SOURCE TEST REPORT 2021 COMPLIANCE TESTING

FORD MOTOR COMPANY FLAT ROCK, MICHIGAN

COATING OPERATIONS

Prepared For:

Ford Motor Company - Flat Rock Assembly Plant 1 International Drive Flat Rock, MI 48134

For Submittal To:

EGLE

Cadillac Place, Suite 2-300 3058 West Grand Avenue Detroit, MI 48202-6058

Prepared By:

Montrose Air Quality Services, LLC 4949 Fernlee Avenue Royal Oak, MI 48073

Document Number:

Test Date: Submittal Date:

M049AS-011330-RT-910

December 7, 2021 February 2, 2022

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	David Trahan	Date:	02 / 01 / 2022
Name:	David Trahan	Title:	Field Project Manager
appropriate writt	en materials contained h	erein. I here ntic, accurate,	ations, results, conclusions, and other by certify that, to the best of my and conforms to the requirements of 036-04.
<i>ℳ</i> Signature:	latthew Libman	Date:	02 / 01 / 2022
Name:	Matt Libman	Title:	Logistics Manager

EXECUTIVE SUMMARY

Ford Motor Company - Environmental Quality Office contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance test program on the Regenerative Catalytic Oxidizers (RCOs) and Regenerative Thermal Oxidizer (RTO) (FGCONTROLS) serving EU-Ecoat, EU-Guidecoat, EU-Topcoat at the Ford Motor Company - Flat Rock Assembly Plant facility (State Registration No.: N0929) located in Flat Rock, Michigan. Testing was performed on December 7, 2021, for the purpose of satisfying the emission testing requirements pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit No. MI-ROP-N0929-2018.

Testing at each of the EU-Ecoat, EU-Guidecoat, and EU-Topcoat sampling locations consisted of three 60-minute VOC test runs.

TABLE 1
SUMMARY OF AVERAGE COMPLIANCE RESULTS FG-CONTROLS
DECEMBER 7, 2021

Total Results	Emission Limits	
OC, as propane		
10.4	5	
97.8		
ncy (DE)		
82.9	90° 100	
	OC, as propane 10.4 by (DE) 80.2 ficiency (DE) 97.8 ency (DE)	

TABLE OF CONTENTS

SEC	<u>CTION</u>	<u>PAGE</u>
1.0	INTRODUCTION	6
	1.1 SUMMARY OF TEST PROGRAM	6
	1.2 KEY PERSONNEL	8
2.0	SUMMARY OF RESULTS	10
3.0	PLANT AND SAMPLING LOCATION DESCRIPTIONS	11
	3.1 PROCESS DESCRIPTION, OPERATION, AND CONTROL EQUIPMENT	·11
	3.2 OPERATING CONDITIONS AND PROCESS DATA	12
4.0	SAMPLING AND ANALYTICAL PROCEDURES	13
	4.1 TEST METHODS	13
	4.1.1 EPA Method 1	13
	4.1.2 EPA Method 2	13
	4.1.3 EPA Method 3	14
	4.1.4 EPA Method 4	14
	4.1.5 EPA Method 18	15
	4.1.6 EPA Method 25A	15
	4.2 FLUE GAS SAMPLING LOCATIONS	18
	4.3 PROCESS TEST METHODS	18
5.0	TEST DISCUSSION AND RESULTS	25
	5.1 FIELD TEST DEVIATIONS AND EXCEPTIONS	25
	5.2 PRESENTATION OF RESULTS	25
	5.3 QA/QC AUDITS	33
	5.4 QA/QC DISCUSSION	
	5.5 QUALITY STATEMENT	33
LIS	T OF APPENDICES	
Α	FIELD DATA AND CALCULATIONS	34
	A.1 RCO A Exhaust Stack Field Data	35
	A.2 RCO B Exhaust Stack Field Data	48
	A.3 RCO C Exhaust Stack Field Data	61
	A.4 RCO Combined Inlet Duct Field Data	74
	A.5 RTO Inlet Duct Field Data	85
	A.6 RTO Exhaust Duct Field Data	100
	A.7 Example Calculations	117
В	FACILITY PROCESS DATA	136
С	EPA METHOD 18 LAB RESULTS	139
D	QUALITY ASSURANCE/QUALITY CONTROL	161

	D.1	Units and Abbreviations	162
	D.2	Manual Test Method QA/QC Data	171
	D.3	Instrumental Test Method QA/QC Data	206
	D.4	Accreditation Information/Certifications	247
Е	REG	ULATORY INFORMATION	258
LIST	ГОБ	TABLES	
1-1	FG-	CONTROLS SUMMARY OF TEST PROGRAM	6
1-2	TES	ST PERSONNEL AND OBSERVERS	9
2-1	SU	MMARY OF AVERAGE COMPLIANCE RESULTS - FG-CONTROLS	10
4-1	SAN	MPLING LOCATIONS	18
5-1	RC	O AND RTO VOC EMISSIONS AND DE RESULTS	26
5-2	RC	D FLOW-WEIGHTED VOC CONCENTRATION RESULTS	27
5-3	VO	C EMISSIONS RESULTS - RCO A EXHAUST STACK	28
5-4	VO	C EMISSIONS RESULTS - RCO B EXHAUST STACK	29
5-5	VO	C EMISSIONS RESULTS - RCO C EXHAUST STACK	30
5-6	THO	EMISSIONS RESULTS - RCO COMBINED INLET DUCT	31
5-7	THO	EMISSIONS RESULTS - RTO INLET DUCT	32
5-8	VO	C EMISSIONS RESULTS - RTO EXHAUST DUCT	32
LIST	ГОБ	FIGURES	
3-1	FG	CONTROLS SAMPLING LOCATION SCHEMATIC	11
4-1	US	EPA METHOD 2 SAMPLING SYSTEM	14
4-2	US	EPA METHOD 4 (DETACHED) SAMPLING TRAIN	15
4-3	EPA	METHOD 25A SAMPLING TRAIN	16
4-4	EP/	METHOD 25A AND 18-BAG (CH ₄ /C ₂ H ₆) SAMPLING TRAIN	17
4-5	RC	O COMBINED INLET DUCT FLOW TRAVERSE	19
4-6	RC	O A, B, AND C EXHAUST STACKS FLOW TRAVERSES	20
4-7	RTO	O INLET DUCT FLOW TRAVERSE-RUN 1	21
4-8	RTO	O INLET DUCT FLOW TRAVERSE-RUNS 2 AND 3	22
4-9	RTO	EXHAUST DUCT FLOW TRAVERSE-RUN 1	23
4-10	RTO	DEXHAUST DUCT FLOW TRAVERSE-RUNS 2 AND 3	24

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

Ford Motor Company - Environmental Quality Office contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance test program on the Regenerative Catalytic Oxidizers (RCOs) and Regenerative Thermal Oxidizer (RTO) (FGCONTROLS) serving EU-Ecoat, EU-Guidecoat, EU-Topcoat at the Ford Motor Company - Flat Rock Assembly Plant facility (State Registration No.: N0929) located in Flat Rock, Michigan. Testing was performed on December 7, 2021, for the purpose of satisfying the emission testing requirements pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit No. MI-ROP-N0929-2018.

The specific objectives were to:

- Verify the flow-weighted concentration of volatile organic compound (VOC), as propane, for the RCO Exhausts
- Determine the volatile organic compound (VOC) destruction efficiency (DE) of the RCOs serving EU-Guidecoat and EU-Topcoat
- Determine the VOC (TGO) DE of the RTO serving EU-Ecoat, EU-Guidecoat and EU-Topcoat ovens
- Determine the Overall VOC (TGO) DE of the FG-CONTROLS serving EU-Ecoat, EU-Guidecoat, and EU-Topcoat
- Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1.

TABLE 1-1
FG-CONTROLS SUMMARY OF TEST PROGRAM

Test Dates	Unit ID/ Source Name	Activity/ Parameters	Test Methods	No. of Runs	Duration (Minutes)
12/7/2021	RCO Combined Inlet	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	7-12
12/7/2021	RCO Combined Inlet	Moisture	EPA 4	1	30
12/7/2021	RCO Combined Inlet	VOC (TGO)	EPA 25A	3	60
12/7/2021	RCO Combined Inlet	CH ₄ , C ₂ H ₆	EPA 18	3	60

TABLE 1-1
FG-CONTROLS SUMMARY OF TEST PROGRAM (CONTINUED)

12/7/2021	RCO A, B, C Exhausts	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	5-11
12/7/2021	RCO A, B, C Exhausts	O ₂ , CO ₂	EPA 3	3	30-44
12/7/2021	RCO A Exhaust	Moisture	EPA 4	1	30
12/7/2021	RCO B Exhaust	Moisture	EPA 4	1	30
12/7/2021	RCO C Exhaust	Moisture	EPA 4	1	44
12/7/2021	RCO A, B, C Exhausts	VOC (TGO)	EPA 25A	3	60
12/7/2021	RCO A, B, C Exhausts	CH ₄ , C ₂ H ₆	EPA 18	3	60
12/7/2021	RTO Inlet/Exhaust	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	5-20
12/7/2021	RTO Inlet/Exhaust	O ₂ , CO ₂	EPA 3	1	35 (Inlet) 30 (Exhaust)
12/7/2021	RTO Inlet/Exhaust	Moisture	EPA 4	1	35 (Inlet) 30 (Exhaust)
12/7/2021	RTO Inlet/Exhaust	VOC (TGO)	EPA 25A	3	60

To simplify this report, a list of Units and Abbreviations is included in Appendix D.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Table 1-2. Detailed results for individual test runs can be found in Section 5.0. All supporting data can be found in the appendices.

The testing was conducted by the Montrose personnel listed in Table 1-2. The tests were conducted according to the test plan (protocol) that was received by the EGLE July 20, 2021 and approved on October 7, 2021.

1.2 KEY PERSONNEL

A list of project participants is included below:

Facility Information

Source Location: Ford Motor Company - Flat Rock Assembly Plant

1 International Drive

Flat Rock, MI 48134

Project Contact: Susan Hicks Katle Ernst

Title Senior Environmental Engineer Environmental Engineer Company: Ford Motor Company - Ford Motor Company -

Environmental Quality Office Flat Rock Assembly Plant

Telephone: 313-594-3185 248-496-4353

Email: shicks3@ford.com kholcom3@ford.com

Agency Information

Regulatory Agency: EGLE

Agency Contact: Matthew Karl Jonathan Lamb Telephone: 517-282-2126 313-348-2527

Email: karlm@michigan.gov lambj1@michigan.gov

Testing Company Information

Testing Firm: Montrose Air Quality Services, LLC

Contact: Matt Libman David Trahan

Title: Logistics Manager Field Project Manager

Telephone: 630-625-2114 248-548-8070

Email: mlibman@montrose-env.com dtrahan@montrose-env.com

Laboratory Information

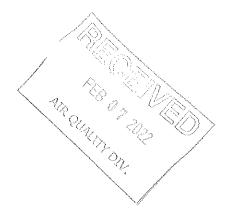
Laboratory: Montrose Air Quality Services, LLC

City, State: Elk Grove, IL 60007 Method: EPA Method 18

Test personnel and observers are summarized in Table 1-2.

TABLE 1-2 TEST PERSONNEL AND OBSERVERS

Name	Affiliation	Role/Responsibility
David Trahan	Montrose	Field Project Manager, QI
Brandon Check	Montrose	Client Project Manager, QI
Matt Libman	Montrose	Logistics Manager, QI
Brian Romani	Montrose	Field Project Manager, QI
Shawn Jaworski	Montrose	Senior Field Technician, QI
Mike Nummer	Montrose	Field Technician
David Kaponen	Montrose	Field Technician
Conner Malroney	Montrose	Field Technician
Jeremy Devries	Montrose	Field Technician
Dakota Gauf	Montrose	Field Technician
Susan Hicks	Ford Motor Company	Observer/Client Liaison/Tes Coordinator
Katie Ernst	Ford Motor Company	Observer
Jon Lamb	EGLE	Observer
Matt Karl	EGLE	Observer


2.0 SUMMARY OF RESULTS

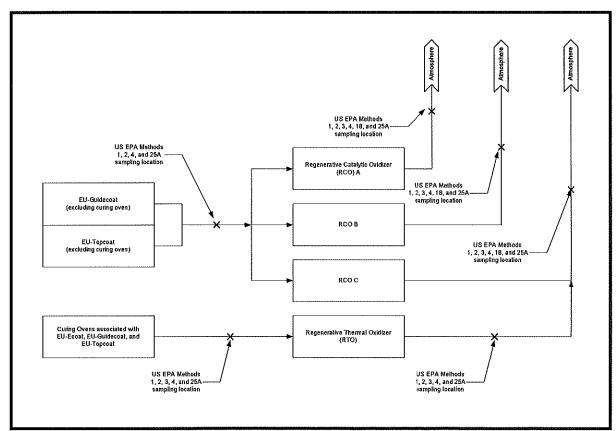
This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to EGLE Permit No. MI-ROP-N0929-2018. Detailed results for individual test runs can be found in Section 5.0. All supporting data (including process data) can be found in the appendices.

To simplify this report, a list of Units and Abbreviations is included in Appendix C.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

TABLE 2-1
SUMMARY OF AVERAGE COMPLIANCE RESULTS FG-CONTROLS
DECEMBER 7, 2021

Parameter/Units	Total Results	Emission Limits
RCO Exhaust Flow Weighted VO	C, as propane	
ppmvw	10.4	5
RCO VOC Destruction Efficiency	(DE)	
%	80.2	
RTO VOC (TGO) Destruction Effi	ciency (DE)	
%	97.8	का ला
Overall VOC Destruction Efficien	icv (DE)	
%	82.9	

3.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS


3.1 PROCESS DESCRIPTION, OPERATION, AND CONTROL EQUIPMENT

The Ford Motor Company Flat Rock Assembly Plant's coating operations includes the electrocoating of vehicle bodies (EU-Ecoat), the application of EU-Guidecoat includes colored primer. EU-Topcoat includes the application of basecoat and clearcoat coatings. Emissions from EU-Guidecoat and EU-Topcoat were controlled by three regenerative catalytic oxidizers (RCOs). Emissions from EU-Ecoat, EU-Guidecoat and EU-Topcoat ovens are controlled by a regenerative thermal oxidizer (RTO).

The RCO A, RCO B, RCO C, and RTO (FG-CONTROLS) and emission units EU-Ecoat, EU-Guidecoat, and EU-Topcoat were in operation during this test event.

The sampling location schematic is displayed in Figure 3-1.

FIGURE 3-1
FGCONTROLS SAMPLING LOCATION SCHEMATIC

3.2 OPERATING CONDITIONS AND PROCESS DATA

Emission tests were performed while the source/units and air pollution control devices were operating at the conditions required by the permit. The units were tested when operating normally.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

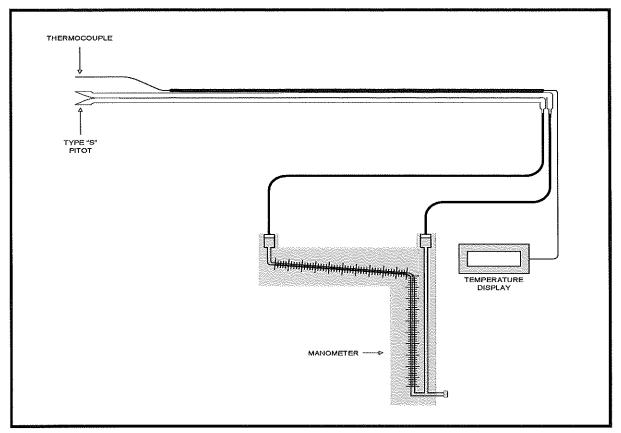
4.1 TEST METHODS

The test methods for this test program were presented previously in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

4.1.1 EPA Method 1, Sample and Velocity Traverses for Stationary Sources

EPA Method 1 is used to assure that representative measurements of volumetric flow rate are obtained by dividing the cross-section of the stack or duct into equal areas, and then locating a traverse point within each of the equal areas. Acceptable sample locations must be located at least two stack or duct equivalent diameters downstream from a flow disturbance and one-half equivalent diameter upstream from a flow disturbance.

The sample port and traverse point locations are detailed in Appendix A.


4.1.2 EPA Method 2, Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

EPA Method 2 is used to measure the gas velocity using an S-type pitot tube connected to a pressure measurement device, and to measure the gas temperature using a calibrated thermocouple connected to a thermocouple indicator. Typically, Type S (Stausscheibe) pitot tubes conforming to the geometric specifications in the test method are used, along with an inclined manometer. The measurements are made at traverse points specified by EPA Method 1

The sampling system is detailed in Figure 4-1

FIGURE 4-1 US EPA METHOD 2 SAMPLING SYSTEM

4.1.3 EPA Method 3, Gas Analysis for the Determination of Dry Molecular Weight

EPA Method 3 is used to calculate the dry molecular weight of the stack gas using one of three methods. The first choice is to measure the percent O_2 and CO_2 in the gas stream. A gas sample is extracted from a stack by one of the following methods: (1) single-point, grab sampling; (2) single-point, integrated sampling; or (3) multi-point, integrated sampling. The gas sample is analyzed for percent CO_2 and percent O_2 using either an Orsat or a Fyrite analyzer.

4.1.4 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.

The typical sampling system is detailed in Figure 4-2.

THERMOCOUPLE PROBE SAMPLE LINE VACUUM - LINE ADAPTOR 100 ml Empty CONDENSING (modified/no tlp) 100 mL 200-300a REAGENT CONDENSING REAGENT (modified/no tip) VACUUM LINE **BY-PASS VALVE** VACUUM GAUGE THERMOCOUPLES 0 MÁIN VALVE MANOMETER 0 GAS AIR TIGHT **DRY GAS** EXIT METER PUMP

FIGURE 4-2
US EPA METHOD 4 (DETACHED) SAMPLING TRAIN

4.1.5 EPA Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

EPA Method 18 is used to measure gaseous organic compounds from stationary sources. The major organic components of a gas mixture are separated by gas chromatography (GC) and are individually quantified using a flame ionization detector (FID), photoionization detector (PID), electron capture detector (ECD), or other appropriate detection principles. The retention times of each separated component are compared with those of known compounds under identical conditions.

The sampling system (RCO locations) is detailed in Figure 4-4.

4.1.6 EPA Method 25A, Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer

EPA Method 25A is an instrumental test method used to measure the concentration of THC in stack gas. A gas sample is extracted from the source through a heated sample line and glass fiber filter to a flame ionization analyzer (FIA). Results are reported as volume concentration equivalents of the calibration gas or as carbon equivalents.

The sampling system is detailed in Figures 4-3 and 4-4.

FIGURE 4-3 EPA METHOD 25A SAMPLING TRAIN

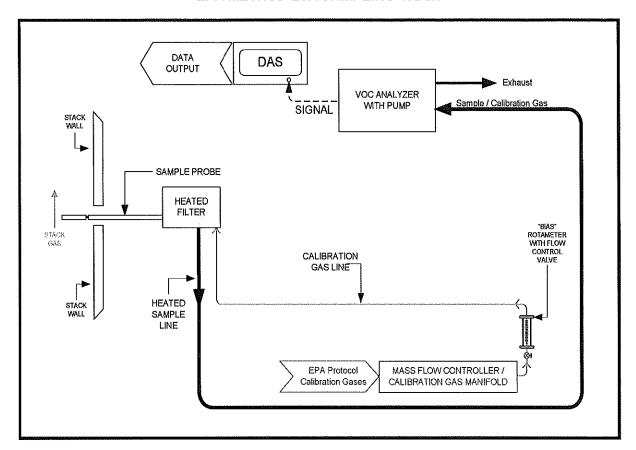
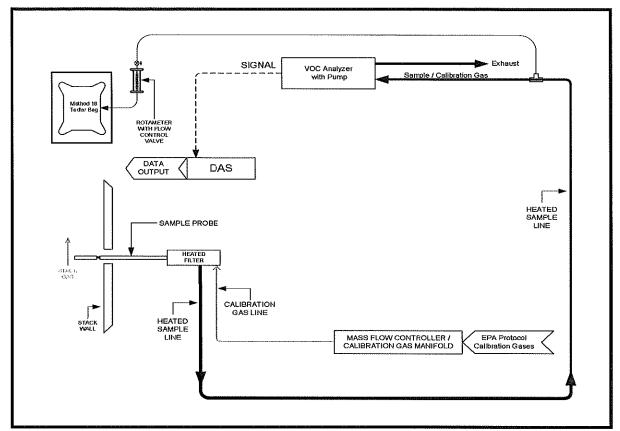



FIGURE 4-4 EPA METHOD 25A AND 18-BAG ($\text{CH}_4/\text{C}_2\text{H}_6$) SAMPLING TRAIN

4.2 FLUE GAS SAMPLING LOCATIONS

Information regarding the sampling locations is presented in Table 4-1.

TABLE 4-1 SAMPLING LOCATIONS

Sampling Location	Stack Inside Dimensions (in.)	Distance from Ne Downstream EPA "B" (in./dia.)	arest Disturbance Upstream EPA "A" (in./dia.)	Number of Traverse Points
RCO A Exhaust Stack	107.0	420 / 3.9	960 / 9.0	Flow:16 (8/port); Moisture/Gaseous: 1
RCO B Exhaust Stack	107.0	420 / 3.9	960 / 9.0	Flow:16 (8/port); Moisture/Gaseous: 1
RCO C Exhaust Stack	107.0	420 / 3.9	960 / 9.0	Flow:16 (8/port); Moisture/Gaseous: 1
RCO Combined Inlet Duct	168.0	600 / 3.6	180 / 1.1	Flow:16 (8/port); Moisture/Gaseous: 1
RTO Inlet Duct	50	234 / 4.7	234 / 4.7	Run 1 Flow: 20 (10/port); Run 2 Flow: 16 (8/port); Run 3 Flow: 16 (8/port); Moisture/Gaseous: 1
RTO Exhaust Duct	46.0 X 42.0	90 / 2.0	170 / 3.9	Run 1 Flow: 27 (9/port); Run 2 Flow: 18 (6/port); Run 3 Flow: 18 (6/port); Moisture/Gaseous: 1

Sample locations were verified in the field to conform to EPA Method 1. Acceptable cyclonic flow conditions were confirmed prior to testing using EPA Method 1, Section 11.4. See Appendices A.1 through A. 6 for more information. The traverse point location drawings for each sampling location are located in Figures 4-5 through 4-10.

4.3 PROCESS TEST METHODS

The test plan did not require that process samples be collected during this test program, therefore, no process sample data are presented in this test report.

FIGURE 4-5
RCO COMBINED INLET DUCT FLOW TRAVERSE

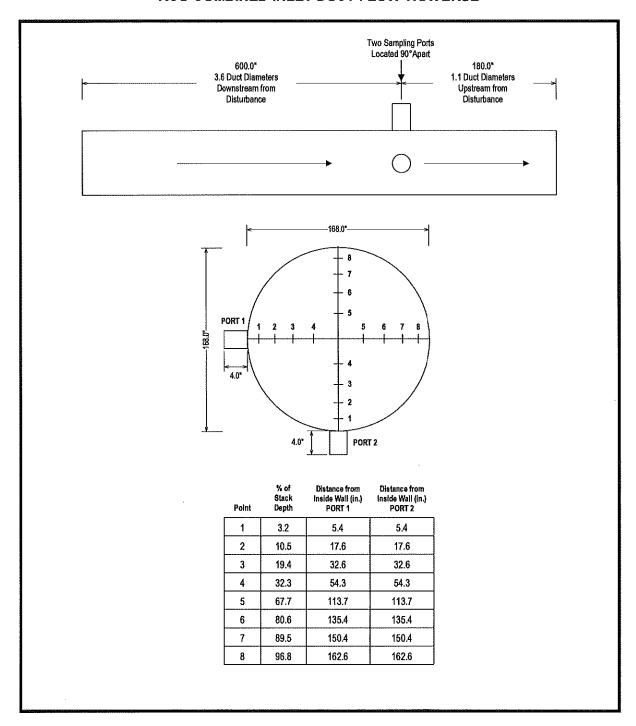


FIGURE 4-6
RCO A, B, AND C EXHAUST STACKS FLOW TRAVERSES

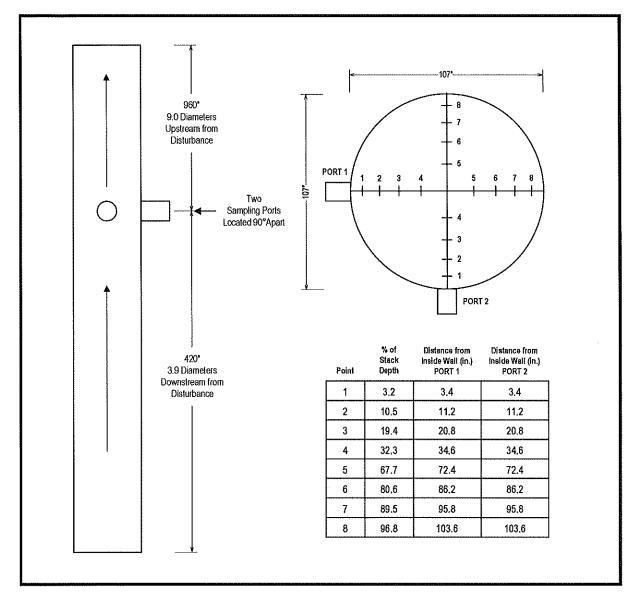


FIGURE 4-7 RTO INLET DUCT FLOW TRAVERSE-RUN 1

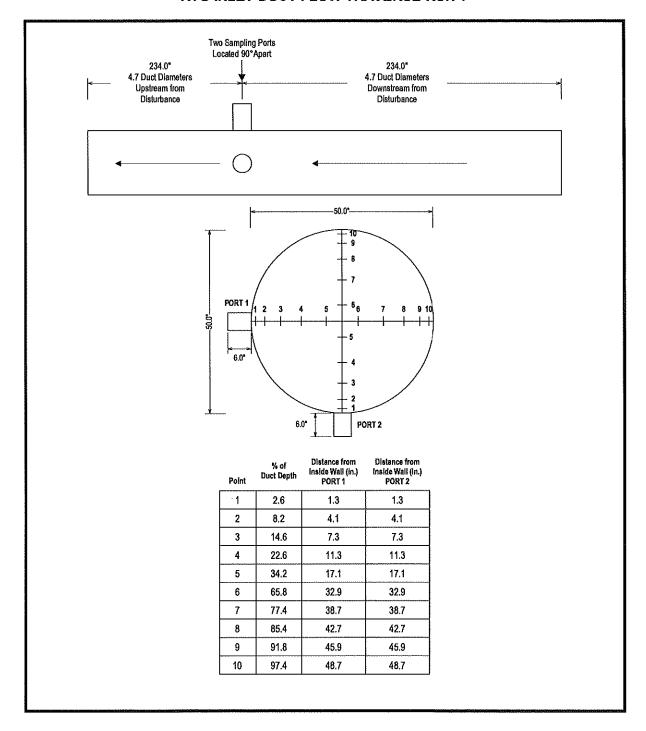


FIGURE 4-8
RTO INLET DUCT FLOW TRAVERSE-RUNS 2 AND 3

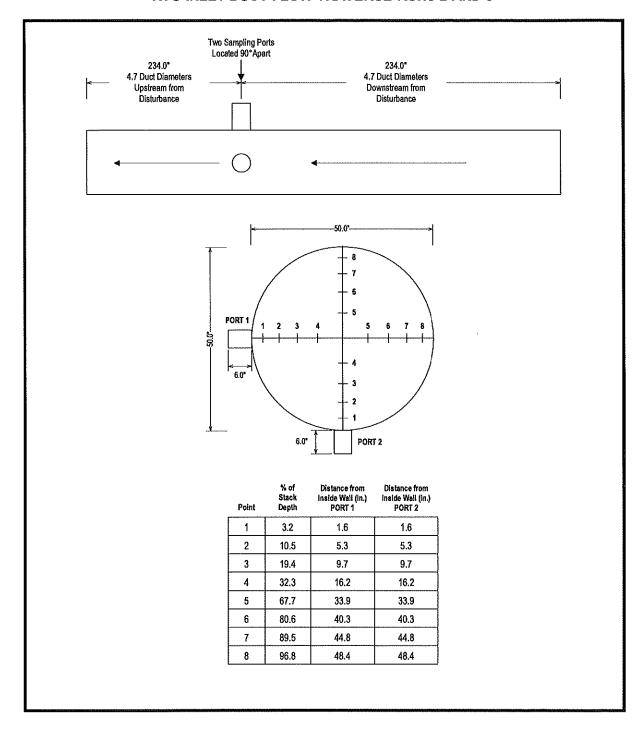


FIGURE 4-9
RTO EXHAUST DUCT FLOW TRAVERSE-RUN 1

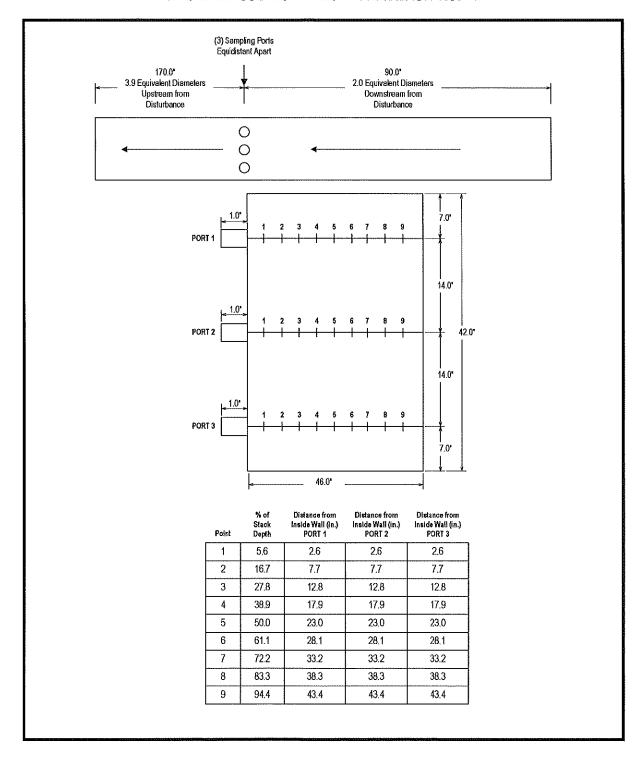
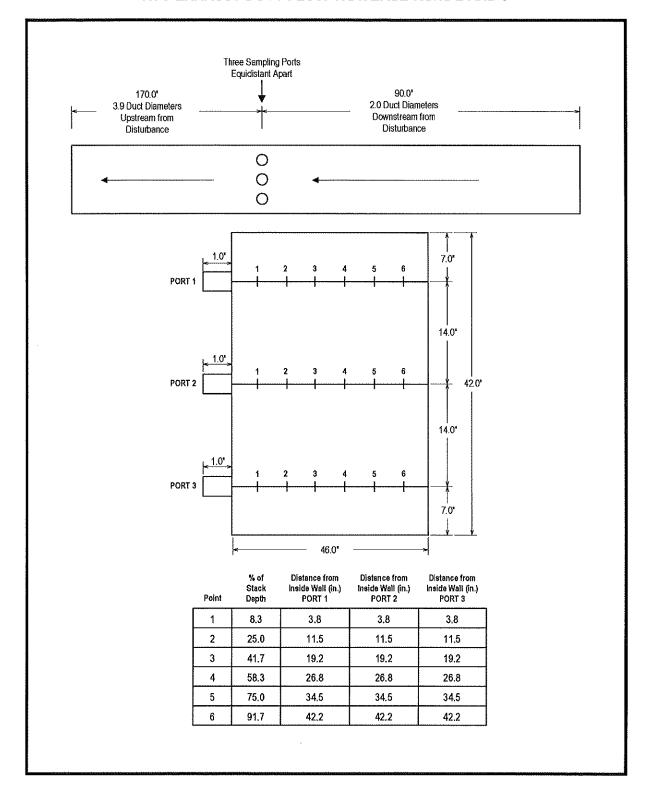



FIGURE 4-10
RTO EXHAUST DUCT FLOW TRAVERSE-RUNS 2 AND 3

5.0 TEST DISCUSSION AND RESULTS

5.1 FIELD TEST DEVIATIONS AND EXCEPTIONS

The sample volume for the single moisture run performed at the RCO Combined Inlet Duct was slightly less than the 0.60 scm (21 scf) requirement of EPA Method 4, Section 8.1.1.2. It is the opinion of MAQS that this sample volume deficiency had little to no impact on the moisture content measured at the RCO Combined Inlet Duct.

Due to high sample train vacuum, constant rate sampling for the single moisture run performed at the RTO Inlet Duct could not be maintained as required by EPA Method 4, Section 6.1.4. Its is the opinion of MAQS that the non-constant sampling rate had little to no impact on the moisture content measured at the RTO Inlet Duct.

5.2 PRESENTATION OF RESULTS

The average results are compared to the permit limits in Table 2-1. The results of individual compliance test runs performed are presented in Tables 5-1 through 5-8. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.

At the RCO Combined Inlet a dry molecular weight of 29.0 g/g-mole (EPA Method 2, Section 8.6) was applied to each concentration run since the processes were considered to emit essentially ambient air.

TABLE 5-1
RCO AND RTO VOC EMISSIONS AND DE RESULTS -

Run Number	1	2	3	Average
Process Data				
RCO A temperature, °F	1149	1150	1150	1149
RCO B temperature, °F	1319	1320	1321	1320
RCO C temperature, °F	1114	1112	1105	1110
RTO temperature, °F	1464	1458	1468	1463
VOC, as propane				
RCO A Exhaust Stack, lb/hr	12.6	11.7	7.5	10.6
RCO B Exhaust Stack, lb/hr	5.2	7.9	5.2	6.1
RCO C Exhaust Stack, lb/hr	14.2	14.2	12.1	13.5
VOC (TGO), as propane				
RCO A/B/C Inlet Duct, lb/hr	168.9	131.2	155.8	152.0
RTO-Inlet Duct, lb/hr	23.0	32.0	22.2	25.7
RTO-Exhaust Duct, lb/hr	0.67	0.70	0.33	0.57
RCO VOC Destruction Efficiency	(DE)			
%	81.4	74.7	84.3	80.2
RTO VOC (TGO) Destruction Effic	ciency (DE)			
%	97.1	97.8	98.5	97.8
Overall VOC Destruction Efficien	cy (DE)			
%	83.3	79.3	86.1	82.9

TABLE 5-2
RCO FLOW-WEIGHTED VOC CONCENTRATION RESULTS -

Run Number	1	2	3	Average
RCO Exhaust Stacks Volumetric	: Flowrate			
RCO A flow rate, scfm	136,132	137,056	135,808	136,332
RCO B flow rate, scfm	126,257	125,996	128,863	127,038
RCO C flow rate, scfm	156,526	159,296	154,497	156,773
RCO A, B, C combined flow rate, scfm	418,914	422,347	419,168	420,143
RCO Exhaust Stacks VOC, as pr	opane			
RCO A, ppmvw	13.3	12.3	7.8	11.1
RCO B, ppmvw	5.9	9.1	5.9	7.0
RCO C, ppmvw	13.1	12.9	11.3	12.4
Flow-Weighted VOC, as propane)			
ppmvw	11.0	11.6	8.5	10.4

TABLE 5-3
VOC EMISSIONS RESULTS RCO A EXHAUST STACK

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	***
Time*	7:10-8:10	9:15-10:15	11:45-15:00	Mil Ma
Flue Gas Parameters				
O ₂ , % volume dry	21.0	21.0	21.0	21.0
CO ₂ , % volume dry	0.0	0.0	0.0	0.0
flue gas temperature, °F	157.1	159.3	157.3	157.9
moisture content, % volume	2.44	2.44	2.44	2.44
volumetric flow rate, scfm	136,132	137,056	135,808	136,332
TGO, as propane				
ppmvw	53.7	54.0	50.0	52.5
Methane				
ppmvw, as methane	82.3	85.3	86.3	84.6
response factor	2.17	2.17	2.17	2.17
ppmvw, as propane	37.9	39.3	39.8	39.0
Ethane				
ppmvw, as ethane	3.53	3.49	3.49	3.50
response factor	1.48	1.48	1.48	1.48
ppmvw, as propane	2.39	2.36	2.36	2.37
VOC, as propane				
ppmvw	13.3	12.3	7.8	11.1
lb/hr	12.6	11.7	7.5	10.6

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

TABLE 5-4 VOC EMISSIONS RESULTS RCO B EXHAUST STACK

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	
Time*	7:10-8:10	9:15-10:15	11:45-15:00	
Flue Gas Parameters				
O ₂ , % volume dry	21.0	21.0	21.0	21.0
CO ₂ , % volume dry	0.0	0.0	0.0	0.0
flue gas temperature, °F	160.1	160.9	162.6	161.2
moisture content, % volume	2.22	2.22	2.22	2.22
volumetric flow rate, scfm	126,257	125,996	128,863	127,038
TGO, as propane				
ppmvw	25.0	25.9	23.2	24.7
Methane				
ppmvw, as methane	40.8	35.9	37.4	38.0
response factor	2.34	2.34	2.34	2.34
ppmvw, as propane	17.4	15.3	15.9	16.2
Ethane				
ppmvw, as ethane	2.49	2.19	2.08	2.25
response factor	1.48	1.48	1.48	1.48
ppmvw, as propane	1.68	1.48	1.41	1.52
VOC, as propane				
ppmvw	5.9	9.1	5.9	7.0
lb/hr	5.2	7.9	5.2	6.1

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

TABLE 5-5
VOC EMISSIONS RESULTS RCO C EXHAUST STACK

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	
Time*	7:10-8:10	9:15-10:15	11:45-15:00	77 W
Flue Gas Parameters				
O ₂ , % volume dry	21.0	21.0	21.0	21.0
CO ₂ , % volume dry	0.0	0.0	0.0	0.0
flue gas temperature, °F	163.1	160.4	166.3	163.3
moisture content, % volume	2.95	2.95	2.95	2.95
volumetric flow rate, scfm	156,526	159,296	154,497	156,773
TGO, as propane				
ppmvw	25.0	25.1	23.1	24.4
Methane				
ppmvw, as methane	31.4	32.1	31.3	31.6
response factor	2.83	2.83	2.83	2.83
ppmvw, as propane	11.1	11.3	11.0	11.1
Ethane				
ppmvw, as ethane	1.22	1.25	1.21	1.23
response factor	1.48	1.48	1.48	1.48
ppmvw, as propane	0.82	0.84	0.82	0.83
VOC, as propane				
ppmvw	13.1	12.9	11.3	12.4
lb/hr	14.2	14.2	12.1	13.5

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

TABLE 5-6
VOC (TGO) EMISSIONS RESULTS RCO COMBINED INLET DUCT

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	
Time*	7:10-8:10	9:15-10:15	11:45-15:00	
Flue Gas Parameters				
flue gas temperature, °F	60.5	61.4	61.3	61.0
moisture content, % volume	1.15	1.15	1.15	1.15
volumetric flow rate, scfm	351,544	345,407	353,439	350,130
TGO, as propane				
ppmvw	88.3	73.4	82.2	81.3
Methane				
ppmvw, as methane	47.1	46.4	46.2	46.6
response factor	2.86	2.86	2.86	2.86
ppmvw, as propane	16.5	16.2	16.2	16.3
Ethane				
ppmvw, as ethane	2.52	2.52	2.50	2.51
response factor	1.48	1.48	1.48	1.48
ppmvw, as propane	1.70	1.70	1.69	1.70
VOC, as propane				
ppmvw	70.1	55.5	64.4	63.3
lb/hr	168.9	131.2	155.8	152.0

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

TABLE 5-7
VOC (TGO) EMISSIONS RESULTS RTO INLET DUCT

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	
Time*	7:10-8:10	9:15-10:15	11:45-15:00	are tre-
Flue Gas Parameters				
O ₂ , % volume dry	19.5	19.5	19.5	19.5
CO ₂ , % volume dry	0.0	0.0	0.0	0.0
flue gas temperature, °F	225.1	232.8	224.0	227.3
moisture content, % volume	0.99	0.99	0.99	0.99
volumetric flow rate, scfm	25,206	26,578	27,746	26,510
VOC (TGO), as propane				
ppmvw	132.8	175.4	116.5	141.6
lb/hr	23.0	32.0	22.2	25.7

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

TABLE 5-8 VOC EMISSIONS RESULTS -RTO EXHAUST DUCT

Run Number	1	2	3	Average
Date	12/7/2021	12/7/2021	12/7/2021	
Time*	7:10-8:10	9:15-10:15	11:45-15:00	
Flue Gas Parameters				
O ₂ , % volume dry	1 9 .7	19.7	19.7	19.7
CO ₂ , % volume dry	1.0	1.0	1.0	1.0
flue gas temperature, °F	325.7	318.0	314.3	319.3
moisture content, % volume	1.14	1.14	1.14	1.14
volumetric flow rate, scfm	28,129	28,549	29,247	28,642
VOC (TGO), as propane				
ppmvw	3.46	3.58	1.64	2.89
lb/hr	0.67	0.70	0.33	0.57

^{*} Sampling was paused during Run 3 from 12:05-14:20 due to production delays.

5.3 QA/QC AUDITS

The meter boxes and sampling trains used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes and minimum sample durations met the applicable QA/QC criteria. Except for sampling at the RCO Combined Inlet Duct and the RTO Inlet Duct. See Section 5.4 for details.

EPA Method 18 analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met.

EPA Method 25A FIA calibration audits were within the measurement system performance specifications for the calibration drift checks and calibration error checks.

An EPA Method 205 field evaluation of the calibration gas dilution system was conducted. The dilution accuracy and precision QA specifications were met.

5.4 QA/QC DISCUSSION

The EPA Method 4 sampling train at the RCO Combined Inlet duct did not meet the minimum sample volume requirement of the method. See Section 5.1 for details.

The EPA Method 4 sampling train at the RTO Inlet duct did not sample at a constant sample rate as required by the method. See Section 5.1 for details.

5.5 QUALITY STATEMENT

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is included in the report appendices. The content of this report is modeled after the EPA Emission Measurement Center Guideline Document (GD-043).

