATURE	E°F	TEMP	ERATUR	E°F	TEMP	ERATURE	E °F	
	RUN 1	_		RUN 2			RUN 3		
Date	Time	Temp.	Date	Time	Temp.	Date	Time	Temp.	
12/12/2013	6:40	1309	12/12/2013	8:10	1310	12/12/2013	10:20	1308	
12/12/2013	6:50	1304	12/12/2013	8:20	1307	12/12/2013	10:30	1313	
12/12/2013	7:00	1312	12/12/2013	8:30	1313	12/12/2013	10:40	1311	
12/12/2013	7:10	1310	12/12/2013	8:40	1309	12/12/2013	10:50	1307	
12/12/2013 12/12/2013	7:20	1309	12/12/2013	8:50 9:00	1311	12/12/2013	11:00	1308	
12/12/2013	7:30 7:40	1310 1308	12/12/2013	9:00 9:10	1314	12/12/2013	<u>11:10</u> 11:20	1310 1311	
12(12)2013	7.40	1308	12/12/2013	9.10	1311	12/12/2013	11.20	1311	
NORTH PI	RIME THE	RMAL	NORTH P	RIME TH	ERMAL	NORTH P	NME THE	ERMAL	
OXIDIZER 1			OXIDIZER TEMPERATURE 'F			OXIDIZER TEMPERATURE 'F			
	RUN 1		RUN 2			RUN 3			
Date	Time	Temp.	Date	Time	Temp.	Date	Time	Temp.	
12/10/2013	6:58	1311	12/10/2013	8:08	1310	12/10/2013	10:18	1308	
12/10/2013	7:08	1313	12/10/2013	8:18	1310	12/10/2013	10:28	1309	
12/10/2013	7:18	1312	12/10/2013	8:28	1312	12/10/2013	10:38	1309	
12/10/2013	7:28	1309	12/10/2013	9:28	1307	12/10/2013	10:48	1310	
12/10/2013	7:38	1309	12/10/2013	9:38	1310	12/10/2013	10:58	1310	
12/10/2013	7:48	1310 1310	12/10/2013 12/10/2013	<u>9:48</u> 9:58	1307	12/10/2013	11:08 11:18	1309 1309	
12/10/2015	7.50	1310	12/10/2013	7.30	1313	12/10/2015	11.10	1307	
MOD 2 THE	RMAL OX	(IDIZER)	MOD 4 THE	RMAL O	XIDIZER	MOD 5 THE	RMAL O	XIDIZER	
TEMP	ERATURE	°F	TEMP	TEMPERATURE 'F		TEMPI	RATURE	°F	
	RUN I			RUN I			RUN 1		
Date	Time	Temp.	Date	Time	Temp.	Date	Time	Temp.	
12/12/2013	12:20	1311	12/11/2013	12:20	1325	12/13/2013	9:40	1311	
12/12/2013	12:30	1309	12/11/2013	12:30	1325	12/13/2013	9:50	1307	
12/12/2013	12:40	1310	12/11/2013	12:40	1321	12/13/2013	10:00	1310	
12/12/2013	12:50	1310	12/11/2013	12:50	1324	12/13/2013	10:10	1310	
12/12/2013	13:00 13:10	1311	12/11/2013	13:00	1330 1326	12/13/2013	10:20	1308 1308	
12/12/2013	13:20	1310	12/11/2013	13:20	1325	12/13/2013	10:40	1308	
12/12/2013	15.20	1510	L12/11/2013	15.20	1.56.5	12/13/2013	10.10	1507	
	RMAL ON	(IDIZER		RMALO		SOUTH PRIME THERMAL			
MOD 6 THERMAL OXIDIZER		I	MOD 7 THERMAL OXIDIZER						
TEMPERATURE "F RUN 1		r i	TEMPERATURE °F RUN I			OXIDIZER TEMPERATURE °F RUN I			
Date	Time	Temp.	Date	Time	Temp.	Date	Time	Temp.	
	13:30	1310	12/13/2013	7:20	1305	12/10/2013	13:28	1330	
12/13/2013	13:40	1309	12/13/2013	7:30	1306	12/10/2013	13:38	1331	
12/13/2013 12/13/2013	10,70 1			7:40	1305	12/10/2013	13:48	1330	
		1310	12/13/2013					(
12/13/2013	13:50 14:00	1310 1310	12/13/2013	7:50	1306	12/10/2013	13:58	1331	
12/13/2013 12/13/2013 12/13/2013 12/13/2013	13:50 14:00 14:10	1310 1308	12/13/2013 12/13/2013	7:50 8:00	1304	12/10/2013	14:08	1330	
12/13/2013 12/13/2013 12/13/2013	13:50 14:00	1310	12/13/2013	7:50					

Figures

BTEC I	ıc.	
Inlet Sampling Location	Thermal Oxidizer	Outlet Sampling Location
	Figure No. 3	
Site: North/South Primer TO GM Detroit Hamtramck Ass Detroit, Michigan	Sampling Date: December 10-13, 2013 sembly	<u>BT Environmental Consulting,</u> <u>Inc.</u> 4949 Fernlee Avenue Royal Oak, Michigan