
Ford Flat Rock Assembly Plant Flat Rock, Michigan

Environmental Testing Program – Week of October 28, 2013

Transfer Efficiency Booth Capture Efficiency Oven Capture Efficiency

RECEIVED

DEC 1 1 2013

AIR QUALITY DIV.

Prepared By:

JLB Industries, LLC Rochester Hills, MI 48306 (248) 904-7027 enviro@jlbindustries.com

RECEIVED

DEC 1 1 2013

AIR QUALITY DIV.

Ford Flat Rock Assembly Plant 1 International Drive Flat Rock, MI 48134-9498

Table of Contents	Page
1. Executive Summary	1
2. Introduction	3
3. Sampling and Analytical Procedures	3
4. Test Equipment and Calibration	5
5. Discussion of Test Results	6
6. Summary of Results	6
7. Data Sheets	
a. Applicator Parameter Summary	20
b. Paint Metering Record	21
c. Paint Metering Verification Record	27
d. Vehicle Weigh Station Data Record	28
e. Paint Analytical	31
8. Appendix	
a. Typical Vehicle Usage Summary	38
b. Process Information	39
c. Field Data	52
d. Calibration Forms	68
e. Example Calculations	70

List of Tables	Page
Table 1 – Testing Results Summary	2
Table 2 - Fusion Transfer Efficiency Calculation Summary	7
Table 3 - Mustang Transfer Efficiency Calculation	8
Table 4 – Prime Booth VOC Capture Efficiency, Booth 1	9
Table 5 Prime Booth VOC Capture Efficiency, Booth 2	10
Table 6 Basecoat Booth VOC Capture Efficiency, Booth 1	11
Table 7 Basecoat Booth VOC Capture Efficiency, Booth 2	12
Table 8 Clearcoat Booth VOC Capture Efficiency, Booth 1	13
Table 9 Clearcoat Booth VOC Capture Efficiency, Booth 2	14
Table 10 Prime Oven VOC Capture Efficiency, Booth 1	15
Table 11 Basecoat Oven VOC Capture Efficiency, Booth 2	16
Table 12 Clearcoat Oven VOC Capture Efficiency, Booth 1	17
Table 13 Clearcoat Oven VOC Capture Efficiency, Booth 2	18
Table 14 - Applicator Parameter Summary	20
List of Diagrams	Page

Diagram 1 – Topcoat Panel Testing Diagram

5

1.0 <u>Executive Summary</u>

JLB Industries, LLC completed a compliance environmental testing program during the week of October 28, 2013 at the Ford Flat Rock Assembly Plant (FRAP) in Flat Rock, Michigan. The testing program included Transfer Efficiency (TE) and Capture Efficiency (CE) testing of the booth and ovens. Determination of TE and CE were conducted in accordance with all applicable procedures contained in USEPA document <u>Protocol for</u> <u>Determining the Daily Volatile Organic Compound Emission Rate of Automobile and</u> <u>Light-Duty Truck Topcoat Operations</u> and with 40 CFR Chapter 1, Appendix A to Subpart IIII of Part 63. The test results will be used to demonstrate compliance with Auto MACT requirements and in monthly emissions compliance calculations.

Transfer Efficiency values were derived using the Ford Mustang and Fusion vehicles, which currently accounts for the majority of production volumes. Personnel from the paint shop, Ford environmental staff and JLB Industries, LLC conducted the testing. These groups worked together at each stage of testing to ensure that the results were representative of production conditions.

JLB Industries used highly accurate weighing systems to determine the vehicle and panel weights before and after coating application. Calibrated volumetric flow meters, located on each applicator, were used to measure paint usage.

Material samples were collected from the paint circulation tanks directly after vehicle spray out. Determination of percent solids by weight and density was performed by Advanced Technologies of Michigan laboratories located in Livonia, Michigan.

Tested Coating	Booth	Solids Transfer Efficiency (%)	Booth Capture Efficiency (%)	Oven Capture Efficiency (%)
	3-Wet #1	Contraction of the lag	81.8%	10.4%
Gray Prime	3-Wet #2		81.8%	N/A
	Average		81.8%	10.4%
	3-Wet #1		82.0%	N/A
Black Basecoat	3-Wet #2		83.1%	10.0%
	Average		82.5%	10.0%
	3-Wet #1		39.4%	42.1%
Clearcoat	3-Wet #2		38.5%	42.8%
	Average	2012 CONTRACTOR	38.9%	42.4%
Fusion 3-Wet System (Prime, BC and CC)	3-Wet #2	73.7%		
Mustang 3-Wet System (Prime, BC and CC)	3-Wet #2	77.1%		

<u>Table 1 – Testing Results Summary</u>

×.

2.0 Introduction

JLB Industries, LLC (JLBI) was contracted by Ford Flat Rock Assembly Plant (FRAP) to perform Transfer Efficiency (TE) and Capture Efficiency (CE) testing program on the 3-Wet paint systems at the FRAP Assembly Plant in Flat Rock, Michigan. This testing was conducted using the Ford Mustang and Fusion models during the week of October 28, 2013.

3.0 Sampling and Analytical Procedures

Transfer Efficiency Test

Transfer Efficiency testing was conducted in the 3-Wet Spraybooth #2, where Gray Prime, Black Metallic Basecoat and Clearcoat coatings were applied. Applicator and environmental conditions were monitored to ensure that the testing accurately reflected production conditions. Measured parameters included: Vehicle weight gain, material usage, material analysis (percent solids by weight and density), applicator settings, film build and oven heat settings.

A total of eight vehicle bodies were used in testing. Three Mustangs and three Fusions were processed as normal production vehicles, while two vehicles were dedicated as nopaint, control vehicles in conjunction with each test. All units were production vehicles with electrocoat and sealer.

An off-line vehicle weigh station (VWS) was constructed to measure the weight of the test units before and after each painting process. Test vehicles were routed off-line and pushed into the VWS. A fixed stop was secured to assure repeatable positioning of the vehicles. Test vehicles were lifted free from their carriers by two lift-table mounted scale bases. Ultra-high molecular weight (UHMW) plastic blocks were strategically placed on the scale bases to lift the vehicle at the center of gravity locations. The UHMW blocks minimized friction loading on vehicles and scale bases.

Vehicle weights were measured several times and recorded. All test vehicles were weighed with production fixtures (door hooks and hood props) installed. The vehicle weigh station scales were calibrated using Class-F calibration weights conforming to the National Bureau of Standards handbook 105-1. A two-pound avoirdupois, Class F stainless steel weight was added periodically during pre- and post-process weighing to verify scale linearity.

Coating thickness was measured on each test vehicle to verify paint film-build was within the production specification. The data was taken with a handheld Elcometer gauge.

Coating material usage was monitored via volumetric flow measurement devices located on each applicator. A calibration/verification of each applicator was performed by FRAP personnel to ensure accurate usage measurement. Material samples of applied coatings were collected from the respective systems directly after testing. Samples were sent to Advanced Technologies of Michigan laboratories for analysis to determine density by ASTM D1475 and weight solids content by ASTM D2369 (referenced in EPA Method 24). The laboratory results were used in calculating the Transfer Efficiency and Capture Efficiency values.

Production vehicles with paint shop sealer were prepared with e-coat and processed through the 3-Wet Spraybooth #2. A gap was placed before and after the test vehicles to prevent overspray. The test sequence for the Transfer Efficiency test was:

Fusion 3-Wet-Gray Prime, Tuxedo Black Basecoat and Clearcoat

- 1. Test Unit ID 1941
- 2. Test Unit ID 1989
- 3. Test Unit ID 2035

Mustang 3-Wet - Gray Prime, Ebony Basecoat and Clearcoat

- 1. Test Unit ID 2778
- 2. Test Unit ID 2859
- 3. Test Unit ID 2955

No-Paint Control Vehicles

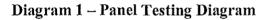
- 1. Test Unit ID 3372 (No-paint)
- 2. Test Unit ID 3513 (No-paint)

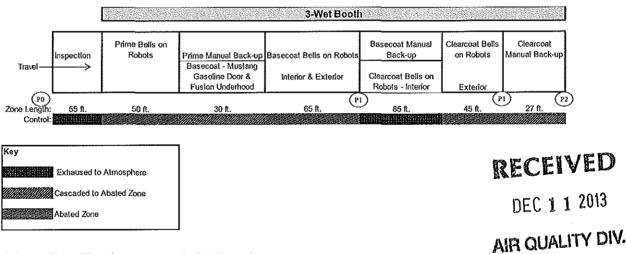
Capture Efficiency Tests

A panel weigh station (PWS) was assembled between the 3-Wet Spraybooths, near the exit of the controlled basecoat spray zones. Weighing locations were chosen based on the controlled zone locations as outlined below in *Diagram 1 – Panel Testing Diagram*. A precision balance with measurement capability to 0.001 gram was placed on an isolation platform inside an enclosure to minimize vibration and air movement. Four test runs were performed:

- 1. 3-Wet #1 Prime Booth Capture Efficiency
- 2. 3-Wet #2 Prime Booth Capture Efficiency
- 3. 3-Wet #1 Basecoat Booth Capture Efficiency
- 4. 3-Wet #2 Basecoat Booth Capture Efficiency

The panel weigh station (PWS) was moved to the oven entrance to perform additional testing. Four test runs were performed:


- 1. 3-Wet #1 Clearcoat Booth and Oven Capture Efficiency
- 2. 3-Wet #2 Clearcoat Booth and Oven Capture Efficiency
- 3. 3-Wet #1 Prime Oven Capture Efficiency
- 4. 3-Wet #2 Basecoat Oven Capture Efficiency


The testing conformed to the methods described in ASTM 5087-02 for solvent borne coatings. Capture Efficiency values for the controlled oven and spraybooth zones were calculated using the procedures outlined in the 40 CFR, Part 63. All test panels were placed on Ford Fusion model vehicles and processed with normal production spray programming.

Four electrocoated panels were used for each of the tests. Each group of test panels was weighed in three locations (see panel test diagram) to determine the relative distribution of VOC that is released in the controlled spray zones and bake oven. The panels were attached to test vehicles by magnet, which allowed for removal of the wet panels with minimal disturbance to the coating during handling. Panel mounting locations were chosen to achieve a representative coating film based on the observation of normal vehicle production:

- 1. Front Door (vertical)
- 2. Roof (horizontal)
- 3. Rear Door (vertical)
- 4. Deck Lid (horizontal)

Before the panels were coated, they were marked (1, 2, 3, 4, blank) and weighed to establish the initial unpainted panel weights (P0). The panels were then attached to a test vehicle and routed through the Spraybooth. For Booth Capture tests, panels were carefully removed from the test vehicle and brought to the balance for weighing after coating, upon exiting the controlled spraybooth zone (P1). For Oven Capture tests, panels were weighed immediately before entering the bake oven (P2). In all tests, panels were then placed on the test vehicle for travel through the curing oven. Upon exiting the oven, the panels were allowed to cool and then weighed a final time (P3).

4.0 Test Equipment and Calibration

Vehicle Weigh Station (VWS)

A dedicated vehicle weigh station (VWS) equipped with two 1,000 lb. capacity scale bases was used to obtain pre- and post-process vehicle weights. The VWS is accurate to better than 0.05 pounds.

The scales were calibrated as directed by the operating instruction manual. Scales were powered up and exercised by placing 300 pounds of Class F calibration weights on each

<u>JLB Industries, LLC</u>

scale platform. Then, the VWS was calibrated with 600 pounds of Class F calibration weights. VWS linearity was checked using a two-pound, Class F stainless steel calibration weight. The two-pound weight was also added to each test vehicle during pre- and post-process weighing to verify scale linearity.

Material Usage

Coating material usage was monitored via volumetric flow measurement devices located on each applicator. A calibration/verification of each applicator was performed by FRAP paint personnel before testing to ensure accurate usage data. Paint usage was measured at each applicator in a graduated cylinder and compared to the expected volume. Verification data is included in section 7 of this report.

A sample of each material was taken after each test and analyzed by Advanced Technologies of Michigan. These values were used in calculating the paint solids sprayed and the transfer efficiency for each type of calculation. ASTM Method D-2369 was used to determine paint solids. ASTM Method D-1475 was used to determine paint density.

Panel Weigh Station

A panel weigh station (PWS) with measurement capability to 0.001 gram was used to measure panel weights. The balance was warmed up and then calibrated with a 300 gram test weight. The balance was tested with 300, 50, 10 and 1 gram weights before commencing weighing operations. A blank panel weight was measured at the beginning of the testing program and again at the time of each subsequent panel weight measurement. The balance was placed on an isolation platform and inside an enclosure to minimize vibration and airflow at the measurement point.

5.0 Discussion of Test Results

There were no significant disruptions to the testing program. Control vehicles demonstrated a weight loss due to sealer bake out in the curing oven. This weight loss was used to adjust the test vehicle weight gains. Several basecoat applicators displayed a usage value including the load volume due to color change. This load value was removed from the paint usage calculations to reflect the actual material volume sprayed.

6.0 <u>Summary of Results</u>

Table 2 - Fusion Transfer Efficiency Calculation SummaryFord FRAP, October 20133-Wet Booth 2

Vehicle ID	Vehicle Weight Gain (lb.)	Prime Sprayed (cal)	Basecoat Spraved (gal)	Clearcoat Sprayed (gal
Variable:		PPS	BCPS	CCPS
Calculation:	(W2-W1)			
1941	3.65	0.193	0.611	0.439
1989	3.66	0.193	0.594	0.439
2035	3.50	0.193	0.567	0.439
Total:	10.82	0.580	1.772	1.318
BVWG:	11.46	BVWG=(sumVV	WG-SWL)	· ·

Material	Batch Paint Sprayed (gal)	Coating Density (lb/gal)	Weight Solids Fraction	Batch Solids Sprayed (lb.)	Transfer Efficiency (%
Variable:	BPS	CD	WSF	BSS	TE
Calculation:	(sum PS)	(Method 24)	(Method 24)	(BPS*CD*WSF)	(BVWG/BS
Prime	0.580	9.92	0.5726	3.30	
Basecoat	1.772	7.84	0.4062	5.64	
Clearcoat	1.318	8.58	0.5839	6.60	
				15.54	73.7%

Control Vehicle Sealer Weight Loss

	Vehicle Weight
Vehicle ID	Gain (lb.)
Variable:	SWL
Calculation:	(W2-W1)
3372	-0.23
3513	-0.19
Average	-0.21
Batch SWL:	-0.63

Table 3 - Mustang Transfer Efficiency Calculation SummaryFord FRAP, October 20133-Wet Booth 2

Vehicle ID	Vehicle Weight Gain (lb.)	Prime Sprayed (gal)	Basecoat Sprayed (gal)	Clearcoat Sprayed (gal)
Venicie (D) Variable:	Contraction of the second s	PPS	BCPS	CCPS
Calculation:	(W2-W1)			
2778	3.57	0.193	0.611	0.439
2859	3.76	0.193	0.594	0.439
2955	3.61	0.193	0.567	0.439
Total:	10.95	0.580	1.772	1.318
BVWG:	11.58	BVWG=(sumV	WG-SWL)	•

Material	Batch Paint Sprayed (gal)	Coating Density (lb/gal)	Fraction	Batch Solids Sprayed (Ib.)	Transfer Efficiency (%
Variable:	BPS	CD	WSF	BSS	TE
Calculation:	(sum PS)	(Method 24)	(Method 24)	(BPS*CD*WSF)	(BVWG/BS
Prime	0.576	9.93	0.5769	3.30	
Basecoat	1.620	7.96	0.4374	5.64	
Clearcoat	1.215	8.58	0.5829	6.08	
				15.02	77.1%

Control Vehicle Sealer Weight Loss

En ser service a service and the service of the ser	Vehicle Weight
Vehicle ID	Gain (lb.)
Variable:	SWL
Calculation:	(W2-W1)
3372	-0.23
3513	-0.19
Average	-0.21
Batch SWL:	-0.63

Table 4 -- Prime Booth VOC Capture Efficiency

Ford FRAP

October 2013

		Wet		Weight of	Weight of					
	Blank	Panel	Panel	Coating	VOC	Weight of VOC		Mass		Section
	Panel	Weights -	Weights -	Solids	remaining	remaining per	Mass	Fraction	VOC fraction	Capture
	Weights	Control	after bake	Deposited	after zone	Weight Solids	Fraction	VOC in	remaining on	Efficiency
Sample	(g)	Zone Exit	(g)	(g)	(g)	Deposited (g)	Solids	Coating	Panel after Zone	(%)
Variable	PO	P1	P3	Wsdep	W _{rem}	Pm	Ws	Wvoc	Pvoc	CE
Formula				P2-P0	P1-P2	W _{rem} W _{sdep}			$(P_m)(W_s)/(W_{VOC})$	1-P _{VOC}
P1	187.041	188.555	188.373	1.332	0.182	0.137				
P2	187.126	188.119	188.016	0.890	0.103	0.116				
P3	187.324	188.716	188.542	1.218	0.174	0.143				
P4	187.999	189.455	189.269	1.270	0.186	0.146				
Average	187.373	188.711	188.550	1.178	0.161	0.137	0.5702	0.4298	0.182	81.8%

Table 5 -- Prime Booth VOC Capture EfficiencyFord FRAP

October 2013

		Wet		Weight of	Weight of				
	Blank	Panel	Panel	Coating	VOC	Weight of VOC	Mass		Section
	Panel	Weights -	Weights -	Solids	remaining	remaining per	Mass Fraction	VOC fraction	Capture
	Weights	Control	after bake	Deposited	after zone	Weight Solids	Fraction VOC in	remaining on	Efficiency
Sample	(g)	Zone Exit	(g)	(g)	(g)	Deposited (g)	Solids Coating	Panel after Zone	(%)
Variable	P0	P1	P3	Wsdep	Wrem	Pm	W _s W _{voc}	Pvoc	CE
Formula				P2-P0	P1-P2	Wrem/Wsdep		$(P_m)(W_s)/(W_{VOC})$	1-P _{voc}
P1	188.168	189.513	189.348	1.180	0.165	0.140			
P2	187.383	188.294	188.193	0.810	0.101	0.125			
P3	187.593	188.858	188.710	1.117	0.148	0.132			S. Stranger
P4	187.357	188.774	188.591	1.234	0.183	0.148			
Average	187.625	188.860	188.711	1.085	0.149	0.138	0.5702 0.4298	0.182	81.8%

Table 6 -- Basecoat Booth VOC Capture EfficiencyFord FRAP

October 2013

		Wet		Weight of	Weight of					
	Blank	Panel	Panel	Coating	VOC	Weight of VOC		Mass		Booth
	Panel	Weights -	Weights -	Solids	remaining	remaining per	Mass	Fraction	VOC fraction	Capture
	Weights	Control	after bake	Deposited	after zone	Weight Solids	Fraction	VOC in	remaining on	Efficiency
Sample	(ġ)	Zone Exit	(g)	(g)	(g)	Deposited (g)	Solids	Coating	Panel after Zone	(%)
Variable	PÓ	P1	P3	W _{sdep}	W _{rem}	Pm	W _s	W _{VOC}	P _{VOC}	CE
Formula				P2-P0	P1-P2	W _{rem} /W _{sdep}			$(\mathbf{P}_{m})(\mathbf{W}_{s})/(\mathbf{W}_{VOC})$	1-P _{VOC}
B1	186.743	187.651	187.471	0.728	0.180	0.247				
B2	186.730	187.738	187.530	0.800	0.208	0.260				
B3	188.791	189.631	189.463	0.672	0.168	0.250				
B4	188.157	188.967	188.800	0.643	0.167	0.260				
Average	187.605	188.497	188.316	0.711	0.181	0.254	0.4147	0.5853	0.180	82.0%

Table 7 -- Basecoat Booth VOC Capture Efficiency

Ford FRAP

October 2013

		Wet		Weight of	Weight of					
	Blank	Panel	Panel	Coating	VOC	Weight of VOC		Mass		Booth
	Panel	Weights -	Weights -	Solids	remaining	remaining per	Mass	Fraction	VOC fraction	Capture
	Weights	Control	after bake	Deposited	after zone	Weight Solids	Fraction	VOC in	remaining on	Efficiency
Sample	(g)	Zone Exit	(g)	(g)	(g)	Deposited (g)	Solids	Coating	Panel after Zone	(%)
Variable	P0	P1	P3	W _{sdep}	Wrem	P _m	W _s	W _{voc}	P _{voc}	CE
Formula				P2-P0	P1-P2	Wrem/Wsdep			$(P_m)(W_s)/(W_{VOC})$	1-Pvoc
B1	187.110	187.992	187.823	0.713	0.169	0.237				
B2	187.457	188.645	188.391	0.934	0.254	0.272				
B 3	187.452	188.316	188.150	0.698	0.166	0.238				
B4	188.408	189.257	189.116	0.708	0.141	0.199				
Average	187.607	188.553	188.370	0.763	0.183	0.239	0.4147	0.5853	0.169	83.1%

Table 8 -- Clearcoat Booth VOC Capture Efficiency

Ford FRAP

October 2013

Booth 1

		Wet Panel		Weight of	Weight of					
	Blank	Weights -	Panel	Coating	VÕC	Weight of VOC		Mass		Section
	Panel	Control Zone	Weights -	Solids	remaining	remaining per	Mass	Fraction	VOC fraction	Capture
	Weights	Exit	after bake	Deposited	after zone	Weight Solids	Fraction	VOC in	remaining on	Efficiency
Sample	(g)	(g)	(g)	(g)	(g)	Deposited (g)	Solids	Coating	Panel after Zone	(%)
Variable	P0	P1	P3	Wsdep	Wrem	Pm	W _s	Wvoc	P _{VOC}	CE
Formula				P2-P0	P1-P2	W _{rem} /W _{sdep}			$(P_m)(W_s)/(W_{VOC})$	1-P _{VOC}
C1	187.332	189.119	188.622	1.290	0.497	0.385				
C2	186.950	189.065	188.445	1.495	0.620	0.415				
C3	187.200	189.057	188.554	1.354	0.503	0.371				
C4	188.051	190.491	189.753	1.702	0.738	0.434				
Average	187.383	189.433	188.844	1.460	0.589	0.404	0.5857	0.4143	0.571	42.9%

Paint Usage Data

		Paint Sprayed (cc)					
Process	Applicator	Uncontrolled	Controlled				
Clearcoat	R1-Int	64					
Interior	R2-Int	74					
	R1		186				
	R2		187				
	R3		207				
Clearcoat	R4		208				
Exterior	R5		189				
	R6		189				
	R 7		172				
	R8		187				
	Total	138	1525				
	Ratio	0.083	0.917				

Note: Clearcoat Booth Capture Efficiency is a section capture efficiency as only the exterior application is controlled.

Booth CE is Controlled Section CE (42.9%) * The ratio of coating sprayed in the controlled section (.917) = CC Booth CE (39.4%)

Clearcoat Booth CE: 39.4%

Table 9 -- Clearcoat Booth VOC Capture Efficiency

Ford FRAP

October 2013

Booth 2

		Wet Panel		Weight of	Weight of					
	Blank	Weights -	Panel	Coating	VOC	Weight of VOC		Mass		Section
	Panel	Control	Weights -	Solids	remaining	remaining per	Mass	Fraction	VOC fraction	Capture
	Weights	Zone Exit	after bake	Deposited	after zone	Weight Solids	Fraction	VOC in	remaining on	Efficiency
Sample	(g)	(g)	(g)	(g)	(g)	Deposited (g)	Solids	Coating	Panel after Zone	(%)
Variable	P0	P1	P3	Wsdep	Wrem	Pm	W _s	Wvoc	P _{VOC}	CE
Formula				P2-P0	P1-P2	Wrem/Wsdep			$(\mathbb{P}_m)(\mathbb{W}_s)/(\mathbb{W}_{VOC})$	1-P _{voc}
C1	187.698	189.522	189.011	1.313	0.511	0.389				
C2	187.394	189.622	188.957	1.563	0.665	0.425				
C3	187.401	189.175	188.689	1.288	0.486	0.377				
C4	187.523	190.079	189.302	1.779	0.777	0.437				
Average	187.504	189.600	188.990	1.486	0.610	0.410	0.5857	0.4143	0.580	42.0%

Paint Usage Data

Process	Applicator	Paint Spr. Uncontrolled	Chestering And States and States
Clearcoat	R1-Int	64	Controlice
Interior	R2-Int	74	
	R1		186
	R2		187
	R3		207
Clearcoat	R4		208
Exterior	R5		189
	R6		189
	R7		172
	R8		187
	Total	138	1525
	Ratio	0.083	0.917

Note: Clearcoat Booth Capture Efficiency is a section capture efficiency as only the exterior application is controlled.

Booth CE is Controlled Section CE (42.0%) * The ratio of coating sprayed in the controlled section (.917) = CC Booth CE (38.5%)

Clearcoat Booth CE: 38.5%

Table 10 -- Prime Oven VOC Capture EfficiencyFord FRAPOctober 2013Oven Solvent LoadingBooth 1

Oven Solvent	Loading		Boom I			
	Blank Panel Weights	Wet Panel Weights - Before Bake	Panel Weights - after bake	Weight of Coating Solids Deposited	Weight of VOC available for abatement	Weight of VOC available per volume of coating solids
Sample	(g)	(g)	(<u>e</u>)	(g)	(C)	(lb/gal)
Variable	PO	P2	P3	Wicos	Wa	CL
Formula				P2-P0	P1-P2	$(W_a/W_{cos})^*D_{cos}$
P1	188.689	189.855	189.745	1.056	0.110	1.22
P2	187.210	188.054	187.984	0.774	0.070	1.06
P3	187.816	188.907	188.801	0.985	0.106	1.26
P4	188.082	189.329	189.197	1.115	0.132	1.39
Average	187.949	189.036	188.932	0.982	0.105	1.25

Material Properties

				Average		
	Coating	Mass	Volume	Film Build		
	Density	Fraction	Fraction	Thickness	VOC mass	Solids Density
Sample	(lb/gal)	Solids	Solids	(mil)	fraction	(lb/gal)
Variable	W _c	Ws	V,	mil	W _{voc}	D _{cos}
Formula						(Ws*Wc)/Vs
Gray Prime	9.93	0.5702	0.4833	1.38	0.4298	11.72

Capture Efficiency

					Volume		
Mass		Mass VOC			Solids Deposited per		
Fraction	Coating	per Volume	Transfer	Volume	Volume		
VOC in	Density	Coating	Efficiency	Fraction	Coating	Panel Test Result (lb	The second s
Coating	(lb/gal)	(lb/gal)	(%)	Solids	Sprayed	VOC/gal/Solids)	Efficiency (%)
W _{voc}	D _c	VOC	TE	V _s	Vsdep	P	CE
0.1000	0.03	(Dc)(Wvoc)	72.70/	0.4000	(V _s)(TE)	1.02	(P)(V _{sdep})(100)/(VOC)
0.4298	9.93	4.268	73.7%	0.4833	0.356	1.25	10.4%

Table 11 -- Basecoat Oven VOC Capture EfficiencyFord FRAPOctober 2013Oven Solvent LoadingBooth 2

Oven Solven	Loaunig		Doom 2			
	Blank Panel Weights	Wet Panel Weights - Before Bake	Panel Weights - after bake	Weight of Coating Solids Deposited	Weight of VOC available for abatement	Weight of VOC available per volume of coating solids
Sample	(g)	<u>(g)</u>	(g)	(g)	(g)	(lb/gal)
Variable	PO	P2	P3	W _{cos}	Wa	CL
Formula		and the second second		P2-P0	P1-P2	(W _a /W _{cos})*D _{cos}
B1	188.369	188.991	188.875	0.506	0.116	1.80
B2	188.834	189.750	189.602	0.768	0.148	1.51
B3	187.523	188.233	188.121	0.598	0.112	1.47
B4	187.970	188.760	188.647	0.677	0.113	1.31
Average	188.174	188.934	188.811	0.637	0.122	1.50

Material Properties

	Coating	Mass	Volume	Film Build		
	Density	Fraction	Fraction	Thickness	VOC mass	Solids Density
Sample	(lb/gal)	Solids	Solids	(mil)	fraction	(lb/gal)
Variable	Wc	W _s	V,	mil	Wyoe	\mathbb{D}_{\cos}
Formula						$(W_s^*W_c)/V_s$
Silver BC	7.81	0.4147	0.4131	0.45	0.5853	7.84

Capture Efficiency

					Volume Solids		
Mass		Mass VOC			Deposited per		
Fraction VOC in	Coating Density	per Volume Coating	Transfer Efficiency	Volume Eraction	Volume Coating	Panel Test Result (lb	Oven VOC Capture
Coating	(lb/gal)	(lb/gal)	(%)	Solids	Sprayed	VOC/ gal Solids)	Efficiency (%)
W _{voc}	D	VOC (D.)(W)	TE	V.	V _{sdep} (V _s)(TE)	P	CE (P)(V _{sdep})(100)/(VOC)
0.5853	7.81	(D _c)(W _{voc}) 4.571	73.7%	0.4131	0.304	1.50	(E)(V _{sdep})(100)/(VOC) 10.0%

DEC 1 1 2013

AIR QUALITY DIV.

Table 12 -- Clearcoat Oven VOC Capture EfficiencyFord FRAPOctober 2013Oven Solvent LoadingBooth 1

Oven Solven	Loaung		BOOTH I			
Sample	Blank Panel Weights (2)	Wet Panel Weights - Before Bake (g)	Panel Weights - after bake (g)	Weight of Coating Solids Deposited (g)	Weight of VOC available for abatement (g)	Weight of VOC available per volume of coating solids (ib/gal)
Variable	PO	P2	P3	W _{cos}	W,	CL
Formula				P2-P0	P1-P2	$(W_a/W_{cos})^*D_{cos}$
C1	187.332	189.119	188.622	1.290	0.497	3.58
C2	186.950	189.065	188.445	1.495	0.620	3.85
C3	187.200	189.057	188.554	1.354	0.503	3.45
C4	188.051	190.491	189.753	1.702	0.738	4.03
Average	187.383	189.433	188.844	1.460	0.589	3.75

Material Properties

	Coating	Mass	Volume	Film Build	Second Sec	
	Density	Fraction	Fraction	Thickness	VOC mass	Solids Density
Sample	(lb/gal)	Solids	Solids	(mil)	fraction	(ib/gal)
Variable	We	Ws	V,	mil	Wvoc	D _{cos}
Formula				a subsection of the	States and	(Ws*Wc)/Vs
Clearcoat	8.58	0.5857	0.5408	1.74	0.4143	9.29

Capture Efficiency

					Volume Solids		
Mass		Mass VOC			Deposited per		
Fraction	Coating	per Volume	Transfer	Volume	Volume		
VOC in	Density	Coating	Efficiency	Fraction	Coating	Panel Test Result	Oven VOC Capture
Coating	(lb/gal)	(lb/gal)	(%)	Solids	Sprayed	(lb VOC/gal Solids)	Efficiency (%)
W _{voc}	Dc	VOC	TE	V _s	Vsdep	Р	CE
		(Dc)(Wvoc)			(V _s)(TE)		(P)(V _{sdep})(100)/(VOC)
0.4143	8.58	3.555	73.7%	0.5408	0.399	3.75	42.1%

•

Table 13 -- Clearcoat Oven VOC Capture EfficiencyFord FRAPOctober 2013Oven Solvent LoadingBooth 2

Oven Solven	t Loauing		Doom 2			
	Blank Panel Weights	Wet Panel Weights - Before Bake	Panel, Weights - after bake	Weight of Coating Solids Deposited	Weight of VOC available for abatement	Weight of VOC available per volume of coating solids
Sample	(g)	(g)	(g)	(g)	(g)	(lb/gal)
Variable	P0.	P2	P3	Weos	Wa	CL
Formula	1.000			P2-P0	P1-P2	(Wa/Wcos)*Dcos
C1	187.698	189.522	189.011	1.313	0.511	3.62
C2	187.394	189.622	188.957	1.563	0.665	3.95
C3	187.401	189.175	188.689	1.288	0.486	3.51
C4	187.523	190.079	189.302	1.779	0.777	4.06
Average	187.504	189.600	188.990	1.486	0.610	3.81

Material Properties

	Coating	Mass	Volume	Eilm Build		
	Density	Fraction	Fraction	Thickness	VOC mass	Solids Density
Sample	(lb/gal)	Solids	Solids	(mil)	fraction	(lb/gal)
Variable	Wc	W,	V _s	mil	W _{voc}	D _{cos}
Formula						(Ws*Wc)/Vs
Clearcoat	8.58	0.5857	0.5408	1.74	0.4143	9.29

Capture Efficiency

					Volume		
					Solids		
Mass Fraction	Coating	Mass WOC	Transfer	Volume	Deposited per Volume		
VOCin	Density	Coating	Efficiency	Fraction	Coating	Panel Test Result	Oven VOC Capture
Coating	(lb/gal)	(lb/gal)	(%)	- Solids	Sprayed	(lb VOC/ gal Solids)	Efficiency (%)
W _{voc}	Dc	VOC	TE	V _s	Vsdep	Р	CE
		(Dc)(Wvoc)			(V ₃)(TE)		(P)(V _{sdcp})(100)/(VOC)
0.4143	8.58	3.555	73.7%	0.5408	0.399	3.81	42.8%

7.0 Data Sheets

Table 14 - Applicator Parameter SummaryFord FRAP Transfer Efficiency Test, October 2013

3-Wet Booth

Operation	Manufacturer	Applicator	Fluid Tip	Air Cap	Gun Voltage	RPM	Target Distance	Remarks
Prime Exterior	Fanuc	Versa Bell II	1.2 mm	Serrated Bell	80 kV	50,000	10"	
Basecoat Interior	Fanuc	Versa Bell II+	0.9 mm	Serrated Bell	40 kV	30,000	10"	
Basecoat Exterior	Fanuc	Versa Bell II	0.9 mm	Serrated Bell	80 kV	45,000	10"	
Clearcoat Interior	Sames	Sames 501	1.4 mm		60 kV	N/A	10-12"	
Clearcoat Exterior	Fanuc	Versa Bell II	1.2 mm	Serrated Bell	80 kV	45,000	10"	

Line Speed: 17.1 ft/min

Process Diagram

 Prime	BC I	nterior	BC	Exterior	CC Interior	CC Ext	terior

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

Fusion Gray Prime

ALTINGS AND ALTING STATISTICS		Vehicle I	D/ Paint Sp	Paint Sprayed (cc)		
Process	Applicator	1989	1941	2035		
D '	R1	282	282	282		
	R2					
Prime	R3	174	174	174		
	R4	276	276	276		
	Prime (cc):	732	732	732		
	Prime (gal):	0.193	0.193	0.193		

Total Paint Sprayed (gal): 0.580

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

		Vehicle II	D/ Paint Sp	raved (cc)
Process	Applicator	1989	1941	2035
Manual	1	35	25	22
	R1	745	692	600
Interior	R2			
Basecoat	R3	345	345	343
	R4	304	304	302
	R1	228	228	227
	R2	228	228	226
	R3	179	179	179
Exterior	R4			
Basecoat	R5	98	98	98
	R6	98	98	98
	R7			
	R8	52	52	52
	Total (cc):	2312	2249	2147
	Total (gal):	0.611	0.594	0.567

Fusion Tuxedo Black Basecoat

Total Paint Sprayed (gal): 1.772

*Load values removed from paint totals.

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

Fusion Clearcoat

			D/ Paint Sp	
Process	Applicator	1989	1941	2035
Clearcoat	R1	64	64	63
Interior	R2	74	74	75
	R1	186	186	186
	R2	187	187	187
	R3	207	207	207
Clearcoat	R4	208	208	208
Exterior	R5	189	189	189
	R6	189	189	189
	R7	172	172	172
	R8	187	187	187
	Total (cc):	1663	1663	1663
· · · · · · · · · · · · · · · · · · ·	Fotal (gal):	0,439	0.439	0.439

Total Paint Sprayed (gal): 1.318

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

Mustang Gray Prime

and the state of the	Vehicle ID/ Paint Spray						
Process	Applicator	2859	2778	2955			
	R1	268	268	266			
n '	R2						
Prime	R3	196	196	196			
	R4	264	264	264			
an and a subscription of the subscription of the	Prime (cc):	728	728	726			
	Prime (gal):	0.192	0.192	0.192			

Total Paint Sprayed (gal): 0.576

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

	Mustang Loony Black Basecoat								
			D/ Paint Sp						
Process	Applicator	2859	2778	2955					
Manual	1	25	27	26					
	R1	419	422	420					
Interior	R2								
Basecoat	R3	283	283	283					
	R4	284	284	284					
	R1	235	235	232					
	R2	235	235	254					
	R3	162	162	162					
Exterior	R4								
Basecoat	R5	148	148	148					
	R6	150	150	150					
	R7								
	R8	95	95	95					
	Total (cc):	2036	2041	2054					
· · · ·	Fotal (gal):	0.538	0,539	0.543					

Mustang Ebony Black Basecoat

.

Total Paint Sprayed (gal): 1.620

*Load values removed from paint totals.

Paint Metering Data Record Ford FRAP Transfer Efficiency Test, October 2013

Vehicle ID/ Paint Sprayed (cc) 2778 2955 Applicator 2859 Process 59 Clearcoat R1 48 48 57 Interior R2 46 46 176 175 **R1** 176 175 R2 175 175 R3 189 189 189 Clearcoat R4 188 188 188 Exterior R5 173 173 173 R6 173 173 173 R7 185 185 185 R8 173 173 173 Total (cc): 1548 1525 1526 0.409 0.403 Total (gal): 0.403

Mustang Clearcoat

Total Paint Sprayed (gal): 1.215 I.E. CST JUD CAL/VERIFICATION

ŝ.

		O-L Daint	A sheel	Do	rte	10/2	7/13
		Set Point	Actual			. 20	r
Prime	R2	+uner-		1 R 2	20002	100	02
rtime		1004		- R3	100 cc	120	CC
	R3 _{R4}	120-0	POTE_	Rq	100	120	lc
	R1	WOCC	100 22				
P700	R2	low Repersor					
	R ³ R4	100 60	100 cc 100 cc				
	R1	10000	10000	<u>,</u>			
Z1 P500	R2	100 cc	10064				а. ¹
	R3 R4	100 CC	10000				
	R1	100 CC	100CC]			· · ·
Z2 P500	R2	10022	IDOLC				19 - A.
•.	R3 R4	100 CC 100 CC	9000 9000	X			
	C1]			
		10000	100 cc			Æ.	
Clear P200	C2	10000	100 C C	-			
	C3	100 CC	100CC				
	C4	100cc	100 C C			÷v	
	R1	100CC	100 cc	le.		7	
	R2	100 cc	100 CC				
Clear P500	R3	100 CC .	100 cc				
	R4	100 CC	100 CC				
	R5	100 CC	100 C.C				
		100 CC	100 cc				
	R7	100 CC	105 00				
	R8	100 CC	105CC				

27

Vehicle Weigh Station Data Record Fusion 3-Wet: Prime, Basecoat and Clearcoat Ford FRAP Transfer Efficiency Test, October 2013

Test Veh	nele 1	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	1941	1033.00	1036.60
VIN	TE 1	1032.92	1036.62
		1032.96	1036.58
		1032.94	1036.64
Two	p-Pound Linearity Check:	1034.94	1038.64
	Average Vehicle Weight:	1032.96	1036.61
	Vehicle Weight Gain:		3.65

Test Veh	icle 2	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	1989	1033.96	1037.60
VIN	TE 2	1033.86	1037.58
		1033.92	1037.58
		1033.94	1037.58
Two	-Pound Linearity Check:	1035.94	1039.58
	Average Vehicle Weight:	1033.92	1037.59
	Vehicle Weight Gain:		3.66

Test Vel	nicle 3	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	2035	1031.02	1034.54
VIN	TE 3	1031.06	1034.58
		1031.08	1034.58
		1031.10	1034.58
Two	o-Pound Linearity Check:	1033.10	1036.58
	Average Vehicle Weight:	1031.07	1034.57
_	Vehicle Weight Gain:		3.50

Vehicle Weigh Station Data Record Mustang 3-Wet: Prime, Basecoat and Clearcoat Ford FRAP Transfer Efficiency Test, October 2013

Test Vel	nicle 1	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	2778	1018.44	1022.02
VIN	TE 4	1018.48	1022.04
		1018.46	1022.04
		1018.46	1022.04
Two	o-Pound Linearity Check:	1020,46	1024.04
	Average Vehicle Weight:	1018.46	1022.04
	Vehicle Weight Gain:		3.57

Test Veh	nicle 2	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	2859	1017.86	1021.54
VIN	TE 5	1017.82	1021.58
		1017.78	1021.64
		1017.88	1021.62
Two	o-Pound Linearity Check:	1019.88	1023.62
	Average Vehicle Weight:	1017.84	1021.60
	Vehicle Weight Gain:		3.76

Test Veli	nicle 3	Ecoat Weight (lb.) W1	Coated Weight W2
Carrier	2955	1018.44	1022.04
VIN	TE 6	1018.46	1022.08
		1018.46	1022.06
		1018.44	1022.08
Two	o-Pound Linearity Check:	1020.44	1024.08
	Average Vehicle Weight:	1018.45	1022.07
	Vehicle Weight Gain:		3.61

Vehicle Weigh Station Data Record No-Paint Control Vehicles Ford FRAP Transfer Efficiency Test, October 2013

Control	Vehicle 1	Ecoat Weight (lb.) <i>W1</i>	Coated Weight W2
Carrier	3372	1019.00	1018.66
VIN	TE 7	1019.00	1018.72
		1019.02	1018.80
		1018.98	1018.78
			1018.84
			1018.80
			1018.80
Two	-Pound Linearity Check:	1020.98	1020.80
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Average Vehicle Weight:	1019.00	1018.77
	Vehicle Weight Gain:		-0.23

Control	Vehicle 2	Ecoat Weight (lb.) Wl	Coated Weight W2
Carrier	3513	1018.20	1018.00
VIN	TE 8	1018.22	1018.02
		1018.18	1018.02
		1018.20	1018.00
		1018.22	
Two	o-Pound Linearity Check:	1020.22	1020.00
remaannen mehikköittöittöittöittöittöittöittöittöittö	Average Vehicle Weight:	1018.20	1018.01
	Vehicle Weight Gain:		-0.19

### RECEIVED

DEC 1 1 2013 AIR QUALITY DIV.

### ΑΤοΜ

ADVANCED TECHNOLOGIES of MICHIGAN Jeffries Tech Center 37651 Schoolcraft Road Livonia, MI 48150 Phone: (734) 953-5034 Email: atominc@sbcglobal.net

Requestor:			JLB Indu LLC JLB	ıstries,		Date:	11/06/2013
Ford FRAP		0/107	0/37		<b>D</b>		. 1
Sample Name	Date	%NV	%V	<u> </u>	Density		
				g/mL	#/gal	g/L	#/gal
Gray Prime	10/29/13	57.26	42.74	1.18	9.92	508.1	4.24
Tuxedo Black BC	10/29/13	40.62	59.38	0.939	7.84	557.5	4.65
Clearcoat	10/29/13	58.39	41.61	1.028	8.58	427.6	3.57
Gray Prime	10/30/13	57.69	42.31	1.190	9.93	503.6	4.20
Ebony Black BC	10/30/13	43.74	56.26	0.954	7.96	536.7	4.48
Clearcoat	10/30/13	58.29	41.71	1.029	8.58	429.0	3.58
Gray Prime	10/31/13	57.02	42.98	1.190	9.93	511.3	4.27
Tuxedo Black BC CE	10/31/13	41.47	58.53	0.936	7.81	547.6	4.57
Clearcoat CC CE	10/31/13	58.57	41.43	1.028	8.58	426.0	3.56



**PPG INDUSTRIES** 3800 West 143rd Street Cleveland, OH 44111



Submitted to:

Ford Motor Company,

Supplier: (Manufacturing Site)	PPG Industries, Inc.	Date:	09/02/13	
Material Name:	Ebony	M Number:	M6373	
Approved By:	Janet Klein	Supplier Batch #:	49731	
Color Standard Date:	N/A_	Basecoat Supplier Code:	UDCT6373R	
% Reduction (Target)	N/A	Tox #:	181885	
Reducing Solvent	<u>N/A</u>	Batch Size:	1499 GAL	
Test Description	Test Method	Range	Actual	
WPG (Pkg Theoretical)	TM-CALC	REPORT	8,025	
% NV by Wt (Pkg theoretical)	TM-CALC	REPORT	47.78%	
Vol %NV (Pkg Theoretical)	TM-CALC	REPORT	40.29%	
VOC (Pkg Theoretical)	TM-CALC	REPORT	4.19	

-4			- P.C	and the second	¥ / 399 8	D	
			01	time of		91	
а <u>н</u> ,	and the second s	Carrie Colored	Second Second	COLORDON S	And the second se	-	-7
See		there are not the second		AND ADDRESS	and the second		e 12

Test Description.	Test Method	Range	Actual
Ford Viscosity (Pkg)	ASTM D 1200/ASTM D4287	17 - 19	20.2
WPG (Pkg)	ASTM D 1475	REPORT	8.03
% NV by Wt (Pkg)	ASTM D 1353	41.0 - 47.0	44.9
VOC (Pkg)	ASTM D 3960	4.20 - 4,70	4.42
LB, HAPS PER GALLON	TM-CALC	REPORT	0.22
Resistivity	ASTMD5682	0.05 - 2.00	0.97
Color	DELTA E 45°	0 - 3	0.83
QMS ⁷ (Wavescan) Horizontal Vertical	SDS DVM 0030-PA	65 - 69 52 - 56	76.1 66.0
Dry Hiding	FLTM BI 158-01	0.5 - 0.8	0.50
Adhesion	FLTM BI 106-01 Part B	0 - 2	0
Dirt Count	PARTICLES FIBERS	0 - 5 0 - 3	4 1

¹ Pop & Sag Clearcoat & Primer only testing

⁵ Non-suspected carcinogenic HAPs @ 1% or greater by weight.

² Clearcoat, Waterborne Basecoat, & Primer only testing.

⁶ Suspected Carcinogenic Based HAPs @ 0.1% or greater based upon weight.

⁴ Clearcoat Wet Sample Transmittance.

⁸X-Rite Color Readings will be required here for consistency & Color Harmony Teams. ⁷ Wavescan test results have been compared to historical statistical data, per a Ford/PPG agreement



**PPG INDUSTRIES** 3800 West 143rd Street Cleveland, OH 44111



Submitted to:

Ford Motor Company,

"Supplier: (Manufacturing Site)	PPG Industries, Inc.	Date:	10/26/13	
¹ Material Name:	arbamate Clear for 3-W	e M Number:	M9000	
Approved By:	Kathy Immonen	Supplier Batch #:	52009	
Color Standard Date:	N/A	Basecoat Supplier Code:	TMAC9000FR	
% Reduction (Target)	N/A	Tox #:	191186	
Reducing Solvent	<u> </u>	Batch Size:	6499 GAL	
Test Description	Test Method	Range	Actual	
WPG (Pkg Theoretical)	TM-CALC	REPORT	8.643	
% NV by Wt (Pkg Theoretical)	TM-CALC	REPORT	60.48%	
Vol %NV (Pkg Theoretical)	TM-CALC	REPORT	54.08%	
VOC (Pkg Theoretical)	TM-CALC	REPORT	3.415	

C Sismel

Test Description	Test Method	Range	Actual
Ford Viscosity (Pkg)	ASTM D 1200/ASTM D4287	27.0 - 30.0	28.3
WPG (Pkg)	ASTM D 1475	REPORT	8.64
% NV by Wt (Pkg)	ASTM D 1353	56,5 - 62.0	56.7
VOC (Pkg)	ASTM D 3960	3.30 - 4.10	3.74
LB HAPS PER GALLON	TM-CALC	REPORT	0.00
Resistivity	ASTM D5682	0.05 - 2.00	0.15
UV Transmittance @ 360 NM	ASTM E 169-99	REPORT	27.1
Color			
QMS ⁷ (Wavescan) Horizontal Vertical	SDS DVM 0030-PA	55 - 70 47 - 61	66.2 47.8
Pop	POPSPRY000	1.8 - 2.5	2.20
Sag	FLTM BL 122-02	1.6 - 2.2	2.20
Adhesion	FLTM BI 106-01 Part B	2 MAX	0
Crater Count ²	CRT CRT P01		0
Dirt Count	PARTICLES FIBERS	0 - 5 0 - 3	2

¹ Pop & Sag Clearcoat & Primer only testing

⁵ Non-suspected carcinogenic HAPs @ 1% or greater by weight.

² Clearcoat, Waterborne Basecoat, & Primer only testing.

⁴ Clearcoat Wet Sample Transmittance.

⁶ Suspected Carcinogenic Based HAPs @ 0.1% or greater based upon weight.

⁸X-Rite Color Readings will be required here for consistency & Color Harmony Teams.



PPG INDUSTRIES 3800 West 143rd Street Cleveland, OH 44111



Submitted to:

Ford Meter Company

Supplier: (Manufacturing Site)	PPG Industries, Inc.	Date of Manufacture:	10/09/13
Material Name:	3-Wet Mid Gray Primer	Alpha Code:	N/A
Approved By:	Mauria Fluker	M Number:	M6534
Color Standard Date:	N/A	Supplier Batch #:	51504
Primer Specification:	N/A	Supplier Code:	SCP6534R
% Reduction	N/A	Tox #:	187280
Reducing Solvent	N/A	Batch Size:	1500 GAL
Test Description	Test Method	Range	Actual
WPG (Pkg Theoretical)	TM-CALC	N/A	10.440
% NV by Wt (Pkg theoretical)	TM-CALC	N/A	65.42%
Vol %NV (Pkg Theoretical)	TM-CALC	N/A	48.33%
VOC (PkgTheoretical)	TM-CALC	REPORT	3.61



	그는 것은 것은 것 같아요. 이번 것 같아요. 가지 않는 것은 것 같아요. 것 같아요. 가지 않는 것 같아요. 나는 것 같아요.	Control of the local datasets of the local d	A strange of the second strange of the secon
Test Description	Test Method	Range	Actual
Viscosity Ford	ASTM D 1200	22.0 - 24.0	25.0
WPG (Pkg)	ASTM D 1475	REPORT	10.44
% NV by Wt (Pkg)	ASTM D 2369	60.00 - 70.00	62.66
Vol %NV (Pkg Theoretical)	Computer Generated from Batch Ticket	REPORT	48.33%
VOC (Pkg)	ASTM D 3960	3.50 - 4.20	3.80
LB HAPS PER GALLON	TM-CALC	REPORT	0.00
Resistivity	ASTM D5682	0.05 - 2.00	0.59
Dry Hiding	FLTM BI 158-01	0.40 - 0.90	0.60
Adhesion	FLTM BI 106-01 Part B	2 MAX	0
Intercoat Adhesion (sta/sta)	FLTM BI 106-01 Part B	PASS	PASS
	•		
Crater Count ²		0 - 0	0
Dirt Count	PARTICLES	0 - 5	2
	FIBERS	0 3	0

¹ Suspected Carcinogenic Based HAPs @ 0.1% or greater based upon weight. ² Suspected Carcinogenic Based HAPs @ 0.1% or greater based upon weight.



PPG INDUSTRIES 3800 West 143rd Street Cleveland, OH 44111



Submitted to:

Ford Motor Company

Supplier: (Manufacturing Site)	PPG Industries, Inc.	Date:	10/24/13	
Material Name:	Tuxedo Black	M Number:	M7211	
Approved By:	Todd Schnell	Supplier Batch #:	52073	
Color Standard Date:	N/A	Basecoat Supplier Code:	DCT7211RL	
% Reduction (Target)	N/A	Tox #:	186717	
Reducing Solvent	<u>] N/A</u>	Batch Size:	3926 GAL	
Test Description	Test Method	Range	Actual	
WPG (Pkg Theoretical)	TM-CALC	REPORT	8.003	
% NV by Wt (Pkg theoretical)	TM-CALC	REPORT	49.20%	
VoI %NV (Pkg Theoretical)	TM-CALC	REPORT	41.31%	
VOC (Pkg Theoretical)	TM-CALC	REPORT	4.07	

### (213red)

Test Description Test Method Rance Actual Ford Viscosity (Pkg) ASTM D 1200/ASTM D4287 17 - 19 19.0 WPG (Pkg) ASTM D 1475 REPORT 8.00 % NV by Wt (Pkg) ASTM D 1353 44.0 42.0 - 50.0 VOC (Pkg) ASTM D 3960 4.34 4.00 - 4.50 LB. HAPS PER GALLON TM-CALC REPORT 0.01 % wt. HAPS TM-CALC REPORT 0.13 Resistivity ASTMD5682 0.05 2,00 0.30 -Color Color Ecmc 25° SAE J1545° Ö 3 0.72 Color Ecmc 45° **SAE J1545°** 0 -3 0.35 Color Ecmc 75° SAE J1545° 0 3 0.64 QMS⁷ (Wavescan) Horizontal SDS DVM 0030-PA 60 64 63.6 ÷ Vertical 47 -51 50.6 Adhesion FLTM BI 106-01 Part B 0. -2 0 0 Dirt Count PARTICLES 0 5 FIBERS 0 3 0

¹ Pop & Sag Clearcoat & Primer only testing
 ² Clearcoat, Waterborne Basecoat, & Primer only testing.

⁵ Non-suspected carcinogenic HAPs @ 1% or greater by weight.
 ⁶ Suspected Carcinogenic Based HAPs @ 0.1% or greater based upon weight.

⁴ Clearcoat Wet Sample Transmittance.

⁶X-Rite Color Readings will be required here for consistency & Color Harmony Teams.

⁷ Wavescan test results have been compared to historical statistical data, per a Ford/PPG agreement

Chain of Custody Form

Facility: FORD FRAP

COTOBER 2013

Material Name	Sampling Location	Date	Label	Comment
FT. GRAY Prime	arix Room	10/29/13	FRAP Parme	All sevent borne
Tuxedo Black BC	L1	10/29/13	FRAD BC	dia da anti-anti-anti-anti-anti-anti-anti-anti-
CLEAKCOAT	4	10/29/13	FRAPCC	
LT GRAY PSince	×1	10/30/13	FRAP Prine M	
EBONY BlackBC	Y.C.	10/30/03	FRAP BC M	
CLEARCOAT	i.r	10/30/03	FRAP CC M	
LT GRAY PRIME	1.	10/31/13	FRAP PRIME CE	
Tuxebo Black BC	14	10/31/13	FRAP BC CE	
Clearcont	t.t	10/31/13	FRAP CE CE	

	Relinquished by:	Date	Time	Received by:	Date	Time
	I TRL	- w/1/13	11:05	m	- uala	112 05
a de la construcción de la constru La construcción de la construcción d La construcción de la construcción d	N					······
	<u>.</u>					
나는 가지 않는 것이 가지 않는다. 4월 4일 : 1997년 1월 1997년 1월 1997년 1월 1997년 1월 1997년 1월 1997년						
8						
general in the second						