FINAL REPORT

ROUSH INDUSTRIES

LIVONIA, MICHIGAN

COMPLIANCE TESTING REPORT: FG-BLD15TCELL & FG-BLD16TCELL EMISSIONS REPORT RWDI #2400294 January 3, 2024

SUBMITTED TO

Jeremy Howe Michigan Department of EGLE; AQD Constitution Hall 2nd Floor, South 525 West Allegan Street Lansing, Michigan 48909-7760 E:howej1@michigan.gov

Jeffrey Korniski **Michigan Department of EGLE** Detroit District Cadillac Place 3058 West Grand Blvd Suite 2-300 Detroit, Michigan 48202

Roush Industries 36630 Commerce Livonia, MI 48150

SUBMITTED BY

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com | ext. 3706

Mason Sakshaug, QSTI Supervisor, Source Mason.Sakshaug@rwdi.com | ext. 3703

Brad Bergeron, A.Sc.T., d.E.T. **Technical Director** Brad.Bergeron@rwdi.com | ext. 2428

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309

T: 248.841.8442 F: 519.823.1316

©2023 RWDI USA LLC ('RWDI') ALL RIGHTS RESERVED. This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request © RWDI name and logo are registered trademarks in Canada and the United States of America.

RWDI#2400294 January 3, 2024

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) was retained by Roush Industries (Roush) to complete the emission sampling program at their facility located at 36630 Commerce, Livonia, Michigan. Roush facility operates an engine testing facility and is permitted under Renewable Operating Permit (ROP) MI-ROP-M4780-2023. Testing consisted of emissions for nitrogen oxides (NO_x), carbon monoxide (CO), and 1,3-butadiene from dynamometer Cell D located in FG-BLD15TCELL (Building 15) and dynamometer Cell B2 located in FG-BLD16TCELL (Building 16). Two conditions were tested in each building:

- 1. Worldwide Mapping Point (WWMP) @ 1500 RPM
- 2. High RPM Load @ 3500 RPM

Compliance testing was completed for Building 15 on November 14th, 2023, and for Building 16 on November 16th, 2023.

Analyte	Units	Average
	ppmv _d	860.93
NO _x	lb/hr	0.26
	lb/gal	0.09
	ppmv _d	7,357.87
со	lb/hr	1.35
	lb/gal	0.47
	ppmv _d	3.22
1,3-butadiene	lb/hr	0.0011
	lb/gal	3.94E-04

Executive Table i: Results Summary - Cell D Building 15 -- WWMP

Executive Table ii: Results Summary - Cell D Building 15 - High Load

Analyte	Units	Average
	ppmv _d	4,048.40
NOx	lb/hr	5.16
	lb/gal	0.33
	ppmv _d	7.255.55
со	lb/hr	5.63
	lb/gal	0.36
	ppmv _d	5.38
1,3-butadiene	lb/hr	0.0081
	lb/gal	5.20E-04

RWDI#2400294 January 3, 2024

Executive Table iii: Results Summary - Cell B2 Building 16 - WWMP Load

Analyte	Units	Average
	ppmv _d	494.45
NO _x	lb/hr	0.15
	lb/gal	0.056
	ppmv _d	8.25
со	lb/hr	1.53E-03
	lb/gal	5.58E-04
	ppmv _d	0.33
1,3-butadiene	lb/hr	1.22E-04
	lb/gal	4.51E-05

Executive Table iv: Results Summary - Cell B2 Building 16 - High Load

Analyte	Units	Average
	ppmv₀	254.79
NOx	lb/hr	0.39
	lb/gal	0.026
со	ppmv _d	772.75
	lb/hr	0.75
	lb/gal	0.049
1,3-butadiene	ppmv _d	3.63
	lb/hr	0.0065
	lb/gal	4.32E-04

RWDI#2400294 January 3, 2024

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Location and Date of Testing	1
1.2	Purpose of the Testing	1
1.3	Description of the Source. 1.3.1 FG-BLD15TCELL 1.3.2 FG-BLD16TCELL	1
1.4	Personnel Involved in Testing	2
2	SUMMARY OF RESULTS	2
2.1	Operating Data	2
2.2	Applicable Permit Number	2
3	SOURCE DESCRIPTION	3
3.1	Description of Process and Emission Control Equipment	3
3.2	Process Flow Sheet or Diagram	3
3.3	Type and Quantity of Raw and Finished Materials	3
3.4	Normal Rated Capacity of Process	3
3.5	Process Instrumentation Monitored During the Testing	3
4	POLLUTANTS TO BE MEASURED	3
5	SAMPLING AND ANALYSIS PROCEDURES	4
5.1	Stack Velocity, Temperature, and Volumetric Flow Rate Determination	4
5.2	NO _x , CO, and 1,3-Butadiene by USEPA Method 320	4
6	NUMBER AND LENGTH OF SAMPLING RUNS	7
7	STACK INFORMATION	7
8	FLUE GAS CONDITIONS	7

RWDI#2400294 January 3, 2024

LIST OF TABLES

(Found After the Report Text)

Table 1:	Summary of Sampling Parameters and Methodology
Table 2:	Sampling Summary and Sample Log
Table 3A:	Summary of Emissions – Building 15 Cell D – WWMP Condition
Table 3B:	Flow Data - Building 15 Cell D - WWMP Condition
Table 4A:	Summary of Emissions – Building 15 Cell D – High Load Condition
Table 4B:	Flow Data – Building 15 Cell D – High Load Condition
Table 5A:	Summary of Emissions – Building 16 Cell B2 – WWMP Condition
Table 5B:	Flow Data – Building 16 Cell B2 – WWMP Condition
Table 6A:	Summary of Emissions – Building 16 Cell B2 – High Condition
Table 6B:	Flow Data – Building 16 Cell B2 – High Condition

LIST OF FIGURES

(Found Within the Report Text)

Figure 5.2a:MKS 2030 Multigas FTIR/ASC-10ST/Model 4710 Oxygen Analyzer Sampling System
SchematicFigure 5.2b:Typical MKS 2030 Multigas FTIR and ASC-10ST Configuration

KW

LIST OF FIGURES

(Found After the Report Text)

Figure 1:	Building 15 Cell D and Building 16 Cell B2 Stack Diagram
Figure 2:	USEPA Method 2 Diagram
Figure 3:	USEPA Method 320/3A Diagram

RWDI#2400294 January 3, 2024

LIST OF APPENDICES

Appendix A: Process Data Appendix A1: Building 15 Cell D - WWMP & High Load Conditions Appendix A2: Building 16 Cell B2 - WWMP & High Load Conditions Appendix B: **FTIR Results** Appendix B1: FTIR Results - Building 15 Cell D - WWMP Condition Appendix B2: FTIR Results – Building 15 Cell D – High Load Condition Appendix B3: FTIR Results - Building 16 Cell B2 - WWMP Condition Appendix B4: FTIR Results - Building 16 Cell B2 - High Load Condition **Appendix C:** Flow Rate Results Appendix C1: Flow Rate Results - Building 15 Cell D - WWMP Condition Appendix C2: Flow Rate Results - Building 15 Cell D - High Load Condition Appendix C3: Flow Rate Results - Building 16 Cell B2 - WWMP Condition Appendix C4: Flow Rate Results - Building 16 Cell B2 - High Load Condition Appendix D: **Field Notes** Appendix D1: CEMS - Building 15 Cell D - WWMP & High Load Conditions Appendix D2: Flow Rate Data - Building 15 Cell D - WWMP Condition Appendix D3: Flow Rate Data - Building 15 Cell D - High Load Condition Appendix D4: CEMS - Building 16 Cell B2 - WWMP & High Load Conditions Appendix D5: Flow Rate Data - Building 16 Cell B2 - WWMP Condition Appendix D6: Flow Rate Data - Building 16 Cell B2 - High Load Condition **Appendix E: Calibration Data** Appendix F: Example Calculation Appendix G: EGLE Correspondence & Source Testing Plan

RN

RWDI#2400294 January 3, 2024

1 INTRODUCTION

RWDI USA LLC (RWDI) was retained by Roush Industries (Roush) to complete the emission sampling program at their facility located at 36630 Commerce, Livonia, Michigan. Roush facility operates an engine testing facility and is permitted under Renewable Operating Permit (ROP) MI-ROP-M4780-2023. Testing consisted of emissions for nitrogen oxides (NO_x), carbon monoxide (CO), and 1,3-butadiene from dynamometer Cell D located in FG-BLD15TCELL (Building 15) and dynamometer Cell B2 located in FG-BLD16TCELL (Building 16). Two conditions were tested in each building:

- 1. Worldwide Mapping Point (WWMP) @ 1500 RPM
- 2. High RPM Load @ 3500 RPM

Compliance testing was completed for Building 15 on November 14th, 2023, and for Building 16 on November 16th, 2023.

1.1 Location and Date of Testing

The testing program was completed on November 14th and November 16th, 2023 at the Roush facility located at 36630 Commerce, Livonia, Michigan.

1.2 Purpose of the Testing

The purpose of testing was to determine emission factors to show compliance with Renewable Operating Permit (ROP) MI-ROP-M4780-2023.

1.3 Description of the Source

Roush Industries is an advanced engineering firm for engine testing. Roush operates engine dynamometer test cells to conduct automotive and development of engine components. The test cells have the ability of firing a variety of specific fuels. For the Renewable Operating Permit (ROP) MI-ROP-M4780-2023, test cells in Buildings 15 and 16 are required to be tested for carbon monoxide (CO), oxides of Nitrogen (NO_x) and 1,3-Butadiene under Flexible Groups FG-BLD15TCELL and FG-BLD16TCELL.

1.3.1 FG-BLD15TCELL

Five (5) sets of Engine Dynamometer single-ended test cells located in Building No. 15 identified as: EU-TCellB15A, EU-TCellB15D, EU-TCellB15M, EU-TCellB15R, and EU-TCellB15S. Seven (7) sets of Engine Dynamometer doubleended test cells located in Building No. 15 identified as: EU-TCellB15B/C, EU-TCellB15E/F, EU-TCellB15G/H, EU-TCellB15I/J, EU-TCellB15K/L, EU-TCellB15N/O, and EU-TCellB15P/Q. Some engines in EU-Bld15TCells may be controlled by catalytic converters.

RWDI#2400294 January 3, 2024

SN

1.3.2 FG-BLD16TCELL

Five (5) sets of Engine Dynamometer test Cells located in Building No. 16 with catalytic converters identified as: EU-TCellB16A1, EU-TCellB16B2, EU-TCellB16C3, EU-TCellB16D4, and EU-TCellB16E5. One (1) set of Engine Dynamometer test Cells located in Building 16 without catalytic converters identified as: EU-TCellB16F6/G7.

Only one stack is used at a time between stacks SV-TCellB16F6/G7 & SV-TCellB16F6/G7a.

1.4 Personnel Involved in Testing

Jeffrey Carter Dynamometer Supervisor Jeffrey.Carter@roush.com	Roush Industries 36630 Commerce Livonia, MI 48150	734-779-7000
Mason Sakshaug Technical Supervisor Mason.Sakshaug@rwdi.com	RWDI USA LLC 2239 Star Court Rochester Hills, MI 48309	(248) 234-3885
Ben Durham Senior Field Technician Ben.Durham@rwdi.com	RWDI USA LLC	(734) 474-1731
Hunter Griggs Field Technician Hunter.Griggs@rwdi.com	2239 Star Court Rochester Hills, MI 48309	(248) 841-8442

Table 1.4.1: List of Testing Personnel

2 SUMMARY OF RESULTS

2.1 Operating Data

Operational data collected during the testing included the following (found in Appendix A):

- Volume of gasoline used (gallons);
- Size and type of engine being tested;
- Engine running conditions.

2.2 Applicable Permit Number

Renewable Operating Permit (ROP) MI-ROP-M4780-2023

RWDI#2400294 January 3, 2024

3 SOURCE DESCRIPTION

3.1 Description of Process and Emission Control Equipment

Refer to Section 1.3 for a description of the testing cells.

3.2 Process Flow Sheet or Diagram

A process schematic can be provided upon request.

3.3 Type and Quantity of Raw and Finished Materials

The engines burn gasoline.

3.4 Normal Rated Capacity of Process

There is not a rated capacity for the dynamometer cells.

3.5 Process Instrumentation Monitored During the Testing

There is no continuous pollutant monitor installed at this location.

4 POLLUTANTS TO BE MEASURED

Testing consisted of emissions for nitrogen oxides (NOx), carbon monoxide (CO), and 1,3-butadiene.

RWDI#2400294 January 3, 2024 SN

5 SAMPLING AND ANALYSIS PROCEDURES

The following section provides brief descriptions of the proposed sampling methods and discusses any proposed modifications to the reference test methods.

5.1 Stack Velocity, Temperature, and Volumetric Flow Rate Determination

The exhaust velocities and flow rates were determined following the USEPA Method 2, "Determination of Stack Gas Velocity and Flow Rate (Type S Pitot Tube)" from the outlet only. Velocity measurements were taken with a standard pitot tube and digital manometer. Volumetric flow rates were determined following the equal area method as outlined in US EPA Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a digital temperature indicator.

The dry molecular weight of the stack gas was determined following calculations outlined in US EPA Method 3A "Determination of Molecular Weight of Dry Stack Gas" for O₂. USEPA Method 320 was used for CO₂ content.

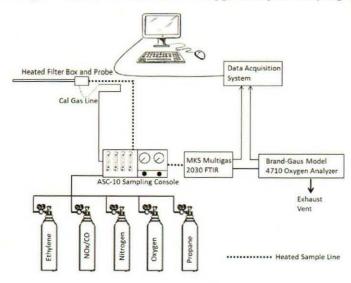
Stack moisture content was determined in accordance with USEPA Method 320.

5.2 NO_x, CO, and 1,3-Butadiene by USEPA Method 320

Emissions testing was performed at the outlet of each engine. Pollutant concentrations was determined utilizing RWDI's continuous emissions monitoring system (CEM) which consists of the FTIR and oxygen analyzer (measuring on wet basis).

Stack gas concentrations for NO_x, CO, H₂O, 1,3-butadiene, CO₂ and O₂ was measured using EPA Reference Methods 320 and 3A.

Oxygen measurements were taken continuously following USEPA Method 3A on the outlet (using a wet oxygen analyzer or equivalent).


Regular performance checks on the CEMS were carried out by zero and span calibration checks on the oxygen analyzer and necessary QA procedures on the FTIR using USEPA Protocol calibration gases. These checks will verify the ongoing precision of the FTIR with time by introducing pollutant-free (zero) air followed by known calibration gas (span) into the FTIR. The response of the monitor to pollutant-free air and the corresponding sensitivity to the span gases was reviewed frequently as an ongoing indication of analyzer performance.

RWDI#2400294 January 3, 2024

Monitoring was conducted by drawing a sample stream of flue gases through a stainless-steel probe attached to a heated filter and a heated sample line that is attached to the MAX Analytical ASC-10ST sampling console. Lengths of unheated sample line was kept to a minimum and insulated. The ASC-10ST sampling console delivers a continuous sample to the MKS MultiGas 2030 FTIR and oxygen analyzer for analysis. The heated filter and line were maintained at approximately 191°C (375°F) and the MKS MultiGas 2030 FTIR and ASC-10ST gas components were kept at 191°C (375°F). The end of the probe was connected to a heated Teflon sample line, which will deliver the sample gases from the stack to the FTIR system. The heated sample line was designed to maintain the gas temperature at approximately 375°F to prevent condensation of stack gas moisture within the line and condition air to the same temperature as the FTIR. A schematic of the sampling system setup is depicted in **Figure 5.2a**.

Figure 5.2a: MKS 2030 Multigas FTIR/ASC-10ST/Model 4710 Oxygen Analyzer Sampling System Schematic

The ASC-10ST was used to deliver calibration gases (Calibration Transfer Standard (CTS), QA Spike and Nitrogen) to the FTIR in direct (to analyzer) and system (to probe) modes.

A laptop computer was utilized for operating the MKS MultiGas 2030 FTIR and MAX Analytical ASC-10ST sampling console and logging the multi-gas FTIR data. Data was logged as one-minute averages for the actual test period (FTIR PRN files and Spectra). All concentration data was determined using the MKS 2030 MultiGas FTIR software. A typical MKS 2030 FTIR and ASC-10 ST configuration is depicted in **Figure 5.2b**.

RWDI#2400294 January 3, 2024

RN

For oxygen measurement only, prior to testing, a 3-point analyzer calibration error check was conducted using USEPA protocol gases. The calibration error check was performed by introducing zero, mid and high-level calibration gases directly into the analyzer. The calibration error check was performed to confirm that the analyzer response is within $\pm 2\%$ of the certified calibration gas introduced. Prior to each test run, a system-bias test was performed where known concentrations of calibration gases were introduced at the probe tip to measure if the analyzers response was within $\pm 5\%$ of the introduced calibration gas concentrations. At the conclusion of each test run a system-bias check was performed to evaluate the percent drift from pre and posttest system bias checks. The system bias checks were used to confirm that the analyzer did not drift greater than $\pm 3\%$ throughout a test run. The analyzer will measure the respective gas concentrations on a wet volumetric basis which was converted to a dry volumetric number.

The probe tip was equipped with a heated filter for particulate removal. The end of the probe was connected to a heated Teflon sample line, which will deliver the sample gases from the stack to the FTIR/4710 Oxygen analyzer system. The heated sample line was designed to maintain the gas temperature at approximately 375°F to prevent condensation of stack gas moisture within the line.

Figure 5.2b: Typical MKS 2030 Multigas FTIR and ASC-10ST Configuration

RWDI#2400294 January 3, 2024

6 NUMBER AND LENGTH OF SAMPLING RUNS

Testing consisted of triplicate 1-hour tests on each Engine.

7 STACK INFORMATION

Engine 1 and Engine 2 had identical stack measurements.

Table 7.1: Summary of the Stack Characteristics

Source	Diameter	Duct Diameters from Flow Disturbance	Number of Ports	Points per Traverse	Total Points per Test
Cell D & Cell B2	5.5″	8.18 downstream and 17.45 upstream	2	6	12 Flow

8 FLUE GAS CONDITIONS

Table 8.1: Flue Gas Conditions – Building 15 – Cell D

Parameter	Flue Gas Conditions		
	Stack Temperature	Flow Rate	Percent Moisture
WWMP	119°F	42 dscfm	13.4%
High Load	850°F	179 dscfm	13.6%

Table 8.2: Flue Gas Conditions - Building 16 - Cell B2

Parameter	Flue Gas Conditions		
	Stack Temperature	Flow Rate	Percent Moisture
WWMP	122°F	43 dscfm	10.9%
High Load	482°F	221 dscfm	14.3%

RWDI#2400294 January 3, 2024 <u>K</u>

9 TEST RESULTS AND DISCUSSION

9.1 Detailed Results

Detailed results for all analytes are provided in Appendix B.

Table 9.1.1: Results Summary - Cell D Building 15 -- WWMP

Analyte	Units	Average
	ppmv _d	860.93
NOx	lb/hr	0.26
	lb/gal	0.09
	ppmv _d	7,357.87
со	lb/hr	1.35
	lb/gal	0.47
	ppmv _d	3.22
1,3-butadiene	lb/hr	0.0011
	lb/gal	3.94E-04

Table 9.1.2: Results Summary - Cell D Building 15 - High Load

Analyte	Units	Average	
	ppmv _d	4,048.40	
NOx	lb/hr	5.16	
	lb/gal	0.33	
	ppmv _d	7.255.55	
СО	lb/hr	5.63	
	lb/gal	0.36	
	ppmv _d	5.38	
1,3-butadiene	lb/hr	0.0081	
	lb/gal	5.20E-04	

Table 9.1.3: Results Summary – Cell B2 Building 16 – WWMP Load

Analyte	Units	Average
	ppmv _d	494.45
NOx	lb/hr	0.15
	lb/gal	0.056
	ppmv _d	8.25
CO	lb/hr	1.53E-03
	lb/gal	5.58E-04
	ppmv _d	0.33
1,3-butadiene	lb/hr	1.22E-04
	lb/gal	4.51E-05

RWDI#2400294 January 3, 2024

Table 9.1.4: Results Summary - Cell B2 Building 16 - High Load

Analyte	Units	Average
	ppmv _d	254.79
NOx	lb/hr	0.39
	lb/gal	0.026
	ppmv _d	772.75
со	lb/hr	0.75
	ppmvd lb/hr lb/gal ppmvd lb/hr lb/gal ppmvd lb/hr	0.049
	ppmv _d	3.63
1,3-butadiene	lb/hr	0.0065
	lb/gal	4.32E-04

9.2 Discussion of Results

The detailed results of individual tests can be found in **Appendices B and C** and all field notes can be found in **Appendix D**.

9.3 Variations in Testing Procedures

There was no variation in testing procedures.

9.4 Process Upset Conditions During Testing

There were no upsets in the process during testing.

9.5 Maintenance Performed in Last Three Months

All maintenance in the last three months has been routine.

9.6 Re-Test

This was not a retest.

9.7 Audit Samples

This test did not require any audit samples.

9.8 Process Data

Process data can be found in Appendix A.

RWDI#2400294 January 3, 2024

9.9 Calibration Data

Calibration can be found in Appendix E.

9.10 Example Calculations

Example calculations can be found in Appendix F.

9.11 Laboratory Data

There was no laboratory data affiliated with this testing.

9.12 Source Testing Plan and EGLE Correspondence

Copy of the correspondence received from the Source Testing Plan from EGLE and the Source Testing Plan submitted can be found in **Appendix G**.

ΚŅ

TABLES

1

I



Table 1: Summary of Sampling Parameters and Methodology

Source Location	No. of Tests	Sampling Parameter	Sampling Method
		Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1 & 2
Building 15 Cell D	3 - WWMP Condition	Oxygen	U.S. EPA ^[1] Method 3A
	3 - High Load Condition	Nitrogen Oxides, Carbon Monoxide, Carbon Dioxide, 1,3-Butadiene	U.S. EPA ^[1] Method 320
		Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1 & 2
Building 16 Cell B2	3 - WWMP Condition	Oxygen	U.S. EPA ^[1] Method 3A
	3 - High Load Condition	Nitrogen Oxides, Carbon Monoxide, Carbon Dioxide, 1,3-Butadiene	U.S. EPA ^[1] Method 320

Notes:

[1] U.S. EPA - United States Environmental Protection Agency

Table 2: Sampling Summary and Sample Log

Capacity and Test #	Sampling Date	Start Time	End Time
Building 15 Cell D WWMP Condition			
Test #1	14-Nov-23	9:00 AM	9:59 AM
Test #2	14-Nov-23	10:40 AM	11:39 AM
Test #3	14-Nov-23	12:08 PM	1:07 PM
Building 15 Cell D High Load Condition	on		
Test #1	14-Nov-23	1:52 PM	2:51 PM
Test #2	14-Nov-23	3:43 PM	4:43 PM
Test #3	14-Nov-23	5:51 PM	6:51 PM
Building 16 Cell B2 WWMP Condition			
Test #1	16-Nov-23	12:06 PM	1:05 PM
Test #2	16-Nov-23	1:35 PM	2:34 PM
Test #3	16-Nov-23	3:05 PM	4:04 PM
Building 16 Cell B2 High Load Conditi	ion		
Test #1	16-Nov-23	4:41 PM	5:40 PM
Test #2	16-Nov-23	6:16 PM	7:15 PM
Test #3	16-Nov-23	7:56 PM	8:55 PM

Table 3A: Summary of Emissions - Building 15 Cell D - WWMP Condition

Facility: Roush City: Livonia, MI Source: Building 15 Cell D Condition WWMP Date: 11/14/2023

	Symbol	Units	Test 1	Test 2	Test 3	Average
Nitrogen Oxides Concentration	NOx	ppmvd	856.10	853.51	873.19	860.93
Carbon Monoxide Concentration	со	ppmvd	7433.88	7306.02	7333.70	7,357.87
1,3 Butadiene Concentration	C ₄ H ₆	ppmvd	3.28	3.23	3.14	3.22
Oxygen Concentration	O ₂	%wet	0.33	0.34	0.33	0.33
Oxygen Concentration	O ₂	%dry	0.38	0.40	0.38	0.39
Nitrogen Oxides Emission Rate	NOx	pph	0.28	0.25	0.26	0.26
Carbon Monoxide Emission Rate	СО	pph	1.45	1.30	1.31	1.35
1,3 Butadiene Emission Rate	C ₄ H ₆	pph	0.0012	0.0011	0.0011	0.0011
Nitrogen Oxides Concentration	NOx	lb/gal	0.09	0.09	0.09	0.09
Carbon Monoxide Concentration	CO	lb/gal	0.50	0.45	0.45	0.47
1,3 Butadiene Emission Rate	C ₄ H ₆	lb/gal	4.26E-04	3.83E-04	3.72E-04	3.94E-0-

Table 3B: Flow Data - Building 15 Cell D - WWMP Condition

Facility: Roush City: Livonia, Michigan Source: Building 15 Cell D Condition: WWMP

Parameter	Units	Test 1	Test 2	Test 3	Average
Stack Gas Temperature	°F	119	119	119	119
Stack Gas Moisture	%	13.59	13.41	13.26	13.42
Velocity	ft/sec	5.80	5.26	5.27	5.44
Actual Flowrate	acfm	58	52	52	54
Dry Reference Flowrate	dscfm	45	41	41	42
Dry Reference Flowrate	m ³ /s	0.021	0.019	0.019	0.020

Table 4A: Summary of Emissions - Building 15 Cell D - High Load Condition

Facility: Roush City: Livonia, MI Source: Building 15 Cell D Condition High Load Date: 11/14/2023

×	Symbol	Units	Test 1	Test 2	Test 3	Average
Nitrogen Oxides Concentration	NOx	ppmvd	3946.20	4134.70	4064.29	4,048.40
Carbon Monoxide Concentration	со	ppmvd	7221.35	7207.04	7338.26	7,255.55
1,3 Butadiene Concentration	C ₄ H ₆	ppmvd	4.98	4.97	6.17	5.38
Oxygen Concentration	O ₂	%wet	0.34	0.38	0.47	0.40
Oxygen Concentration	O ₂	%dry	0.40	0.44	0.54	0.46
	12322	Sec. 2				
Nitrogen Oxides Emission Rate	NOx	pph	5.04	5.31	5.14	5.16
Carbon Monoxide Emission Rate	CO	pph	5.62	5.64	5.65	5.63
1,3 Butadiene Emission Rate	C ₄ H ₆	pph	0.0075	0.0075	0.0092	0.0081
Nitrogen Oxides Concentration	NO _x	lb/gal	0.33	0.34	0.33	0.33
Carbon Monoxide Concentration	со	lb/gal	0.37	0.36	0.36	0.36
1,3 Butadiene Emission Rate	C ₄ H ₆	lb/gal	4.89E-04	4.82E-04	5.89E-04	5.20E-04

Table 4B: Flow Data - Building 15 Cell D - High Load Condition

Facility: Roush City: Livonia, Michigan Source: Building 15 Cell D Condition: High Load

Parameter	Units	Test 1	Test 2	Test 3	Average
Stack Gas Temperature	°F	850	850	850	850
Stack Gas Moisture	%	14.09	13.55	13.26	13.63
Velocity	ft/sec	52.7	52.5	51.4	52.2
Actual Flowrate	acfm	521	520	509	517
Dry Reference Flowrate	dscfm	179	180	177	179
Dry Reference Flowrate	m ³ /s	0.085	0.085	0.083	0.084

Table 5A: Summary of Emissions - Building 16 Cell B2 - WWMP Condition

Facility: Roush City: Livonia, MI Source: Building 16 Cell B2 Condition WWMP Date: 11/14/2023

	Symbol	Units	Test 1	Test 2	Test 3	Average
Nitrogen Oxides Concentration	NOx	ppmvd	480.55	498.59	504.22	494.45
Carbon Monoxide Concentration	CO	ppmvd	6.12	8.53	10.10	8.25
1,3 Butadiene Concentration	C ₄ H ₆	ppmvd	0.53	0.32	0.14	0.33
Oxygen Concentration	02	%wet	1.64	1.60	1.58	1.61
Oxygen Concentration	O ₂	%dry	1.85	1.80	1.76	1.80
	100					
Nitrogen Oxides Emission Rate	NOx	pph	0.16	0.15	0.15	0.15
Carbon Monoxide Emission Rate	CO	pph	1.22E-03	1.56E-03	1.80E-03	1.53E-03
1,3 Butadiene Emission Rate	C ₄ H ₆	pph	2.06E-04	1.12E-04	4.90E-05	1.22E-04
Nitrogen Oxides Concentration	NOx	lb/gal	0.058	0.055	0.053	0.056
Carbon Monoxide Concentration	со	lb/gal	4.53E-04	5.77E-04	6.43E-04	5.58E-04
1,3 Butadiene Emission Rate	C ₄ H ₆	lb/gal	7.64E-05	4.15E-05	1.75E-05	4.51E-05

Table 5B: Flow Data - Building 16 Cell B2 - WWMP Condition

Facility: Roush City: Livonia, Michigan Source: Building 16 Cell B2 Condition: WWMP

Parameter	Units	Test 1	Test 2	Test 3	Average	
		Test 1	TEST 2	lest 5	Average	
Stack Gas Temperature °F		122	122	122	122	
Stack Gas Moisture	%	11.27	11.30	10.25	10.94	
Velocity	ft/sec	5.82	5.37	5.15	5.45	
Actual Flowrate	acfm	58	53	51	54	
Dry Reference Flowrate	dscfm	46	42	41	43	
Dry Reference Flowrate	m ³ /s	0.022	0.020	0.019	0.020	

Table 6A: Summary of Emissions - Building 16 Cell B2 - High Load Condition

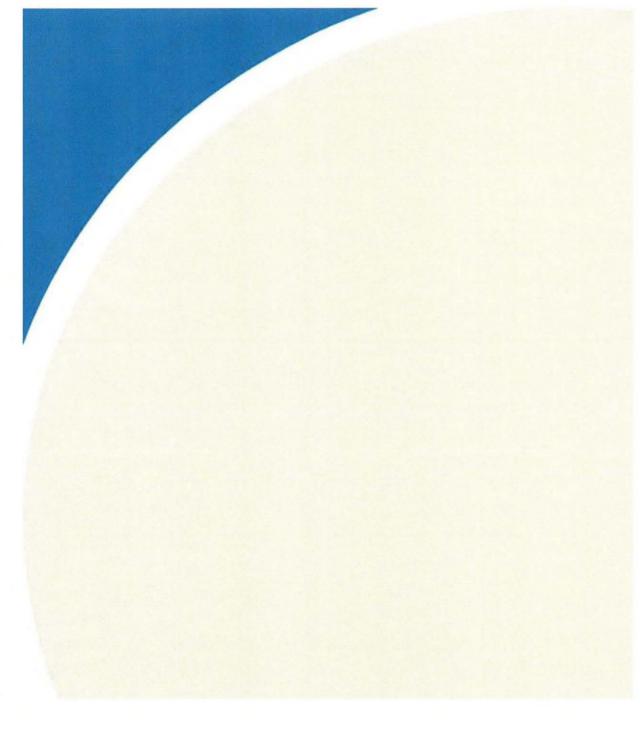
Facility: Roush City: Livonia, MI Source: Building 16 Cell B2 Condition High Load Date: 11/14/2023

	Symbol	Units	Test 1	Test 2	Test 3	Average
Nitrogen Oxides Concentration	NOx	ppmvd	293.80	224.10	246.45	254.79
Carbon Monoxide Concentration	СО	ppmvd	738.81	800.35	779.09	772.75
1,3 Butadiene Concentration	C ₄ H ₆	ppmvd	4.66	3.37	2.85	3.63
Oxygen Concentration	O ₂	‰wet	0.57	0.64	0.48	0.56
Oxygen Concentration	O ₂	%dry	0.67	0.75	0.56	0.66
Nitrogen Oxides Emission Rate	NOx	pph	0.35	0.44	0.39	0.39
Carbon Monoxide Emission Rate	СО	pph	0.53	0.95	0.76	0.75
1,3 Butadiene Emission Rate	C ₄ H ₆	pph	0.0064	0.0077	0.0054	0.0065
	Printles (1 include				
Nitrogen Oxides Concentration	NOx	lb/gal	0.023	0.029	0.026	0.026
Carbon Monoxide Concentration	СО	lb/gal	0.036	0.062	0.050	0.049
1,3 Butadiene Emission Rate	C ₄ H ₆	lb/gal	4.33E-04	5.09E-04	3.55E-04	4.32E-04

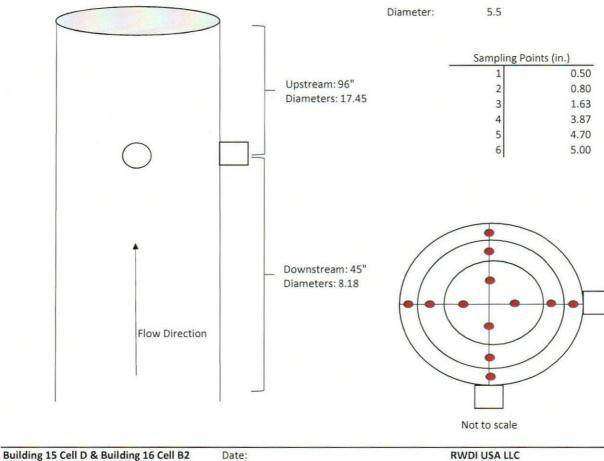
Table 6B: Flow Data - Building 16 Cell B2 - High Load Co

Facility: Roush City: Livonia, Michigan Source: Building 16 Cell B2 Condition: High Load

Parameter	Units	Test 1	Test 2	Test 3	Average	
Stack Gas Temperature	°F	482	482	482	482	
Stack Gas Moisture	%	15.29	13.86	13.85	14.33	
Velocity	ft/sec	35.7	57.6	47.5	47.0	
Actual Flowrate	acfm	354	570	471	465	
Dry Reference Flowrate	dscfm	165	273	224	221	
Dry Reference Flowrate	m ³ /s	0.078	0.129	0.106	0.104	



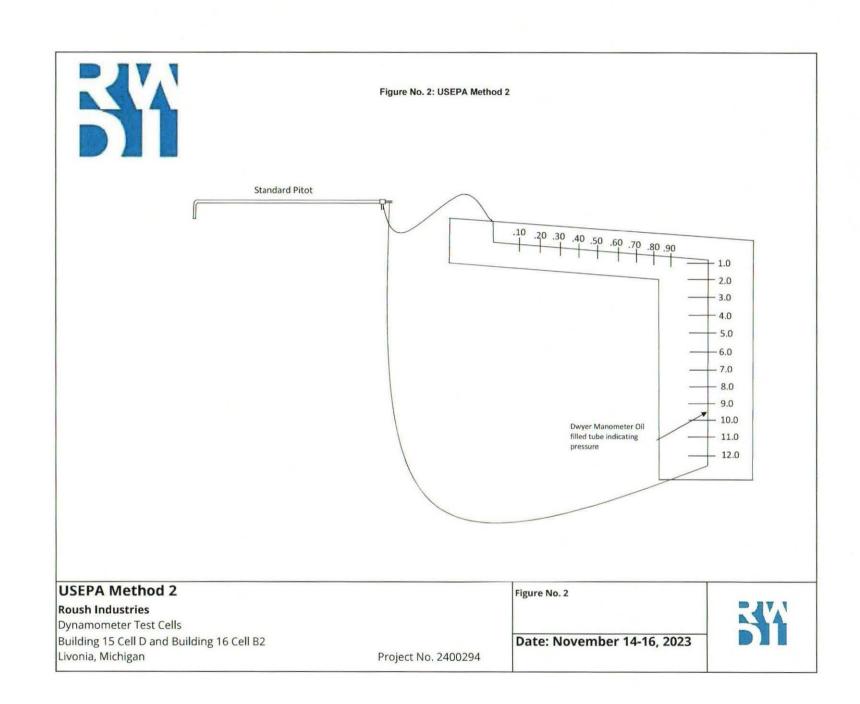
FIGURES


I

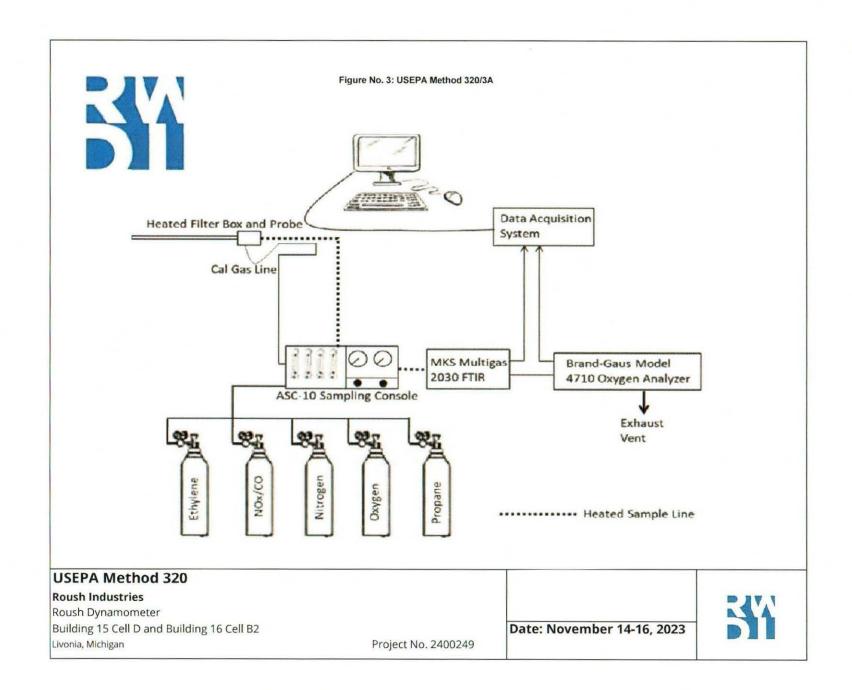
1

Figure No. 1: Building 15 Cell D and Building 16 Cell B2 Stack Diagram

Building 15 Cell D & Building 16 Cell B2 Roush Industries


Roush Dynamometers

Livonia, Michigan


November 14-16, 2023

RWDI USA LLC 2239 Star Court Rochester Hills, MI 48309

